WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1
N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methy...
Saved in:
Published in | Molecular cancer Vol. 18; no. 1; pp. 127 - 19 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
22.08.2019
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer.
We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay.
We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1.
We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment. |
---|---|
AbstractList | Background N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer. Methods We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay. Results We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1. Conclusion We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment. N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer. We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay. We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1. We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment. N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer.BACKGROUNDN6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer.We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay.METHODSWe determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay.We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1.RESULTSWe demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1.We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment.CONCLUSIONWe have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment. Abstract Background N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer. Methods We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay. Results We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1. Conclusion We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment. Background N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer. Methods We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay. Results We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1. Conclusion We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment. Keywords: N6-methyladenosine (m6A), Wilms tumor 1-associated protein (WTAP), Hepatocellular carcinoma (HCC), ETS1 N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer. We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay. We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1. We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment. |
ArticleNumber | 127 |
Audience | Academic |
Author | Chen, Yunhao Yang, Beng Chen, Diyu Liu, Hua He, Bin Zhang, Yanpeng Wu, Jian Hu, Wendi Chen, Junru Peng, Chuanhui Xie, Haiyang Dai, Longfei Zhou, Lin Zheng, Shusen |
Author_xml | – sequence: 1 givenname: Yunhao surname: Chen fullname: Chen, Yunhao – sequence: 2 givenname: Chuanhui surname: Peng fullname: Peng, Chuanhui – sequence: 3 givenname: Junru surname: Chen fullname: Chen, Junru – sequence: 4 givenname: Diyu surname: Chen fullname: Chen, Diyu – sequence: 5 givenname: Beng surname: Yang fullname: Yang, Beng – sequence: 6 givenname: Bin surname: He fullname: He, Bin – sequence: 7 givenname: Wendi surname: Hu fullname: Hu, Wendi – sequence: 8 givenname: Yanpeng surname: Zhang fullname: Zhang, Yanpeng – sequence: 9 givenname: Hua surname: Liu fullname: Liu, Hua – sequence: 10 givenname: Longfei surname: Dai fullname: Dai, Longfei – sequence: 11 givenname: Haiyang surname: Xie fullname: Xie, Haiyang – sequence: 12 givenname: Lin surname: Zhou fullname: Zhou, Lin – sequence: 13 givenname: Jian surname: Wu fullname: Wu, Jian – sequence: 14 givenname: Shusen surname: Zheng fullname: Zheng, Shusen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31438961$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNURD_gB3BBkbhwSYk_YjsXpFVVaKVKIFjE0Zq1J6lL1g52Uol_j8OW0q0QysFR8sxjz_g9Lg588FgUL0l9SogSbxOhLWdVTdqK1A2r1JPiiHApKt606uDB-2FxnNJNXROpJH9WHDLCmWoFOSq-f1uvPpUdGDe4CSZM5RhDHzElF3wZuvIaR5iCwWGYB4ilgWicD1sobx2UW7GqLubPlcURvUU_lTi6Hj1OzpTJDegz3C-a8_UX8rx42sGQ8MXdelJ8fX--Pruorj5-uDxbXVVGUDFVoAQXhgvokIGytbKCdsSajsoGlLSNgtqiYWgVJZ3aKIobJjpLBEiK3LKT4nLntQFu9BjdFuJPHcDp3x9C7DXEfMIBtWHKWk6MaYDyvBtw1W2IIAhcspar7Hq3c43zZovW5B4jDHvS_T_eXes-3Goha94olgVv7gQx_JgxTXrr0jJO8BjmpCkjsmlZzWhGXz9Cb8IcfR6VprRlWSgb9pfqITfgfBfyvmaR6lXTSiEYF02mTv9B5cfi1pkcoy7fzn7Bq4eN3nf4JyoZIDvAxJBSxO4eIbVe4qh3cdQ5jnqJo16mJx_VmCVlOVr5NG74T-UvDtvjWQ |
