Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts
Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward speci...
Saved in:
Published in | Biotechnology for biofuels Vol. 10; no. 1; p. 241 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
23.10.2017
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts.
In this study, the carotenogenic yeast
was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that
can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly,
was also observed to assimilate
-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates.
was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars.
This study highlights the natural compatibility of
with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes. |
---|---|
AbstractList | Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts.BACKGROUNDEconomical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts.In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars.RESULTSIn this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars.This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.CONCLUSIONSThis study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes. Background Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. Results In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline [alpha]-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. Conclusions This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes. Keywords: Rhodosporidium toruloides, Terpenes, Bisabolene, Amorphadiene, Heterologous expression, Plant biomass-derived hydrolysate, Multiple carbon source utilization Abstract Background Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. Results In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. Conclusions This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes. Background:Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts.Results:In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to havesuperior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel bio-compatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars.Conclusions:This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes. Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. In this study, the carotenogenic yeast was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, was also observed to assimilate -coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. This study highlights the natural compatibility of with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes. BACKGROUND: Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. RESULTS: In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. CONCLUSIONS: This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes. Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fe d-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes. Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline [alpha]-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes. |
ArticleNumber | 241 |
Audience | Academic |
Author | Rodriguez, Alberto Ito, Masakazu Keasling, Jay D. Skerker, Jeffrey M. Tanjore, Deepti Dutta, Tanmoy Gladden, John M. Singer, Steven W. Arkin, Adam P. Sun, Jian Magnuson, Jon K. Mirsiaghi, Mona Sale, Kenneth Baidoo, Edward Yaegashi, Junko Pray, Todd Simmons, Blake A. Sundstrom, Eric R. Kirby, James Singh, Seema |
