Comparative Genomics Strategy for Targeted Discovery of Single-Nucleotide Polymorphisms and Conserved-Noncoding Sequences in Orphan Crops
Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignment...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 140; no. 4; pp. 1183 - 1191 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Biologists
01.04.2006
American Society of Plant Physiologists |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species. |
---|---|
AbstractList | Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (
Oryza sativa
) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species. Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species. Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species. Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genomewide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species. |
Author | Singh, H.P Feltus, F.A Schulze, S.R Silva, T.D Paterson, A.H Lohithaswa, H.C |
AuthorAffiliation | Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602 (F.A.F., H.P.S., H.C.L., S.R.S., A.H.P.); Narendra Deva University of Agriculture and Technology, Kumarganj, Faizabad 224264, Uttar Pradesh, India (H.P.S.); University of Agricultural Sciences, Krishinagar, Dharwad 580005, India (H.C.L.); and Department of Plant Sciences, University of Colombo, Colombo 03, Sri Lanka (T.D.S.) |
AuthorAffiliation_xml | – name: Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602 (F.A.F., H.P.S., H.C.L., S.R.S., A.H.P.); Narendra Deva University of Agriculture and Technology, Kumarganj, Faizabad 224264, Uttar Pradesh, India (H.P.S.); University of Agricultural Sciences, Krishinagar, Dharwad 580005, India (H.C.L.); and Department of Plant Sciences, University of Colombo, Colombo 03, Sri Lanka (T.D.S.) |
Author_xml | – sequence: 1 fullname: Feltus, F.A – sequence: 2 fullname: Singh, H.P – sequence: 3 fullname: Lohithaswa, H.C – sequence: 4 fullname: Schulze, S.R – sequence: 5 fullname: Silva, T.D – sequence: 6 fullname: Paterson, A.H |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17700322$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16607031$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhSNURB-wZAl4A7sMvo4fyQYJDVCQqhZp2rXlceypq8RO7cxI8xP413jIMBQk1JWvfL97dY59TosjH7wpipeAZwCYvh-GGWA2w4ISXD0pToBVpCSM1kcP6uPiNKU7jDFUQJ8Vx8A5FriCk-LHPPSDimp0G4POjQ-90wktxnxjVltkQ0TXKq7MaFr0ySUdNiZuUbBo4fyqM-XlWncmjK416Hvotn2Iw61LfULKt2gefDJxY9ryMngd2jyCFuZ-bbw2CTmPrjKtPJrHMKTnxVOrumRe7M-z4ubL5-v51_Li6vzb_ONFqTnhY7lsGkY1QFM3S0o0aylmNdFNS6wASrHN1RJUYzkVVlhuAYBTIwQsra1oW50VH6a9w3rZm1Ybn812coiuV3Erg3Ly7453t3IVNhJoxUTT5AXv9gtiyF7SKPv8MKbrlDdhnSQXNc_y6KMg5TVrCOBHQYJJXYHYga8faj-I_v2fGXi7B1TSqrNRee3SH04IjCtCMldNnI4hpWis1G7MIQg7y66TgOUuXXIYcsnklK48Vf4zdVj8H_7VxN-lMcQDnO1gxn890Jupb1WQahWz0psFySHFgHmDGa1-AoFR5Wc |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_1007_s00122_020_03755_1 crossref_primary_10_1007_s10681_010_0191_2 crossref_primary_10_1007_s00239_012_9492_5 crossref_primary_10_1071_FP08133 crossref_primary_10_1007_s11627_009_9214_x crossref_primary_10_1007_s00122_008_0916_y crossref_primary_10_1007_s10681_010_0148_5 crossref_primary_10_1007_s13562_019_00502_6 crossref_primary_10_1111_pbr_12035 crossref_primary_10_1007_s11032_009_9270_2 crossref_primary_10_1016_j_margen_2012_09_001 crossref_primary_10_1093_molbev_msr287 crossref_primary_10_1007_s10681_007_9456_9 crossref_primary_10_1007_s13258_013_0064_x crossref_primary_10_1016_j_cj_2022_07_017 