Comparative Genomics Strategy for Targeted Discovery of Single-Nucleotide Polymorphisms and Conserved-Noncoding Sequences in Orphan Crops

Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignment...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 140; no. 4; pp. 1183 - 1191
Main Authors Feltus, F.A, Singh, H.P, Lohithaswa, H.C, Schulze, S.R, Silva, T.D, Paterson, A.H
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.04.2006
American Society of Plant Physiologists
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.
AbstractList Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice ( Oryza sativa ) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.
Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.
Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.
Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genomewide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.
Author Singh, H.P
Feltus, F.A
Schulze, S.R
Silva, T.D
Paterson, A.H
Lohithaswa, H.C
AuthorAffiliation Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602 (F.A.F., H.P.S., H.C.L., S.R.S., A.H.P.); Narendra Deva University of Agriculture and Technology, Kumarganj, Faizabad 224264, Uttar Pradesh, India (H.P.S.); University of Agricultural Sciences, Krishinagar, Dharwad 580005, India (H.C.L.); and Department of Plant Sciences, University of Colombo, Colombo 03, Sri Lanka (T.D.S.)
AuthorAffiliation_xml – name: Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602 (F.A.F., H.P.S., H.C.L., S.R.S., A.H.P.); Narendra Deva University of Agriculture and Technology, Kumarganj, Faizabad 224264, Uttar Pradesh, India (H.P.S.); University of Agricultural Sciences, Krishinagar, Dharwad 580005, India (H.C.L.); and Department of Plant Sciences, University of Colombo, Colombo 03, Sri Lanka (T.D.S.)
Author_xml – sequence: 1
  fullname: Feltus, F.A
– sequence: 2
  fullname: Singh, H.P
– sequence: 3
  fullname: Lohithaswa, H.C
– sequence: 4
  fullname: Schulze, S.R
– sequence: 5
  fullname: Silva, T.D
– sequence: 6
  fullname: Paterson, A.H
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17700322$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16607031$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNURB-wZAl4A7sMvo4fyQYJDVCQqhZp2rXlceypq8RO7cxI8xP413jIMBQk1JWvfL97dY59TosjH7wpipeAZwCYvh-GGWA2w4ISXD0pToBVpCSM1kcP6uPiNKU7jDFUQJ8Vx8A5FriCk-LHPPSDimp0G4POjQ-90wktxnxjVltkQ0TXKq7MaFr0ySUdNiZuUbBo4fyqM-XlWncmjK416Hvotn2Iw61LfULKt2gefDJxY9ryMngd2jyCFuZ-bbw2CTmPrjKtPJrHMKTnxVOrumRe7M-z4ubL5-v51_Li6vzb_ONFqTnhY7lsGkY1QFM3S0o0aylmNdFNS6wASrHN1RJUYzkVVlhuAYBTIwQsra1oW50VH6a9w3rZm1Ybn812coiuV3Erg3Ly7453t3IVNhJoxUTT5AXv9gtiyF7SKPv8MKbrlDdhnSQXNc_y6KMg5TVrCOBHQYJJXYHYga8faj-I_v2fGXi7B1TSqrNRee3SH04IjCtCMldNnI4hpWis1G7MIQg7y66TgOUuXXIYcsnklK48Vf4zdVj8H_7VxN-lMcQDnO1gxn890Jupb1WQahWz0psFySHFgHmDGa1-AoFR5Wc
CODEN PPHYA5
CitedBy_id crossref_primary_10_1007_s00122_020_03755_1
crossref_primary_10_1007_s10681_010_0191_2
crossref_primary_10_1007_s00239_012_9492_5
crossref_primary_10_1071_FP08133
crossref_primary_10_1007_s11627_009_9214_x
crossref_primary_10_1007_s00122_008_0916_y
crossref_primary_10_1007_s10681_010_0148_5
crossref_primary_10_1007_s13562_019_00502_6
crossref_primary_10_1111_pbr_12035
