Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts

Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward speci...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology for biofuels Vol. 10; no. 1; p. 241
Main Authors Yaegashi, Junko, Kirby, James, Ito, Masakazu, Sun, Jian, Dutta, Tanmoy, Mirsiaghi, Mona, Sundstrom, Eric R., Rodriguez, Alberto, Baidoo, Edward, Tanjore, Deepti, Pray, Todd, Sale, Kenneth, Singh, Seema, Keasling, Jay D., Simmons, Blake A., Singer, Steven W., Magnuson, Jon K., Arkin, Adam P., Skerker, Jeffrey M., Gladden, John M.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 23.10.2017
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. In this study, the carotenogenic yeast was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, was also observed to assimilate -coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. This study highlights the natural compatibility of with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.
AbstractList Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts.BACKGROUNDEconomical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts.In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars.RESULTSIn this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars.This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.CONCLUSIONSThis study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.
Background Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. Results In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline [alpha]-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. Conclusions This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes. Keywords: Rhodosporidium toruloides, Terpenes, Bisabolene, Amorphadiene, Heterologous expression, Plant biomass-derived hydrolysate, Multiple carbon source utilization
Abstract Background Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. Results In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. Conclusions This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.
Background:Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts.Results:In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to havesuperior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel bio-compatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars.Conclusions:This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.
Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. In this study, the carotenogenic yeast was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, was also observed to assimilate -coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. This study highlights the natural compatibility of with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.
BACKGROUND: Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. RESULTS: In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. CONCLUSIONS: This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.
Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fe d-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.
Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline [alpha]-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.
ArticleNumber 241
Audience Academic
Author Rodriguez, Alberto
Ito, Masakazu
Keasling, Jay D.
Skerker, Jeffrey M.
Tanjore, Deepti
Dutta, Tanmoy
Gladden, John M.
Singer, Steven W.
Arkin, Adam P.
Sun, Jian
Magnuson, Jon K.
Mirsiaghi, Mona
Sale, Kenneth
Baidoo, Edward
Yaegashi, Junko
Pray, Todd
Simmons, Blake A.
Sundstrom, Eric R.
Kirby, James
Singh, Seema
Author_xml – sequence: 1
  givenname: Junko
  surname: Yaegashi
  fullname: Yaegashi, Junko
– sequence: 2
  givenname: James
  surname: Kirby
  fullname: Kirby, James
– sequence: 3
  givenname: Masakazu
  surname: Ito
  fullname: Ito, Masakazu
– sequence: 4
  givenname: Jian
  surname: Sun
  fullname: Sun, Jian
– sequence: 5
  givenname: Tanmoy
  surname: Dutta
  fullname: Dutta, Tanmoy
– sequence: 6
  givenname: Mona
  surname: Mirsiaghi
  fullname: Mirsiaghi, Mona
– sequence: 7
  givenname: Eric R.
  surname: Sundstrom
  fullname: Sundstrom, Eric R.
– sequence: 8
  givenname: Alberto
  surname: Rodriguez
  fullname: Rodriguez, Alberto
– sequence: 9
  givenname: Edward
  surname: Baidoo
  fullname: Baidoo, Edward
– sequence: 10
  givenname: Deepti
  surname: Tanjore
  fullname: Tanjore, Deepti
– sequence: 11
  givenname: Todd
  surname: Pray
  fullname: Pray, Todd
– sequence: 12
  givenname: Kenneth
  surname: Sale
  fullname: Sale, Kenneth
– sequence: 13
  givenname: Seema
  surname: Singh
  fullname: Singh, Seema
– sequence: 14
  givenname: Jay D.
  surname: Keasling
  fullname: Keasling, Jay D.
– sequence: 15
  givenname: Blake A.
  surname: Simmons
  fullname: Simmons, Blake A.
– sequence: 16
  givenname: Steven W.
  surname: Singer
  fullname: Singer, Steven W.
– sequence: 17
  givenname: Jon K.
  surname: Magnuson
  fullname: Magnuson, Jon K.
– sequence: 18
  givenname: Adam P.
  surname: Arkin
  fullname: Arkin, Adam P.
– sequence: 19
  givenname: Jeffrey M.
  surname: Skerker
  fullname: Skerker, Jeffrey M.
– sequence: 20
  givenname: John M.