CitedBy_id | crossref_primary_10_1007_s11356_023_30710_6 crossref_primary_10_1007_s12640_023_00653_4 crossref_primary_10_1038_s41598_024_76326_9 crossref_primary_10_1016_j_xinn_2020_100066 crossref_primary_10_1038_s41575_023_00884_y crossref_primary_10_3390_cancers15072068 crossref_primary_10_1002_cbin_11459 crossref_primary_10_1016_j_biopha_2020_110731 crossref_primary_10_1186_s13046_021_01871_4 crossref_primary_10_1002_ijc_35067 crossref_primary_10_1155_2022_7730433 crossref_primary_10_1038_s41417_020_00208_1 crossref_primary_10_1016_j_apsb_2024_01_011 crossref_primary_10_1007_s00535_023_02008_4 crossref_primary_10_1016_j_dld_2022_12_005 crossref_primary_10_1158_0008_5472_CAN_23_0337 crossref_primary_10_7717_peerj_14379 crossref_primary_10_1007_s11033_022_07126_5 crossref_primary_10_3389_fimmu_2022_1022720 crossref_primary_10_1016_j_omtn_2019_11_022 crossref_primary_10_1038_s41418_021_00905_w crossref_primary_10_3390_curroncol32030159 crossref_primary_10_1089_cbr_2023_0186 crossref_primary_10_3389_fimmu_2023_1285370 crossref_primary_10_1093_toxres_tfae099 crossref_primary_10_3389_fimmu_2022_905211 crossref_primary_10_1007_s11427_023_2494_x crossref_primary_10_1152_ajpcell_00214_2022 crossref_primary_10_18632_aging_203778 crossref_primary_10_1016_j_bcp_2024_116419 crossref_primary_10_1177_15330338221085373 crossref_primary_10_3389_fgene_2020_614566 crossref_primary_10_2147_JIR_S339670 crossref_primary_10_1016_j_bcp_2020_114258 crossref_primary_10_18632_aging_204836 crossref_primary_10_1016_j_cyto_2023_156480 crossref_primary_10_18632_aging_203506 crossref_primary_10_1016_j_omtn_2021_08_009 crossref_primary_10_3390_cells11091516 crossref_primary_10_1186_s12935_024_03307_3 crossref_primary_10_3390_pharmaceutics15041249 crossref_primary_10_1016_j_omto_2020_06_007 crossref_primary_10_1007_s12032_022_01726_8 crossref_primary_10_1016_j_biopha_2020_109976 crossref_primary_10_3389_fcell_2023_1275475 crossref_primary_10_1186_s13578_020_00479_z crossref_primary_10_3389_fimmu_2021_789914 crossref_primary_10_1186_s12958_021_00872_4 crossref_primary_10_3390_ph16020185 crossref_primary_10_1038_s41419_023_05565_x crossref_primary_10_3389_fonc_2021_691372 crossref_primary_10_3389_fcell_2021_762588 crossref_primary_10_1002_cbin_11570 crossref_primary_10_1007_s10753_023_01958_4 crossref_primary_10_1186_s12967_022_03814_9 crossref_primary_10_1016_j_neo_2024_101049 crossref_primary_10_1186_s12935_020_01283_y crossref_primary_10_1007_s00210_023_02793_y crossref_primary_10_1002_iub_2410 crossref_primary_10_1007_s11033_025_10419_0 crossref_primary_10_1111_jcmm_16800 crossref_primary_10_1186_s12967_024_05771_x crossref_primary_10_1155_2022_8301888 crossref_primary_10_3390_ijms22179428 crossref_primary_10_18632_aging_204811 crossref_primary_10_1016_j_molcel_2021_03_010 crossref_primary_10_1016_j_cbi_2024_111352 crossref_primary_10_1016_j_pbiomolbio_2024_10_003 crossref_primary_10_1186_s13045_022_01231_5 crossref_primary_10_1038_s41392_022_01003_0 crossref_primary_10_1097_JS9_0000000000001794 crossref_primary_10_1097_MD_0000000000031376 crossref_primary_10_18632_aging_204827 crossref_primary_10_4252_wjsc_v14_i7_539 crossref_primary_10_1111_cas_15366 crossref_primary_10_1016_j_hbpd_2024_12_004 crossref_primary_10_18632_aging_202761 crossref_primary_10_1002_tox_24031 crossref_primary_10_1038_s41401_023_01214_3 crossref_primary_10_1186_s12943_019_1109_9 crossref_primary_10_2174_0929867329666220922102949 crossref_primary_10_3389_fimmu_2024_1423378 crossref_primary_10_1186_s12935_020_01679_w crossref_primary_10_1016_j_canlet_2022_215815 crossref_primary_10_1038_s41419_020_02847_6 crossref_primary_10_15252_embr_202052101 crossref_primary_10_1016_j_bbrc_2022_02_041 crossref_primary_10_1016_j_jaut_2022_102872 crossref_primary_10_3892_ijo_2022_5445 crossref_primary_10_1186_s12967_023_04209_0 crossref_primary_10_1016_j_heliyon_2022_e10931 crossref_primary_10_1016_j_phrs_2021_105846 crossref_primary_10_1016_j_jbc_2022_102715 crossref_primary_10_3389_fonc_2021_716921 crossref_primary_10_1186_s12935_021_02288_x crossref_primary_10_3390_ncrna8020021 crossref_primary_10_1016_j_tranon_2024_102257 crossref_primary_10_1080_10408398_2021_1927975 crossref_primary_10_3389_fphar_2022_873030 crossref_primary_10_1016_j_prp_2024_155268 crossref_primary_10_1186_s12885_022_09925_2 crossref_primary_10_1186_s12964_023_01357_0 crossref_primary_10_3892_ijmm_2023_5289 crossref_primary_10_11569_wcjd_v29_i23_1373 crossref_primary_10_1002_cam4_4157 crossref_primary_10_1016_j_biopha_2023_114953 crossref_primary_10_1186_s12943_022_01508_w crossref_primary_10_1007_s12032_022_01830_9 crossref_primary_10_1186_s12876_023_02757_9 crossref_primary_10_1080_21655979_2022_2051686 crossref_primary_10_3390_cancers14133195 crossref_primary_10_1016_j_intimp_2020_106918 crossref_primary_10_1126_scitranslmed_abk2709 crossref_primary_10_3389_fonc_2023_1290330 crossref_primary_10_3389_fcell_2022_813581 crossref_primary_10_18632_aging_205666 crossref_primary_10_3389_fonc_2025_1516867 crossref_primary_10_2217_fon_2020_0630 crossref_primary_10_1186_s12943_022_01634_5 crossref_primary_10_1186_s13062_025_00620_3 crossref_primary_10_1080_15592294_2023_2242688 crossref_primary_10_1615_JEnvironPatholToxicolOncol_2024050167 crossref_primary_10_1111_jcmm_16859 crossref_primary_10_1186_s12885_024_12956_6 crossref_primary_10_18632_aging_205312 crossref_primary_10_1016_j_bcp_2024_116375 crossref_primary_10_3389_fendo_2021_568397 crossref_primary_10_1155_2021_6614331 crossref_primary_10_1186_s12859_023_05379_w crossref_primary_10_1167_iovs_66_2_58 