Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression
Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach for estimating the health effects of mixtures, Bayesian kernel machine regression (BKMR), has been developed. This method estimates the multivariable exposure-r...
Saved in:
Published in | Environmental health Vol. 17; no. 1; pp. 67 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
20.08.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach for estimating the health effects of mixtures, Bayesian kernel machine regression (BKMR), has been developed. This method estimates the multivariable exposure-response function in a flexible and parsimonious way, conducts variable selection on the (potentially high-dimensional) vector of exposures, and allows for a grouped variable selection approach that can accommodate highly correlated exposures. However, the application of this novel method has been limited by a lack of available software, the need to derive interpretable output in a computationally efficient manner, and the inability to apply the method to non-continuous outcome variables.
This paper addresses these limitations by (i) introducing an open-source software package in the R programming language, the bkmr R package, (ii) demonstrating methods for visualizing high-dimensional exposure-response functions, and for estimating scientifically relevant summaries, (iii) illustrating a probit regression implementation of BKMR for binary outcomes, and (iv) describing a fast version of BKMR that utilizes a Gaussian predictive process approach. All of the methods are illustrated using fully reproducible examples with the provided R code.
Applying the methods to a continuous outcome example illustrated the ability of the BKMR implementation to estimate the health effects of multi-pollutant mixtures in the context of a highly nonlinear, biologically-based dose-response function, and to estimate overall, single-exposure, and interactive health effects. The Gaussian predictive process method led to a substantial reduction in the runtime, without a major decrease in accuracy. In the setting of a larger number of exposures and a dichotomous outcome, the probit BKMR implementation was able to correctly identify the variables included in the exposure-response function and yielded interpretable quantities on the scale of a latent continuous outcome or on the scale of the outcome probability.
This newly developed software, integrated suite of tools, and extended methodology makes BKMR accessible for use across a broad range of epidemiological applications in which multiple risk factors have complex effects on health. |
---|---|
AbstractList | Background Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach for estimating the health effects of mixtures, Bayesian kernel machine regression (BKMR), has been developed. This method estimates the multivariable exposure-response function in a flexible and parsimonious way, conducts variable selection on the (potentially high-dimensional) vector of exposures, and allows for a grouped variable selection approach that can accommodate highly correlated exposures. However, the application of this novel method has been limited by a lack of available software, the need to derive interpretable output in a computationally efficient manner, and the inability to apply the method to non-continuous outcome variables. Methods This paper addresses these limitations by (i) introducing an open-source software package in the R programming language, the bkmr R package, (ii) demonstrating methods for visualizing high-dimensional exposure-response functions, and for estimating scientifically relevant summaries, (iii) illustrating a probit regression implementation of BKMR for binary outcomes, and (iv) describing a fast version of BKMR that utilizes a Gaussian predictive process approach. All of the methods are illustrated using fully reproducible examples with the provided R code. Results Applying the methods to a continuous outcome example illustrated the ability of the BKMR implementation to estimate the health effects of multi-pollutant mixtures in the context of a highly nonlinear, biologically-based dose-response function, and to estimate overall, single-exposure, and interactive health effects. The Gaussian predictive process method led to a substantial reduction in the runtime, without a major decrease in accuracy. In the setting of a larger number of exposures and a dichotomous outcome, the probit BKMR implementation was able to correctly identify the variables included in the exposure-response function and yielded interpretable quantities on the scale of a latent continuous outcome or on the scale of the outcome probability. Conclusions This newly developed software, integrated suite of tools, and extended methodology makes BKMR accessible for use across a broad range of epidemiological applications in which multiple risk factors have complex effects on health. Keywords: Multiple exposures, Mixtures, Exposure-response, Variable selection, Health risk estimation Background Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach for estimating the health effects of mixtures, Bayesian kernel machine regression (BKMR), has been developed. This method estimates the multivariable exposure-response function in a flexible and parsimonious way, conducts variable selection on the (potentially high-dimensional) vector of exposures, and allows for a grouped variable selection approach that can accommodate highly correlated exposures. However, the application of this novel method has been limited by a lack of available software, the need to derive interpretable output in a computationally efficient manner, and the inability to apply the method to non-continuous outcome variables. Methods This paper addresses these limitations by (i) introducing an open-source software package in the R programming language, the bkmr R package, (ii) demonstrating methods for visualizing high-dimensional exposure-response functions, and for estimating scientifically relevant summaries, (iii) illustrating a probit regression implementation of BKMR for binary outcomes, and (iv) describing a fast version of BKMR that utilizes a Gaussian predictive process approach. All of the methods are illustrated using fully reproducible examples with the provided R code. Results Applying the methods to a continuous outcome example illustrated the ability of the BKMR implementation to estimate the health effects of multi-pollutant mixtures in the context of a highly nonlinear, biologically-based dose-response function, and to estimate overall, single-exposure, and interactive health effects. The Gaussian predictive process method led to a substantial reduction in the runtime, without a major decrease in accuracy. In the setting of a larger number of exposures and a dichotomous outcome, the probit BKMR implementation was able to correctly identify the variables included in the exposure-response function and yielded interpretable quantities on the scale of a latent continuous outcome or on the scale of the outcome probability. Conclusions This newly developed software, integrated suite of tools, and extended methodology makes BKMR accessible for use across a broad range of epidemiological applications in which multiple risk factors have complex effects on health. Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach for estimating the health effects of mixtures, Bayesian kernel machine regression (BKMR), has been developed. This method estimates the multivariable exposure-response function in a flexible and parsimonious way, conducts variable selection on the (potentially high-dimensional) vector of exposures, and allows for a grouped variable selection approach that can accommodate highly correlated exposures. However, the application of this novel method has been limited by a lack of available software, the need to derive interpretable output in a computationally efficient manner, and the inability to apply the method to non-continuous outcome variables. This paper addresses these limitations by (i) introducing an open-source software package in the R programming language, the bkmr R package, (ii) demonstrating methods for visualizing high-dimensional exposure-response functions, and for estimating scientifically relevant summaries, (iii) illustrating a probit regression implementation of BKMR for binary outcomes, and (iv) describing a fast version of BKMR that utilizes a Gaussian predictive process approach. All of the methods are illustrated using fully reproducible examples with the provided R code. Applying the methods to a continuous outcome example illustrated the ability of the BKMR implementation to estimate the health effects of multi-pollutant mixtures in the context of a highly nonlinear, biologically-based dose-response function, and to estimate overall, single-exposure, and interactive health effects. The Gaussian predictive process method led to a substantial reduction in the runtime, without a major decrease in accuracy. In the setting of a larger number of exposures and a dichotomous outcome, the probit BKMR implementation was able to correctly identify the variables included in the exposure-response function and yielded interpretable quantities on the scale of a latent continuous outcome or on the scale of the outcome probability. This newly developed software, integrated suite of tools, and extended methodology makes BKMR accessible for use across a broad range of epidemiological applications in which multiple risk factors have complex effects on health. Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach for estimating the health effects of mixtures, Bayesian kernel machine regression (BKMR), has been developed. This method estimates the multivariable exposure-response function in a flexible and parsimonious way, conducts variable selection on the (potentially high-dimensional) vector of exposures, and allows for a grouped variable selection approach that can accommodate highly correlated exposures. However, the application of this novel method has been limited by a lack of available software, the need to derive interpretable output in a computationally efficient manner, and the inability to apply the method to non-continuous outcome variables.BACKGROUNDEstimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach for estimating the health effects of mixtures, Bayesian kernel machine regression (BKMR), has been developed. This method estimates the multivariable exposure-response function in a flexible and parsimonious way, conducts variable selection on the (potentially high-dimensional) vector of exposures, and allows for a grouped variable selection approach that can accommodate highly correlated exposures. However, the application of this novel method has been limited by a lack of available software, the need to derive interpretable output in a computationally efficient manner, and the inability to apply the method to non-continuous outcome variables.This paper addresses these limitations by (i) introducing an open-source software package in the R programming language, the bkmr R package, (ii) demonstrating methods for visualizing high-dimensional exposure-response functions, and for estimating scientifically relevant summaries, (iii) illustrating a probit regression implementation of BKMR for binary outcomes, and (iv) describing a fast version of BKMR that utilizes a Gaussian predictive process approach. All of the methods are illustrated using fully reproducible examples with the provided R code.METHODSThis paper addresses these limitations by (i) introducing an open-source software package in the R programming language, the bkmr R package, (ii) demonstrating methods for visualizing high-dimensional exposure-response functions, and for estimating scientifically relevant summaries, (iii) illustrating a probit regression implementation of BKMR for binary outcomes, and (iv) describing a fast version of BKMR that utilizes a Gaussian predictive process approach. All of the methods are illustrated using fully reproducible examples with the provided R code.Applying the methods to a continuous outcome example illustrated the ability of the BKMR implementation to estimate the health effects of multi-pollutant mixtures in the context of a highly nonlinear, biologically-based dose-response function, and to estimate overall, single-exposure, and interactive health effects. The Gaussian predictive process method led to a substantial reduction in the runtime, without a major decrease in accuracy. In the setting of a larger number of exposures and a dichotomous outcome, the probit BKMR implementation was able to correctly identify the variables included in the exposure-response function and yielded interpretable quantities on the scale of a latent continuous outcome or on the scale of the outcome probability.RESULTSApplying the methods to a continuous outcome example illustrated the ability of the BKMR implementation to estimate the health effects of multi-pollutant mixtures in the context of a highly nonlinear, biologically-based dose-response function, and to estimate overall, single-exposure, and interactive health effects. The Gaussian predictive process method led to a substantial reduction in the runtime, without a major decrease in accuracy. In the setting of a larger number of exposures and a dichotomous outcome, the probit BKMR implementation was able to correctly identify the variables included in the exposure-response function and yielded interpretable quantities on the scale of a latent continuous outcome or on the scale of the outcome probability.This newly developed software, integrated suite of tools, and extended methodology makes BKMR accessible for use across a broad range of epidemiological applications in which multiple risk factors have complex effects on health.CONCLUSIONSThis newly developed software, integrated suite of tools, and extended methodology makes BKMR accessible for use across a broad range of epidemiological applications in which multiple risk factors have complex effects on health. Abstract Background Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach for estimating the health effects of mixtures, Bayesian kernel machine regression (BKMR), has been developed. This method estimates the multivariable exposure-response function in a flexible and parsimonious way, conducts variable selection on the (potentially high-dimensional) vector of exposures, and allows for a grouped variable selection approach that can accommodate highly correlated exposures. However, the application of this novel method has been limited by a lack of available software, the need to derive interpretable output in a computationally efficient manner, and the inability to apply the method to non-continuous outcome variables. Methods This paper addresses these limitations by (i) introducing an open-source software package in the R programming language, the bkmr R package, (ii) demonstrating methods for visualizing high-dimensional exposure-response functions, and for estimating scientifically relevant summaries, (iii) illustrating a probit regression implementation of BKMR for binary outcomes, and (iv) describing a fast version of BKMR that utilizes a Gaussian predictive process approach. All of the methods are illustrated using fully reproducible examples with the provided R code. Results Applying the methods to a continuous outcome example illustrated the ability of the BKMR implementation to estimate the health effects of multi-pollutant mixtures in the context of a highly nonlinear, biologically-based dose-response function, and to estimate overall, single-exposure, and interactive health effects. The Gaussian predictive process method led to a substantial reduction in the runtime, without a major decrease in accuracy. In the setting of a larger number of exposures and a dichotomous outcome, the probit BKMR implementation was able to correctly identify the variables included in the exposure-response function and yielded interpretable quantities on the scale of a latent continuous outcome or on the scale of the outcome probability. Conclusions This newly developed software, integrated suite of tools, and extended methodology makes BKMR accessible for use across a broad range of epidemiological applications in which multiple risk factors have complex effects on health. Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach for estimating the health effects of mixtures, Bayesian kernel machine regression (BKMR), has been developed. This method estimates the multivariable exposure-response function in a flexible and parsimonious way, conducts variable selection on the (potentially high-dimensional) vector of exposures, and allows for a grouped variable selection approach that can accommodate highly correlated exposures. However, the application of this novel method has been limited by a lack of available software, the need to derive interpretable output in a computationally efficient manner, and the inability to apply the method to non-continuous outcome variables. This paper addresses these limitations by (i) introducing an open-source software package in the R programming language, the bkmr R package, (ii) demonstrating methods for visualizing high-dimensional exposure-response functions, and for estimating scientifically relevant summaries, (iii) illustrating a probit regression implementation of BKMR for binary outcomes, and (iv) describing a fast version of BKMR that utilizes a Gaussian predictive process approach. All of the methods are illustrated using fully reproducible examples with the provided R code. Applying the methods to a continuous outcome example illustrated the ability of the BKMR implementation to estimate the health effects of multi-pollutant mixtures in the context of a highly nonlinear, biologically-based dose-response function, and to estimate overall, single-exposure, and interactive health effects. The Gaussian predictive process method led to a substantial reduction in the runtime, without a major decrease in accuracy. In the setting of a larger number of exposures and a dichotomous outcome, the probit BKMR implementation was able to correctly identify the variables included in the exposure-response function and yielded interpretable quantities on the scale of a latent continuous outcome or on the scale of the outcome probability. This newly developed software, integrated suite of tools, and extended methodology makes BKMR accessible for use across a broad range of epidemiological applications in which multiple risk factors have complex effects on health. |
ArticleNumber | 67 |
Audience | Academic |
Author | Bobb, Jennifer F. Coull, Brent A. Claus Henn, Birgit Valeri, Linda |
Author_xml | – sequence: 1 givenname: Jennifer F. surname: Bobb fullname: Bobb, Jennifer F. – sequence: 2 givenname: Birgit surname: Claus Henn fullname: Claus Henn, Birgit – sequence: 3 givenname: Linda surname: Valeri fullname: Valeri, Linda – sequence: 4 givenname: Brent A. surname: Coull fullname: Coull, Brent A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30126431$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1vFCEYxiemxn7oH-DFkHjxMhUGBpiLSdv40aSJBzXxRljmZZeVgRVmqmvi_y7jttptNBwg8Ly_lwee4-ogxABV9ZTgU0Ikf5lJ0zFcYyJrzAittw-qI8IErzHvPh_cWR9WxzmvMSZC8vZRdUgxaTij5Kj6-WHUo8ujM9qjHO34TSdANiakg_bbHy4s0bgCtALtxxUCa8GMGUWLhsmPbuMBmRjMlBKEEcH3TcxTgoyunUbnegvZ6YC-QArg0aDNygVACZZFkl0Mj6uHVvsMT27mk-rTm9cfL97VV-_fXl6cXdWGN3ys-4VmreWc9T2mllq5sJQC7nrCMGWU2V4uiOXUdFxiLLixDWCrCe9ba5ls6Ul1ueP2Ua_VJrlBp62K2qnfGzEtlU7lDTwoixeEQVsakI4ZhjUQXNhCSg2M8q6wXu1Ym2kxQG-K76T9HnT_JLiVWsZrxQluOiwK4MUNIMWvE-RRDS4b8F4HiFNWDe5IQxtJ5ns_vyddxymVjykqgqUUgmH5V7XUxYALNpa-Zoaqs7YVgnZC8KI6_YeqjB4GV_4QrCv7ewXP7hr94_A2PEUgdgKTYs4JrDJuTlOcfTuvCFZzTNUupqrEVM0xVdtSSe5V3sL_X_ML2Wbrww |
CitedBy_id | crossref_primary_10_1016_j_envres_2022_114031 crossref_primary_10_1097_EDE_0000000000001777 crossref_primary_10_1007_s11356_023_26099_x crossref_primary_10_1016_j_envint_2022_107161 crossref_primary_10_1016_j_ecoenv_2023_115665 crossref_primary_10_1158_1940_6207_CAPR_24_0108 crossref_primary_10_1016_j_envint_2020_105542 crossref_primary_10_1007_s12011_023_03729_6 crossref_primary_10_1016_j_envpol_2023_123201 crossref_primary_10_1016_j_jhazmat_2024_136164 crossref_primary_10_1093_eep_dvac018 crossref_primary_10_1080_10406638_2021_2005640 crossref_primary_10_1016_j_scitotenv_2022_156299 crossref_primary_10_1016_j_scitotenv_2022_158236 crossref_primary_10_1016_j_envpol_2021_118658 crossref_primary_10_1016_j_envres_2023_115888 crossref_primary_10_3349_ymj_2024_0172 crossref_primary_10_1038_s41598_024_58263_9 crossref_primary_10_1016_j_envpol_2021_117203 crossref_primary_10_18332_pht_144201 crossref_primary_10_1007_s11356_023_29503_8 crossref_primary_10_1016_j_envres_2023_116861 crossref_primary_10_1097_EDE_0000000000001547 crossref_primary_10_1016_j_ecoenv_2023_114683 crossref_primary_10_1016_j_envpol_2019_113690 crossref_primary_10_1007_s11356_023_29318_7 crossref_primary_10_1016_j_ecoenv_2023_114687 crossref_primary_10_1007_s40572_022_00347_7 crossref_primary_10_1038_s41598_024_75010_2 crossref_primary_10_1007_s11356_022_22352_x crossref_primary_10_1016_j_chemosphere_2024_142363 crossref_primary_10_1016_j_envint_2021_106913 crossref_primary_10_1016_j_scitotenv_2022_159450 crossref_primary_10_1016_j_envres_2020_110468 crossref_primary_10_1016_j_envint_2021_106912 crossref_primary_10_1016_j_envres_2020_110341 crossref_primary_10_3389_fnut_2022_946245 crossref_primary_10_1007_s11356_023_30177_5 crossref_primary_10_1016_j_envres_2020_109122 crossref_primary_10_1007_s00420_023_01994_5 crossref_primary_10_1016_j_ecoenv_2022_113182 crossref_primary_10_1016_j_envres_2023_115865 crossref_primary_10_1016_j_taap_2022_115877 crossref_primary_10_1016_j_scitotenv_2022_160566 crossref_primary_10_1016_j_envint_2024_108833 crossref_primary_10_1007_s00420_024_02047_1 crossref_primary_10_1016_j_envint_2020_105688 crossref_primary_10_1016_j_scitotenv_2022_160208 crossref_primary_10_3389_fpubh_2025_1572360 crossref_primary_10_1186_s12887_024_04540_5 crossref_primary_10_3389_fpubh_2024_1410601 crossref_primary_10_1186_s12889_024_20926_7 crossref_primary_10_1016_j_jes_2024_01_054 crossref_primary_10_1007_s12011_024_04098_4 crossref_primary_10_1016_j_emcon_2024_100396 crossref_primary_10_1007_s11356_023_31423_6 crossref_primary_10_1038_s41370_023_00530_4 crossref_primary_10_1016_j_ecoenv_2022_114279 crossref_primary_10_1016_j_ijheh_2021_113800 crossref_primary_10_1016_j_chemosphere_2021_130991 crossref_primary_10_1016_j_scitotenv_2023_163083 crossref_primary_10_1016_j_envres_2023_117807 crossref_primary_10_1016_j_scitotenv_2021_151327 crossref_primary_10_1016_j_scitotenv_2021_152676 crossref_primary_10_3390_ijerph181910098 crossref_primary_10_3390_toxics12020116 crossref_primary_10_1016_j_envres_2022_113155 crossref_primary_10_3389_fped_2024_1328592 crossref_primary_10_1021_acs_est_0c07033 crossref_primary_10_1016_j_jhazmat_2021_125519 crossref_primary_10_1007_s11356_023_27717_4 crossref_primary_10_1016_j_tjnut_2025_02_025 crossref_primary_10_1007_s11356_021_17794_8 crossref_primary_10_1016_j_envres_2020_110126 crossref_primary_10_1038_s41598_024_76972_z crossref_primary_10_1016_j_envpol_2024_123628 crossref_primary_10_1016_j_jtemb_2024_127490 crossref_primary_10_1016_j_scitotenv_2023_167435 crossref_primary_10_3390_toxics9110311 crossref_primary_10_1007_s12403_024_00683_z crossref_primary_10_1016_j_ecoenv_2022_114048 crossref_primary_10_1021_acs_est_2c07656 crossref_primary_10_1016_j_envres_2023_116967 crossref_primary_10_1007_s10653_021_00931_0 crossref_primary_10_1016_j_chemosphere_2022_135134 crossref_primary_10_1016_j_envint_2022_107083 crossref_primary_10_1016_j_envres_2024_120598 crossref_primary_10_1016_j_envres_2022_114115 crossref_primary_10_1007_s11356_022_21817_3 crossref_primary_10_1016_j_jhazmat_2025_137730 crossref_primary_10_1080_10807039_2025_2470759 crossref_primary_10_1016_j_envpol_2025_126113 crossref_primary_10_1186_s13048_024_01414_3 crossref_primary_10_1016_j_envpol_2025_126114 