  surname: Gladden
  fullname: Gladden, John M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29075325$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1421836$$D View this record in Osti.gov
BookMark eNqFUktv1DAYjFARfcAP4IIsuMAhxXb8Sg9IVcVjpUpIBc6W149drxJ7sZ1C_z1Ot0XdSgjl4NiZGX8zmePmIMRgm-YlgqcICfY-ow4y0ULEW9hj3tInzRHilLRMdOTgwfthc5zzBkKGOOTPmkPcQ047TI-am6t1NDFvY_LGTyMoMU1D9MbmM6BAsL_AdlDFxTSCmFYq-DyCugM6hmubso8BRAcGvwpR22Go3GyBDyWCYtPWBguWPrrJDhmoYObNNkUz6ZKfN0-dGrJ9cbeeND8-ffx-8aW9_Pp5cXF-2WqGWWmNYFAIvcTGIaaWmAiOkamWCWbVPesVRQRbAkWvSMf5UjAnUGeUMIgb7LqTZrHTNVFt5Db5UaUbGZWXtwfVlVSpeD1YKTTRTDtKhLUEiX7JaNfBzkGuIMSOVa0PO63ttByt0TaUpIY90f0vwa_lKl5LyiiiXFSB1zuBmIuXWfti9bpmGawusvpAoptveXt3S4o_J5uLHH2e01XBxilLDG__JKH9f6Gop5xUF4hW6JtH0E2cUqjRz6i-Q11PcEWd7lArVQPxwcXqQ9fH2NHXQa3z9fycIthzJMg87Ls9QsUU-7us1JSzXHy72se-ehjf39zu61gBfAfQKeacrJM1IVVqy-oUfpAIyrn4cld8WVsg5-LLmYkeMe_F_835A4-WBBU
CitedBy_id crossref_primary_10_1186_s12934_023_02148_5
crossref_primary_10_1186_s12934_020_1293_8
crossref_primary_10_1002_btpr_3008
crossref_primary_10_3390_molecules29051127
crossref_primary_10_3390_molecules28031427
crossref_primary_10_1016_j_copbio_2020_08_011
crossref_primary_10_1039_D3GC01481A
crossref_primary_10_1186_s12934_018_0984_x
crossref_primary_10_1016_j_biotechadv_2021_107791
crossref_primary_10_1186_s12934_024_02414_0
crossref_primary_10_3389_fmicb_2018_02460
crossref_primary_10_1016_j_copbio_2023_103015
crossref_primary_10_1021_acs_jafc_3c02472
crossref_primary_10_1039_C8GC00434J
crossref_primary_10_1039_C8GC01905C
crossref_primary_10_1016_j_ymben_2025_02_014
crossref_primary_10_1186_s40694_020_00095_z
crossref_primary_10_1039_D1GC02667D
crossref_primary_10_1186_s12896_020_00609_y
crossref_primary_10_1007_s11356_020_09911_w
crossref_primary_10_1016_j_biotechadv_2019_05_002
crossref_primary_10_1016_j_biotechadv_2019_107433
crossref_primary_10_1016_j_biortech_2019_121365
crossref_primary_10_3389_fmicb_2021_791089
crossref_primary_10_18470_1992_1098_2022_4_61_78
crossref_primary_10_1186_s13068_021_02094_7
crossref_primary_10_1128_mSphere_00099_19
crossref_primary_10_1038_s41579_021_00577_w
crossref_primary_10_1111_1751_7915_13768
crossref_primary_10_1016_j_ymben_2023_04_007
crossref_primary_10_1093_femsyr_foaa048
crossref_primary_10_1073_pnas_2122309119
crossref_primary_10_3390_fermentation7020050
crossref_primary_10_1186_s13068_021_01950_w
crossref_primary_10_1016_j_clce_2023_100112
crossref_primary_10_1007_s00253_019_09692_4
crossref_primary_10_1039_C8RA03028F
crossref_primary_10_1128_msystems_00389_19
crossref_primary_10_3390_microorganisms10040794
crossref_primary_10_1093_jimb_kuae034
crossref_primary_10_1186_s13068_022_02251_6
crossref_primary_10_1371_journal_pone_0211582
crossref_primary_10_1016_j_ymben_2017_12_010
crossref_primary_10_1186_s12934_022_01977_0
crossref_primary_10_1021_acssynbio_2c00003
crossref_primary_10_3390_en13225960
crossref_primary_10_1016_j_mib_2021_10_014
crossref_primary_10_1016_j_tibtech_2020_03_009
crossref_primary_10_1007_s12649_023_02166_9
crossref_primary_10_1093_femsyr_foaa038
crossref_primary_10_3389_fbioe_2020_612832
crossref_primary_10_1016_j_biombioe_2019_105355
crossref_primary_10_1007_s12257_022_0217_3
crossref_primary_10_1002_bit_27001
crossref_primary_10_1186_s13068_022_02131_z
crossref_primary_10_1016_j_ymben_2021_11_011
crossref_primary_10_1016_j_biortech_2022_128216
crossref_primary_10_1039_D4GC03876B
crossref_primary_10_3389_fmicb_2022_1069443
crossref_primary_10_3390_pr8040497
crossref_primary_10_3389_fbioe_2018_00117
crossref_primary_10_1038_s44222_024_00247_5
crossref_primary_10_3390_pr10102004
crossref_primary_10_1093_femsyr_foy086
crossref_primary_10_1016_j_biotechadv_2024_108432
crossref_primary_10_1186_s12934_022_02006_w
crossref_primary_10_1186_s12934_020_01456_4
crossref_primary_10_3389_fbioe_2020_599560
crossref_primary_10_1016_j_copbio_2019_02_011
crossref_primary_10_1007_s11274_021_03201_4
crossref_primary_10_1016_j_procbio_2024_01_009