crossref_primary_10_1007_s11032_009_9270_2
crossref_primary_10_1016_j_margen_2012_09_001
crossref_primary_10_1093_molbev_msr287
crossref_primary_10_1007_s10681_007_9456_9
crossref_primary_10_1007_s13258_013_0064_x
crossref_primary_10_1016_j_cj_2022_07_017
crossref_primary_10_1007_s00438_011_0624_1
crossref_primary_10_1111_j_1467_7652_2011_00640_x
crossref_primary_10_1186_1756_0500_1_28
crossref_primary_10_1371_journal_pone_0079425
crossref_primary_10_1007_s00122_016_2668_4
crossref_primary_10_1071_BT10188
crossref_primary_10_1007_s00122_006_0369_0
crossref_primary_10_1111_j_1471_8286_2007_01928_x
crossref_primary_10_1007_s11461_008_0055_2
crossref_primary_10_1104_pp_108_129262
crossref_primary_10_1007_s10658_009_9549_5
crossref_primary_10_1007_s11032_014_0029_z
crossref_primary_10_1007_s11032_011_9683_6
crossref_primary_10_1111_j_1471_8286_2007_02035_x
crossref_primary_10_1186_1756_0500_6_47
crossref_primary_10_1038_hdy_2009_192
crossref_primary_10_1186_1471_2164_8_135
crossref_primary_10_1248_bpb_33_183
crossref_primary_10_1186_1471_2164_11_395
crossref_primary_10_1007_s11032_011_9560_3
crossref_primary_10_3390_ijms25063241
crossref_primary_10_1007_s00122_007_0559_4
crossref_primary_10_1007_s11105_015_0918_2
crossref_primary_10_1534_genetics_106_070110
crossref_primary_10_1007_s10722_014_0196_0
crossref_primary_10_1139_g11_032
crossref_primary_10_1007_s11032_009_9365_9
crossref_primary_10_1007_s00122_011_1556_1
crossref_primary_10_1007_s11032_010_9518_x
crossref_primary_10_1016_j_ejbt_2019_02_002
crossref_primary_10_1111_grs_12055
crossref_primary_10_3390_agronomy8050058
crossref_primary_10_5402_2013_471632
crossref_primary_10_1007_s11032_011_9593_7
crossref_primary_10_1007_s00122_009_1077_3
crossref_primary_10_1007_s10142_009_0129_8
crossref_primary_10_1093_bioinformatics_btm296
crossref_primary_10_1007_s00606_014_0982_3
crossref_primary_10_1007_s12041_021_01320_3
crossref_primary_10_3390_ijms17060884
crossref_primary_10_1007_s10681_014_1194_1
crossref_primary_10_1007_s00122_009_1120_4
crossref_primary_10_1186_1471_2164_14_159
crossref_primary_10_1186_1471_2229_12_9
crossref_primary_10_1007_s11295_010_0308_8
crossref_primary_10_1007_s10681_014_1144_y
crossref_primary_10_1111_pbr_12386
crossref_primary_10_1186_1471_2229_8_7
crossref_primary_10_1371_journal_pone_0038702
crossref_primary_10_1007_s00122_007_0605_2
crossref_primary_10_1016_j_biotechadv_2011_09_015
crossref_primary_10_1007_s10722_019_00808_3
crossref_primary_10_1016_j_fcr_2010_03_014
Cites_doi 10.1101/gr.1280703
10.1093/genetics/141.1.391
10.1016/j.foodpol.2004.01.002
10.1016/S1369-5266(03)00015-3
10.1038/90135
10.1126/science.269.5231.1714
10.1093/nar/gki853
10.1079/9780851995151.0179
10.1093/bib/3.1.87
10.1038/70570
10.1101/gr.2479404
10.1073/pnas.0630531100
10.1038/ng0197-47
10.1016/j.gde.2003.10.002
10.1073/pnas.0307901101
10.1007/s00122-004-1765-y
10.1007/BF00993379
10.1126/science.1068275
10.1089/cmb.1998.5.211
10.1101/gr.194601
10.1126/science.1068037
10.1371/journal.pbio.0030007
10.1093/genetics/156.3.1175
10.1038/35048692
10.1093/nar/gkg500
10.1073/pnas.092595699
10.1038/nature01184
10.1023/A:1014875206165
10.1038/nature01183
10.1101/gr.8.3.175
10.1073/pnas.95.5.1971
10.1093/bioinformatics/bth413