crossref_primary_10_1016_j_trecan_2022_02_010 crossref_primary_10_3389_fimmu_2021_731842 crossref_primary_10_1002_iub_2678 crossref_primary_10_1002_tox_23780 crossref_primary_10_1002_SMMD_20230008 crossref_primary_10_1088_1748_605X_acc43e crossref_primary_10_1007_s10620_024_08780_4 crossref_primary_10_1007_s12033_024_01134_5 crossref_primary_10_1186_s43556_025_00256_9 crossref_primary_10_1016_j_intimp_2024_113670 crossref_primary_10_1016_j_clim_2023_109325 crossref_primary_10_1155_2021_6670390 crossref_primary_10_1016_j_omtn_2020_05_032 crossref_primary_10_1007_s40199_023_00482_y crossref_primary_10_1016_j_omtn_2022_01_013 crossref_primary_10_3389_fonc_2020_01435 crossref_primary_10_3389_fimmu_2021_782551 crossref_primary_10_1007_s10142_023_01096_y crossref_primary_10_1038_s41419_021_04459_0 crossref_primary_10_1155_2022_6130806 crossref_primary_10_1038_s41420_024_01959_8 crossref_primary_10_1016_j_virol_2023_03_007 crossref_primary_10_1016_j_jhep_2020_04_009 crossref_primary_10_1016_j_phytochem_2022_113217 crossref_primary_10_1002_cbin_12266 crossref_primary_10_1155_2021_6461552 crossref_primary_10_1016_j_bbadis_2024_167290 crossref_primary_10_1038_s41598_022_22211_2 crossref_primary_10_3389_fimmu_2022_923533 crossref_primary_10_3389_fphar_2022_857774 crossref_primary_10_1093_stcltm_szad020 crossref_primary_10_1016_j_biopha_2024_116365 crossref_primary_10_3390_cancers15113053 crossref_primary_10_3389_fimmu_2025_1533940 crossref_primary_10_1016_j_ymthe_2022_12_013 crossref_primary_10_1016_j_heliyon_2023_e21285 crossref_primary_10_1016_j_bbrc_2024_150152 crossref_primary_10_3389_fcell_2022_822011 crossref_primary_10_1158_0008_5472_CAN_21_0494 crossref_primary_10_1111_jcmm_70207 crossref_primary_10_1186_s12967_023_03983_1 crossref_primary_10_3892_ijo_2024_5674 crossref_primary_10_1016_j_canlet_2024_216691 crossref_primary_10_3389_fcell_2021_650023 crossref_primary_10_3389_fcell_2020_629030 crossref_primary_10_3389_fonc_2021_611544 crossref_primary_10_3389_fcell_2021_777007 crossref_primary_10_1186_s13045_024_01546_5 crossref_primary_10_3389_fgene_2020_540186 crossref_primary_10_1007_s10528_023_10417_6 crossref_primary_10_3389_fcell_2021_778582 crossref_primary_10_1186_s12920_023_01509_8 crossref_primary_10_3389_fonc_2023_1138238 crossref_primary_10_1515_med_2023_0818 crossref_primary_10_1097_MD_0000000000032399 crossref_primary_10_1002_cac2_12161 crossref_primary_10_3390_biom10071071 crossref_primary_10_1007_s00403_024_03281_w crossref_primary_10_1038_s41420_021_00703_w crossref_primary_10_3389_fimmu_2021_735170 crossref_primary_10_1097_MD_0000000000031195 crossref_primary_10_1016_j_omtn_2020_12_021 crossref_primary_10_1155_2022_1395557 crossref_primary_10_1111_cas_15658 crossref_primary_10_1016_j_canlet_2023_216598 crossref_primary_10_1186_s13045_024_01545_6 crossref_primary_10_1016_j_aohep_2021_100538 crossref_primary_10_1097_JCMA_0000000000000251 crossref_primary_10_1111_jcmm_70344 crossref_primary_10_1007_s10142_023_01225_7 crossref_primary_10_1016_j_biopha_2020_110098 crossref_primary_10_1016_j_cellsig_2024_111572 crossref_primary_10_1016_j_gene_2020_144348 crossref_primary_10_3389_fonc_2021_690641 crossref_primary_10_1002_mc_23602 crossref_primary_10_1038_s41598_024_81642_1 crossref_primary_10_1016_j_placenta_2022_05_008 crossref_primary_10_1007_s11010_022_04617_8 crossref_primary_10_1007_s12033_023_00834_8 crossref_primary_10_3389_fcell_2021_766020 crossref_primary_10_1016_j_yexcr_2023_113764 crossref_primary_10_3389_fcell_2021_642443 crossref_primary_10_1186_s12935_025_03715_z crossref_primary_10_1002_wrna_1725 crossref_primary_10_1016_j_biopha_2024_116966 crossref_primary_10_3389_fgene_2020_00863 crossref_primary_10_3389_fmolb_2024_1521839 crossref_primary_10_1155_2022_2427987 crossref_primary_10_1186_s12967_022_03395_7 crossref_primary_10_1038_s41388_023_02704_8 crossref_primary_10_1002_tox_23852 crossref_primary_10_1096_fj_202202145RRR crossref_primary_10_1360_SSV_2023_0127 crossref_primary_10_3389_fonc_2020_578963 crossref_primary_10_1080_21655979_2021_1990578 crossref_primary_10_1016_j_lfs_2020_118082 crossref_primary_10_3389_fonc_2022_1018333 crossref_primary_10_2147_CMAR_S262450 crossref_primary_10_1016_j_gene_2021_146050 crossref_primary_10_1038_s41419_022_05268_9 crossref_primary_10_18632_aging_204280 crossref_primary_10_1186_s12943_020_01159_9 crossref_primary_10_1002_jbt_23031 crossref_primary_10_1016_j_gene_2020_144839 crossref_primary_10_1038_s41598_022_05035_y crossref_primary_10_3389_fimmu_2021_722642 crossref_primary_10_1155_2022_3888798 crossref_primary_10_3389_fcell_2022_973548 crossref_primary_10_3389_fphar_2022_903699 crossref_primary_10_18632_aging_203062 crossref_primary_10_1007_s12035_024_04604_8 crossref_primary_10_1155_2021_7479326 crossref_primary_10_3389_fphar_2022_984453 crossref_primary_10_1186_s12920_022_01207_x crossref_primary_10_1002_jbt_70117 crossref_primary_10_1155_2021_6545728 crossref_primary_10_1016_j_heliyon_2023_e16280 