Author_xml | – sequence: 1 givenname: Junko surname: Yaegashi fullname: Yaegashi, Junko – sequence: 2 givenname: James surname: Kirby fullname: Kirby, James – sequence: 3 givenname: Masakazu surname: Ito fullname: Ito, Masakazu – sequence: 4 givenname: Jian surname: Sun fullname: Sun, Jian – sequence: 5 givenname: Tanmoy surname: Dutta fullname: Dutta, Tanmoy – sequence: 6 givenname: Mona surname: Mirsiaghi fullname: Mirsiaghi, Mona – sequence: 7 givenname: Eric R. surname: Sundstrom fullname: Sundstrom, Eric R. – sequence: 8 givenname: Alberto surname: Rodriguez fullname: Rodriguez, Alberto – sequence: 9 givenname: Edward surname: Baidoo fullname: Baidoo, Edward – sequence: 10 givenname: Deepti surname: Tanjore fullname: Tanjore, Deepti – sequence: 11 givenname: Todd surname: Pray fullname: Pray, Todd – sequence: 12 givenname: Kenneth surname: Sale fullname: Sale, Kenneth – sequence: 13 givenname: Seema surname: Singh fullname: Singh, Seema – sequence: 14 givenname: Jay D. surname: Keasling fullname: Keasling, Jay D. – sequence: 15 givenname: Blake A. surname: Simmons fullname: Simmons, Blake A. – sequence: 16 givenname: Steven W. surname: Singer fullname: Singer, Steven W. – sequence: 17 givenname: Jon K. surname: Magnuson fullname: Magnuson, Jon K. – sequence: 18 givenname: Adam P. surname: Arkin fullname: Arkin, Adam P. – sequence: 19 givenname: Jeffrey M. surname: Skerker fullname: Skerker, Jeffrey M. – sequence: 20 givenname: John M. surname: Gladden fullname: Gladden, John M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29075325$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1421836$$D View this record in Osti.gov |
BookMark | eNqFUktv1DAYjFARfcAP4IIsuMAhxXb8Sg9IVcVjpUpIBc6W149drxJ7sZ1C_z1Ot0XdSgjl4NiZGX8zmePmIMRgm-YlgqcICfY-ow4y0ULEW9hj3tInzRHilLRMdOTgwfthc5zzBkKGOOTPmkPcQ047TI-am6t1NDFvY_LGTyMoMU1D9MbmM6BAsL_AdlDFxTSCmFYq-DyCugM6hmubso8BRAcGvwpR22Go3GyBDyWCYtPWBguWPrrJDhmoYObNNkUz6ZKfN0-dGrJ9cbeeND8-ffx-8aW9_Pp5cXF-2WqGWWmNYFAIvcTGIaaWmAiOkamWCWbVPesVRQRbAkWvSMf5UjAnUGeUMIgb7LqTZrHTNVFt5Db5UaUbGZWXtwfVlVSpeD1YKTTRTDtKhLUEiX7JaNfBzkGuIMSOVa0PO63ttByt0TaUpIY90f0vwa_lKl5LyiiiXFSB1zuBmIuXWfti9bpmGawusvpAoptveXt3S4o_J5uLHH2e01XBxilLDG__JKH9f6Gop5xUF4hW6JtH0E2cUqjRz6i-Q11PcEWd7lArVQPxwcXqQ9fH2NHXQa3z9fycIthzJMg87Ls9QsUU-7us1JSzXHy72se-ehjf39zu61gBfAfQKeacrJM1IVVqy-oUfpAIyrn4cld8WVsg5-LLmYkeMe_F_835A4-WBBU |
CitedBy_id | crossref_primary_10_1186_s12934_023_02148_5 crossref_primary_10_1186_s12934_020_1293_8 crossref_primary_10_1002_btpr_3008 crossref_primary_10_3390_molecules29051127 crossref_primary_10_3390_molecules28031427 crossref_primary_10_1016_j_copbio_2020_08_011 crossref_primary_10_1039_D3GC01481A crossref_primary_10_1186_s12934_018_0984_x crossref_primary_10_1016_j_biotechadv_2021_107791 crossref_primary_10_1186_s12934_024_02414_0 crossref_primary_10_3389_fmicb_2018_02460 crossref_primary_10_1016_j_copbio_2023_103015 crossref_primary_10_1021_acs_jafc_3c02472 crossref_primary_10_1039_C8GC00434J crossref_primary_10_1039_C8GC01905C crossref_primary_10_1016_j_ymben_2025_02_014 crossref_primary_10_1186_s40694_020_00095_z crossref_primary_10_1039_D1GC02667D crossref_primary_10_1186_s12896_020_00609_y crossref_primary_10_1007_s11356_020_09911_w crossref_primary_10_1016_j_biotechadv_2019_05_002 crossref_primary_10_1016_j_biotechadv_2019_107433 crossref_primary_10_1016_j_biortech_2019_121365 crossref_primary_10_3389_fmicb_2021_791089 crossref_primary_10_18470_1992_1098_2022_4_61_78 crossref_primary_10_1186_s13068_021_02094_7 crossref_primary_10_1128_mSphere_00099_19 crossref_primary_10_1038_s41579_021_00577_w crossref_primary_10_1111_1751_7915_13768 crossref_primary_10_1016_j_ymben_2023_04_007 crossref_primary_10_1093_femsyr_foaa048 crossref_primary_10_1073_pnas_2122309119 crossref_primary_10_3390_fermentation7020050 crossref_primary_10_1186_s13068_021_01950_w crossref_primary_10_1016_j_clce_2023_100112 crossref_primary_10_1007_s00253_019_09692_4 crossref_primary_10_1039_C8RA03028F crossref_primary_10_1128_msystems_00389_19 crossref_primary_10_3390_microorganisms10040794 crossref_primary_10_1093_jimb_kuae034 crossref_primary_10_1186_s13068_022_02251_6 crossref_primary_10_1371_journal_pone_0211582 crossref_primary_10_1016_j_ymben_2017_12_010 crossref_primary_10_1186_s12934_022_01977_0 crossref_primary_10_1021_acssynbio_2c00003 crossref_primary_10_3390_en13225960 crossref_primary_10_1016_j_mib_2021_10_014 crossref_primary_10_1016_j_tibtech_2020_03_009 