10.1038/43827
10.1073/pnas.82.17.5819
ContentType Journal Article
Copyright Copyright 2006 American Society of Plant Biologists
2006 INIST-CNRS
Copyright © 2006, American Society of Plant Biologists 2006
Copyright_xml – notice: Copyright 2006 American Society of Plant Biologists
– notice: 2006 INIST-CNRS
– notice: Copyright © 2006, American Society of Plant Biologists 2006
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7S9
L.6
7X8
5PM
DOI 10.1104/pp.105.074203
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
Nucleic Acids Abstracts
AGRICOLA
CrossRef
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 1191
ExternalDocumentID PMC1435799
16607031
17700322
10_1104_pp_105_074203
20205684
US201301069054
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHKG
AAPXW
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABPTK
ABTLG
ABUWG
ABXZS
ACBTR
ACFRR
ACGOD
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFDAS
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGUYK
AHMBA
AICQM
AIDAL
AIDBO
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
BYORX
C1A
CBGCD
CCPQU
CS3
CWIXF
D1J
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
FBQ
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HMCUK
HTVGU
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
0R~
AAHBH
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABVGC
ABXSQ
ABXVV
ACHIC
ADGKP
ADQBN
ADXHL
AEUYN
AGORE
AHXOZ
AJBYB
AJNCP
ALIPV
AQVQM
ATGXG
BEYMZ
H13
IPSME
JXSIZ
NU-
PHGZM
PHGZT
AAYXX
CITATION
ABIME
ABPIB
ABZEO
ACVCV
ACZBC
AGMDO
AHGBF
AJDVS
APJGH
IQODW
LU7
PJZUB
PPXIY
PQGLB
ADYWZ
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7TM
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c626t-b9954c11989b42c5d40582c9d2f71440f9d2b1a9f647f7f6f11164e771bff34d3
ISSN 1532-2548
0032-0889
IngestDate Thu Aug 21 18:33:14 EDT 2025
Fri Jul 11 11:56:53 EDT 2025
Thu Jul 10 23:47:11 EDT 2025
Thu Aug 07 15:01:00 EDT 2025
Wed Feb 19 01:48:42 EST 2025
Mon Jul 21 09:12:40 EDT 2025
Tue Jul 01 02:53:48 EDT 2025
Thu Apr 24 22:50:20 EDT 2025
Fri Jun 20 02:19:29 EDT 2025
Wed Dec 27 18:49:48 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Monocotyledones
Hordeum
Genomics
Sorghum
Cynodon
Oryza sativa
Triticum
Gene
Pennisetum
Gramineae
Angiospermae
Spermatophyta
Single nucleotide polymorphism
Expressed sequence tag
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c626t-b9954c11989b42c5d40582c9d2f71440f9d2b1a9f647f7f6f11164e771bff34d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
www.plantphysiol.org/cgi/doi/10.1104/pp.105.074203.
The online version of this article contains Web-only data.
Corresponding author; e-mail paterson@uga.edu; fax 706–583–0160.
This work was supported by grants from the Rockefeller Foundation and the U.S. Agency for International Development Cereals Comparative Genomics Initiative (to A.H.P., F.A.F., and H.P.S.); the International Society for Plant Molecular Biology (to T.D.S.); and the Biotechnology Overseas Associateship of the Department of Biotechnology, Ministry of Science and Technology, Government of India program (to H.C.L.).
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: A.H. Paterson (paterson@uga.edu).
These authors contributed equally to the paper.