crossref_primary_10_1128_AEM_03100_20
crossref_primary_10_1021_acssuschemeng_9b04451
crossref_primary_10_1016_j_btre_2021_e00639
crossref_primary_10_1186_s13068_018_1134_8
crossref_primary_10_1128_mBio_00391_21
crossref_primary_10_1016_j_ymben_2025_03_015
crossref_primary_10_1021_acssuschemeng_9b01229
crossref_primary_10_1093_femsyr_foab066
crossref_primary_10_1186_s13068_021_01947_5
crossref_primary_10_1016_j_indcrop_2022_114867
crossref_primary_10_1016_j_jclepro_2022_135687
crossref_primary_10_1016_j_rser_2020_110390
crossref_primary_10_1038_s41467_023_37031_9
crossref_primary_10_1186_s12934_022_01750_3
crossref_primary_10_1016_j_copbio_2020_10_012
crossref_primary_10_1146_annurev_food_052720_012228
crossref_primary_10_1186_s13068_019_1478_8
crossref_primary_10_1002_cssc_201901084
crossref_primary_10_1093_femsyr_foz031
crossref_primary_10_1016_j_ymben_2023_05_001
crossref_primary_10_1016_j_biombioe_2022_106419
crossref_primary_10_1021_acssuschemeng_1c03765
crossref_primary_10_1093_femsle_fnab111
crossref_primary_10_1007_s10529_018_2542_3
crossref_primary_10_1016_j_cej_2025_160911
crossref_primary_10_3389_fenrg_2022_863153
crossref_primary_10_1039_C9GC00920E
crossref_primary_10_1186_s13068_023_02429_6
crossref_primary_10_1016_j_biortech_2024_131797
crossref_primary_10_1021_acssynbio_0c00503
crossref_primary_10_1016_j_tibtech_2020_02_004
crossref_primary_10_1016_j_tibtech_2021_02_003
crossref_primary_10_1039_D0GC03260C
crossref_primary_10_1007_s12649_024_02441_3
crossref_primary_10_1016_j_procbio_2024_01_027
crossref_primary_10_1021_acssuschemeng_4c05826
crossref_primary_10_1039_C8GC00518D
crossref_primary_10_1007_s00253_021_11549_8
crossref_primary_10_1016_j_csbj_2023_03_018
crossref_primary_10_1016_j_biotechadv_2021_107695
crossref_primary_10_1002_bbb_1954
crossref_primary_10_1002_cssc_202301460
crossref_primary_10_1016_j_biortech_2024_130594
crossref_primary_10_1016_j_rser_2021_110907
crossref_primary_10_1016_j_indcrop_2023_117997
crossref_primary_10_1007_s12010_023_04681_w
crossref_primary_10_1002_bit_27285
crossref_primary_10_1186_s12934_019_1167_0
crossref_primary_10_1515_npprj_2024_0039
crossref_primary_10_1128_AEM_02794_20
crossref_primary_10_1016_j_biombioe_2019_105439
crossref_primary_10_1186_s13068_022_02245_4
crossref_primary_10_1016_j_biotechadv_2021_107722
crossref_primary_10_1007_s12257_024_00030_8
crossref_primary_10_1186_s12934_023_02175_2
crossref_primary_10_1007_s13399_022_02570_6
crossref_primary_10_1021_acssuschemeng_3c05541
crossref_primary_10_1021_acs_jafc_4c12081
crossref_primary_10_1080_07388551_2021_1924112
crossref_primary_10_1016_j_micres_2024_127840
crossref_primary_10_3390_fermentation9050431
crossref_primary_10_1021_acs_jafc_2c07361
Cites_doi 10.1002/bit.25864
10.1038/ncomms2112
10.1007/s00253-015-6510-8
10.1039/C6EE00913A
10.1002/anie.201510351
10.1007/s00425-009-0900-z
10.1038/nature04640
10.1007/s10295-015-1674-x
10.1007/s10570-004-3132-1
10.1007/s00253-011-3200-z
10.1186/1472-6750-12-26
10.1007/s00253-012-4561-7
10.1038/ncomms1494
10.1128/AEM.06761-11
10.1007/s00253-012-4223-9
10.3389/fenrg.2014.00062
10.1016/j.biortech.2016.01.116
10.1021/jf502987q
10.1128/AEM.02155-14
10.1007/s12155-012-9220-4
10.1038/nbt.1555
10.1038/nchembio.2007.1
10.1038/srep19512
10.1186/1754-6834-3-10
10.1002/bit.21766
10.1007/s002530100624
10.1007/s12155-015-9588-z
10.1139/W07-068
10.1039/b604483m
10.1007/s00253-016-7815-y
10.1111/1567-1364.12140
10.1039/C6GC00657D
10.1016/j.ymben.2012.07.010
10.1186/1471-2180-14-50
10.1126/science.1246843
10.1039/C5EE02940F
10.1093/nar/gks531
10.1126/science.1137016
10.1016/j.biotechadv.2014.08.003
ContentType Journal Article
Copyright COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
The Author(s) 2017
Copyright_xml – notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
– notice: The Author(s) 2017
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
– name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
NPM
ISR
3V.