crossref_primary_10_1007_s12649_023_02166_9 crossref_primary_10_1093_femsyr_foaa038 crossref_primary_10_3389_fbioe_2020_612832 crossref_primary_10_1016_j_biombioe_2019_105355 crossref_primary_10_1007_s12257_022_0217_3 crossref_primary_10_1002_bit_27001 crossref_primary_10_1186_s13068_022_02131_z crossref_primary_10_1016_j_ymben_2021_11_011 crossref_primary_10_1016_j_biortech_2022_128216 crossref_primary_10_1039_D4GC03876B crossref_primary_10_3389_fmicb_2022_1069443 crossref_primary_10_3390_pr8040497 crossref_primary_10_3389_fbioe_2018_00117 crossref_primary_10_1038_s44222_024_00247_5 crossref_primary_10_3390_pr10102004 crossref_primary_10_1093_femsyr_foy086 crossref_primary_10_1016_j_biotechadv_2024_108432 crossref_primary_10_1186_s12934_022_02006_w crossref_primary_10_1186_s12934_020_01456_4 crossref_primary_10_3389_fbioe_2020_599560 crossref_primary_10_1016_j_copbio_2019_02_011 crossref_primary_10_1007_s11274_021_03201_4 crossref_primary_10_1016_j_procbio_2024_01_009 crossref_primary_10_1128_AEM_03100_20 crossref_primary_10_1021_acssuschemeng_9b04451 crossref_primary_10_1016_j_btre_2021_e00639 crossref_primary_10_1186_s13068_018_1134_8 crossref_primary_10_1128_mBio_00391_21 crossref_primary_10_1016_j_ymben_2025_03_015 crossref_primary_10_1021_acssuschemeng_9b01229 crossref_primary_10_1093_femsyr_foab066 crossref_primary_10_1186_s13068_021_01947_5 crossref_primary_10_1016_j_indcrop_2022_114867 crossref_primary_10_1016_j_jclepro_2022_135687 crossref_primary_10_1016_j_rser_2020_110390 crossref_primary_10_1038_s41467_023_37031_9 crossref_primary_10_1186_s12934_022_01750_3 crossref_primary_10_1016_j_copbio_2020_10_012 crossref_primary_10_1146_annurev_food_052720_012228 crossref_primary_10_1186_s13068_019_1478_8 crossref_primary_10_1002_cssc_201901084 crossref_primary_10_1093_femsyr_foz031 crossref_primary_10_1016_j_ymben_2023_05_001 crossref_primary_10_1016_j_biombioe_2022_106419 crossref_primary_10_1021_acssuschemeng_1c03765 crossref_primary_10_1093_femsle_fnab111 crossref_primary_10_1007_s10529_018_2542_3 crossref_primary_10_1016_j_cej_2025_160911 crossref_primary_10_3389_fenrg_2022_863153 crossref_primary_10_1039_C9GC00920E crossref_primary_10_1186_s13068_023_02429_6 crossref_primary_10_1016_j_biortech_2024_131797 crossref_primary_10_1021_acssynbio_0c00503 crossref_primary_10_1016_j_tibtech_2020_02_004 crossref_primary_10_1016_j_tibtech_2021_02_003 crossref_primary_10_1039_D0GC03260C crossref_primary_10_1007_s12649_024_02441_3 crossref_primary_10_1016_j_procbio_2024_01_027 crossref_primary_10_1021_acssuschemeng_4c05826 crossref_primary_10_1039_C8GC00518D crossref_primary_10_1007_s00253_021_11549_8 crossref_primary_10_1016_j_csbj_2023_03_018 crossref_primary_10_1016_j_biotechadv_2021_107695 crossref_primary_10_1002_bbb_1954 crossref_primary_10_1002_cssc_202301460 crossref_primary_10_1016_j_biortech_2024_130594 crossref_primary_10_1016_j_rser_2021_110907 crossref_primary_10_1016_j_indcrop_2023_117997 crossref_primary_10_1007_s12010_023_04681_w crossref_primary_10_1002_bit_27285 crossref_primary_10_1186_s12934_019_1167_0 crossref_primary_10_1515_npprj_2024_0039 crossref_primary_10_1128_AEM_02794_20 crossref_primary_10_1016_j_biombioe_2019_105439 crossref_primary_10_1186_s13068_022_02245_4 crossref_primary_10_1016_j_biotechadv_2021_107722 crossref_primary_10_1007_s12257_024_00030_8 crossref_primary_10_1186_s12934_023_02175_2 crossref_primary_10_1007_s13399_022_02570_6 crossref_primary_10_1021_acssuschemeng_3c05541 crossref_primary_10_1021_acs_jafc_4c12081 crossref_primary_10_1080_07388551_2021_1924112 crossref_primary_10_1016_j_micres_2024_127840 crossref_primary_10_3390_fermentation9050431 crossref_primary_10_1021_acs_jafc_2c07361 |