crossref_primary_10_1007_s11356_022_23624_2 crossref_primary_10_1016_j_envres_2021_112615 crossref_primary_10_1016_j_ecoenv_2025_118050 crossref_primary_10_1016_j_envpol_2024_123516 crossref_primary_10_1289_EHP11258 crossref_primary_10_1016_j_chemosphere_2022_136394 crossref_primary_10_1016_j_ecoenv_2022_113168 crossref_primary_10_1016_j_scitotenv_2019_04_404 crossref_primary_10_3389_fnut_2022_913357 crossref_primary_10_3390_cancers14174239 crossref_primary_10_1016_j_scitotenv_2023_167385 crossref_primary_10_1016_j_ecoenv_2022_113163 crossref_primary_10_1016_j_ecoenv_2022_114494 crossref_primary_10_1016_j_scitotenv_2023_165086 crossref_primary_10_1007_s11356_022_22494_y crossref_primary_10_1016_j_ecoenv_2022_114130 crossref_primary_10_1016_j_envres_2023_115969 crossref_primary_10_1016_j_envres_2020_109395 crossref_primary_10_1016_j_envpol_2023_121051 crossref_primary_10_1016_j_gloepi_2024_100137 crossref_primary_10_1038_s41598_024_79580_z crossref_primary_10_1186_s12302_024_00904_x crossref_primary_10_1007_s11356_023_30242_z crossref_primary_10_1021_acs_est_1c02670 crossref_primary_10_1186_s12940_024_01103_0 crossref_primary_10_1016_j_ecoenv_2023_115733 crossref_primary_10_1016_j_jtemb_2024_127472 crossref_primary_10_1016_j_jhazmat_2025_137980 crossref_primary_10_1016_j_ecoenv_2023_115616 crossref_primary_10_1161_JAHA_124_035754 crossref_primary_10_3389_fnut_2023_1205537 crossref_primary_10_1016_j_envres_2021_112625 crossref_primary_10_1016_j_chemosphere_2023_138727 crossref_primary_10_1016_j_scitotenv_2023_162920 crossref_primary_10_1016_j_envint_2020_105606 crossref_primary_10_1016_j_ecoenv_2024_117091 crossref_primary_10_1016_j_scitotenv_2022_160883 crossref_primary_10_1093_aje_kwae088 crossref_primary_10_1016_j_envint_2020_105728 crossref_primary_10_1016_j_envres_2020_110388 crossref_primary_10_1016_j_envres_2023_115978 crossref_primary_10_1038_s41467_024_46595_z crossref_primary_10_1186_s12940_019_0515_1 crossref_primary_10_1016_j_envres_2024_119148 crossref_primary_10_1016_j_envres_2022_113367 crossref_primary_10_1016_j_envres_2021_111540 crossref_primary_10_1016_j_jtemb_2024_127461 crossref_primary_10_1016_j_chemosphere_2024_142050 crossref_primary_10_1097_EDE_0000000000001351 crossref_primary_10_1016_j_jtemb_2025_127623 crossref_primary_10_3389_fpubh_2024_1392813 crossref_primary_10_35371_aoem_2023_35_e23 crossref_primary_10_1007_s12012_025_09969_3 crossref_primary_10_1016_j_scitotenv_2023_161812 crossref_primary_10_1016_j_jtemb_2024_127460 crossref_primary_10_1002_sim_9765 crossref_primary_10_1016_j_heha_2022_100034 crossref_primary_10_1016_j_envres_2023_115703 crossref_primary_10_1016_j_chemosphere_2022_137587 crossref_primary_10_1038_s41598_023_50794_x crossref_primary_10_1016_j_envint_2023_108321 crossref_primary_10_1016_j_neuro_2022_09_003 crossref_primary_10_1016_j_scitotenv_2024_174069 crossref_primary_10_1186_s12302_024_00949_y crossref_primary_10_1016_j_ecoenv_2023_115751 crossref_primary_10_1186_s12302_021_00586_9 crossref_primary_10_1016_j_envint_2024_108628 crossref_primary_10_1016_j_heliyon_2024_e27958 crossref_primary_10_1080_15592294_2021_1994189 crossref_primary_10_3389_fnut_2025_1522232 crossref_primary_10_1016_j_envint_2022_107179 crossref_primary_10_1016_j_hrtlng_2025_03_006 crossref_primary_10_1080_10934529_2022_2061256 crossref_primary_10_1007_s11356_023_29888_6 crossref_primary_10_1093_aje_kwae181 crossref_primary_10_1016_j_chemosphere_2023_138865 crossref_primary_10_1016_j_scitotenv_2025_178952 crossref_primary_10_1289_EHP13644 crossref_primary_10_1016_j_envres_2022_114447 crossref_primary_10_1111_jcpe_13919 crossref_primary_10_1016_j_actatropica_2024_107193 crossref_primary_10_1016_j_envres_2024_118912 crossref_primary_10_1016_j_fct_2022_113463 crossref_primary_10_3389_fendo_2021_726876 crossref_primary_10_1016_j_envres_2023_116215 crossref_primary_10_3389_fpubh_2024_1385500 crossref_primary_10_3390_ijerph19010559 crossref_primary_10_3390_metabo14030139 crossref_primary_10_3390_toxics12110789 crossref_primary_10_1016_j_ijheh_2019_113446 crossref_primary_10_1186_s12940_022_00895_3 crossref_primary_10_1016_j_chemosphere_2022_134577 crossref_primary_10_1371_journal_pone_0313675 crossref_primary_10_1016_j_envres_2022_112810 crossref_primary_10_1016_j_scitotenv_2023_164356 crossref_primary_10_1007_s12403_024_00677_x crossref_primary_10_1016_j_scitotenv_2023_166412 crossref_primary_10_1016_j_chemosphere_2024_142626 crossref_primary_10_3390_ijerph19031369 crossref_primary_10_1016_j_envpol_2022_120727 crossref_primary_10_1016_j_jhazmat_2023_131832 crossref_primary_10_1186_s12940_023_01023_5 crossref_primary_10_1016_j_envres_2020_110638 crossref_primary_10_1016_j_chemosphere_2023_139054 crossref_primary_10_1016_j_scitotenv_2021_145284 crossref_primary_10_1016_j_ecoenv_2024_116524 crossref_primary_10_1186_s12940_020_00679_7 crossref_primary_10_1016_j_ecoenv_2024_116765 crossref_primary_10_1016_j_ecoenv_2024_116764 crossref_primary_10_1186_s12940_024_01088_w crossref_primary_10_1016_j_envint_2022_107318 crossref_primary_10_1038_s41370_023_00518_0 crossref_primary_10_1016_j_scitotenv_2020_141735 crossref_primary_10_1007_s11356_022_22066_0 crossref_primary_10_1016_j_envpol_2022_119518 crossref_primary_10_3390_ijerph19031378 crossref_primary_10_1016_j_scitotenv_2022_153039 crossref_primary_10_1016_j_ecoenv_2023_115289 crossref_primary_10_1016_j_envpol_2024_125527 crossref_primary_10_1016_j_envpol_2024_124798 crossref_primary_10_1016_j_scitotenv_2022_154362 crossref_primary_10_1007_s11356_023_30546_0 crossref_primary_10_3390_epigenomes8030031 crossref_primary_10_1210_jendso_bvae140 crossref_primary_10_1007_s12403_024_00676_y crossref_primary_10_1016_j_chemosphere_2022_137705 crossref_primary_10_1007_s12403_020_00371_8 crossref_primary_10_1016_j_clinre_2024_102468 crossref_primary_10_1016_j_envres_2021_111905 crossref_primary_10_1214_24_AOAS1988 crossref_primary_10_1007_s11356_023_29121_4 crossref_primary_10_1016_j_puhe_2023_12_021 crossref_primary_10_1016_j_envpol_2023_122085 crossref_primary_10_1016_j_envres_2022_115057 crossref_primary_10_1186_s12940_024_01140_9 crossref_primary_10_1016_j_scitotenv_2024_175871 crossref_primary_10_1016_j_envint_2022_107416 crossref_primary_10_1016_j_envint_2022_107537 crossref_primary_10_1016_j_ecoenv_2024_117516 crossref_primary_10_1289_EHP10857 crossref_primary_10_1016_j_reprotox_2024_108577 crossref_primary_10_1007_s10534_024_00662_6 crossref_primary_10_1016_j_ijheh_2024_114427 crossref_primary_10_1016_j_chemosphere_2022_134202 crossref_primary_10_1210_clinem_dgaf002 crossref_primary_10_1007_s12403_023_00598_1 crossref_primary_10_1016_j_jhazmat_2024_135124 crossref_primary_10_1016_j_jhazmat_2022_129213 crossref_primary_10_1038_s41598_024_68070_x crossref_primary_10_1214_19_AOAS1307 crossref_primary_10_1007_s11356_023_28903_0 crossref_primary_10_1016_j_envres_2021_110827 crossref_primary_10_1016_j_envint_2024_109071 crossref_primary_10_3390_nu14040825 crossref_primary_10_3390_toxics11120979 crossref_primary_10_1016_j_ecoenv_2024_116950 crossref_primary_10_1016_j_envpol_2024_124694 crossref_primary_10_3390_nu15132874 crossref_primary_10_1016_j_envres_2023_117624 crossref_primary_10_1016_j_envint_2022_107249 crossref_primary_10_1289_EHP12988 crossref_primary_10_1007_s11356_023_25909_6 crossref_primary_10_1007_s10653_024_01929_0 crossref_primary_10_1016_j_ecoenv_2023_115109 crossref_primary_10_1016_j_scitotenv_2022_154062 crossref_primary_10_1093_ije_dyaa259 crossref_primary_10_1080_19338244_2024_2396927 crossref_primary_10_1016_j_chemosphere_2022_136798 crossref_primary_10_1016_j_ijheh_2024_114359 crossref_primary_10_1021_acs_est_4c00074 crossref_primary_10_3390_app15020708 crossref_primary_10_1016_j_envres_2020_110551 crossref_primary_10_1007_s10653_024_02048_6 crossref_primary_10_1093_humrep_deac234 crossref_primary_10_1177_09622802241280784 crossref_primary_10_1111_pai_13732 crossref_primary_10_1016_j_chemosphere_2023_140085 crossref_primary_10_1186_s13148_022_01304_9 crossref_primary_10_3389_fendo_2024_1373095 crossref_primary_10_1001_jamanetworkopen_2024_48286 