7QO
7SP
7ST
7TB
7X7
7XB
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
L7M
LK8
M0S
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
SOI
7X8
7S9
L.6
OIOZB
OTOTI
5PM
DOA
DOI 10.1186/s13068-017-0927-5
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Engineering Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
PubMed
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-6834
2731-3654
EndPage 241
ExternalDocumentID oai_doaj_org_article_8c4c6cf548ee4189b653303f07a002f6
PMC5651578
1421836
A510971846
29075325
10_1186_s13068_017_0927_5
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: DE-AC02-05CH11231
GroupedDBID 23N
2WC
2XV
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBS
ECGQY
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HMCUK
HYE
I-F
IAG
IAO
IEA
IEP
ISR
ITC
KQ8
L6V
L8X
LK8
M48
M7P
M7S
ML0
M~E
O5R
O5S
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RBZ
RNS
ROL
RPM
RVI
SCM
TR2
TUS
UKHRP
~8M
-A0
2VQ
3V.
4.4
ADINQ
AHSBF
BMC
C1A
C24
C6C
IHR
IPNFZ
NPM
OK1
RIG
RSV
SOJ
PMFND
0R~
7QO
7SP
7ST
7TB
7XB
8FD
8FK
AAJSJ
AASML
ADUKV
AZQEC
C1K
DWQXO
EBLON
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
SOI
7X8
PUEGO
7S9
L.6
AAPBV
ABPTK
AFGXO
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c626t-d86088cb2df16ab248721d01742630669a5142e4089a4377b86f813da8d17d2f3
IEDL.DBID M48
ISSN 1754-6834
IngestDate Wed Aug 27 01:17:31 EDT 2025
Thu Aug 21 18:16:34 EDT 2025
Fri May 19 00:59:58 EDT 2023
Mon Jul 21 09:58:31 EDT 2025
Sun Aug 24 03:31:58 EDT 2025
Sat Aug 23 12:28:11 EDT 2025
Tue Jun 10 20:23:56 EDT 2025
Fri Jun 27 04:04:45 EDT 2025
Wed Feb 19 02:44:22 EST 2025
Tue Jul 01 04:18:49 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multiple carbon source utilization
Plant biomass-derived hydrolysate
Bisabolene
Terpenes
Amorphadiene
Heterologous expression
Rhodosporidium toruloides
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c626t-d86088cb2df16ab248721d01742630669a5142e4089a4377b86f813da8d17d2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
AC02-05CH11231; AC05-76RL01830
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13068-017-0927-5
PMID 29075325
PQID 1959313942
PQPubID 55236
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_8c4c6cf548ee4189b653303f07a002f6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5651578
osti_scitechconnect_1421836
proquest_miscellaneous_2000617459
proquest_miscellaneous_1957465315
proquest_journals_1959313942
gale_infotracacademiconefile_A510971846
gale_incontextgauss_ISR_A510971846
pubmed_primary_29075325
crossref_citationtrail_10_1186_s13068_017_0927_5
crossref_primary_10_1186_s13068_017_0927_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-23
PublicationDateYYYYMMDD 2017-10-23
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-23
  day: 23
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: United States
PublicationTitle Biotechnology for biofuels
PublicationTitleAlternate Biotechnol Biofuels
PublicationYear 2017
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References J Sun (927_CR38) 2016; 9
CL Li (927_CR34) 2013; 6
SBJ Park (927_CR22) 2010; 3
F Xu (927_CR13) 2016; 9
SY Zhang (927_CR17) 2016; 100
MG Wiebe (927_CR5) 2012; 12
R Rinaldi (927_CR33) 2016; 55
S Fillet (927_CR39) 2015; 42
JH Clark (927_CR1) 2006; 8
IR Sitepu (927_CR19) 2014; 32
EP Abbott (927_CR16) 2013; 97
MJ Liszka (927_CR37) 2016; 18
J Kirby (927_CR30) 2014; 80
ZW Zhu (927_CR6) 2012; 3
PP Peralta-Yahya (927_CR26) 2011; 2
ME Himmel (927_CR2) 2007; 315
J Sun (927_CR14) 2016; 9
J Shi (927_CR35) 2015; 8
XP Lin (927_CR9) 2014; 14
JJ Lee (927_CR20) 2014; 62
EM Paradise (927_CR29) 2008; 100
JM Ageitos (927_CR7) 2011; 90
AJ Ragauskas (927_CR3) 2014; 344
YB Liu (927_CR10) 2013; 97
TJ Maimone (927_CR24) 2007; 3
J Yin (927_CR28) 2015; 99
D Groff (927_CR32) 2012; 78
P Buzzini (927_CR40) 2007; 53
AR Apel (927_CR21) 2016
PLM Mansikkamäki (927_CR23) 2005; 12
J Zaldivar (927_CR4) 2001; 56
KK Jiang (927_CR31) 2016; 207
KEJ Tyo (927_CR27) 2009; 27
S Singh (927_CR36) 2015; 2
RD Hatfield (927_CR12) 2009; 229
TS Ham (927_CR15) 2012; 40
B Ozaydin (927_CR18) 2013; 15
CMJ Koh (927_CR11) 2014; 14
DK Ro (927_CR25) 2006; 440
S Zhang (927_CR8) 2016; 113
16612385 - Nature. 2006 Apr 13;440(7086):940-3
25758961 - Appl Microbiol Biotechnol. 2015 Jul;99(13):5523-34