OpenAccessLink http://doi.org/10.1104/pp.105.074203
PMID 16607031
PQID 20283170
PQPubID 23462
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1435799
proquest_miscellaneous_67861984
proquest_miscellaneous_46859210
proquest_miscellaneous_20283170
pubmed_primary_16607031
pascalfrancis_primary_17700322
crossref_citationtrail_10_1104_pp_105_074203
crossref_primary_10_1104_pp_105_074203
jstor_primary_20205684
fao_agris_US201301069054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-04-01
PublicationDateYYYYMMDD 2006-04-01
PublicationDate_xml – month: 04
  year: 2006
  text: 2006-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2006
Publisher American Society of Plant Biologists
American Society of Plant Physiologists
Publisher_xml – name: American Society of Plant Biologists
– name: American Society of Plant Physiologists
References 2021050611474846300_R4
2021050611474846300_R3
2021050611474846300_R2
2021050611474846300_R18
2021050611474846300_R1
2021050611474846300_R19
2021050611474846300_R16
2021050611474846300_R17
2021050611474846300_R14
2021050611474846300_R36
2021050611474846300_R15
2021050611474846300_R37
2021050611474846300_R12
2021050611474846300_R34
2021050611474846300_R13
2021050611474846300_R35
2021050611474846300_R10
2021050611474846300_R32
2021050611474846300_R11
2021050611474846300_R33
2021050611474846300_R30
2021050611474846300_R31
2021050611474846300_R29
2021050611474846300_R27
2021050611474846300_R28
2021050611474846300_R25
2021050611474846300_R26
2021050611474846300_R23
2021050611474846300_R24
2021050611474846300_R21
2021050611474846300_R22
2021050611474846300_R20
2021050611474846300_R9
2021050611474846300_R8
2021050611474846300_R7
2021050611474846300_R6
2021050611474846300_R5
16179648 - Nucleic Acids Res. 2005;33(17):5437-45
12447439 - Nature. 2002 Nov 21;420(6913):316-20
11935018 - Science. 2002 Apr 5;296(5565):92-100
9482816 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):1971-4
15322756 - Theor Appl Genet. 2004 Nov;109(7):1485-93
11130711 - Nature. 2000 Dec 14;408(6814):796-815
15161969 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8
8988168 - Nat Genet. 1997 Jan;15(1):47-56
11999831 - Plant Mol Biol. 2002 Mar-Apr;48(5-6):501-10
15630479 - PLoS Biol. 2005 Jan;3(1):e7
12447438 - Nature. 2002 Nov 21;420(6913):312-6
14638328 - Curr Opin Genet Dev. 2003 Dec;13(6):644-50
12667868 - Curr Opin Plant Biol. 2003 Apr;6(2):128-33
10517631 - Nature. 1999 Sep 23;401(6751):344
7912407 - Mol Biol Evol. 1994 May;11(3):426-35
10581034 - Nat Genet. 1999 Dec;23(4):452-6
12824352 - Nucleic Acids Res. 2003 Jul 1;31(13):3497-500
11983904 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6118-23
15342564 - Genome Res. 2004 Sep;14(9):1812-9
9521921 - Genome Res. 1998 Mar;8(3):175-85
15271776 - Bioinformatics. 2004 Dec 12;20(18):3668-9
17821643 - Science. 1995 Sep 22;269(5231):1714-8
11431702 - Nat Genet. 2001 Jul;28(3):286-9
12952874 - Genome Res. 2003 Sep;13(9):2030-41
11935017 - Science. 2002 Apr 5;296(5565):79-92
8536986 - Genetics. 1995 Sep;141(1):391-411
9672829 - J Comput Biol. 1998 Summer;5(2):211-21
11731505 - Genome Res. 2001 Dec;11(12):2133-41
11063693 - Genetics. 2000 Nov;156(3):1175-90
3862098 - Proc Natl Acad Sci U S A. 1985 Sep;82(17):5819-23
12642667 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4050-4
12002227 - Brief Bioinform. 2002 Mar;3(1):87-91
References_xml – ident: 2021050611474846300_R17
  doi: 10.1101/gr.1280703
– ident: 2021050611474846300_R19
– ident: 2021050611474846300_R15
– ident: 2021050611474846300_R20
  doi: 10.1093/genetics/141.1.391