Cites_doi | 10.1002/bit.25864 10.1038/ncomms2112 10.1007/s00253-015-6510-8 10.1039/C6EE00913A 10.1002/anie.201510351 10.1007/s00425-009-0900-z 10.1038/nature04640 10.1007/s10295-015-1674-x 10.1007/s10570-004-3132-1 10.1007/s00253-011-3200-z 10.1186/1472-6750-12-26 10.1007/s00253-012-4561-7 10.1038/ncomms1494 10.1128/AEM.06761-11 10.1007/s00253-012-4223-9 10.3389/fenrg.2014.00062 10.1016/j.biortech.2016.01.116 10.1021/jf502987q 10.1128/AEM.02155-14 10.1007/s12155-012-9220-4 10.1038/nbt.1555 10.1038/nchembio.2007.1 10.1038/srep19512 10.1186/1754-6834-3-10 10.1002/bit.21766 10.1007/s002530100624 10.1007/s12155-015-9588-z 10.1139/W07-068 10.1039/b604483m 10.1007/s00253-016-7815-y 10.1111/1567-1364.12140 10.1039/C6GC00657D 10.1016/j.ymben.2012.07.010 10.1186/1471-2180-14-50 10.1126/science.1246843 10.1039/C5EE02940F 10.1093/nar/gks531 10.1126/science.1137016 10.1016/j.biotechadv.2014.08.003 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 The Author(s) 2017 |
Copyright_xml | – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 – notice: The Author(s) 2017 |
CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States) Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
DBID | AAYXX CITATION NPM ISR 3V. 7QO 7SP 7ST 7TB 7X7 7XB 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V L7M LK8 M0S M7P M7S P5Z P62 P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS SOI 7X8 7S9 L.6 OIOZB OTOTI 5PM DOA |
DOI | 10.1186/s13068-017-0927-5 |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Engineering Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-6834 2731-3654 |
EndPage | 241 |
ExternalDocumentID | oai_doaj_org_article_8c4c6cf548ee4189b653303f07a002f6 PMC5651578 1421836 A510971846 29075325 10_1186_s13068_017_0927_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: DE-AC02-05CH11231 |
GroupedDBID | 23N 2WC 2XV 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ AAFWJ AAHBH AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBS ECGQY EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HH5 HMCUK HYE I-F IAG IAO IEA IEP ISR ITC KQ8 L6V L8X LK8 M48 M7P M7S ML0 M~E O5R O5S OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RBZ RNS ROL RPM RVI SCM TR2 TUS UKHRP ~8M -A0 2VQ 3V. 4.4 ADINQ AHSBF BMC C1A C24 C6C IHR IPNFZ NPM OK1 RIG RSV SOJ PMFND 0R~ 7QO 7SP 7ST 7TB 7XB 8FD 8FK AAJSJ AASML ADUKV AZQEC C1K DWQXO EBLON FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQGLB PQUKI PRINS SOI 7X8 PUEGO 7S9 L.6 AAPBV ABPTK AFGXO OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c626t-d86088cb2df16ab248721d01742630669a5142e4089a4377b86f813da8d17d2f3 |
IEDL.DBID | M48 |
ISSN | 1754-6834 |
IngestDate | Wed Aug 27 01:17:31 EDT 2025 Thu Aug 21 18:16:34 EDT 2025 Fri May 19 00:59:58 EDT 2023 Mon Jul 21 09:58:31 EDT 2025 Sun Aug 24 03:31:58 EDT 2025 Sat Aug 23 12:28:11 EDT 2025 Tue Jun 10 20:23:56 EDT 2025 Fri Jun 27 04:04:45 EDT 2025 Wed Feb 19 02:44:22 EST 2025 Tue Jul 01 04:18:49 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Multiple carbon source utilization Plant biomass-derived hydrolysate Bisabolene Terpenes Amorphadiene Heterologous expression Rhodosporidium toruloides |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c626t-d86088cb2df16ab248721d01742630669a5142e4089a4377b86f813da8d17d2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23) AC02-05CH11231; AC05-76RL01830 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13068-017-0927-5 |
PMID | 29075325 |
PQID | 1959313942 |
PQPubID | 55236 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8c4c6cf548ee4189b653303f07a002f6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5651578 osti_scitechconnect_1421836 proquest_miscellaneous_2000617459 proquest_miscellaneous_1957465315 proquest_journals_1959313942 gale_infotracacademiconefile_A510971846 gale_incontextgauss_ISR_A510971846 pubmed_primary_29075325 crossref_citationtrail_10_1186_s13068_017_0927_5 crossref_primary_10_1186_s13068_017_0927_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-23 |
PublicationDateYYYYMMDD | 2017-10-23 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: United States |