crossref_primary_10_1007_s10266_024_00977_3 crossref_primary_10_1111_imcb_12620 crossref_primary_10_1155_2022_4169150 crossref_primary_10_1016_j_heliyon_2024_e26262 crossref_primary_10_3389_fimmu_2022_892750 crossref_primary_10_3389_fonc_2021_755206 crossref_primary_10_2217_bmm_2020_0178 crossref_primary_10_1186_s12967_020_02417_6 crossref_primary_10_1186_s40364_020_00203_6 crossref_primary_10_1016_j_biopha_2023_115398 crossref_primary_10_1038_s41420_024_02092_2 crossref_primary_10_3389_fmolb_2020_604766 crossref_primary_10_1038_s41420_022_01125_y crossref_primary_10_1111_cas_15924 crossref_primary_10_1016_j_tice_2022_101794 crossref_primary_10_1111_jgh_15999 crossref_primary_10_1186_s12967_023_04805_0 crossref_primary_10_1016_j_omtn_2020_10_031 crossref_primary_10_1186_s12967_023_04651_0 crossref_primary_10_3389_fonc_2020_623634 crossref_primary_10_3390_biom14050514 crossref_primary_10_1016_j_prp_2022_154114 crossref_primary_10_1186_s40001_023_01016_7 crossref_primary_10_3389_fphar_2024_1376005 crossref_primary_10_1016_j_biopha_2023_114298 crossref_primary_10_1186_s12943_022_01500_4 crossref_primary_10_1186_s12943_023_01759_1 crossref_primary_10_3390_ijms23137165 crossref_primary_10_1016_j_ymthe_2020_06_024 crossref_primary_10_3389_fonc_2020_620352 crossref_primary_10_1016_j_cellsig_2024_111076 crossref_primary_10_1186_s13046_021_01859_0 crossref_primary_10_3389_fgene_2022_975190 crossref_primary_10_1002_mco2_256 crossref_primary_10_1158_0008_5472_CAN_21_1628 crossref_primary_10_1002_stem_3279 crossref_primary_10_1186_s40164_021_00234_1 crossref_primary_10_1002_cac2_12443 crossref_primary_10_1186_s12943_022_01510_2 crossref_primary_10_3892_ol_2021_12482 crossref_primary_10_1186_s13048_020_00710_y crossref_primary_10_1002_ctm2_661 crossref_primary_10_1186_s13045_022_01304_5 crossref_primary_10_1002_cac2_12325 crossref_primary_10_1007_s10528_023_10423_8 crossref_primary_10_11569_wcjd_v29_i14_747 crossref_primary_10_1186_s12935_023_03197_x crossref_primary_10_3390_jcm12010155 crossref_primary_10_1038_s41374_022_00811_w crossref_primary_10_1016_j_drudis_2021_06_004 crossref_primary_10_1016_j_jare_2025_01_008 crossref_primary_10_1158_0008_5472_CAN_21_1518 crossref_primary_10_3390_ijms252111803 crossref_primary_10_1016_j_isci_2022_105075 crossref_primary_10_1002_wrna_1719 crossref_primary_10_1080_19336918_2023_2180196 crossref_primary_10_1016_j_bbamcr_2024_119880 crossref_primary_10_3389_fonc_2022_852000 crossref_primary_10_1038_s41420_022_01050_0 crossref_primary_10_3390_cancers13102487 crossref_primary_10_3389_fgene_2021_805607 crossref_primary_10_1155_2021_8859590 crossref_primary_10_1186_s12943_024_02041_8 crossref_primary_10_3389_fonc_2020_01105 crossref_primary_10_1002_mc_23330 crossref_primary_10_1186_s12943_022_01619_4 crossref_primary_10_3389_fgene_2022_1042543 crossref_primary_10_1016_j_biopha_2019_109694 crossref_primary_10_3389_fimmu_2022_918140 crossref_primary_10_3389_fmed_2022_922219 crossref_primary_10_1007_s13273_023_00383_w crossref_primary_10_1016_j_ymeth_2022_07_011 crossref_primary_10_1016_j_envpol_2023_121897 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107613 crossref_primary_10_3389_fgene_2021_825109 crossref_primary_10_3389_fmed_2020_572494 crossref_primary_10_1016_j_ymthe_2022_01_002 crossref_primary_10_1038_s41388_023_02665_y crossref_primary_10_1038_s41598_022_20730_6 crossref_primary_10_1080_21655979_2021_2023792 crossref_primary_10_1038_s41417_024_00789_1 crossref_primary_10_3389_fimmu_2023_1148722 crossref_primary_10_1016_j_isci_2023_107931 crossref_primary_10_1016_j_heliyon_2024_e26767 crossref_primary_10_3389_fcell_2022_820562 crossref_primary_10_3389_fmolb_2022_1096679 crossref_primary_10_1016_j_semcancer_2020_11_007 crossref_primary_10_3389_fcell_2021_783322 crossref_primary_10_1007_s10620_022_07620_7 crossref_primary_10_1111_cas_16137 crossref_primary_10_1155_2022_8114731 crossref_primary_10_18632_aging_202723 crossref_primary_10_3892_etm_2021_10358 crossref_primary_10_3389_fimmu_2022_917153 crossref_primary_10_1186_s40164_022_00298_7 crossref_primary_10_3390_biom12091224 crossref_primary_10_1007_s10616_024_00648_9 crossref_primary_10_3389_fimmu_2024_1439485 crossref_primary_10_1186_s12964_024_01595_w crossref_primary_10_1016_j_canlet_2021_08_027 crossref_primary_10_1016_j_phrs_2021_105648 crossref_primary_10_1007_s11010_024_05040_x crossref_primary_10_3389_fmolb_2021_665222 crossref_primary_10_1186_s12943_020_01239_w crossref_primary_10_1093_lifemeta_loac028 crossref_primary_10_1002_mco2_715 crossref_primary_10_1016_j_vetmic_2023_109887 crossref_primary_10_1080_08830185_2023_2280544 crossref_primary_10_1016_j_canlet_2024_217395 crossref_primary_10_1016_j_ecoenv_2021_113059 crossref_primary_10_1016_j_ccell_2020_02_004 crossref_primary_10_3389_fgene_2022_1007696 crossref_primary_10_1186_s12943_020_01204_7 crossref_primary_10_1371_journal_pone_0294144 crossref_primary_10_1158_0008_5472_CAN_20_4107 crossref_primary_10_1186_s13046_021_01952_4 