crossref_primary_10_1007_s00438_011_0624_1 crossref_primary_10_1111_j_1467_7652_2011_00640_x crossref_primary_10_1186_1756_0500_1_28 crossref_primary_10_1371_journal_pone_0079425 crossref_primary_10_1007_s00122_016_2668_4 crossref_primary_10_1071_BT10188 crossref_primary_10_1007_s00122_006_0369_0 crossref_primary_10_1111_j_1471_8286_2007_01928_x crossref_primary_10_1007_s11461_008_0055_2 crossref_primary_10_1104_pp_108_129262 crossref_primary_10_1007_s10658_009_9549_5 crossref_primary_10_1007_s11032_014_0029_z crossref_primary_10_1007_s11032_011_9683_6 crossref_primary_10_1111_j_1471_8286_2007_02035_x crossref_primary_10_1186_1756_0500_6_47 crossref_primary_10_1038_hdy_2009_192 crossref_primary_10_1186_1471_2164_8_135 crossref_primary_10_1248_bpb_33_183 crossref_primary_10_1186_1471_2164_11_395 crossref_primary_10_1007_s11032_011_9560_3 crossref_primary_10_3390_ijms25063241 crossref_primary_10_1007_s00122_007_0559_4 crossref_primary_10_1007_s11105_015_0918_2 crossref_primary_10_1534_genetics_106_070110 crossref_primary_10_1007_s10722_014_0196_0 crossref_primary_10_1139_g11_032 crossref_primary_10_1007_s11032_009_9365_9 crossref_primary_10_1007_s00122_011_1556_1 crossref_primary_10_1007_s11032_010_9518_x crossref_primary_10_1016_j_ejbt_2019_02_002 crossref_primary_10_1111_grs_12055 crossref_primary_10_3390_agronomy8050058 crossref_primary_10_5402_2013_471632 crossref_primary_10_1007_s11032_011_9593_7 crossref_primary_10_1007_s00122_009_1077_3 crossref_primary_10_1007_s10142_009_0129_8 crossref_primary_10_1093_bioinformatics_btm296 crossref_primary_10_1007_s00606_014_0982_3 crossref_primary_10_1007_s12041_021_01320_3 crossref_primary_10_3390_ijms17060884 crossref_primary_10_1007_s10681_014_1194_1 crossref_primary_10_1007_s00122_009_1120_4 crossref_primary_10_1186_1471_2164_14_159 crossref_primary_10_1186_1471_2229_12_9 crossref_primary_10_1007_s11295_010_0308_8 crossref_primary_10_1007_s10681_014_1144_y crossref_primary_10_1111_pbr_12386 crossref_primary_10_1186_1471_2229_8_7 crossref_primary_10_1371_journal_pone_0038702 crossref_primary_10_1007_s00122_007_0605_2 crossref_primary_10_1016_j_biotechadv_2011_09_015 crossref_primary_10_1007_s10722_019_00808_3 crossref_primary_10_1016_j_fcr_2010_03_014 |
Cites_doi | 10.1101/gr.1280703 10.1093/genetics/141.1.391 10.1016/j.foodpol.2004.01.002 10.1016/S1369-5266(03)00015-3 10.1038/90135 10.1126/science.269.5231.1714 10.1093/nar/gki853 10.1079/9780851995151.0179 10.1093/bib/3.1.87 10.1038/70570 10.1101/gr.2479404 10.1073/pnas.0630531100 10.1038/ng0197-47 10.1016/j.gde.2003.10.002 10.1073/pnas.0307901101 10.1007/s00122-004-1765-y 10.1007/BF00993379 10.1126/science.1068275 10.1089/cmb.1998.5.211 10.1101/gr.194601 10.1126/science.1068037 10.1371/journal.pbio.0030007 10.1093/genetics/156.3.1175 10.1038/35048692 10.1093/nar/gkg500 10.1073/pnas.092595699 10.1038/nature01184 10.1023/A:1014875206165 10.1038/nature01183 10.1101/gr.8.3.175 10.1073/pnas.95.5.1971 10.1093/bioinformatics/bth413 10.1038/43827 10.1073/pnas.82.17.5819 |
ContentType | Journal Article |
Copyright | Copyright 2006 American Society of Plant Biologists 2006 INIST-CNRS Copyright © 2006, American Society of Plant Biologists 2006 |
Copyright_xml | – notice: Copyright 2006 American Society of Plant Biologists – notice: 2006 INIST-CNRS – notice: Copyright © 2006, American Society of Plant Biologists 2006 |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TM 7S9 L.6 7X8 5PM |