22286982 - Appl Environ Microbiol. 2012 Apr;78(7):2221-9
17289988 - Science. 2007 Feb 9;315(5813):804-7
22646156 - BMC Biotechnol. 2012 May 30;12:26
17898860 - Can J Microbiol. 2007 Aug;53(8):1024-31
22722909 - Appl Microbiol Biotechnol. 2013 Jan;97(2):719-29
25188820 - BMC Microbiol. 2014 Feb 27;14:50
18175359 - Biotechnol Bioeng. 2008 Jun 1;100(2):371-8
25149518 - Appl Environ Microbiol. 2014 Nov;80(21):6685-93
22918085 - Metab Eng. 2013 Jan;15:174-83
27311348 - Angew Chem Int Ed Engl. 2016 Jul 11;55(29):8164-215
24495153 - FEMS Yeast Res. 2014 Jun;14(4):547-55
26479039 - Biotechnol Bioeng. 2016 May;113(5):1056-66
22718978 - Nucleic Acids Res. 2012 Oct;40(18):e141
25254328 - J Agric Food Chem. 2014 Oct 15;62(41):10203-9
27678117 - Appl Microbiol Biotechnol. 2016 Nov;100(21):9393-9405
26318028 - J Ind Microbiol Biotechnol. 2015 Nov;42(11):1463-72
23047670 - Nat Commun. 2012;3:1112
19288269 - Planta. 2009 May;229(6):1253-67
11499926 - Appl Microbiol Biotechnol. 2001 Jul;56(1-2):17-34
20497524 - Biotechnol Biofuels. 2010 May 24;3:10
17576427 - Nat Chem Biol. 2007 Jul;3(7):396-407
21952217 - Nat Commun. 2011 Sep 27;2:483
24833396 - Science. 2014 May 16;344(6185):1246843
26868149 - Bioresour Technol. 2016 May;207 :1-10
21465305 - Appl Microbiol Biotechnol. 2011 May;90(4):1219-27
19633654 - Nat Biotechnol. 2009 Aug;27(8):760-5
25172033 - Biotechnol Adv. 2014 Nov 15;32(7):1336-60
26781725 - Sci Rep. 2016 Jan 19;6:19512
23149757 - Appl Microbiol Biotechnol. 2013 Jan;97(1):283-95
References_xml – volume: 113
  start-page: 1056
  year: 2016
  ident: 927_CR8
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.25864
– volume: 3
  start-page: 1112
  year: 2012
  ident: 927_CR6
  publication-title: Nat Commun
  doi: 10.1038/ncomms2112
– volume: 99
  start-page: 5523
  year: 2015
  ident: 927_CR28
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-015-6510-8
– volume: 9
  start-page: 2822
  issue: 9
  year: 2016
  ident: 927_CR38
  publication-title: Energy Environ Sci
  doi: 10.1039/C6EE00913A
– volume: 55
  start-page: 8164
  year: 2016
  ident: 927_CR33
  publication-title: Angew Chem
  doi: 10.1002/anie.201510351
– volume: 229
  start-page: 1253
  year: 2009
  ident: 927_CR12
  publication-title: Planta
  doi: 10.1007/s00425-009-0900-z
– volume: 440
  start-page: 940
  year: 2006
  ident: 927_CR25
  publication-title: Nature
  doi: 10.1038/nature04640
– volume: 42
  start-page: 1463
  year: 2015
  ident: 927_CR39
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-015-1674-x
– volume: 12
  start-page: 233
  year: 2005
  ident: 927_CR23
  publication-title: Cellulose
  doi: 10.1007/s10570-004-3132-1
– volume: 90
  start-page: 1219
  year: 2011
  ident: 927_CR7
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-011-3200-z
– volume: 12
  start-page: 26
  issue: 1
  year: 2012
  ident: 927_CR5
  publication-title: BMC Biotechnol
  doi: 10.1186/1472-6750-12-26
– volume: 97
  start-page: 283
  year: 2013
  ident: 927_CR16
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4561-7
– volume: 2
  start-page: 483
  year: 2011
  ident: 927_CR26
  publication-title: Nat Commun
  doi: 10.1038/ncomms1494
– volume: 78
  start-page: 2221
  year: 2012
  ident: 927_CR32
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.06761-11
– volume: 97
  start-page: 719
  year: 2013
  ident: 927_CR10
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4223-9
– volume: 2
  start-page: 62
  year: 2015
  ident: 927_CR36
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2014.00062
– volume: 207
  start-page: 1
  year: 2016
  ident: 927_CR31
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.01.116
– volume: 62
  start-page: 10203
  year: 2014
  ident: 927_CR20
  publication-title: J Agric Food Chem
  doi: 10.1021/jf502987q
– volume: 80
  start-page: 6685
  year: 2014
  ident: 927_CR30
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02155-14
– volume: 6
  start-page: 14
  year: 2013
  ident: 927_CR34
  publication-title: BioEnergy Res
  doi: 10.1007/s12155-012-9220-4
– volume: 27
  start-page: 760
  year: 2009
  ident: 927_CR27
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1555
– volume: 3
  start-page: 396
  year: 2007
  ident: 927_CR24
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2007.1
– year: 2016
  ident: 927_CR21
  publication-title: Sci Rep