PublicationTitle | Biotechnology for biofuels |
PublicationTitleAlternate | Biotechnol Biofuels |
PublicationYear | 2017 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | J Sun (927_CR38) 2016; 9 CL Li (927_CR34) 2013; 6 SBJ Park (927_CR22) 2010; 3 F Xu (927_CR13) 2016; 9 SY Zhang (927_CR17) 2016; 100 MG Wiebe (927_CR5) 2012; 12 R Rinaldi (927_CR33) 2016; 55 S Fillet (927_CR39) 2015; 42 JH Clark (927_CR1) 2006; 8 IR Sitepu (927_CR19) 2014; 32 EP Abbott (927_CR16) 2013; 97 MJ Liszka (927_CR37) 2016; 18 J Kirby (927_CR30) 2014; 80 ZW Zhu (927_CR6) 2012; 3 PP Peralta-Yahya (927_CR26) 2011; 2 ME Himmel (927_CR2) 2007; 315 J Sun (927_CR14) 2016; 9 J Shi (927_CR35) 2015; 8 XP Lin (927_CR9) 2014; 14 JJ Lee (927_CR20) 2014; 62 EM Paradise (927_CR29) 2008; 100 JM Ageitos (927_CR7) 2011; 90 AJ Ragauskas (927_CR3) 2014; 344 YB Liu (927_CR10) 2013; 97 TJ Maimone (927_CR24) 2007; 3 J Yin (927_CR28) 2015; 99 D Groff (927_CR32) 2012; 78 P Buzzini (927_CR40) 2007; 53 AR Apel (927_CR21) 2016 PLM Mansikkamäki (927_CR23) 2005; 12 J Zaldivar (927_CR4) 2001; 56 KK Jiang (927_CR31) 2016; 207 KEJ Tyo (927_CR27) 2009; 27 S Singh (927_CR36) 2015; 2 RD Hatfield (927_CR12) 2009; 229 TS Ham (927_CR15) 2012; 40 B Ozaydin (927_CR18) 2013; 15 CMJ Koh (927_CR11) 2014; 14 DK Ro (927_CR25) 2006; 440 S Zhang (927_CR8) 2016; 113 16612385 - Nature. 2006 Apr 13;440(7086):940-3 25758961 - Appl Microbiol Biotechnol. 2015 Jul;99(13):5523-34 22286982 - Appl Environ Microbiol. 2012 Apr;78(7):2221-9 17289988 - Science. 2007 Feb 9;315(5813):804-7 22646156 - BMC Biotechnol. 2012 May 30;12:26 17898860 - Can J Microbiol. 2007 Aug;53(8):1024-31 22722909 - Appl Microbiol Biotechnol. 2013 Jan;97(2):719-29 25188820 - BMC Microbiol. 2014 Feb 27;14:50 18175359 - Biotechnol Bioeng. 2008 Jun 1;100(2):371-8 25149518 - Appl Environ Microbiol. 2014 Nov;80(21):6685-93 22918085 - Metab Eng. 2013 Jan;15:174-83 27311348 - Angew Chem Int Ed Engl. 2016 Jul 11;55(29):8164-215 24495153 - FEMS Yeast Res. 2014 Jun;14(4):547-55 26479039 - Biotechnol Bioeng. 2016 May;113(5):1056-66 22718978 - Nucleic Acids Res. 2012 Oct;40(18):e141 25254328 - J Agric Food Chem. 2014 Oct 15;62(41):10203-9 27678117 - Appl Microbiol Biotechnol. 2016 Nov;100(21):9393-9405 26318028 - J Ind Microbiol Biotechnol. 2015 Nov;42(11):1463-72 23047670 - Nat Commun. 2012;3:1112 19288269 - Planta. 2009 May;229(6):1253-67 11499926 - Appl Microbiol Biotechnol. 2001 Jul;56(1-2):17-34 20497524 - Biotechnol Biofuels. 2010 May 24;3:10 17576427 - Nat Chem Biol. 2007 Jul;3(7):396-407 21952217 - Nat Commun. 2011 Sep 27;2:483 24833396 - Science. 2014 May 16;344(6185):1246843 26868149 - Bioresour Technol. 2016 May;207 :1-10 21465305 - Appl Microbiol Biotechnol. 2011 May;90(4):1219-27 19633654 - Nat Biotechnol. 2009 Aug;27(8):760-5 25172033 - Biotechnol Adv. 2014 Nov 15;32(7):1336-60 26781725 - Sci Rep. 2016 Jan 19;6:19512 23149757 - Appl Microbiol Biotechnol. 2013 Jan;97(1):283-95 |
References_xml | – volume: 113 start-page: 1056 year: 2016 ident: 927_CR8 publication-title: Biotechnol Bioeng doi: 10.1002/bit.25864 – volume: 3 start-page: 1112 year: 2012 ident: 927_CR6 publication-title: Nat Commun doi: 10.1038/ncomms2112 – volume: 99 start-page: 5523 year: 2015 ident: 927_CR28 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-015-6510-8 – volume: 9 start-page: 2822 issue: 9 year: 2016 ident: 927_CR38 publication-title: Energy Environ Sci doi: 10.1039/C6EE00913A – volume: 55 start-page: 8164 year: 2016 ident: 927_CR33 publication-title: Angew Chem doi: 10.1002/anie.201510351 – volume: 229 start-page: 1253 year: 2009 ident: 927_CR12 publication-title: Planta doi: 10.1007/s00425-009-0900-z – volume: 440 start-page: 940 year: 2006 ident: 927_CR25 publication-title: Nature doi: 10.1038/nature04640 – volume: 42 start-page: 1463 year: 2015 ident: 927_CR39 publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-015-1674-x – volume: 12 start-page: 233 year: 2005 ident: 927_CR23 publication-title: Cellulose doi: 10.1007/s10570-004-3132-1 – volume: 90 start-page: 1219 year: 2011 ident: 927_CR7 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-011-3200-z – volume: 12 start-page: 26 issue: 1 year: 2012 ident: 927_CR5 publication-title: BMC Biotechnol doi: 10.1186/1472-6750-12-26 – volume: 97 start-page: 283 year: 2013 ident: 927_CR16 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4561-7 – volume: 2 start-page: 483 year: 2011 ident: 927_CR26 publication-title: Nat Commun doi: 10.1038/ncomms1494 – volume: 78 start-page: 2221 year: 2012 ident: 927_CR32 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.06761-11 – volume: 97 start-page: 719 year: 2013 ident: 927_CR10 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4223-9 – volume: 2 start-page: 62 year: 2015 ident: 927_CR36 publication-title: Front Energy Res doi: 10.3389/fenrg.2014.00062 – volume: 207 start-page: 1 year: 2016 ident: 927_CR31 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.01.116 – volume: 62 start-page: 10203 year: 2014 ident: 927_CR20 publication-title: J Agric Food Chem doi: 10.1021/jf502987q – volume: 80 start-page: 6685 year: 2014 ident: 927_CR30 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02155-14 – volume: 6 start-page: 14 year: 2013 ident: 927_CR34 publication-title: BioEnergy Res doi: 10.1007/s12155-012-9220-4 – volume: 27 start-page: 760 year: 2009 ident: 927_CR27 publication-title: Nat Biotechnol doi: 10.1038/nbt.1555 – volume: 3 start-page: 396 year: 2007 ident: 927_CR24 publication-title: Nat Chem Biol doi: 10.1038/nchembio.2007.1 – year: 2016 ident: 927_CR21 publication-title: Sci Rep doi: 10.1038/srep19512 – volume: 3 start-page: 10 issue: 1 year: 2010 ident: 927_CR22 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-3-10 – volume: 100 start-page: 371 year: 2008 ident: 927_CR29 publication-title: Biotechnol Bioeng doi: 10.1002/bit.21766 – volume: 56 start-page: 17 year: 2001 ident: 927_CR4 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s002530100624 – volume: 8 start-page: 1004 year: 2015 ident: 927_CR35 publication-title: BioEnergy Res doi: 10.1007/s12155-015-9588-z – volume: 53 start-page: 1024 year: 2007 ident: 927_CR40 publication-title: Can J Microbiol doi: 10.1139/W07-068 – volume: 8 start-page: 853 year: 2006 ident: 927_CR1 publication-title: Green Chem doi: 10.1039/b604483m – volume: 100 start-page: 9393 year: 2016 ident: 927_CR17 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-016-7815-y – volume: 14 start-page: 547 year: 2014 ident: 927_CR9 publication-title: FEMS Yeast Res doi: 10.1111/1567-1364.12140 – volume: 9 start-page: 2822 year: 2016 ident: 927_CR14 publication-title: Energy Environ Sci doi: 10.1039/C6EE00913A – volume: 18 start-page: 4012 year: 2016 ident: 927_CR37 publication-title: Green Chem doi: 10.1039/C6GC00657D – volume: 15 start-page: 174 year: 2013 ident: 927_CR18 publication-title: Metab Eng doi: 10.1016/j.ymben.2012.07.010 – volume: 14 start-page: 50 issue: 1 year: 2014 ident: 927_CR11 publication-title: BMC Microbiol doi: 10.1186/1471-2180-14-50 – volume: 344 start-page: 1246843 year: 2014 ident: 927_CR3 publication-title: Science doi: 10.1126/science.1246843 – volume: 9 start-page: 1042 year: 2016 ident: 927_CR13 publication-title: Energy Environ Sci doi: 10.1039/C5EE02940F – volume: 40 start-page: e141 issue: 18 year: 2012 ident: 927_CR15 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks531 – volume: 315 start-page: 804 year: 2007 ident: 927_CR2 publication-title: Science doi: 10.1126/science.1137016 – volume: 32 start-page: 1336 year: 2014 ident: 927_CR19 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2014.08.003 – reference: 25149518 - Appl Environ Microbiol. 2014 Nov;80(21):6685-93 – reference: 25758961 - Appl Microbiol Biotechnol. 