DOI | 10.1104/pp.105.074203 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Nucleic Acids Abstracts AGRICOLA CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 1191 |
ExternalDocumentID | PMC1435799 16607031 17700322 10_1104_pp_105_074203 20205684 US201301069054 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 123 29O 2AX 2WC 2~F 3V. 4.4 53G 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHKG AAPXW AAVAP AAWDT AAXTN AAYJJ ABBHK ABJNI ABPLY ABPPZ ABPTD ABPTK ABTLG ABUWG ABXZS ACBTR ACFRR ACGOD ACIPB ACNCT ACPRK ACUFI ACUTJ ADBBV ADIPN ADIYS ADULT ADVEK ADYHW ADZLD AEEJZ AENEX AESBF AEUPB AFAZZ AFDAS AFFDN AFFZL AFGWE AFKRA AFRAH AFYAG AGUYK AHMBA AICQM AIDAL AIDBO AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD AQDSO AS~ ATCPS AZQEC BAWUL BBNVY BCRHZ BENPR BHPHI BPHCQ BTFSW BVXVI BYORX C1A CBGCD CCPQU CS3 CWIXF D1J DATOO DFEDG DIK DOOOF DU5 DWIUU DWQXO E3Z EBS ECGQY EJD F20 F5P FBQ FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU ISR JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KOP KQ8 KSI KSN LK8 M0K M0L M1P M2O M2P M2Q M7P MV1 MVM NOMLY OBOKY OJZSN OK1 OWPYF P0- P2P PQQKQ PROAC PSQYO Q2X QZG RHF RHI ROX RPB RPM RWL RXW S0X SA0 TAE TCN TN5 TR2 UBC UKHRP UKR VQA W8F WH7 WHG WOQ XOL XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM 0R~ AAHBH AARHZ AAUAY ABDFA ABEJV ABGNP ABMNT ABVGC ABXSQ ABXVV ACHIC ADGKP ADQBN ADXHL AEUYN AGORE AHXOZ AJBYB AJNCP ALIPV AQVQM ATGXG BEYMZ H13 IPSME JXSIZ NU- PHGZM PHGZT AAYXX CITATION ABIME ABPIB ABZEO ACVCV ACZBC AGMDO AHGBF AJDVS APJGH IQODW LU7 PJZUB PPXIY PQGLB ADYWZ CGR CUY CVF ECM EIF NPM VXZ 7TM 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c626t-b9954c11989b42c5d40582c9d2f71440f9d2b1a9f647f7f6f11164e771bff34d3 |
ISSN | 1532-2548 0032-0889 |
IngestDate | Thu Aug 21 18:33:14 EDT 2025 Fri Jul 11 11:56:53 EDT 2025 Thu Jul 10 23:47:11 EDT 2025 Thu Aug 07 15:01:00 EDT 2025 Wed Feb 19 01:48:42 EST 2025 Mon Jul 21 09:12:40 EDT 2025 Tue Jul 01 02:53:48 EDT 2025 Thu Apr 24 22:50:20 EDT 2025 Fri Jun 20 02:19:29 EDT 2025 Wed Dec 27 18:49:48 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Monocotyledones Hordeum Genomics Sorghum Cynodon Oryza sativa Triticum Gene Pennisetum Gramineae Angiospermae Spermatophyta Single nucleotide polymorphism Expressed sequence tag |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c626t-b9954c11989b42c5d40582c9d2f71440f9d2b1a9f647f7f6f11164e771bff34d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 www.plantphysiol.org/cgi/doi/10.1104/pp.105.074203. The online version of this article contains Web-only data. Corresponding author; e-mail paterson@uga.edu; fax 706–583–0160. This work was supported by grants from the Rockefeller Foundation and the U.S. Agency for International Development Cereals Comparative Genomics Initiative (to A.H.P., F.A.F., and H.P.S.); the International Society for Plant Molecular Biology (to T.D.S.); and the Biotechnology Overseas Associateship of the Department of Biotechnology, Ministry of Science and Technology, Government of India program (to H.C.L.). The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: A.H. Paterson (paterson@uga.edu). These authors contributed equally to the paper. |
OpenAccessLink | http://doi.org/10.1104/pp.105.074203 |
PMID | 16607031 |
PQID | 20283170 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1435799 proquest_miscellaneous_67861984 proquest_miscellaneous_46859210 proquest_miscellaneous_20283170 pubmed_primary_16607031 pascalfrancis_primary_17700322 crossref_citationtrail_10_1104_pp_105_074203 crossref_primary_10_1104_pp_105_074203 jstor_primary_20205684 fao_agris_US201301069054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-04-01 |