  doi: 10.1038/srep19512
– volume: 3
  start-page: 10
  issue: 1
  year: 2010
  ident: 927_CR22
  publication-title: Biotechnol Biofuels
  doi: 10.1186/1754-6834-3-10
– volume: 100
  start-page: 371
  year: 2008
  ident: 927_CR29
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.21766
– volume: 56
  start-page: 17
  year: 2001
  ident: 927_CR4
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s002530100624
– volume: 8
  start-page: 1004
  year: 2015
  ident: 927_CR35
  publication-title: BioEnergy Res
  doi: 10.1007/s12155-015-9588-z
– volume: 53
  start-page: 1024
  year: 2007
  ident: 927_CR40
  publication-title: Can J Microbiol
  doi: 10.1139/W07-068
– volume: 8
  start-page: 853
  year: 2006
  ident: 927_CR1
  publication-title: Green Chem
  doi: 10.1039/b604483m
– volume: 100
  start-page: 9393
  year: 2016
  ident: 927_CR17
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-016-7815-y
– volume: 14
  start-page: 547
  year: 2014
  ident: 927_CR9
  publication-title: FEMS Yeast Res
  doi: 10.1111/1567-1364.12140
– volume: 9
  start-page: 2822
  year: 2016
  ident: 927_CR14
  publication-title: Energy Environ Sci
  doi: 10.1039/C6EE00913A
– volume: 18
  start-page: 4012
  year: 2016
  ident: 927_CR37
  publication-title: Green Chem
  doi: 10.1039/C6GC00657D
– volume: 15
  start-page: 174
  year: 2013
  ident: 927_CR18
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2012.07.010
– volume: 14
  start-page: 50
  issue: 1
  year: 2014
  ident: 927_CR11
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-14-50
– volume: 344
  start-page: 1246843
  year: 2014
  ident: 927_CR3
  publication-title: Science
  doi: 10.1126/science.1246843
– volume: 9
  start-page: 1042
  year: 2016
  ident: 927_CR13
  publication-title: Energy Environ Sci
  doi: 10.1039/C5EE02940F
– volume: 40
  start-page: e141
  issue: 18
  year: 2012
  ident: 927_CR15
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks531
– volume: 315
  start-page: 804
  year: 2007
  ident: 927_CR2
  publication-title: Science
  doi: 10.1126/science.1137016
– volume: 32
  start-page: 1336
  year: 2014
  ident: 927_CR19
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2014.08.003
– reference: 25149518 - Appl Environ Microbiol. 2014 Nov;80(21):6685-93
– reference: 25758961 - Appl Microbiol Biotechnol. 2015 Jul;99(13):5523-34
– reference: 17898860 - Can J Microbiol. 2007 Aug;53(8):1024-31
– reference: 19288269 - Planta. 2009 May;229(6):1253-67
– reference: 24495153 - FEMS Yeast Res. 2014 Jun;14(4):547-55
– reference: 22918085 - Metab Eng. 2013 Jan;15:174-83
– reference: 25254328 - J Agric Food Chem. 2014 Oct 15;62(41):10203-9
– reference: 26781725 - Sci Rep. 2016 Jan 19;6:19512
– reference: 24833396 - Science. 2014 May 16;344(6185):1246843
– reference: 16612385 - Nature. 2006 Apr 13;440(7086):940-3
– reference: 22646156 - BMC Biotechnol. 2012 May 30;12:26
– reference: 21465305 - Appl Microbiol Biotechnol. 2011 May;90(4):1219-27
– reference: 26479039 - Biotechnol Bioeng. 2016 May;113(5):1056-66
– reference: 19633654 - Nat Biotechnol. 2009 Aug;27(8):760-5
– reference: 27678117 - Appl Microbiol Biotechnol. 2016 Nov;100(21):9393-9405
– reference: 20497524 - Biotechnol Biofuels. 2010 May 24;3:10
– reference: 21952217 - Nat Commun. 2011 Sep 27;2:483
– reference: 25188820 - BMC Microbiol. 2014 Feb 27;14:50
– reference: 23047670 - Nat Commun. 2012;3:1112
– reference: 18175359 - Biotechnol Bioeng. 2008 Jun 1;100(2):371-8
– reference: 17289988 - Science. 2007 Feb 9;315(5813):804-7
– reference: 26868149 - Bioresour Technol. 2016 May;207 :1-10
– reference: 11499926 - Appl Microbiol Biotechnol. 2001 Jul;56(1-2):17-34
– reference: 27311348 - Angew Chem Int Ed Engl. 2016 Jul 11;55(29):8164-215
– reference: 17576427 - Nat Chem Biol. 2007 Jul;3(7):396-407
– reference: 23149757 - Appl Microbiol Biotechnol. 2013 Jan;97(1):283-95
– reference: 25172033 - Biotechnol Adv. 2014 Nov 15;32(7):1336-60
– reference: 22718978 - Nucleic Acids Res. 2012 Oct;40(18):e141
– reference: 22286982 - Appl Environ Microbiol. 2012 Apr;78(7):2221-9
– reference: 22722909 - Appl Microbiol Biotechnol. 2013 Jan;97(2):719-29
– reference: 26318028 - J Ind Microbiol Biotechnol. 2015 Nov;42(11):1463-72
SSID ssj0061707
ssj0002769473
Score 2.523347
Snippet Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a...