crossref_primary_10_1016_j_mtbio_2022_100503 crossref_primary_10_1038_s42003_022_03878_9 crossref_primary_10_62347_NZIJ5785 crossref_primary_10_1177_11769343221142013 crossref_primary_10_1155_2021_5516100 crossref_primary_10_1186_s12943_020_01172_y crossref_primary_10_3389_fonc_2022_861807 crossref_primary_10_1007_s12013_024_01342_5 crossref_primary_10_3389_fbioe_2022_822835 crossref_primary_10_3389_fphar_2022_1052177 crossref_primary_10_3390_cancers14112666 crossref_primary_10_1186_s12943_020_01216_3 crossref_primary_10_1002_1878_0261_13326 crossref_primary_10_1007_s10528_024_10947_7 crossref_primary_10_3389_fimmu_2022_997316 crossref_primary_10_2174_1566523221666211126105940 crossref_primary_10_3389_fcell_2022_946219 crossref_primary_10_3389_fmed_2022_821710 crossref_primary_10_1007_s00438_024_02203_9 crossref_primary_10_1038_s41420_023_01746_x crossref_primary_10_3389_fonc_2021_670353 crossref_primary_10_1038_s41420_024_02220_y crossref_primary_10_1038_s41401_024_01309_5 crossref_primary_10_3892_ol_2024_14585 crossref_primary_10_2174_0929867330666230525143252 crossref_primary_10_1016_j_bbcan_2025_189299 crossref_primary_10_1038_s41388_021_02066_z crossref_primary_10_3389_fphar_2022_933332 crossref_primary_10_1016_j_virusres_2021_198510 crossref_primary_10_1016_j_ymthe_2022_02_021 crossref_primary_10_1111_jdv_19933 crossref_primary_10_2147_OTT_S286326 crossref_primary_10_3389_fendo_2022_857765 crossref_primary_10_1007_s10585_024_10316_z crossref_primary_10_3389_fonc_2021_624395 crossref_primary_10_1080_14796694_2024_2442296 crossref_primary_10_1093_bib_bbad498 crossref_primary_10_1097_MD_0000000000031747 crossref_primary_10_1007_s00277_023_05302_6 crossref_primary_10_1038_s41420_023_01669_7 crossref_primary_10_1016_j_ajpath_2024_05_004 crossref_primary_10_3389_fcell_2021_681745 crossref_primary_10_1186_s11658_022_00350_8 crossref_primary_10_1210_clinem_dgab652 crossref_primary_10_3389_fgene_2021_744113 crossref_primary_10_1016_j_jbc_2023_105301 crossref_primary_10_1016_j_bbcan_2023_188872 crossref_primary_10_1007_s44337_025_00199_8 crossref_primary_10_1155_2020_2053902 crossref_primary_10_1038_s41375_023_01904_1 crossref_primary_10_1080_1061186X_2023_2300682 crossref_primary_10_1186_s13578_020_00513_0 crossref_primary_10_1016_j_biopha_2023_114669 crossref_primary_10_1371_journal_pone_0263749 crossref_primary_10_1016_j_heliyon_2024_e34079 crossref_primary_10_1038_s41420_024_02058_4 crossref_primary_10_1016_j_prmcm_2021_100023 |
Cites_doi | 10.1038/nature18298 10.1038/nature14234 10.1038/nature20577 10.1111/cas.12022 10.1038/cr.2017.15 10.1038/cr.2014.3 10.1136/gutjnl-2014-308614 10.3322/caac.21387 10.1016/j.ccell.2017.02.013 10.1016/j.semcancer.2015.09.010 10.1016/0092-8674(75)90158-0 10.1038/s41556-018-0045-z 10.1038/onc.2017.351 10.1016/j.celrep.2014.05.048 10.1186/s12943-018-0847-4 10.1038/ncb2902 10.1038/nchembio.1654 10.1016/j.ccell.2016.11.017 10.1186/s13046-018-0706-6 10.1038/nature12730 10.1016/j.cell.2015.05.014 10.1016/j.cell.2015.08.011 10.1002/hep.29683 10.1128/MCB.5.9.2298 10.1038/sj.onc.1200914 10.1038/leu.2014.16 10.1038/nrm.2016.132 10.1186/s12964-018-0258-6 10.1002/hep.27732 10.1002/ijc.25516 10.1038/s41421-018-0019-0 10.1038/nature19342 10.1053/j.gastro.2008.02.090 10.15252/embr.201744940 10.1007/s00535-013-0748-7 10.1126/sciadv.aar8263 10.1016/j.molcel.2018.02.015 10.1016/j.cell.2012.05.003 10.1016/j.celrep.2015.06.053 10.1309/RAVV-8NM1-CJB7-GJFR 10.1016/j.canlet.2017.11.018 10.1093/oxfordjournals.hmg.a018914 10.1002/ijc.28881 10.1002/hep.28885 10.1074/jbc.M304328200 10.1073/pnas.71.10.3971 10.1038/s41556-018-0174-4 10.1038/nchembio.1432 10.1016/j.molcel.2012.10.015 10.1038/nchembio.687 10.1073/pnas.0608357103 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 BioMed Central Ltd. 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2019 |
Copyright_xml | – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TO 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12943-019-1053-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1476-4598 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_c38dd41cc5a243a8a48fb161ea473948 PMC6704583 A597663465 31438961 10_1186_s12943_019_1053_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 81874228 – fundername: ; grantid: LQ19H160035 – fundername: ; grantid: 2019FZA7002 – fundername: ; grantid: 2017ZX10203205 – fundername: ; grantid: 81721091 – fundername: ; grantid: 2015C03034 |
GroupedDBID | --- 0R~ 123 29M 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PZZ RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PMFND 3V. 7TO 7XB 8FK AZQEC DWQXO H94 K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c626t-a8646c46afe3a8d08d62f1dcf275a87d58a0dec3ed821f8b82eb36fd16a72e4d3 |
IEDL.DBID | M48 |
ISSN | 1476-4598 |