PublicationDateYYYYMMDD | 2006-04-01 |
PublicationDate_xml | – month: 04 year: 2006 text: 2006-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2006 |
Publisher | American Society of Plant Biologists American Society of Plant Physiologists |
Publisher_xml | – name: American Society of Plant Biologists – name: American Society of Plant Physiologists |
References | 2021050611474846300_R4 2021050611474846300_R3 2021050611474846300_R2 2021050611474846300_R18 2021050611474846300_R1 2021050611474846300_R19 2021050611474846300_R16 2021050611474846300_R17 2021050611474846300_R14 2021050611474846300_R36 2021050611474846300_R15 2021050611474846300_R37 2021050611474846300_R12 2021050611474846300_R34 2021050611474846300_R13 2021050611474846300_R35 2021050611474846300_R10 2021050611474846300_R32 2021050611474846300_R11 2021050611474846300_R33 2021050611474846300_R30 2021050611474846300_R31 2021050611474846300_R29 2021050611474846300_R27 2021050611474846300_R28 2021050611474846300_R25 2021050611474846300_R26 2021050611474846300_R23 2021050611474846300_R24 2021050611474846300_R21 2021050611474846300_R22 2021050611474846300_R20 2021050611474846300_R9 2021050611474846300_R8 2021050611474846300_R7 2021050611474846300_R6 2021050611474846300_R5 16179648 - Nucleic Acids Res. 2005;33(17):5437-45 12447439 - Nature. 2002 Nov 21;420(6913):316-20 11935018 - Science. 2002 Apr 5;296(5565):92-100 9482816 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):1971-4 15322756 - Theor Appl Genet. 2004 Nov;109(7):1485-93 11130711 - Nature. 2000 Dec 14;408(6814):796-815 15161969 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8 8988168 - Nat Genet. 1997 Jan;15(1):47-56 11999831 - Plant Mol Biol. 2002 Mar-Apr;48(5-6):501-10 15630479 - PLoS Biol. 2005 Jan;3(1):e7 12447438 - Nature. 2002 Nov 21;420(6913):312-6 14638328 - Curr Opin Genet Dev. 2003 Dec;13(6):644-50 12667868 - Curr Opin Plant Biol. 2003 Apr;6(2):128-33 10517631 - Nature. 1999 Sep 23;401(6751):344 7912407 - Mol Biol Evol. 1994 May;11(3):426-35 10581034 - Nat Genet. 1999 Dec;23(4):452-6 12824352 - Nucleic Acids Res. 2003 Jul 1;31(13):3497-500 11983904 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6118-23 15342564 - Genome Res. 2004 Sep;14(9):1812-9 9521921 - Genome Res. 1998 Mar;8(3):175-85 15271776 - Bioinformatics. 2004 Dec 12;20(18):3668-9 17821643 - Science. 1995 Sep 22;269(5231):1714-8 11431702 - Nat Genet. 2001 Jul;28(3):286-9 12952874 - Genome Res. 2003 Sep;13(9):2030-41 11935017 - Science. 2002 Apr 5;296(5565):79-92 8536986 - Genetics. 1995 Sep;141(1):391-411 9672829 - J Comput Biol. 1998 Summer;5(2):211-21 11731505 - Genome Res. 2001 Dec;11(12):2133-41 11063693 - Genetics. 2000 Nov;156(3):1175-90 3862098 - Proc Natl Acad Sci U S A. 1985 Sep;82(17):5819-23 12642667 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4050-4 12002227 - Brief Bioinform. 2002 Mar;3(1):87-91 |