crossref_primary_10_1016_j_envres_2022_114187 crossref_primary_10_3390_environments11060127 crossref_primary_10_1016_j_scitotenv_2024_177756 crossref_primary_10_1161_HYPERTENSIONAHA_124_23980 crossref_primary_10_1155_2024_3950894 crossref_primary_10_1186_s12940_024_01086_y crossref_primary_10_1016_j_envint_2022_107238 crossref_primary_10_1016_j_neuro_2025_03_008 crossref_primary_10_1007_s12403_023_00588_3 crossref_primary_10_1016_j_ecoenv_2024_116966 crossref_primary_10_1186_s12940_022_00950_z crossref_primary_10_3390_nu16060769 crossref_primary_10_1016_j_envpol_2021_117078 crossref_primary_10_1210_clinem_dgab187 crossref_primary_10_1016_j_envpol_2022_119439 crossref_primary_10_1002_sim_8701 crossref_primary_10_1016_j_jes_2025_01_006 crossref_primary_10_1016_j_jhazmat_2022_130531 crossref_primary_10_3390_toxics12060430 crossref_primary_10_1007_s11356_023_30294_1 crossref_primary_10_1016_j_scitotenv_2022_159935 crossref_primary_10_1214_21_AOAS1533 crossref_primary_10_1289_EHP9294 crossref_primary_10_1016_j_chemosphere_2024_141485 crossref_primary_10_1016_j_fct_2024_115066 crossref_primary_10_1007_s11356_021_17948_8 crossref_primary_10_1289_EHP11998 crossref_primary_10_1016_j_ijheh_2022_114092 crossref_primary_10_1016_j_scitotenv_2020_143906 crossref_primary_10_1016_j_envint_2023_107748 crossref_primary_10_1093_jncics_pkae122 crossref_primary_10_1016_j_envres_2020_110450 crossref_primary_10_1289_EHP10549 crossref_primary_10_1289_EHP6803 crossref_primary_10_1016_j_envpol_2022_120743 crossref_primary_10_1016_j_envres_2021_110732 crossref_primary_10_1210_clinem_dgad033 crossref_primary_10_1265_jjh_22009 crossref_primary_10_1016_j_atmosenv_2023_120014 crossref_primary_10_1016_j_ijheh_2024_114339 crossref_primary_10_1016_j_jhazmat_2024_134008 crossref_primary_10_1016_j_ecoenv_2021_112976 crossref_primary_10_1016_j_envint_2024_108909 crossref_primary_10_1080_00952990_2024_2380463 crossref_primary_10_1016_j_envadv_2021_100048 crossref_primary_10_1016_j_envint_2025_109284 crossref_primary_10_1016_j_scitotenv_2022_158852 crossref_primary_10_1016_j_ecoenv_2022_114078 crossref_primary_10_1021_acs_est_2c06535 crossref_primary_10_1109_ACCESS_2020_2970178 crossref_primary_10_1016_j_chemosphere_2022_134471 crossref_primary_10_1016_j_ecoenv_2023_115473 crossref_primary_10_1016_j_envres_2022_114284 crossref_primary_10_1007_s12403_022_00524_x crossref_primary_10_1016_j_ecoenv_2023_115114 crossref_primary_10_1016_j_ecoenv_2024_116987 crossref_primary_10_1080_19338244_2022_2057901 crossref_primary_10_1186_s12944_024_02113_0 crossref_primary_10_1016_j_ecoenv_2024_116626 crossref_primary_10_1016_j_ecoenv_2024_116868 crossref_primary_10_1016_j_scitotenv_2024_175791 crossref_primary_10_1007_s11356_022_24783_y crossref_primary_10_1007_s41742_025_00765_z crossref_primary_10_1016_j_envint_2022_107335 crossref_primary_10_1016_j_envint_2018_12_024 crossref_primary_10_1021_acs_est_3c07607 crossref_primary_10_1080_09603123_2024_2352609 crossref_primary_10_1016_j_jhazmat_2024_136539 crossref_primary_10_1186_s12889_025_22274_6 crossref_primary_10_1016_j_chemosphere_2022_136428 crossref_primary_10_1016_j_ecoenv_2021_112960 crossref_primary_10_1016_j_scitotenv_2022_156561 crossref_primary_10_1038_s41366_022_01127_x crossref_primary_10_1080_07853890_2023_2216943 crossref_primary_10_1016_j_envpol_2022_119533 crossref_primary_10_1080_10807039_2020_1732188 crossref_primary_10_3390_toxics12110828 crossref_primary_10_1016_j_envint_2024_109225 crossref_primary_10_1016_j_envpol_2024_124493 crossref_primary_10_1016_j_ebiom_2023_104733 crossref_primary_10_3390_jox14020031 crossref_primary_10_1016_j_chemosphere_2023_140330 crossref_primary_10_1007_s12011_023_03722_z crossref_primary_10_1016_j_envpol_2022_120451 crossref_primary_10_1002_JPER_23_0428 crossref_primary_10_1210_clinem_dgae542 crossref_primary_10_1016_j_cofs_2024_101151 crossref_primary_10_1016_j_envpol_2022_120445 crossref_primary_10_1016_j_scitotenv_2023_164755 crossref_primary_10_1016_j_jhazmat_2024_134664 crossref_primary_10_1016_j_ecoenv_2022_113884 crossref_primary_10_1016_j_ijheh_2025_114556 crossref_primary_10_1016_j_chemosphere_2021_132159 crossref_primary_10_1016_j_scitotenv_2024_172409 crossref_primary_10_1016_j_neuro_2024_08_006 crossref_primary_10_3390_ijerph21040468 crossref_primary_10_1007_s11356_023_28740_1 crossref_primary_10_1016_j_chemosphere_2023_138494 crossref_primary_10_1002_bimj_70033 crossref_primary_10_1186_s12940_023_01027_1 crossref_primary_10_1016_j_scitotenv_2024_170361 crossref_primary_10_1016_j_envpol_2020_115426 crossref_primary_10_1289_EHP7502 crossref_primary_10_1007_s11356_023_31605_2 crossref_primary_10_1097_EE9_0000000000000135 crossref_primary_10_1016_j_envint_2022_107713 crossref_primary_10_3389_fpubh_2024_1356459 crossref_primary_10_1016_j_chemosphere_2023_140683 crossref_primary_10_1002_ijc_34307 crossref_primary_10_1016_j_envpol_2022_119479 crossref_primary_10_1016_j_envpol_2022_120699 crossref_primary_10_3390_nu16091291 crossref_primary_10_1002_ijc_34300 crossref_primary_10_1007_s40572_022_00373_5 crossref_primary_10_3390_toxics12050316 crossref_primary_10_1016_j_envpol_2022_119356 crossref_primary_10_1016_j_envpol_2024_125001 crossref_primary_10_1007_s00420_024_02085_9 crossref_primary_10_1016_j_jes_2024_05_026 crossref_primary_10_1016_j_reprotox_2020_08_013 crossref_primary_10_1016_j_jtemb_2022_127065 crossref_primary_10_1021_acs_est_2c01568 crossref_primary_10_1016_j_envint_2021_106496 crossref_primary_10_1016_j_envres_2021_112395 crossref_primary_10_1007_s12011_024_04389_w crossref_primary_10_1016_j_ecoenv_2025_117825 crossref_primary_10_1016_j_jhazmat_2023_132064 crossref_primary_10_1038_s41598_024_77996_1 crossref_primary_10_1016_j_envres_2022_112757 crossref_primary_10_1016_j_jhazmat_2024_134206 crossref_primary_10_1007_s11356_024_33563_9 crossref_primary_10_1093_gerona_glaa257 crossref_primary_10_1016_j_etap_2024_104589 crossref_primary_10_1088_1748_9326_ac89a0 crossref_primary_10_1007_s10653_023_01689_3 crossref_primary_10_1016_j_envres_2022_113962 crossref_primary_10_1016_j_scitotenv_2022_157720 crossref_primary_10_1016_j_jes_2022_01_017 crossref_primary_10_1016_j_etap_2024_104464 crossref_primary_10_1021_acs_est_4c11436 crossref_primary_10_1016_j_etap_2024_104463 crossref_primary_10_1016_j_scitotenv_2022_153548 crossref_primary_10_1016_j_ecoenv_2024_117599 crossref_primary_10_1016_j_scitotenv_2024_170220 crossref_primary_10_1016_j_envpol_2024_124043 crossref_primary_10_3389_fpubh_2022_995649 crossref_primary_10_1016_j_ecoenv_2020_111809 crossref_primary_10_1016_j_ecoenv_2025_117818 crossref_primary_10_1021_acs_est_3c05106 crossref_primary_10_1186_s12940_024_01144_5 crossref_primary_10_1016_j_ijheh_2024_114386 crossref_primary_10_1177_11786302231225313 crossref_primary_10_1016_j_scitotenv_2024_177098 crossref_primary_10_1016_j_chemosphere_2021_131150 crossref_primary_10_1186_s12940_022_00840_4 crossref_primary_10_3389_fpubh_2023_1251637 crossref_primary_10_1016_j_ecoenv_2024_117353 crossref_primary_10_1016_j_ecoenv_2024_117473 crossref_primary_10_1016_j_scitotenv_2024_171305 crossref_primary_10_1038_s41370_024_00698_3 crossref_primary_10_1007_s10653_024_02262_2 crossref_primary_10_1016_j_envres_2024_119922 crossref_primary_10_1038_s41598_024_58607_5 crossref_primary_10_1093_aje_kwab004 crossref_primary_10_1161_STROKEAHA_123_044935 crossref_primary_10_1016_j_envpol_2021_116705 crossref_primary_10_1007_s12403_022_00476_2 crossref_primary_10_1007_s11356_022_24373_y crossref_primary_10_1007_s11356_023_29682_4 crossref_primary_10_1007_s11356_023_30739_7 crossref_primary_10_1007_s12403_023_00619_z crossref_primary_10_1159_000541875 crossref_primary_10_1289_EHP6740 crossref_primary_10_1016_j_jtemb_2023_127362 crossref_primary_10_1016_j_envres_2021_111086 crossref_primary_10_1016_j_neuro_2023_07_005 crossref_primary_10_3390_nu16071001 crossref_primary_10_1007_s12011_024_04388_x crossref_primary_10_1016_j_jtemb_2023_127243 crossref_primary_10_1186_s12940_020_00642_6 crossref_primary_10_1007_s40201_024_00925_x crossref_primary_10_1289_EHP11814 