IngestDate | Wed Aug 27 01:20:19 EDT 2025 Thu Aug 21 14:04:01 EDT 2025 Fri Jul 11 15:34:53 EDT 2025 Fri Jul 25 19:50:32 EDT 2025 Tue Jun 17 21:22:13 EDT 2025 Tue Jun 10 20:17:52 EDT 2025 Thu Apr 03 06:57:49 EDT 2025 Tue Jul 01 01:01:16 EDT 2025 Thu Apr 24 23:10:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | N6-methyladenosine (m6A) Wilms tumor 1-associated protein (WTAP) ETS1 Hepatocellular carcinoma (HCC) |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c626t-a8646c46afe3a8d08d62f1dcf275a87d58a0dec3ed821f8b82eb36fd16a72e4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2293704753?pq-origsite=%requestingapplication% |
PMID | 31438961 |
PQID | 2293704753 |
PQPubID | 42702 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c38dd41cc5a243a8a48fb161ea473948 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6704583 proquest_miscellaneous_2317593032 proquest_journals_2293704753 gale_infotracmisc_A597663465 gale_infotracacademiconefile_A597663465 pubmed_primary_31438961 crossref_primary_10_1186_s12943_019_1053_8 crossref_citationtrail_10_1186_s12943_019_1053_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-22 |
PublicationDateYYYYMMDD | 2019-08-22 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Molecular cancer |
PublicationTitleAlternate | Mol Cancer |
PublicationYear | 2019 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | G Jia (1053_CR17) 2011; 7 A Furlan (1053_CR51) 2014; 135 Y Ito (1053_CR50) 2000; 114 Z Li (1053_CR25) 2017; 31 KD Meyer (1053_CR8) 2012; 149 H Bansal (1053_CR37) 2014; 28 J Dittmer (1053_CR49) 2015; 35 C Zhang (1053_CR52) 2003; 278 CM Wei (1053_CR6) 1975; 4 X Wang (1053_CR18) 2014; 505 Y Yue (1053_CR14) 2018; 4 H Huang (1053_CR24) 2018; 20 HJ Jo (1053_CR39) 2013; 48 AS Warda (1053_CR11) 2017; 18 C Xu (1053_CR21) 2014; 10 J Tang (1053_CR35) 2018; 37 S Wang (1053_CR44) 2018; 17 NA Little (1053_CR31) 2000; 9 XL Ping (1053_CR9) 2014; 24 CR Alarcon (1053_CR22) 2015; 162 Y Kuai (1053_CR38) 2018; 16 DI Jin (1053_CR36) 2012; 103 X Cai (1053_CR27) 2018; 415 J Wen (1053_CR15) 2018; 69 S Fujiwara (1053_CR41) 1988; 2 N Liu (1053_CR23) 2015; 518 B Moindrot (1053_CR34) 2015; 12 IU Haussmann (1053_CR33) 2016; 540 SE Kane (1053_CR7) 1985; 5 DP Patil (1053_CR13) 2016; 537 J Liu (1053_CR40) 2014; 10 HB El-Serag (1053_CR3) 2008; 134 A Villanueva (1053_CR4) 2015; 61 R Desrosiers (1053_CR5) 1974; 71 H Shi (1053_CR20) 2017; 27 K Horiuchi (1053_CR32) 2006; 103 J Zhang (1053_CR45) 2016; 65 S Schwartz (1053_CR12) 2014; 8 X Wang (1053_CR10) 2016; 534 G Zheng (1053_CR16) 2013; 49 J Liu (1053_CR28) 2018; 20 C Wasylyk (1053_CR48) 1997; 14 JZ Ma (1053_CR29) 2017; 65 RL Siegel (1053_CR1) 2017; 67 X Wang (1053_CR19) 2015; 161 BS Zhao (1053_CR43) 2017; 18 M Chen (1053_CR30) 2018; 67 Y Wang (1053_CR42) 2014; 16 S Panneerdoss (1053_CR46) 2018; 4 J Ferlay (1053_CR2) 2010; 127 A Visvanathan (1053_CR47) 2018; 37 S Zhang (1053_CR26) 2017; 31 |
References_xml | – volume: 534 start-page: 575 year: 2016 ident: 1053_CR10 publication-title: Nature doi: 10.1038/nature18298 – volume: 518 start-page: 560 year: 2015 ident: 1053_CR23 publication-title: Nature doi: 10.1038/nature14234 – volume: 540 start-page: 301 year: 2016 ident: 1053_CR33 publication-title: Nature doi: 10.1038/nature20577 – volume: 103 start-page: 2102 year: 2012 ident: 1053_CR36 publication-title: Cancer Sci doi: 10.1111/cas.12022 – volume: 27 start-page: 315 year: 2017 ident: 1053_CR20 publication-title: Cell Res doi: 10.1038/cr.2017.15 – volume: 24 start-page: 177 year: 2014 ident: 1053_CR9 publication-title: Cell Res doi: 10.1038/cr.2014.3 – volume: 65 start-page: 1482 year: 2016 ident: 1053_CR45 publication-title: Gut doi: 10.1136/gutjnl-2014-308614 – volume: 67 start-page: 7 year: 2017 ident: 1053_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21387 – volume: 31 start-page: 591 year: 2017 ident: 1053_CR26 publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.02.013 – volume: 35 start-page: 20 year: 2015 ident: 1053_CR49 publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2015.09.010 – volume: 4 start-page: 379 year: 1975 ident: 1053_CR6 publication-title: Cell doi: 10.1016/0092-8674(75)90158-0 – volume: 20 start-page: 285 year: 2018 ident: 1053_CR24 publication-title: Nat Cell Biol doi: 10.1038/s41556-018-0045-z – volume: 37 start-page: 522 year: 2018 ident: 1053_CR47 publication-title: Oncogene doi: 10.1038/onc.2017.351 – volume: 8 start-page: 284 year: 2014 ident: 1053_CR12 publication-title: Cell Rep doi: 10.1016/j.celrep.2014.05.048 – volume: 17 start-page: 101 year: 2018 ident: 1053_CR44 publication-title: Mol Cancer doi: 10.1186/s12943-018-0847-4 – volume: 16 start-page: 191 year: 2014 ident: 1053_CR42 publication-title: Nat Cell Biol doi: 10.1038/ncb2902 – volume: 10 start-page: 927 year: 2014 ident: 1053_CR21 publication-title: Nat Chem Biol doi: 10.1038/nchembio.1654 – volume: 31 start-page: 127 year: 2017 ident: 1053_CR25 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.11.017 – volume: 37 start-page: 40 year: 2018 ident: 1053_CR35 publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-018-0706-6 – volume: 505 