– ident: 2021050611474846300_R25
  doi: 10.1016/j.foodpol.2004.01.002
– ident: 2021050611474846300_R4
  doi: 10.1016/S1369-5266(03)00015-3
– ident: 2021050611474846300_R35
  doi: 10.1038/90135
– ident: 2021050611474846300_R30
  doi: 10.1126/science.269.5231.1714
– ident: 2021050611474846300_R34
  doi: 10.1093/nar/gki853
– ident: 2021050611474846300_R5
  doi: 10.1079/9780851995151.0179
– ident: 2021050611474846300_R26
  doi: 10.1093/bib/3.1.87
– ident: 2021050611474846300_R24
  doi: 10.1038/70570
– ident: 2021050611474846300_R11
  doi: 10.1101/gr.2479404
– ident: 2021050611474846300_R16
  doi: 10.1073/pnas.0630531100
– ident: 2021050611474846300_R23
  doi: 10.1038/ng0197-47
– ident: 2021050611474846300_R29
  doi: 10.1016/j.gde.2003.10.002
– ident: 2021050611474846300_R28
  doi: 10.1073/pnas.0307901101
– ident: 2021050611474846300_R31
  doi: 10.1007/s00122-004-1765-y
– ident: 2021050611474846300_R2
  doi: 10.1007/BF00993379
– ident: 2021050611474846300_R14
  doi: 10.1126/science.1068275
– ident: 2021050611474846300_R3
  doi: 10.1089/cmb.1998.5.211
– ident: 2021050611474846300_R7
  doi: 10.1101/gr.194601
– ident: 2021050611474846300_R37
  doi: 10.1126/science.1068037
– ident: 2021050611474846300_R36
  doi: 10.1371/journal.pbio.0030007
– ident: 2021050611474846300_R9
  doi: 10.1093/genetics/156.3.1175
– ident: 2021050611474846300_R1
  doi: 10.1038/35048692
– ident: 2021050611474846300_R8
  doi: 10.1093/nar/gkg500
– ident: 2021050611474846300_R22
  doi: 10.1073/pnas.092595699
– ident: 2021050611474846300_R27
– ident: 2021050611474846300_R33
  doi: 10.1038/nature01184
– ident: 2021050611474846300_R18
  doi: 10.1023/A:1014875206165
– ident: 2021050611474846300_R12
  doi: 10.1038/nature01183
– ident: 2021050611474846300_R10
  doi: 10.1101/gr.8.3.175
– ident: 2021050611474846300_R13
  doi: 10.1073/pnas.95.5.1971
– ident: 2021050611474846300_R21
  doi: 10.1093/bioinformatics/bth413
– ident: 2021050611474846300_R6
  doi: 10.1038/43827
– ident: 2021050611474846300_R32
  doi: 10.1073/pnas.82.17.5819
– reference: 15271776 - Bioinformatics. 2004 Dec 12;20(18):3668-9
– reference: 15630479 - PLoS Biol. 2005 Jan;3(1):e7
– reference: 12667868 - Curr Opin Plant Biol. 2003 Apr;6(2):128-33
– reference: 17821643 - Science. 1995 Sep 22;269(5231):1714-8
– reference: 3862098 - Proc Natl Acad Sci U S A. 1985 Sep;82(17):5819-23
– reference: 8988168 - Nat Genet. 1997 Jan;15(1):47-56
– reference: 12447439 - Nature. 2002 Nov 21;420(6913):316-20
– reference: 14638328 - Curr Opin Genet Dev. 2003 Dec;13(6):644-50
– reference: 11431702 - Nat Genet. 2001 Jul;28(3):286-9
– reference: 12952874 - Genome Res. 2003 Sep;13(9):2030-41
– reference: 11063693 - Genetics. 2000 Nov;156(3):1175-90
– reference: 11999831 - Plant Mol Biol. 2002 Mar-Apr;48(5-6):501-10
– reference: 7912407 - Mol Biol Evol. 1994 May;11(3):426-35
– reference: 10581034 - Nat Genet. 1999 Dec;23(4):452-6
– reference: 15322756 - Theor Appl Genet. 2004 Nov;109(7):1485-93
– reference: 11731505 - Genome Res. 2001 Dec;11(12):2133-41
– reference: 11935018 - Science. 2002 Apr 5;296(5565):92-100
– reference: 9482816 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):1971-4
– reference: 10517631 - Nature. 1999 Sep 23;401(6751):344
– reference: 12824352 - Nucleic Acids Res. 2003 Jul 1;31(13):3497-500
– reference: 11130711 - Nature. 2000 Dec 14;408(6814):796-815
– reference: 12002227 - Brief Bioinform. 2002 Mar;3(1):87-91
– reference: 15161969 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8
– reference: 9672829 - J Comput Biol. 1998 Summer;5(2):211-21