crossref_primary_10_1097_EE9_0000000000000321 crossref_primary_10_1016_j_envint_2021_106798 crossref_primary_10_1016_j_envpol_2024_125267 crossref_primary_10_1038_s41370_024_00741_3 crossref_primary_10_1016_j_chemosphere_2022_135741 crossref_primary_10_1016_j_chemosphere_2023_140009 crossref_primary_10_1016_j_jhazmat_2024_134863 crossref_primary_10_1016_j_chemosphere_2023_139023 crossref_primary_10_1016_j_chemosphere_2023_139144 crossref_primary_10_1016_j_envres_2023_117234 crossref_primary_10_1016_j_ebiom_2025_105579 crossref_primary_10_1007_s10653_024_02318_3 crossref_primary_10_3389_fpubh_2023_1182127 crossref_primary_10_1007_s11356_023_29695_z crossref_primary_10_1016_j_envpol_2024_125037 crossref_primary_10_1016_j_chemosphere_2022_135995 crossref_primary_10_1016_j_envres_2025_121294 crossref_primary_10_1021_acs_est_3c06013 crossref_primary_10_1016_j_envres_2022_114907 crossref_primary_10_1007_s10653_022_01339_0 crossref_primary_10_1007_s11356_023_28218_0 crossref_primary_10_1007_s10653_023_01565_0 crossref_primary_10_1161_JAHA_121_024763 crossref_primary_10_3390_nu16193282 crossref_primary_10_1016_j_envint_2020_106171 crossref_primary_10_1093_jrsssc_qlad094 crossref_primary_10_1016_j_envint_2021_106692 crossref_primary_10_1016_j_ecoenv_2024_116216 crossref_primary_10_1016_j_envint_2021_106690 crossref_primary_10_1016_j_earlhumdev_2021_105450 crossref_primary_10_1016_j_eehl_2024_02_005 crossref_primary_10_1016_j_envres_2024_118854 crossref_primary_10_1210_clinem_dgac228 crossref_primary_10_1016_j_ecoenv_2022_113818 crossref_primary_10_1016_j_envpol_2023_121760 crossref_primary_10_1016_j_envres_2021_112194 crossref_primary_10_1016_j_chemosphere_2022_133662 crossref_primary_10_1016_j_envres_2025_121185 crossref_primary_10_1016_j_envint_2021_106449 crossref_primary_10_1016_j_envres_2025_121187 crossref_primary_10_1016_j_scitotenv_2020_136542 crossref_primary_10_1007_s11356_023_30435_6 crossref_primary_10_1016_j_ecoenv_2024_116572 crossref_primary_10_1289_EHP14065 crossref_primary_10_1016_j_scitotenv_2024_172445 crossref_primary_10_1016_j_ecoenv_2025_117977 crossref_primary_10_1016_j_scitotenv_2024_172688 crossref_primary_10_1007_s11356_022_22662_0 crossref_primary_10_1007_s12011_025_04580_7 crossref_primary_10_1016_j_envres_2023_117459 crossref_primary_10_1016_j_envres_2024_119810 crossref_primary_10_1038_s41387_024_00293_3 crossref_primary_10_1016_j_envint_2022_107614 crossref_primary_10_1016_j_chemosphere_2023_140144 crossref_primary_10_1016_j_clnu_2022_10_016 crossref_primary_10_1016_j_envres_2022_112701 crossref_primary_10_1111_jdi_13797 crossref_primary_10_1016_j_scitotenv_2023_164761 crossref_primary_10_1016_j_envpol_2023_121504 crossref_primary_10_1016_j_jhazmat_2023_133004 crossref_primary_10_3389_fpubh_2024_1367644 crossref_primary_10_3389_fpubh_2024_1377685 crossref_primary_10_1186_s12903_024_05110_y crossref_primary_10_1016_j_chemosphere_2021_133015 crossref_primary_10_1016_j_ijheh_2022_113978 crossref_primary_10_1038_s41598_025_93525_0 crossref_primary_10_1016_j_ecoenv_2024_116220 crossref_primary_10_1007_s12011_023_03951_2 crossref_primary_10_3724_SP_J_1123_2023_12001 crossref_primary_10_1007_s11356_022_20596_1 crossref_primary_10_1007_s11356_022_23740_z crossref_primary_10_1289_EHP8325 crossref_primary_10_1016_j_envint_2024_108651 crossref_primary_10_1289_EHP8562 crossref_primary_10_1016_j_envint_2024_108770 crossref_primary_10_1016_j_envres_2022_113345 crossref_primary_10_1016_j_envres_2022_114797 crossref_primary_10_1016_j_jtemb_2025_127606 crossref_primary_10_1186_s12944_022_01743_6 crossref_primary_10_1016_j_envint_2021_106870 crossref_primary_10_1016_j_placenta_2022_02_020 crossref_primary_10_1158_1055_9965_EPI_23_0258 crossref_primary_10_1016_j_ecoenv_2023_115828 crossref_primary_10_1016_j_chemosphere_2023_140602 crossref_primary_10_1016_j_envint_2021_106508 crossref_primary_10_1016_j_envpol_2023_122867 crossref_primary_10_1021_acs_est_0c02657 crossref_primary_10_1038_s41370_023_00533_1 crossref_primary_10_1016_j_chemosphere_2022_137164 crossref_primary_10_1016_j_envres_2022_114435 crossref_primary_10_1080_10962247_2024_2411033 crossref_primary_10_1016_j_ecoenv_2024_117160 crossref_primary_10_1186_s12986_024_00874_0 crossref_primary_10_3390_toxics10030116 crossref_primary_10_1016_j_envint_2023_108383 crossref_primary_10_1016_j_envres_2024_119555 crossref_primary_10_1016_j_envint_2020_106220 crossref_primary_10_1016_j_envres_2024_118222 crossref_primary_10_1016_j_ecoenv_2023_115812 crossref_primary_10_1186_s12890_024_03173_9 crossref_primary_10_1016_j_scitotenv_2022_159050 crossref_primary_10_1016_j_ecoenv_2022_114228 crossref_primary_10_1289_EHP12016 crossref_primary_10_1021_envhealth_4c00017 crossref_primary_10_1186_s12889_024_19414_9 crossref_primary_10_3390_diseases11010052 crossref_primary_10_3390_toxics11080711 crossref_primary_10_1016_j_envres_2022_114305 crossref_primary_10_1016_j_chemosphere_2023_138644 crossref_primary_10_1016_j_envint_2019_105370 crossref_primary_10_1016_j_scitotenv_2023_168380 crossref_primary_10_3390_metabo10110454 crossref_primary_10_1016_j_envres_2019_108630 crossref_primary_10_1016_j_envint_2024_108433 crossref_primary_10_1038_s41598_024_63858_3 crossref_primary_10_3390_antiox11101991 crossref_primary_10_1016_j_envres_2024_119581 crossref_primary_10_1021_acs_est_3c00848 crossref_primary_10_3390_ijerph20105808 crossref_primary_10_1016_j_ecoenv_2023_115726 crossref_primary_10_1016_j_envpol_2022_120399 crossref_primary_10_1016_j_cdnut_2023_101978 crossref_primary_10_1016_j_envint_2023_108238 crossref_primary_10_1021_acsestair_4c00008 crossref_primary_10_1016_j_ecoenv_2024_116091 crossref_primary_10_1016_j_envpol_2025_126093 crossref_primary_10_1016_j_chemosphere_2021_131566 crossref_primary_10_1016_j_xinn_2022_100208 crossref_primary_10_3389_fpubh_2022_1039514 crossref_primary_10_1371_journal_pone_0316045 crossref_primary_10_1021_acs_est_2c07389 crossref_primary_10_1016_j_envres_2024_120325 crossref_primary_10_1016_j_chemosphere_2020_129188 crossref_primary_10_1016_j_chemosphere_2024_144040 crossref_primary_10_1016_j_envpol_2025_126085 crossref_primary_10_1093_pnasnexus_pgad397 crossref_primary_10_1111_biom_13569 crossref_primary_10_1016_j_ecoenv_2023_114508 crossref_primary_10_1016_j_ecoenv_2023_115838 crossref_primary_10_1016_j_jhazmat_2023_132590 crossref_primary_10_1016_j_jhazmat_2024_133500 crossref_primary_10_1289_EHP12597 crossref_primary_10_1016_j_envint_2021_106538 crossref_primary_10_1016_j_jhazmat_2023_132115 crossref_primary_10_1007_s12011_022_03309_0 crossref_primary_10_1186_s12889_024_20897_9 crossref_primary_10_1002_wll2_12027 crossref_primary_10_1016_j_envres_2024_120684 crossref_primary_10_1017_S0007114523003070 crossref_primary_10_3920_WMJ2022_2784 crossref_primary_10_1186_s12874_024_02434_9 crossref_primary_10_3390_medsci12040071 crossref_primary_10_1093_annweh_wxab072 crossref_primary_10_3390_nu14204271 crossref_primary_10_1002_sim_10293 crossref_primary_10_1016_j_fct_2024_114750 crossref_primary_10_1016_j_jhazmat_2021_126557 crossref_primary_10_1016_j_envres_2024_120514 crossref_primary_10_1016_j_jtemb_2024_127524 crossref_primary_10_1016_j_envint_2024_108692 crossref_primary_10_1038_s41598_024_78463_7 crossref_primary_10_1016_j_envres_2024_119766 crossref_primary_10_1080_09603123_2024_2308017 crossref_primary_10_1016_j_envres_2021_112450 crossref_primary_10_1016_j_chemosphere_2024_143084 crossref_primary_10_3389_fnut_2022_849384 crossref_primary_10_1016_j_rbmo_2022_09_015 crossref_primary_10_56294_hl2024_368 crossref_primary_10_1016_j_chemosphere_2021_132358 crossref_primary_10_1186_s12940_024_01047_5 crossref_primary_10_1016_j_scitotenv_2024_173812 crossref_primary_10_1007_s40572_019_00229_5 crossref_primary_10_1016_j_ecoenv_2024_116030 crossref_primary_10_1007_s12561_023_09385_7 crossref_primary_10_1016_j_envint_2023_108064 crossref_primary_10_1016_j_envres_2024_118781 crossref_primary_10_1016_j_reprotox_2020_09_007 crossref_primary_10_1016_j_ecoenv_2022_114309 crossref_primary_10_1016_j_envint_2021_106837 crossref_primary_10_56294_hl2024_375 