start-page: 117 year: 2014 ident: 1053_CR18 publication-title: Nature doi: 10.1038/nature12730 – volume: 161 start-page: 1388 year: 2015 ident: 1053_CR19 publication-title: Cell doi: 10.1016/j.cell.2015.05.014 – volume: 162 start-page: 1299 year: 2015 ident: 1053_CR22 publication-title: Cell doi: 10.1016/j.cell.2015.08.011 – volume: 67 start-page: 2254 year: 2018 ident: 1053_CR30 publication-title: Hepatology doi: 10.1002/hep.29683 – volume: 5 start-page: 2298 year: 1985 ident: 1053_CR7 publication-title: Mol Cell Biol doi: 10.1128/MCB.5.9.2298 – volume: 14 start-page: 899 year: 1997 ident: 1053_CR48 publication-title: Oncogene doi: 10.1038/sj.onc.1200914 – volume: 28 start-page: 1171 year: 2014 ident: 1053_CR37 publication-title: Leukemia doi: 10.1038/leu.2014.16 – volume: 18 start-page: 31 year: 2017 ident: 1053_CR43 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2016.132 – volume: 16 start-page: 50 year: 2018 ident: 1053_CR38 publication-title: Cell Commun Signal doi: 10.1186/s12964-018-0258-6 – volume: 61 start-page: 1945 year: 2015 ident: 1053_CR4 publication-title: Hepatology doi: 10.1002/hep.27732 – volume: 127 start-page: 2893 year: 2010 ident: 1053_CR2 publication-title: Int J Cancer doi: 10.1002/ijc.25516 – volume: 4 start-page: 10 year: 2018 ident: 1053_CR14 publication-title: Cell Discovery doi: 10.1038/s41421-018-0019-0 – volume: 537 start-page: 369 year: 2016 ident: 1053_CR13 publication-title: Nature doi: 10.1038/nature19342 – volume: 134 start-page: 1752 year: 2008 ident: 1053_CR3 publication-title: Gastroenterology doi: 10.1053/j.gastro.2008.02.090 – volume: 18 start-page: 2004 year: 2017 ident: 1053_CR11 publication-title: EMBO Rep doi: 10.15252/embr.201744940 – volume: 48 start-page: 1271 year: 2013 ident: 1053_CR39 publication-title: J Gastroenterol doi: 10.1007/s00535-013-0748-7 – volume: 4 start-page: eaar8263 year: 2018 ident: 1053_CR46 publication-title: Sci Adv doi: 10.1126/sciadv.aar8263 – volume: 69 start-page: 1028 year: 2018 ident: 1053_CR15 publication-title: Mol Cell doi: 10.1016/j.molcel.2018.02.015 – volume: 149 start-page: 1635 year: 2012 ident: 1053_CR8 publication-title: Cell doi: 10.1016/j.cell.2012.05.003 – volume: 2 start-page: 99 year: 1988 ident: 1053_CR41 publication-title: Oncogene – volume: 12 start-page: 562 year: 2015 ident: 1053_CR34 publication-title: Cell Rep doi: 10.1016/j.celrep.2015.06.053 – volume: 114 start-page: 719 year: 2000 ident: 1053_CR50 publication-title: Am J Clin Pathol doi: 10.1309/RAVV-8NM1-CJB7-GJFR – volume: 415 start-page: 11 year: 2018 ident: 1053_CR27 publication-title: Cancer Lett doi: 10.1016/j.canlet.2017.11.018 – volume: 9 start-page: 2231 year: 2000 ident: 1053_CR31 publication-title: Hum Mol Genet doi: 10.1093/oxfordjournals.hmg.a018914 – volume: 135 start-page: 2317 year: 2014 ident: 1053_CR51 publication-title: Int J Cancer doi: 10.1002/ijc.28881 – volume: 65 start-page: 529 year: 2017 ident: 1053_CR29 publication-title: Hepatology doi: 10.1002/hep.28885 – volume: 278 start-page: 27903 year: 2003 ident: 1053_CR52 publication-title: J Biol Chem doi: 10.1074/jbc.M304328200 – volume: 71 start-page: 3971 year: 1974 ident: 1053_CR5 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.71.10.3971 – volume: 20 start-page: 1074 year: 2018 ident: 1053_CR28 publication-title: Nat Cell Biol doi: 10.1038/s41556-018-0174-4 – volume: 10 start-page: 93 year: 2014 ident: 1053_CR40 publication-title: Nat Chem Biol doi: 10.1038/nchembio.1432 – volume: 49 start-page: 18 year: 2013 ident: 1053_CR16 publication-title: Mol Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 7 start-page: 885 year: 2011 ident: 1053_CR17 publication-title: Nat Chem Biol doi: 10.1038/nchembio.687 – volume: 103 start-page: 17278 year: 2006 ident: 1053_CR32 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0608357103 |
SSID | ssj0017874 |
Score | 2.6728861 |
Snippet | N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of... Background N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis... Abstract Background N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 127 |
SubjectTerms | Animals Antigens Cancer Cancer genetics Cancer therapies Carcinogenesis Carcinoma Carcinoma, Hepatocellular - genetics Carcinoma, Hepatocellular - metabolism Carcinoma, Hepatocellular - mortality Carcinoma, Hepatocellular - pathology Care and treatment Cell cycle Cell Cycle - genetics Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Line, Tumor Cell proliferation Cell Transformation, Neoplastic Chromatin Cyclin-dependent kinase inhibitor p21 Development and progression Disease Models, Animal DNA Methylation DNA microarrays ELAV-Like Protein 1 - metabolism Enzymes Epigenesis, Genetic Epigenetic inheritance Epigenetics Ets-1 protein ETS1 Female Gene expression Gene Silencing Genes Genetic aspects Genomes Genomics Hepatocellular carcinoma Hepatocellular carcinoma (HCC) Humans HuR protein Immunoprecipitation Liver Liver cancer