– reference: 9521921 - Genome Res. 1998 Mar;8(3):175-85
– reference: 8536986 - Genetics. 1995 Sep;141(1):391-411
– reference: 12642667 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4050-4
– reference: 16179648 - Nucleic Acids Res. 2005;33(17):5437-45
– reference: 11983904 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6118-23
– reference: 11935017 - Science. 2002 Apr 5;296(5565):79-92
– reference: 12447438 - Nature. 2002 Nov 21;420(6913):312-6
– reference: 15342564 - Genome Res. 2004 Sep;14(9):1812-9
SSID ssj0001314
Score 2.165127
Snippet Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1183
SubjectTerms barley
Base Sequence
Biological and medical sciences
Cenchrus americanus
Chromosomes, Plant
Chromosomes, Plant - genetics
Conserved Sequence
conserved sequences
conserved-intron scanning primers
corn
Crops, Agricultural
Crops, Agricultural - genetics
Cynodon
Cynodon dactylon
Cynodon transvaalensis
Eragrostis
Eragrostis pilosa
Eragrostis tef
evolution
Expressed Sequence Tags
Fundamental and applied biological sciences. Psychology
Genes. Genome
Genetic loci
genetic variation
genetics
Genome Analysis
Genomes
Genomics
Genomics - methods
Genotype
grain sorghum
Hordeum
Hordeum vulgare
Introns
methods
millets
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Orphans
Oryza sativa
Pennisetum
Pennisetum glaucum
plant genetics
Plants
Poaceae
Poaceae - genetics
Polymerase chain reaction
Polymorphism, Single Nucleotide
Rice
Sequence Alignment
single nucleotide polymorphism
Sorghum
Sorghum (Poaceae)
Sorghum bicolor
Sorghum propinquum
Taxa
Triticum
Triticum aestivum
Untranslated Regions
wheat
Zea
Zea mays
Title Comparative Genomics Strategy for Targeted Discovery of Single-Nucleotide Polymorphisms and Conserved-Noncoding Sequences in Orphan Crops
URI https://www.jstor.org/stable/20205684
https://www.ncbi.nlm.nih.gov/pubmed/16607031
https://www.proquest.com/docview/20283170
https://www.proquest.com/docview/46859210
https://www.proquest.com/docview/67861984
https://pubmed.ncbi.nlm.nih.gov/PMC1435799
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbYXQ5cEK9ly6P4gDiRpUmcODluoVWBpSC2lXqLnMSmldqkIqnQ7l_gTzMT5wldXpfISiw7ynyxZ8Yz3xDy3LRjV4SxMBiPbIMJoQzfE74B5lBsW8IUtoP5zh-m7mTO3i2cRePTLbJL8vA0utqbV_I_UoV7IFfMkv0HydaDwg1og3zhChKG61_J-KwMIdfk3Ui3ukHS5UwzzupQTB3qDWol5t9ivGZxpI4egrU0EmQzTvNVLLFaw-Umha--yjZZme2WoMtWxkaSJlFaZL_UkdfoJ8HesDxgEbCsreRiIaRc-0w0wxNosUNMLM5i0fI8jOU63xUwGjce1QuYpfD0TFp1ldPlKl-K7JvQDxrHbrTcra-0E72MfGw5MOq4l3JRti0Do606i7ImcSrRx1pLLFhE9v61f8CwYPEWSxefosk_sJtNrjrYn34MxvPz82A2WswOyJEFxgXWvXjz9n29f5u2ZoSvXqtmZmWvOoN3NJkDJdIqpBXja0UGv5jStVH2GS8_x-C2lJrZHXK7tEbomYbWXXJDJvfIzWEKFsPlffL9jLbwRSt80QpfFPBFK3zRGl80VfQXfNEOvijgi-7BF63xRVcJ1fiiBb4ekPl4NHs9McriHUYENnJuhEg0GJkYkhcyK3JisAw8K_JjS3EMKFDQCk3hK5dxxZWrYNN1meTcDJWyWWwfk0OYXZ4Q6ju2jIQTCYvDKAPX42EMiq_HpC8jbokeeVkJIohKZnsssLIOCgt3wILtFppOoOXWIy_q7ltN6XJdxxOQaiC-wHYbzC8sPOQ3kdnbYT1yXIi6HsACs8txPXjQ78i-mYFzRJTVI88qMASwkuPxnEhkustwCA-0-cH1PZjrOb5l_qYHqJ4ufHJ4jYcaXs38rlvUqugR3gFe3QF55rtPktWy4JtHk4r7_qM_zvqY3Gp-8CfkMP-6k09BZ8_DPjngC94nR8PR9NPnfvHD_QD7APVj
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+genomics+strategy+for+targeted+discovery+of+single-nucleotide+polymorphisms+and+conserved-noncoding+sequences+in+orphan+crops&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Feltus%2C+F+A&rft.au=Singh%2C+H+P&rft.au=Lohithaswa%2C+H+C&rft.au=Schulze%2C+S+R&rft.date=2006-04-01&rft.issn=0032-0889&rft.volume=140&rft.issue=4&rft.spage=1183&rft_id=info:doi/10.1104%2Fpp.105.074203&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-2548&client=summon