References_xml | – ident: 2021050611474846300_R17 doi: 10.1101/gr.1280703 – ident: 2021050611474846300_R19 – ident: 2021050611474846300_R15 – ident: 2021050611474846300_R20 doi: 10.1093/genetics/141.1.391 – ident: 2021050611474846300_R25 doi: 10.1016/j.foodpol.2004.01.002 – ident: 2021050611474846300_R4 doi: 10.1016/S1369-5266(03)00015-3 – ident: 2021050611474846300_R35 doi: 10.1038/90135 – ident: 2021050611474846300_R30 doi: 10.1126/science.269.5231.1714 – ident: 2021050611474846300_R34 doi: 10.1093/nar/gki853 – ident: 2021050611474846300_R5 doi: 10.1079/9780851995151.0179 – ident: 2021050611474846300_R26 doi: 10.1093/bib/3.1.87 – ident: 2021050611474846300_R24 doi: 10.1038/70570 – ident: 2021050611474846300_R11 doi: 10.1101/gr.2479404 – ident: 2021050611474846300_R16 doi: 10.1073/pnas.0630531100 – ident: 2021050611474846300_R23 doi: 10.1038/ng0197-47 – ident: 2021050611474846300_R29 doi: 10.1016/j.gde.2003.10.002 – ident: 2021050611474846300_R28 doi: 10.1073/pnas.0307901101 – ident: 2021050611474846300_R31 doi: 10.1007/s00122-004-1765-y – ident: 2021050611474846300_R2 doi: 10.1007/BF00993379 – ident: 2021050611474846300_R14 doi: 10.1126/science.1068275 – ident: 2021050611474846300_R3 doi: 10.1089/cmb.1998.5.211 – ident: 2021050611474846300_R7 doi: 10.1101/gr.194601 – ident: 2021050611474846300_R37 doi: 10.1126/science.1068037 – ident: 2021050611474846300_R36 doi: 10.1371/journal.pbio.0030007 – ident: 2021050611474846300_R9 doi: 10.1093/genetics/156.3.1175 – ident: 2021050611474846300_R1 doi: 10.1038/35048692 – ident: 2021050611474846300_R8 doi: 10.1093/nar/gkg500 – ident: 2021050611474846300_R22 doi: 10.1073/pnas.092595699 – ident: 2021050611474846300_R27 – ident: 2021050611474846300_R33 doi: 10.1038/nature01184 – ident: 2021050611474846300_R18 doi: 10.1023/A:1014875206165 – ident: 2021050611474846300_R12 doi: 10.1038/nature01183 – ident: 2021050611474846300_R10 doi: 10.1101/gr.8.3.175 – ident: 2021050611474846300_R13 doi: 10.1073/pnas.95.5.1971 – ident: 2021050611474846300_R21 doi: 10.1093/bioinformatics/bth413 – ident: 2021050611474846300_R6 doi: 10.1038/43827 – ident: 2021050611474846300_R32 doi: 10.1073/pnas.82.17.5819 – reference: 15271776 - Bioinformatics. 2004 Dec 12;20(18):3668-9 – reference: 15630479 - PLoS Biol. 2005 Jan;3(1):e7 – reference: 12667868 - Curr Opin Plant Biol. 2003 Apr;6(2):128-33 – reference: 17821643 - Science. 1995 Sep 22;269(5231):1714-8 – reference: 3862098 - Proc Natl Acad Sci U S A. 1985 Sep;82(17):5819-23 – reference: 8988168 - Nat Genet. 1997 Jan;15(1):47-56 – reference: 12447439 - Nature. 2002 Nov 21;420(6913):316-20 – reference: 14638328 - Curr Opin Genet Dev. 2003 Dec;13(6):644-50 – reference: 11431702 - Nat Genet. 2001 Jul;28(3):286-9 – reference: 12952874 - Genome Res. 2003 Sep;13(9):2030-41 – reference: 11063693 - Genetics. 2000 Nov;156(3):1175-90 – reference: 11999831 - Plant Mol Biol. 2002 Mar-Apr;48(5-6):501-10 – reference: 7912407 - Mol Biol Evol. 1994 May;11(3):426-35 – reference: 10581034 - Nat Genet. 1999 Dec;23(4):452-6 – reference: 15322756 - Theor Appl Genet. 2004 Nov;109(7):1485-93 – reference: 11731505 - Genome Res. 2001 Dec;11(12):2133-41 – reference: 11935018 - Science. 2002 Apr 5;296(5565):92-100 – reference: 9482816 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):1971-4 – reference: 10517631 - Nature. 1999 Sep 23;401(6751):344 – reference: 12824352 - Nucleic Acids Res. 2003 Jul 1;31(13):3497-500 – reference: 11130711 - Nature. 2000 Dec 14;408(6814):796-815 – reference: 12002227 - Brief Bioinform. 2002 Mar;3(1):87-91 – reference: 15161969 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8 – reference: 9672829 - J Comput Biol. 1998 Summer;5(2):211-21 – reference: 9521921 - Genome Res. 1998 Mar;8(3):175-85 – reference: 8536986 - Genetics. 1995 Sep;141(1):391-411 – reference: 12642667 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4050-4 – reference: 16179648 - Nucleic Acids Res. 2005;33(17):5437-45 – reference: 11983904 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6118-23 – reference: 11935017 - Science. 2002 Apr 5;296(5565):79-92 – reference: 12447438 - Nature. 2002 Nov 21;420(6913):312-6 – reference: 15342564 - Genome Res. 2004 Sep;14(9):1812-9 |