Background Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires...
Background:Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires...
BACKGROUND: Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This...
Abstract Background Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This...
SourceID doaj
pubmedcentral
osti
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 241
SubjectTerms 09 BIOMASS FUELS
Advantages
alkali treatment
alpha-ketoglutaric acid
Alternative energy sources
Amorphadiene
Aromatic compounds
Batch culture
Biocompatibility
Biodiesel fuels
bioeconomics
Biofuels
Biomass
Biomass energy research
bioprocessing
Bioreactors
Biorefineries
biorefining
Bisabolene
Carbon
Carbon sources
Cellulose
Choline
Conversion
corn stover
Depolymerization
E coli
glucose
grasses
Heterologous expression
hosts
Hydrolysates
hydrolysis
Ionic liquids
Ketoglutaric acid
Lignin
Lignocellulose
Metabolites
Monomers
Multiple carbon source utilization
p-Coumaric acid
Plant biomass-derived hydrolysate
Pretreatment
Properties
Rhodosporidium toruloides
Sesquiterpenes
sesquiterpenoids
Sorghum
Stover
Substrates
Sugar
Terpenes
Xylose
Yeast
yeasts
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnuCAeLNtQQYhISFFTWzHdrgVRFWQ4FCo1JvlR9xG2iYrkhz498wk2WiDeFw4Zj3W7s7zm2TymZBXwUENgjyXxMBsIkoREpvnPEl9gOoSLQ8S30b-_EWeXYhPl_nl3lFfOBM20gOPijvWXnjpIwDrshSZLpzEeUgeU2UhmONAtg01b9dMjTkYWcbV9Awz0_K4hUwtcWhLJWnBVJIvqtBA1j-n5FUDsfU7vPnr2OReHTq9R-5OAJKejD_8PrlV1g_InT1awYfkx_k1NJvYr1ah6m8otNX9pqlC2b6llgKOptuN7RCt0vFQp_aGwhUdJtCH22e0iXRTXdUN3teHvW1Jq7prKA4oQnKkrmpiD1WV2jrgxXbkjW0fkYvTD9_enyXTEQuJh06mS4KWkGa8YyFm0joG7QvLAugJedwBjRQWABUrRaoLK7hSTsuoMx6sDpkKLPLHZFU3dfmUUDCrEEFaEZHkkGWOa6WC10jKxp3Ta5LuVG78xD-Ox2BszNCHaGlGKxn4doNWMvmavJm3bEfyjb8Jv0M7zoLImz18AJo0kzeZf3nTmrxELzDIjFHj6M2V7dvWfPx6bk5yfFgPDTEIvZ6EYgP_wNvpTQbQA5JpLSQP0ZsMoBmk5PU4u-Q7aLcQmMLq0c7JzJQ5WoNkPxxguWBr8mJehphHg9u6bPpBRiEvXpb_WYaN6FTkxZo8Gf12Vg0rAChyBrvVwqMXuluu1NX1wD0O-D-DJH_wP5R9SG4zDElAAowfkVX3vS-fAcTr3PMhmn8CgIBNQQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVgucAB8d3QggxCQkKKurEd2-GCCqIqSHAoVNqb5dhxG2mbLCQ58O-ZSbyhi6DHrMfa3ZnxzBt78kzIK19CDoI4lwbPbCoq4VOb5zxdOg_ZJVjuJb6N_OWrPDkTn1f5Km64dbGtchsTx0DtW4d75IdIgsIBrgj2bvMjxVuj8HQ1XqFxk9xC6jL0arVS8x4LU7IQisfDzEzLww5CtsTuLZUuC6bSfCcdjaz9c2xetLDI_gU8_-6fvJKQju-RuxFJ0qPJ9PfJjap5QO5c4Rd8SH6dXkDViYVr7evhkkJ9Pazb2lfdW2opAGq6WdseYSudbnfqLik80bEVfdxHo22g6_q8aXGDH-Z2Fa2bvqXYqQhRkpZ1GwZIr9Q2Hh82E4Fs94icHX_8_uEkjXctpA5Kmj71WkK8cSXzIZO2ZFDHsMyDnpDQHWBJYQFZsUosdWEFV6rUMuiMe6t9pjwL_DFZNG1T7REK9hXCSysCsh2yrORaKe80srPxstQJWW5VblwkIsf7MNZmLEi0NJOVDHy7QSuZPCFv5imbiYXjOuH3aMdZEAm0xw9AkyauR6OdcNIFqNeqSmS6KCW22fKwVBb8JsiEvEQvMEiR0WAPzrkdus58-nZqjnI8tYfKGIReR6HQwj9wNr7SAHpAVq0dyX30JgOwBrl5HTYxuR7qLkSoMHqwdTITQ0hn_jh8Ql7Mw7D40eC2qdphlFFIkJfl_5dhE0wVeZGQJ5PfzqphBSBGzmC22vHoHd3tjjT1xUhCDoVABtH-6fU_fZ_cZrjYINkzfkAW_c-hegYori-fj0v1NwpLRhU
  priority: 102
  providerName: ProQuest