2015 Jul;99(13):5523-34 – reference: 17898860 - Can J Microbiol. 2007 Aug;53(8):1024-31 – reference: 19288269 - Planta. 2009 May;229(6):1253-67 – reference: 24495153 - FEMS Yeast Res. 2014 Jun;14(4):547-55 – reference: 22918085 - Metab Eng. 2013 Jan;15:174-83 – reference: 25254328 - J Agric Food Chem. 2014 Oct 15;62(41):10203-9 – reference: 26781725 - Sci Rep. 2016 Jan 19;6:19512 – reference: 24833396 - Science. 2014 May 16;344(6185):1246843 – reference: 16612385 - Nature. 2006 Apr 13;440(7086):940-3 – reference: 22646156 - BMC Biotechnol. 2012 May 30;12:26 – reference: 21465305 - Appl Microbiol Biotechnol. 2011 May;90(4):1219-27 – reference: 26479039 - Biotechnol Bioeng. 2016 May;113(5):1056-66 – reference: 19633654 - Nat Biotechnol. 2009 Aug;27(8):760-5 – reference: 27678117 - Appl Microbiol Biotechnol. 2016 Nov;100(21):9393-9405 – reference: 20497524 - Biotechnol Biofuels. 2010 May 24;3:10 – reference: 21952217 - Nat Commun. 2011 Sep 27;2:483 – reference: 25188820 - BMC Microbiol. 2014 Feb 27;14:50 – reference: 23047670 - Nat Commun. 2012;3:1112 – reference: 18175359 - Biotechnol Bioeng. 2008 Jun 1;100(2):371-8 – reference: 17289988 - Science. 2007 Feb 9;315(5813):804-7 – reference: 26868149 - Bioresour Technol. 2016 May;207 :1-10 – reference: 11499926 - Appl Microbiol Biotechnol. 2001 Jul;56(1-2):17-34 – reference: 27311348 - Angew Chem Int Ed Engl. 2016 Jul 11;55(29):8164-215 – reference: 17576427 - Nat Chem Biol. 2007 Jul;3(7):396-407 – reference: 23149757 - Appl Microbiol Biotechnol. 2013 Jan;97(1):283-95 – reference: 25172033 - Biotechnol Adv. 2014 Nov 15;32(7):1336-60 – reference: 22718978 - Nucleic Acids Res. 2012 Oct;40(18):e141 – reference: 22286982 - Appl Environ Microbiol. 2012 Apr;78(7):2221-9 – reference: 22722909 - Appl Microbiol Biotechnol. 2013 Jan;97(2):719-29 – reference: 26318028 - J Ind Microbiol Biotechnol. 2015 Nov;42(11):1463-72 |
SSID | ssj0061707 ssj0002769473 |
Score | 2.523347 |
Snippet | Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a... Background Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires... Background:Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires... BACKGROUND: Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This... Abstract Background Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This... |
SourceID | doaj pubmedcentral osti proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 241 |
SubjectTerms | 09 BIOMASS FUELS Advantages alkali treatment alpha-ketoglutaric acid Alternative energy sources Amorphadiene Aromatic compounds Batch culture Biocompatibility Biodiesel fuels bioeconomics Biofuels Biomass Biomass energy research bioprocessing Bioreactors Biorefineries biorefining Bisabolene Carbon Carbon sources Cellulose Choline Conversion corn stover Depolymerization E coli glucose grasses Heterologous expression hosts Hydrolysates hydrolysis Ionic liquids Ketoglutaric acid Lignin Lignocellulose Metabolites Monomers Multiple carbon source utilization p-Coumaric acid Plant biomass-derived hydrolysate Pretreatment Properties Rhodosporidium toruloides Sesquiterpenes sesquiterpenoids Sorghum Stover Substrates Sugar Terpenes Xylose Yeast yeasts |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnuCAeLNtQQYhISFFTWzHdrgVRFWQ4FCo1JvlR9xG2iYrkhz498wk2WiDeFw4Zj3W7s7zm2TymZBXwUENgjyXxMBsIkoREpvnPEl9gOoSLQ8S30b-_EWeXYhPl_nl3lFfOBM20gOPijvWXnjpIwDrshSZLpzEeUgeU2UhmONAtg01b9dMjTkYWcbV9Awz0_K4hUwtcWhLJWnBVJIvqtBA1j-n5FUDsfU7vPnr2OReHTq9R-5OAJKejD_8PrlV1g_InT1awYfkx_k1NJvYr1ah6m8otNX9pqlC2b6llgKOptuN7RCt0vFQp_aGwhUdJtCH22e0iXRTXdUN3teHvW1Jq7prKA4oQnKkrmpiD1WV2jrgxXbkjW0fkYvTD9_enyXTEQuJh06mS4KWkGa8YyFm0joG7QvLAugJedwBjRQWABUrRaoLK7hSTsuoMx6sDpkKLPLHZFU3dfmUUDCrEEFaEZHkkGWOa6WC10jKxp3Ta5LuVG78xD-Ox2BszNCHaGlGKxn4doNWMvmavJm3bEfyjb8Jv0M7zoLImz18AJo0kzeZf3nTmrxELzDIjFHj6M2V7dvWfPx6bk5yfFgPDTEIvZ6EYgP_wNvpTQbQA5JpLSQP0ZsMoBmk5PU4u-Q7aLcQmMLq0c7JzJQ5WoNkPxxguWBr8mJehphHg9u6bPpBRiEvXpb_WYaN6FTkxZo8Gf12Vg0rAChyBrvVwqMXuluu1NX1wD0O-D-DJH_wP5R9SG4zDElAAowfkVX3vS-fAcTr3PMhmn8CgIBNQQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVgucAB8d3QggxCQkKKurEd2-GCCqIqSHAoVNqb5dhxG2mbLCQ58O-ZSbyhi6DHrMfa3ZnxzBt78kzIK19CDoI4lwbPbCoq4VOb5zxdOg_ZJVjuJb6N_OWrPDkTn1f5Km64dbGtchsTx0DtW4d75IdIgsIBrgj2bvMjxVuj8HQ1XqFxk9xC6jL0arVS8x4LU7IQisfDzEzLww5CtsTuLZUuC6bSfCcdjaz9c2xetLDI_gU8_-6fvJKQju-RuxFJ0qPJ9PfJjap5QO5c4Rd8SH6dXkDViYVr7evhkkJ9Pazb2lfdW2opAGq6WdseYSudbnfqLik80bEVfdxHo22g6_q8aXGDH-Z2Fa2bvqXYqQhRkpZ1GwZIr9Q2Hh82E4Fs94icHX_8_uEkjXctpA5Kmj71WkK8cSXzIZO2ZFDHsMyDnpDQHWBJYQFZsUosdWEFV6rUMuiMe6t9pjwL_DFZNG1T7REK9hXCSysCsh2yrORaKe80srPxstQJWW5VblwkIsf7MNZmLEi0NJOVDHy7QSuZPCFv5imbiYXjOuH3aMdZEAm0xw9AkyauR6OdcNIFqNeqSmS6KCW22fKwVBb8JsiEvEQvMEiR0WAPzrkdus58-nZqjnI8tYfKGIReR6HQwj9wNr7SAHpAVq0dyX30JgOwBrl5HTYxuR7qLkSoMHqwdTITQ0hn_jh8Ql7Mw7D40eC2qdphlFFIkJfl_5dhE0wVeZGQJ5PfzqphBSBGzmC22vHoHd3tjjT1xUhCDoVABtH-6fU_fZ_cZrjYINkzfkAW_c-hegYori-fj0v1NwpLRhU priority: 102 providerName: ProQuest |
Title | Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29075325 https://www.proquest.com/docview/1959313942 https://www.proquest.com/docview/1957465315 https://www.proquest.com/docview/2000617459 https://www.osti.gov/servlets/purl/1421836 https://pubmed.ncbi.nlm.nih.gov/PMC5651578 https://doaj.org/article/8c4c6cf548ee4189b653303f07a002f6 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZt-rI9jP1u1i5oYzAYeIslWZIHY6SjWRdoGekCeROyZbeG1M5qG9b_fne2Y5rRjb0kODrF-KTTfSedvyPkjYvAB8E656WOWU8kwnk2CLg3jh14l9RyJ_Ft5NMzebIQs2Ww3CGb8ladAss7QzusJ7W4Xr3_9fPmMxj8p8bgtfxQwjosMSVLeeOQKS_YJXvgmBQWNDgV_aECUo83tVZUIDypuegOOe_8iy031bD592v2oADjuwuQ_plXectRTR-SBx3CpJN2SjwiO0n-mNy_xTv4hNzMLyEaxafOXFZfUYi761WRuaT8SC0FoE3XK1shnKVt1afyisIVbVLUm_01WqR0lV3kBW78Q98yoVleFRQzGGH1pFFWpDW4XWpzhxfrlli2fEoW0-MfX068rgaDF0OoU3lOS1iH4oi51Jc2YhDfMN-BnpDoHeBKaAFxsUSMdWgFVyrSMtU-d1Y7XzmW8mdkkBd5sk8ojLsQTlqRIgsi8yOulXKxRtY2HkV6SMYblZu4IyjHOhkr0wQqWpp2lAzc3eAomWBI3vVd1i07x7-Ej3Ace0Ek1m5-AE2azk6NjkUs4xTiuCQRvg4jiem3PB0rC74jlUPyGmeBQeqMHHNzLmxdlubb-dxMAjzNh4gZhN52QmkBTxDb7lUH0AOybW1JHuBsMgB3kLM3xuSmuIJ4DJErtB5uJpnZWIZBNiAOuF2wIXnVN8OigANu86SoGxmFxHl-8HcZ1sJXEYRD8rydt71qWAhIkjPorbZm9Jbutlvy7LIhJ4cAwQcv8OI_7ntA7jG0OEACjB-SQXVdJy8B4lXRiOyqpYJPPf06InuTyex8Bt9Hx2ff56Nm22TUmPZvyb9SMA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeQAeEN-UDTAIhIQUrbEd20FCaHyUln08jE3am3HsZIvUJYUkQvun-Bu5S9KyItjbHlOf29R3vvudff6ZkBc-gRgEfi7IPLOBSIUPbBTxYOQ8RJfMci_xNPLunpwcii9H0dEa-bU4C4NllQuf2DpqXzpcI99EEhQOcEWwd_PvAd4ahburiys0OrPYTs9-QspWvZ1-BP2-ZGz86eDDJOhvFQgcgPc68FrCzHIJ81kobcIAsbPQg2EidTkE4NgChmCpGOnYCq5UomWmQ-6t9qHyLOPwvVfIVcEhkuPJ9PHn5ZoOUzIWivebp6GWmxWECInVYioYxUwF0Ur4a28JWMaCQQmT-l9A9-96zXMBcHyL3OyRK93qTO02WUuLO-TGOT7Du-Rs_wSyXEyUc583pxTy-WZW5j6t3lBLAcDT-czWCJNpd5tUdUrhibal7-26HS0zOsuPixI3FKBvldK8qEuKlZHglWmSl1kD4ZzawuPDvCOsre6Rw0vRwn0yKMoifUgo2JMQXlqRIbsiCxOulfJOIxscTxI9JKPFkBvXE5_j_Rsz0yZAWppOSwZ-3aCWTDQkr5dd5h3rx0XC71GPS0Ek7G4_gJE0_fw32gknXQb5YZqKUMeJxLJeno2UBbvJ5JA8RyswSMlRYM3PsW2qyky_7putCKsEIBMHoVe9UFbCP3C2P0IB44AsXiuS62hNBmAUcgE7LJpyNeR5iIihdWNhZKZ3WZX5M8GG5NmyGZwNKtwWadm0MgoJ-cLo_zKsg8UiiofkQWe3y6FhMSBUzqC3WrHolbFbbSnyk5b0HBKPEKLLo4tf_Sm5NjnY3TE7073tdXKd4cQDoMH4BhnUP5r0MSDIOnnSTltKvl22n_gNgzSAiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhodosporidium+toruloides%3A+a+new+platform+organism+for+conversion+of+lignocellulose+into+terpene+biofuels+and+bioproducts&rft.jtitle=Biotechnology+for+biofuels&rft.au=Yaegashi%2C+Junko&rft.au=Kirby%2C+James&rft.au=It%C5%8D%2C+Masakazu&rft.au=Sun%2C+Jian&rft.date=2017-10-23&rft.issn=1754-6834&rft.eissn=1754-6834&rft.volume=10&rft.issue=1+p.241-241&rft.spage=241&rft.epage=241&rft_id=info:doi/10.1186%2Fs13068-017-0927-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-6834&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-6834&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-6834&client=summon |