SSID | ssj0001314 |
Score | 2.165127 |
Snippet | Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1183 |
SubjectTerms | barley Base Sequence Biological and medical sciences Cenchrus americanus Chromosomes, Plant Chromosomes, Plant - genetics Conserved Sequence conserved sequences conserved-intron scanning primers corn Crops, Agricultural Crops, Agricultural - genetics Cynodon Cynodon dactylon Cynodon transvaalensis Eragrostis Eragrostis pilosa Eragrostis tef evolution Expressed Sequence Tags Fundamental and applied biological sciences. Psychology Genes. Genome Genetic loci genetic variation genetics Genome Analysis Genomes Genomics Genomics - methods Genotype grain sorghum Hordeum Hordeum vulgare Introns methods millets Molecular and cellular biology Molecular genetics Molecular Sequence Data Orphans Oryza sativa Pennisetum Pennisetum glaucum plant genetics Plants Poaceae Poaceae - genetics Polymerase chain reaction Polymorphism, Single Nucleotide Rice Sequence Alignment single nucleotide polymorphism Sorghum Sorghum (Poaceae) Sorghum bicolor Sorghum propinquum Taxa Triticum Triticum aestivum Untranslated Regions wheat Zea Zea mays |
Title | Comparative Genomics Strategy for Targeted Discovery of Single-Nucleotide Polymorphisms and Conserved-Noncoding Sequences in Orphan Crops |
URI | https://www.jstor.org/stable/20205684 https://www.ncbi.nlm.nih.gov/pubmed/16607031 https://www.proquest.com/docview/20283170 https://www.proquest.com/docview/46859210 https://www.proquest.com/docview/67861984 https://pubmed.ncbi.nlm.nih.gov/PMC1435799 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbYXQ5cEK9ly6P4gDiRpUmcODluoVWBpSC2lXqLnMSmldqkIqnQ7l_gTzMT5wldXpfISiw7ynyxZ8Yz3xDy3LRjV4SxMBiPbIMJoQzfE74B5lBsW8IUtoP5zh-m7mTO3i2cRePTLbJL8vA0utqbV_I_UoV7IFfMkv0HydaDwg1og3zhChKG61_J-KwMIdfk3Ui3ukHS5UwzzupQTB3qDWol5t9ivGZxpI4egrU0EmQzTvNVLLFaw-Umha--yjZZme2WoMtWxkaSJlFaZL_UkdfoJ8HesDxgEbCsreRiIaRc-0w0wxNosUNMLM5i0fI8jOU63xUwGjce1QuYpfD0TFp1ldPlKl-K7JvQDxrHbrTcra-0E72MfGw5MOq4l3JRti0Do606i7ImcSrRx1pLLFhE9v61f8CwYPEWSxefosk_sJtNrjrYn34MxvPz82A2WswOyJEFxgXWvXjz9n29f5u2ZoSvXqtmZmWvOoN3NJkDJdIqpBXja0UGv5jStVH2GS8_x-C2lJrZHXK7tEbomYbWXXJDJvfIzWEKFsPlffL9jLbwRSt80QpfFPBFK3zRGl80VfQXfNEOvijgi-7BF63xRVcJ1fiiBb4ekPl4NHs9McriHUYENnJuhEg0GJkYkhcyK3JisAw8K_JjS3EMKFDQCk3hK5dxxZWrYNN1meTcDJWyWWwfk0OYXZ4Q6ju2jIQTCYvDKAPX42EMiq_HpC8jbokeeVkJIohKZnsssLIOCgt3wILtFppOoOXWIy_q7ltN6XJdxxOQaiC-wHYbzC8sPOQ3kdnbYT1yXIi6HsACs8txPXjQ78i-mYFzRJTVI88qMASwkuPxnEhkustwCA-0-cH1PZjrOb5l_qYHqJ4ufHJ4jYcaXs38rlvUqugR3gFe3QF55rtPktWy4JtHk4r7_qM_zvqY3Gp-8CfkMP-6k09BZ8_DPjngC94nR8PR9NPnfvHD_QD7APVj |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+genomics+strategy+for+targeted+discovery+of+single-nucleotide+polymorphisms+and+conserved-noncoding+sequences+in+orphan+crops&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Feltus%2C+F+A&rft.au=Singh%2C+H+P&rft.au=Lohithaswa%2C+H+C&rft.au=Schulze%2C+S+R&rft.date=2006-04-01&rft.issn=0032-0889&rft.volume=140&rft.issue=4&rft.spage=1183&rft_id=info:doi/10.1104%2Fpp.105.074203&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-2548&client=summon |