Title Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts
URI https://www.ncbi.nlm.nih.gov/pubmed/29075325
https://www.proquest.com/docview/1959313942
https://www.proquest.com/docview/1957465315
https://www.proquest.com/docview/2000617459
https://www.osti.gov/servlets/purl/1421836
https://pubmed.ncbi.nlm.nih.gov/PMC5651578
https://doaj.org/article/8c4c6cf548ee4189b653303f07a002f6
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZt-rI9jP1u1i5oYzAYeIslWZIHY6SjWRdoGekCeROyZbeG1M5qG9b_fne2Y5rRjb0kODrF-KTTfSedvyPkjYvAB8E656WOWU8kwnk2CLg3jh14l9RyJ_Ft5NMzebIQs2Ww3CGb8ladAss7QzusJ7W4Xr3_9fPmMxj8p8bgtfxQwjosMSVLeeOQKS_YJXvgmBQWNDgV_aECUo83tVZUIDypuegOOe_8iy031bD592v2oADjuwuQ_plXectRTR-SBx3CpJN2SjwiO0n-mNy_xTv4hNzMLyEaxafOXFZfUYi761WRuaT8SC0FoE3XK1shnKVt1afyisIVbVLUm_01WqR0lV3kBW78Q98yoVleFRQzGGH1pFFWpDW4XWpzhxfrlli2fEoW0-MfX068rgaDF0OoU3lOS1iH4oi51Jc2YhDfMN-BnpDoHeBKaAFxsUSMdWgFVyrSMtU-d1Y7XzmW8mdkkBd5sk8ojLsQTlqRIgsi8yOulXKxRtY2HkV6SMYblZu4IyjHOhkr0wQqWpp2lAzc3eAomWBI3vVd1i07x7-Ej3Ace0Ek1m5-AE2azk6NjkUs4xTiuCQRvg4jiem3PB0rC74jlUPyGmeBQeqMHHNzLmxdlubb-dxMAjzNh4gZhN52QmkBTxDb7lUH0AOybW1JHuBsMgB3kLM3xuSmuIJ4DJErtB5uJpnZWIZBNiAOuF2wIXnVN8OigANu86SoGxmFxHl-8HcZ1sJXEYRD8rydt71qWAhIkjPorbZm9Jbutlvy7LIhJ4cAwQcv8OI_7ntA7jG0OEACjB-SQXVdJy8B4lXRiOyqpYJPPf06InuTyex8Bt9Hx2ff56Nm22TUmPZvyb9SMA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeQAeEN-UDTAIhIQUrbEd20FCaHyUln08jE3am3HsZIvUJYUkQvun-Bu5S9KyItjbHlOf29R3vvudff6ZkBc-gRgEfi7IPLOBSIUPbBTxYOQ8RJfMci_xNPLunpwcii9H0dEa-bU4C4NllQuf2DpqXzpcI99EEhQOcEWwd_PvAd4ahburiys0OrPYTs9-QspWvZ1-BP2-ZGz86eDDJOhvFQgcgPc68FrCzHIJ81kobcIAsbPQg2EidTkE4NgChmCpGOnYCq5UomWmQ-6t9qHyLOPwvVfIVcEhkuPJ9PHn5ZoOUzIWivebp6GWmxWECInVYioYxUwF0Ur4a28JWMaCQQmT-l9A9-96zXMBcHyL3OyRK93qTO02WUuLO-TGOT7Du-Rs_wSyXEyUc583pxTy-WZW5j6t3lBLAcDT-czWCJNpd5tUdUrhibal7-26HS0zOsuPixI3FKBvldK8qEuKlZHglWmSl1kD4ZzawuPDvCOsre6Rw0vRwn0yKMoifUgo2JMQXlqRIbsiCxOulfJOIxscTxI9JKPFkBvXE5_j_Rsz0yZAWppOSwZ-3aCWTDQkr5dd5h3rx0XC71GPS0Ek7G4_gJE0_fw32gknXQb5YZqKUMeJxLJeno2UBbvJ5JA8RyswSMlRYM3PsW2qyky_7putCKsEIBMHoVe9UFbCP3C2P0IB44AsXiuS62hNBmAUcgE7LJpyNeR5iIihdWNhZKZ3WZX5M8GG5NmyGZwNKtwWadm0MgoJ-cLo_zKsg8UiiofkQWe3y6FhMSBUzqC3WrHolbFbbSnyk5b0HBKPEKLLo4tf_Sm5NjnY3TE7073tdXKd4cQDoMH4BhnUP5r0MSDIOnnSTltKvl22n_gNgzSAiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhodosporidium+toruloides%3A+a+new+platform+organism+for+conversion+of+lignocellulose+into+terpene+biofuels+and+bioproducts&rft.jtitle=Biotechnology+for+biofuels&rft.au=Yaegashi%2C+Junko&rft.au=Kirby%2C+James&rft.au=It%C5%8D%2C+Masakazu&rft.au=Sun%2C+Jian&rft.date=2017-10-23&rft.issn=1754-6834&rft.eissn=1754-6834&rft.volume=10&rft.issue=1+p.241-241&rft.spage=241&rft.epage=241&rft_id=info:doi/10.1186%2Fs13068-017-0927-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-6834&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-6834&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-6834&client=summon