crossref_primary_10_1016_j_eti_2023_103012 crossref_primary_10_1007_s12403_023_00591_8 crossref_primary_10_1016_j_scitotenv_2022_159014 crossref_primary_10_1016_j_chemosphere_2023_138208 crossref_primary_10_1016_j_jhazmat_2023_132339 crossref_primary_10_1016_j_envpol_2020_114026 crossref_primary_10_1016_j_envres_2022_113897 crossref_primary_10_1016_j_envint_2023_108183 crossref_primary_10_1016_j_ecoenv_2024_116164 crossref_primary_10_1186_s12940_023_01017_3 crossref_primary_10_2337_db22_0028 crossref_primary_10_1088_2752_5309_ad52ba crossref_primary_10_1038_s41370_024_00674_x crossref_primary_10_1186_s12889_024_17872_9 crossref_primary_10_1080_15376516_2024_2378296 crossref_primary_10_1016_j_envint_2023_108278 crossref_primary_10_1016_j_scitotenv_2024_172711 crossref_primary_10_1016_j_envpol_2021_117739 crossref_primary_10_1016_j_envres_2024_119426 crossref_primary_10_1016_j_scitotenv_2022_160129 crossref_primary_10_3390_nu16193424 crossref_primary_10_1016_j_envres_2023_117161 crossref_primary_10_1021_envhealth_4c00071 crossref_primary_10_3389_fpubh_2021_705225 crossref_primary_10_1016_j_envint_2021_106612 crossref_primary_10_3390_toxics11090745 crossref_primary_10_1016_j_ecoenv_2023_114838 crossref_primary_10_1016_j_envint_2021_106731 crossref_primary_10_1016_j_ecoenv_2023_115926 crossref_primary_10_1007_s00436_024_08323_w crossref_primary_10_1016_j_envpol_2024_123937 crossref_primary_10_1021_acs_est_4c10425 crossref_primary_10_1080_09603123_2023_2280157 crossref_primary_10_3389_fpubh_2024_1378027 crossref_primary_10_1016_j_envint_2021_106729 crossref_primary_10_1111_phpp_12852 crossref_primary_10_1016_j_chemosphere_2022_137065 crossref_primary_10_1021_acs_est_1c02603 crossref_primary_10_1016_j_jhazmat_2023_131457 crossref_primary_10_1038_s41598_024_70860_2 crossref_primary_10_1016_j_ecoenv_2024_116054 crossref_primary_10_1016_j_reprotox_2022_04_001 crossref_primary_10_1016_j_heha_2024_100116 crossref_primary_10_1007_s11356_022_24271_3 crossref_primary_10_1289_EHP7201 crossref_primary_10_1007_s11356_023_27321_6 crossref_primary_10_1016_j_scitotenv_2023_168287 crossref_primary_10_1016_j_envint_2023_108283 crossref_primary_10_1016_j_heliyon_2025_e41902 crossref_primary_10_1016_j_scitotenv_2023_168169 crossref_primary_10_1016_j_envpol_2025_126041 crossref_primary_10_1016_j_envres_2020_109903 crossref_primary_10_1016_j_envint_2020_105472 crossref_primary_10_1186_s12944_023_01895_z crossref_primary_10_1016_j_envres_2019_108729 crossref_primary_10_1097_EE9_0000000000000159 crossref_primary_10_1289_EHP9629 crossref_primary_10_1007_s42952_022_00201_4 crossref_primary_10_1515_em_2022_0133 crossref_primary_10_3390_toxics11090728 crossref_primary_10_1002_sim_9255 crossref_primary_10_1186_s12905_023_02381_5 crossref_primary_10_1016_j_envpol_2023_121348 crossref_primary_10_1016_j_ecoenv_2024_117270 crossref_primary_10_1016_j_envpol_2020_115138 crossref_primary_10_3390_e23121633 |
Cites_doi | 10.1111/j.1541-0420.2007.00799.x 10.1186/1476-069X-12-85 10.1111/j.1467-9868.2008.00663.x 10.1186/1476-069X-13-57 10.1111/j.2517-6161.1996.tb02080.x 10.1097/EDE.0b013e3181cc86e8 10.1093/biostatistics/kxu058 10.1214/10-AOS792 10.1016/j.pcl.2006.11.009 10.1007/s40572-017-0162-z 10.1289/EHP172 10.32614/CRAN.package.bkmr 10.1186/s12940-017-0277-6 10.1097/EDE.0b013e3181ce946c 10.1002/gepi.21749 10.1289/EHP614 10.1016/j.annepidem.2011.11.004 10.1214/11-STS354 10.1023/A:1010933404324 10.1289/EHP547 10.1214/ss/1177011136 10.1111/rssc.12006 10.1289/ehp.1206182 10.1289/ehp.1510569 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. The Author(s). 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T2 7U7 7X7 7XB 88E 8C1 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V M0S M1P M7S PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY 7X8 5PM DOA |
DOI | 10.1186/s12940-018-0413-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health and Safety Science Abstracts (Full archive) Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Health & Medical Collection (Alumni Edition) Medical Database Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection Health & Safety Science Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Public Health Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Environmental Science Collection ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1476-069X |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_f0b14e5f33194c40ae101f6788ae4369 PMC6102907 A557739776 30126431 10_1186_s12940_018_0413_y |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES024332 – fundername: NCI NIH HHS grantid: P01 CA134294 – fundername: NIEHS NIH HHS grantid: P30 ES000002 – fundername: NIEHS NIH HHS grantid: R00 ES022986 – fundername: ; |
GroupedDBID | --- 0R~ 29G 2WC 2XV 4P2 53G 5GY 5VS 6PF 7X7 7XC 88E 8C1 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADFRT ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ATCPS BAPOH BAWUL BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK E3Z EAD EAP EAS EBD EBLON EBS ECGQY EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEP IHR INH INR ITC ITG ITH KQ8 L6V L7B M1P M48 M7S M~E O5R O5S OK1 OVT PATMY PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RBZ RNS ROL RPM RSV SEV SOJ SV3 TR2 TUS U2A UKHRP WOQ WOW XSB -5A -5G -A0 -BR 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF FRP NPM PMFND 7T2 7U7 7XB 8FK AZQEC C1K DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c626t-dba45f664dd03f3f8bf33e09d1403434fd8b1f63c9680076cf2e0fa16d5ff4853 |
IEDL.DBID | DOA |
ISSN | 1476-069X |
IngestDate | Wed Aug 27 01:25:11 EDT 2025 Thu Aug 21 18:08:16 EDT 2025 Fri Jul 11 04:29:41 EDT 2025 Fri Jul 25 10:47:24 EDT 2025 Tue Jun 17 21:24:55 EDT 2025 Tue Jun 10 20:20:30 EDT 2025 Wed Feb 19 02:36:26 EST 2025 Thu Apr 24 22:51:23 EDT 2025 Tue Jul 01 02:00:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Exposure-response Health risk estimation Mixtures Multiple exposures Variable selection |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c626t-dba45f664dd03f3f8bf33e09d1403434fd8b1f63c9680076cf2e0fa16d5ff4853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/f0b14e5f33194c40ae101f6788ae4369 |
PMID | 30126431 |
PQID | 2108877408 |
PQPubID | 44372 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f0b14e5f33194c40ae101f6788ae4369 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6102907 proquest_miscellaneous_2091232815 proquest_journals_2108877408 gale_infotracmisc_A557739776 gale_infotracacademiconefile_A557739776 pubmed_primary_30126431 crossref_citationtrail_10_1186_s12940_018_0413_y crossref_primary_10_1186_s12940_018_0413_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-20 |
PublicationDateYYYYMMDD | 2018-08-20 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Environmental health |
PublicationTitleAlternate | Environ Health |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | H Hu (413_CR2) 2007; 54 C Billionnet (413_CR1) 2012; 22 413_CR25 D Liu (413_CR19) 2007; 63 413_CR26 JF Bobb (413_CR27) 2013; 62 T Savitsky (413_CR22) 2011; 26 F Dominici (413_CR8) 2010; 21 T Amemiya (413_CR20) 1981; 19 J Barrera-Gómez (413_CR10) 2017; 16 JG Scott (413_CR14) 2010; 38 JMM Antonelli (413_CR30) 2017 JM Braun (413_CR5) 2016; 124 A Gelman (413_CR23) 1992; 7 JF Bobb (413_CR13) 2015; 16 L Breiman (413_CR6) 2001; 45 413_CR3 M Stafoggia (413_CR12) 2017; 4 L Valeri (413_CR16) 2017; 125 KW Taylor (413_CR24) 2016; 124 413_CR15 413_CR17 413_CR18 DJ Carlin (413_CR4) 2013; 121 NB Larson (413_CR29) 2013; 37 S Banerjee (413_CR21) 2008; 70 E Lampa (413_CR28) 2014; 13 L Agier (413_CR9) 2016; 124 Z Sun (413_CR11) 2013; 12 R Tibshirani (413_CR7) 1996; 58 |