Liver Neoplasms - genetics Liver Neoplasms - metabolism Liver Neoplasms - mortality Liver Neoplasms - pathology Luciferase Male Medical prognosis Metastasis Methylation Methyltransferases Methyltransferases - metabolism Mice Models, Biological N6-methyladenosine N6-methyladenosine (m6A) Neoplasm Staging Nephroblastoma Novels Patient outcomes Phenotypes Post-transcription Prognosis Proteins Proto-Oncogene Protein c-ets-1 - genetics Ribonucleic acid RNA RNA sequencing RNA Splicing Factors - genetics RNA Splicing Factors - metabolism Survival analysis Therapeutic applications Tumor Burden Tumorigenesis Tumors Wilms tumor 1-associated protein (WTAP) Writers WT1 protein Xenograft Model Antitumor Assays Xenografts |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yoPgien5VT4kgCEK55qNJ-rjKHYugiO7hvYVsPrjlvPZwuwf33zuTdpctgr742iSlycxkftNMfkPIW6c8b7yuSxbByGUjUulqpsrIoqhi4o0Lme3zi5qfyU_n9fleqS_MCRvogYeFO_bChCCZ97XjUjjjpElLgCnRSS0ama_5gs_bBlPj-QGooRzPMJlRx2vwahLzhhrYdmpRmokXymT9f27Jez5pmi-554BOH5IHI3Kks-GLH5E7sT0kd4dakreH5N7n8ZT8Mbn8sZh9pcn5gYE7rmnOwhoYOGiX6AX4oL7Df_aYhEo91hNquytHb1aOXqlZOd98K7flcXsar5GyE2870vUKLymBu8PXnCy-syfk7PRk8XFejkUVSg-xS186o6TyUrkUYTVDZYLiiQWfuK6d0aE2rgrRixgMZ8ksDYdwW6XAlNM8yiCekoO2a-NzQnVYRoBXIjmZZFLagdQFUsA5wBmV0AWptots_cg4joUvftoceRhlB7lYkItFuVhTkPe7IdcD3cbfOn9Aye06IlN2fgD6Y0f9sf_Sn4K8Q7lbtGf4OO_GawkwRWTGsjOIuACVSVUX5GjSE-zQT5u3mmPHfWBtOaApXUmICQvyZteMIzG3rY3dBvoghGsASvCCPBsUbTclkavTK1YQPVHByZynLe3qIrOEK53PxF_8j0V6Se5zNJ4KdlV-RA76X5v4CsBYv3yd7e433vYwVQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA5aUXwRrbfRKhEEQRg6uUySeZJVWhZBEd1i30I2l3bRzqzdXcF_7zkz2bWD0NdNZpjsuX0nOfkOIa-d8rzxui5ZBCOXjUilq5kqI4uiiok3LvRsn5_V9ER-PK1P84bbKpdVbn1i76hD53GP_JBDXNKVBHT9bvmrxK5ReLqaW2jcJLeQugy1Wp_uEi4GyijzSSYz6nAFsU1i9VADzqcWpRnFop6y_3_HfCUyjasmr4Sh4_vkXsaPdDII_AG5Edt9cnvoKPlnn9z5lM_KH5If32eTLzQ5P_BwxxXta7EGHg7aJXoOkWjd4c49lqJSj12F2u7C0d8LRy_UpJxuvpbbJrlrGpdI3Il3HulqgVeVIOjha45m39gjcnJ8NPswLXNrhdJDBrMunVFSealcisKZUJmgeGLBJ65rZ3SojatC9CIGw1kyc8Mh6VYpMOU0jzKIx2Sv7dr4lFAd5hFAlkhOJpmUdiB7gURwDtBGJXRBqu2fbH3mHcf2Fz9tn38YZQe5WJCLRblYU5C3u0eWA-nGdZPfo-R2E5Evu_-huzyz2fysFyYEybyvHZewYidNmgPYjU5q0Uh4yRuUu0Wrho_zLl9OgCUiP5adQN4F2EyquiAHo5lgjX48vNUcm73Byv7T3YK82g3jk1jh1sZuA3MQyDUAKHhBngyKtluS6HvUK1YQPVLB0ZrHI-3ivOcKV7o_GX92_Wc9J3c5mkUFXpMfkL315Sa-ALC1nr_sLeov91knxw priority: 102 providerName: ProQuest |
Title | WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31438961 https://www.proquest.com/docview/2293704753 https://www.proquest.com/docview/2317593032 https://pubmed.ncbi.nlm.nih.gov/PMC6704583 https://doaj.org/article/c38dd41cc5a243a8a48fb161ea473948 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3raxQxEA99oPhFan2ttkcEQRBWd5Nskv0gcpUrh9BS6h3et5DLwx62u_UeYv97J9m9s4tF_LrJhp2dmcxMZvIbhF5rbkhpRJHmDpScldSnush56nJHM-dJqW1E-zzlwzH7PCkmW2jd3qr9gYs7Q7vQT2o8v3z368fNR1D4D1HhJX-_AJvFQlVQCZtKQVO5jXbBMInQ0OCE_UkqgGzGJDMTPGVFKdsk551LdMxURPP_e8--ZbS6BZW3LNTxHnrYupa438jCI7Tlqn10r2k2ebOP7p-0afTH6PvXUf8Me20aiG63wLFMq4HowLXHF2CklnU41A9VqtiEhkNVfaXxz5nGV7yfDlfn6bp_7hK764DpGa5D4sUs3GICexiWGYy-5E_Q-Hgw-jRM264LqYHgZplqyRk3jGvvqJY2k5YTn1vjiSi0FLaQOrPOUGclyb2cSgLxOPc251oQxyx9inaqunLPERZ26sD_ol4zzzwXGsSCBow4DY5IRkWCsvVPVqaFJA-dMS5VDE0kVw1fFPBFBb4omaC3m1euGzyOf00-CpzbTAxQ2vFBPf-mWs1UhkprWW5MoQkDijWTfgp-sNNM0JLBIm8C31UQQfg4o9t7C0BigM5SfQjJwG1jvEjQQWcmKKrpDq8lR63lXBFwt0TGIGhM0KvNcHgzFL9Vrl7BnODjleBrkAQ9awRtQxKN7et5niDREcEOzd2RanYRYcS5iEnzF_9N30v0gAQNyWBvJQdoZzlfuUNwyZbTHtoWE9FDu0eD07PzXjzY6EXl-w0FajRI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEccLgnIFCgQJhIQUNbEd23lAaIFWW3oIwVbdN-P1QVfQZOluQf1T_EZmciyNkPrW17VjxZnrm_X4G0JeGGFpYWWeZB6MnBcsJCbPROIzz1IfaGFczfa5L4YH_OM4H6-QP91dGCyr7Hxi7ahdZfE_8g0KcUmmHND129nPBLtG4elq10KjUYsdf_YbUrb5m-0PIN-XlG5tjt4Pk7arQGIBvC8SowQXlgsTPDPKpcoJGjJnA5W5UdLlyqTOW-adollQE0Uh3xTBZcJI6rljsO4VchUCb4rJnhwvE7wMlJ-3J6eZEhtziKUcq5UKcHY5S1Qv9tUtAv4PBOciYb9K81zY27pNbrV4NR40CnaHrPhyjVxrOlierZHre-3Z_F3y_XA0-BQHYxvebz-P69qvhvcjrkJ8BJFvUeFJAZa-xha7GJXVsYl_TU18LAbJ8PRz0jXlXcR-hkSheMcynk_xahQEWVxmc_Qlu0cOLuWj3yerZVX6hySWbuIB1LFgeOBBSAO6xpB4zgC6SZmMSNp9ZG1bnnNst_FD1_mOErqRiwa5aJSLVhF5vXxk1pB8XDT5HUpuORH5uesfqpNvujV3bZlyjmfW5oZy2LHhKkwAXHvDJSs4LPIK5a7Ri8DLWdNehoAtIh-XHkCeB1iQizwi672ZYP22P9xpjm69z1z_s5WIPF8O45NYUVf66hTmIHAsAMDQiDxoFG25JQYgWhUii4jsqWBvz_2RcnpUc5MLWZ_EP7r4tZ6RG8PR3q7e3d7feUxuUjSRFDw2XSeri5NT_wSA3mLytLaumHy9bHP-C9HCZl4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WTAP+facilitates+progression+of+hepatocellular+carcinoma+via+m6A-HuR-dependent+epigenetic+silencing+of+ETS1&rft.jtitle=Molecular+cancer&rft.au=Chen%2C+Yunhao&rft.au=Peng%2C+Chuanhui&rft.au=Chen%2C+Junru&rft.au=Chen%2C+Diyu&rft.date=2019-08-22&rft.pub=BioMed+Central+Ltd&rft.issn=1476-4598&rft.eissn=1476-4598&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12943-019-1053-8&rft.externalDocID=A597663465 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-4598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-4598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-4598&client=summon |