References_xml | – volume: 63 start-page: 1079 year: 2007 ident: 413_CR19 publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00799.x – volume: 12 start-page: 85 year: 2013 ident: 413_CR11 publication-title: Environ Health doi: 10.1186/1476-069X-12-85 – volume: 70 start-page: 825 year: 2008 ident: 413_CR21 publication-title: J Royal Stat Soc - Series B doi: 10.1111/j.1467-9868.2008.00663.x – volume: 13 start-page: 57 year: 2014 ident: 413_CR28 publication-title: Environ Health doi: 10.1186/1476-069X-13-57 – volume: 58 start-page: 267 year: 1996 ident: 413_CR7 publication-title: J Royal Stat Soc - Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 21 start-page: 187 year: 2010 ident: 413_CR8 publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181cc86e8 – ident: 413_CR18 – ident: 413_CR25 – volume: 16 start-page: 493 year: 2015 ident: 413_CR13 publication-title: Biostatistics doi: 10.1093/biostatistics/kxu058 – volume: 38 start-page: 2587 year: 2010 ident: 413_CR14 publication-title: Ann Stat doi: 10.1214/10-AOS792 – volume: 54 start-page: 155 year: 2007 ident: 413_CR2 publication-title: Pediatr Clin N Am doi: 10.1016/j.pcl.2006.11.009 – volume: 4 start-page: 481 year: 2017 ident: 413_CR12 publication-title: Curr Environ Health Rep doi: 10.1007/s40572-017-0162-z – volume-title: Bayesian variable selection for multi-dimensional semiparametric regression models year: 2017 ident: 413_CR30 – volume: 124 start-page: 1848 year: 2016 ident: 413_CR9 publication-title: Environ Health Perspect doi: 10.1289/EHP172 – ident: 413_CR17 doi: 10.32614/CRAN.package.bkmr – volume: 16 start-page: 74 year: 2017 ident: 413_CR10 publication-title: Environ Health doi: 10.1186/s12940-017-0277-6 – ident: 413_CR3 doi: 10.1097/EDE.0b013e3181ce946c – ident: 413_CR15 – volume: 37 start-page: 695 year: 2013 ident: 413_CR29 publication-title: Genet Epidemiol doi: 10.1002/gepi.21749 – volume: 125 start-page: 067015 year: 2017 ident: 413_CR16 publication-title: Environ Health Perspect doi: 10.1289/EHP614 – volume: 22 start-page: 126 year: 2012 ident: 413_CR1 publication-title: Ann Epidemiol doi: 10.1016/j.annepidem.2011.11.004 – volume: 26 start-page: 130 year: 2011 ident: 413_CR22 publication-title: Stat Sci doi: 10.1214/11-STS354 – volume: 45 start-page: 5 year: 2001 ident: 413_CR6 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 124 start-page: A227 year: 2016 ident: 413_CR24 publication-title: Environ Health Perspect doi: 10.1289/EHP547 – ident: 413_CR26 – volume: 7 start-page: 457 year: 1992 ident: 413_CR23 publication-title: Stat Sci doi: 10.1214/ss/1177011136 – volume: 19 start-page: 1483 year: 1981 ident: 413_CR20 publication-title: JEL – volume: 62 start-page: 451 year: 2013 ident: 413_CR27 publication-title: J Royal Stat Soc - Series C doi: 10.1111/rssc.12006 – volume: 121 start-page: A6 year: 2013 ident: 413_CR4 publication-title: Environ Health Perspect doi: 10.1289/ehp.1206182 – volume: 124 start-page: A6 year: 2016 ident: 413_CR5 publication-title: Environ Health Perspect doi: 10.1289/ehp.1510569 |
SSID | ssj0017865 |
Score | 2.662184 |
Snippet | Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach for estimating the... Background Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach for... Abstract Background Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental epidemiology. Recently, a new approach... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 67 |
SubjectTerms | Air pollution Bayes Theorem Bayesian analysis Computer programs Continuity (mathematics) Dose-response effects Environmental Exposure - adverse effects Environmental health Environmental Health - methods Environmental Monitoring - methods Environmental Pollutants - adverse effects Epidemiology Estimation Exposure Exposure-response Gaussian process Health Health aspects Health risk estimation Medical research Methodology Mixtures Models, Statistical Multiple exposures Nonlinear response Open source software Organic chemicals Pollutants Pollution Principal components analysis Programming languages Regression analysis Response functions Risk analysis Risk factors Simulation Software Source code Statistical analysis Statistical methods Statistical software Variable selection |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA5aQXwR745WiSAIwtBkJ7d5klYsRahPFvYtZDJJLdaZdWbbuoL_3XNmsmMHoW_L5gw72XP7TnLyhZC3tfaFcosqB7gsc1FX4FK-hk8BwmQoIysWeDj5-Is6OhGfl3KZFtz61Fa5jYlDoK5bj2vke1CagD9owcyH1c8cb43C3dV0hcZtcgepy7ClSy-ngotr-P20k8mN2usht2EzIzc5g9idb2a5aKDs_z8wX8tM867Ja2no8AG5n_Aj3R8V_pDcCs0jcvc47ZA_Jn8QPQ7kyyDVQ4y9cl2ggEypQ_qR35CpKGA-Op5_pKmdg7aRblsLKVTIfmRtouHXqsUlxJ5enjl64DYBz1zS76Frwjn9MTRiBtqF07GbtnlCTg4_ff14lKcrFnIPlcw6rysnZFRK1DUrYhFNFYsisLJGGj9RiFibikdV-FIZ3LTzcRFYdFzVMkYBqf4p2WnaJjwnFEzSQB50UldScFcarqIX3ohoSq8jywjb_tnWJ_5xvAbj3A51iFF21I8F_VjUj91k5P30yGok37hJ-AA1OAkib_bwRdud2uSGNrKKiyBhkrwUXjAXICRFSNjGBVGoMiPvUP8WvRtezrt0SAGmiDxZdl9KrREzq4zsziTBK_18eGtBNkWF3v6z4Yy8mYbxSex0a0J7ATIA4ADlGi4z8mw0uGlKEIwBvxY8I3pmirM5z0eas28DZzig5EXJ9IubX-slubcY3AOj5y7ZWXcX4RWArnX1evCsv-NDLYc priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA9zgvgifts5JYIgCNW0-eyDyCaOIVyfvLC3kKbJHLu2s_du7gr-757Tj-uKwyffSnMCTc7XL83JL4S8rLTnyuVlCnBZpqIqwaV8BU8BwmQoIuM5Hk6efVaHc_HpSB5tkfF6q2ECl9cu7fA-qXm7eHP5ff0eHP5d5_BGvV1CzsIixcykDGJyur5BbkJi0uinM_FnU0HD5wwbm9d2m6SmjsH_7zh9JVFNiyivZKWDu-TOACfpXq__e2Qr1PfJrdmwYf6A_EIw2XExg9QSQu4P1wYKQJU6ZCP5CYmLAgSk_XFIOlR30CbSsdKQwoLZ9yRONFyeNfhHcUkvThzdd-uARzDpaWjrsKDfurrMQNtw3BfX1g_J_ODjlw-H6XDjQuphYbNKq9IJGZUSVcV45NGUkfPAigpZ_QQXsTJlFhX3hTK4h-djHlh0mapkjAIy_yOyXTd1eEIoWKiBtOikLqXIXGEyFb3wRkRTeB1ZQtg42dYPdOR4K8bCdssSo2yvHwv6sagfu07I602Xs56L41_C-6jBjSDSaHcvmvbYDl5pIyszESQMMiuEF8wFiFAR8rdxQXBVJOQV6t-i-cHHeTecWYAhIm2W3ZNSa4TQKiG7E0lwUj9tHi3IjjZuYbUNIV4LZhLyYtOMPbHwrQ7NOcgAngPQazKZkMe9wW2GBLEZ4CzPEqInpjgZ87SlPvnaUYgDaM4Lpnf-xyQ9Jbfzzokw5O6S7VV7Hp4BUluVzzv_-w1Xaz1f priority: 102 providerName: Scholars Portal |
Title | Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30126431 https://www.proquest.com/docview/2108877408 https://www.proquest.com/docview/2091232815 https://pubmed.ncbi.nlm.nih.gov/PMC6102907 https://doaj.org/article/f0b14e5f33194c40ae101f6788ae4369 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEB_0BPFF_DZ6lhUEQQi3SfYrj9fj6iH0EPGgb8tms6uHZ3q0Pe8q-L87k6SlQdAXX5bSndDs7Hx2Z34L8KbWvlAur1IMl2Uq6gpVytf4KaCZDGXkRU7NydNTdXImPszkbOeqL6oJ6-CBO8YdRF5lIshYoKwIL7gLKEQRTaxxQRSqbd1Dn7dJpvrzA42_3J9hZkYdLNGrURljZlKOVjtdD7xQC9b_p0ne8UnDeskdBzR5APf7yJEddm_8EG6F5hHcnfZn44_hF8WNLewyUi3Rul67RWAYkzJHwCM_0UcxjPZY1_nI-kIONo9sU1TIMDf2HV4TCzeXc_rzcMl-nDs2dutA3ZbsW1g04YJ9b0swA1uEL10dbfMEzibHn49O0v5yhdRjDrNK68oJGZUSdc2LWERTIYsDL2sC8BOFiLWpkM-FL5Wh4zof88Cjy1QtYxTo5J_CXjNvwnNgKIwGPaCTupIic6XJVPTCGxFN6XXkCfANs63vkcfpAowL22YgRtlufyzuj6X9sesE3m0fuexgN_5GPKYd3BISYnb7BcqR7eXI_kuOEnhL-29Jr_HlvOvbE3CJhJBlD6XUmqJllcD-gBL10Q-nNxJke3uwtJhYozXXgpsEXm-n6UmqcWvC_AppUIwxvjWZTOBZJ3DbJaEZxsi1yBLQA1EcrHk405x_bdHCMT7OS65f_A8mvYR7eatEZF33YW-1uAqvMChbVSO4rWcaR3OU0Th5P4I74-PTj59GrWbiOBXmN_xrOl4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxJtAASOBkJCi2onjOAeEWqDa0m5PrbQ34zh2qSjJstlSFom_xG9kJi8aIfXWWxQ7UpyZ-eabeDxDyMsitbE0UR4CXU5CUeRgUraAKwcw6TLP4ggPJ08P5ORIfJolszXypz8Lg2mVPSY2QF1UFv-Rb0JoAvaQCqbezb-H2DUKd1f7FhqtWuy51TmEbPXb3Q8g31dRtPPx8P0k7LoKhBbI-zIsciMSL6UoChb72Kvcx7FjWYGV60QsfKFy7mVsM6lwn8r6yDFvuCwS74XCLhEA-dfA8TK0qHQ2BHg8hfV2O6dcyc0afCkmT3IVMvAV4Wrk-5oWAf87gguecJylecHt7dwmtzq-SrdaBbtD1lx5l1yfdjvy98hvZKtNsWeYVQOmn5uFo8CEqcFyJ7_AM1LgmLQ9b0m79BFaedqnMlKIyG1bJYq6n_MKf1nW9MeJodtm5fCMJ_3qFqU7pd-axE9HF-64zd4t75OjK_n4D8h6WZXuEaFgAgr8rknSPBHcZIpLb4VVwqvMpp4FhPUfW9uu3jm23TjVTdyjpG7lo0E-GuWjVwF5Mzwyb4t9XDZ5GyU4TMQ63c2NanGsO7PXnuVcuAQWyTNhBTMOINADQVDGiVhmAXmN8teIJvBy1nSHImCJWJdLbyVJmiJHlwHZGM0EFLDj4V6DdIdCtf5nMwF5MQzjk5hZV7rqDOYAYQRWrXgSkIetwg1LAvAHvhzzgKQjVRyteTxSnnxpapQDK48ylj6-_LWekxuTw-m-3t892HtCbkaNqSByb5D15eLMPQXCt8yfNVZGyeerNuu_LrxqlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+software+for+analyzing+the+health+effects+of+multiple+concurrent+exposures+via+Bayesian+kernel+machine+regression&rft.jtitle=Environmental+health&rft.au=Jennifer+F.+Bobb&rft.au=Birgit+Claus+Henn&rft.au=Linda+Valeri&rft.au=Brent+A.+Coull&rft.date=2018-08-20&rft.pub=BMC&rft.eissn=1476-069X&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1186%2Fs12940-018-0413-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f0b14e5f33194c40ae101f6788ae4369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-069X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-069X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-069X&client=summon |