WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1

N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methy...

Full description

Saved in:
Bibliographic Details
Published inMolecular cancer Vol. 18; no. 1; pp. 127 - 19
Main Authors Chen, Yunhao, Peng, Chuanhui, Chen, Junru, Chen, Diyu, Yang, Beng, He, Bin, Hu, Wendi, Zhang, Yanpeng, Liu, Hua, Dai, Longfei, Xie, Haiyang, Zhou, Lin, Wu, Jian, Zheng, Shusen
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 22.08.2019
BioMed Central
BMC
Subjects
RNA
Online AccessGet full text

Cover

Loading…
Abstract N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer. We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay. We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1. We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment.
AbstractList Background N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer. Methods We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay. Results We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1. Conclusion We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment.
N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer. We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay. We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1. We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment.
N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer.BACKGROUNDN6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer.We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay.METHODSWe determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay.We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1.RESULTSWe demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1.We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment.CONCLUSIONWe have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment.
Abstract Background N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer. Methods We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay. Results We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1. Conclusion We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment.
Background N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer. Methods We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay. Results We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1. Conclusion We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment. Keywords: N6-methyladenosine (m6A), Wilms tumor 1-associated protein (WTAP), Hepatocellular carcinoma (HCC), ETS1
N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of hepatocellular carcinoma (HCC), providing novel insights into the molecular pathogenesis of this disease. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been well studied in HCC. Here we investigated the biological role and underlying mechanism of WTAP in liver cancer. We determined the expression of WTAP and its correlation with clinicopathological features using tissue microarrays and the Cancer Genome Atlas (TCGA) dataset. And we clarified the effects of WTAP on HCC cells using cell proliferation assay, colony formation, Edu assay and subcutaneous xenograft experiments. We then applied RNA sequencing combined with gene expression omnibus (GEO) data to screen candidate targets of WTAP. Finally, we investigated the regulatory mechanism of WTAP in HCC by m6A dot blot assay, methylated RNA immunoprecipitation (MeRIP) assay, dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Chromatin immunoprecipitation (ChIP) assay. We demonstrated that WTAP was highly expressed in HCC which indicated the poor prognosis, and that WTAP expression served as an independent predictor of HCC survival. Functionally, WTAP promoted the proliferation capability and tumor growth of HCC cells in vitro and in vivo. Furthermore, ETS proto-oncogene 1 (ETS1) was identified as the downstream effector of WTAP. The m6A modification regulated by WTAP led to post-transcriptional suppression of ETS1, with the implication of Hu-Antigen R (HuR) as an RNA stabilizer. Then ETS1 was found to inhibit the progression of HCC and could rescue the phenotype induced by WTAP deficiency. Moreover, WTAP modulated the G2/M phase of HCC cells through a p21/p27-dependent pattern mediated by ETS1. We have identified that WTAP is significantly up-regulated in HCC and promotes liver cancer development. WTAP-guided m6A modification contributes to the progression of HCC via the HuR-ETS1-p21/p27 axis. Our study is the first to report that WTAP-mediated m6A methylation has a crucial role in HCC oncogenesis, and highlights WTAP as a potential therapeutic target of HCC treatment.
ArticleNumber 127
Audience Academic
Author Chen, Yunhao
Yang, Beng
Chen, Diyu
Liu, Hua
He, Bin
Zhang, Yanpeng
Wu, Jian
Hu, Wendi
Chen, Junru
Peng, Chuanhui
Xie, Haiyang
Dai, Longfei
Zhou, Lin
Zheng, Shusen
Author_xml – sequence: 1
  givenname: Yunhao
  surname: Chen
  fullname: Chen, Yunhao
– sequence: 2
  givenname: Chuanhui
  surname: Peng
  fullname: Peng, Chuanhui
– sequence: 3
  givenname: Junru
  surname: Chen
  fullname: Chen, Junru
– sequence: 4
  givenname: Diyu
  surname: Chen
  fullname: Chen, Diyu
– sequence: 5
  givenname: Beng
  surname: Yang
  fullname: Yang, Beng
– sequence: 6
  givenname: Bin
  surname: He
  fullname: He, Bin
– sequence: 7
  givenname: Wendi
  surname: Hu
  fullname: Hu, Wendi
– sequence: 8
  givenname: Yanpeng
  surname: Zhang
  fullname: Zhang, Yanpeng
– sequence: 9
  givenname: Hua
  surname: Liu
  fullname: Liu, Hua
– sequence: 10
  givenname: Longfei
  surname: Dai
  fullname: Dai, Longfei
– sequence: 11
  givenname: Haiyang
  surname: Xie
  fullname: Xie, Haiyang
– sequence: 12
  givenname: Lin
  surname: Zhou
  fullname: Zhou, Lin
– sequence: 13
  givenname: Jian
  surname: Wu
  fullname: Wu, Jian
– sequence: 14
  givenname: Shusen
  surname: Zheng
  fullname: Zheng, Shusen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31438961$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_gB3BBkbhwSYk_YjsXpFVVaKVKIFjE0Zq1J6lL1g52Uol_j8OW0q0QysFR8sxjz_g9Lg588FgUL0l9SogSbxOhLWdVTdqK1A2r1JPiiHApKt606uDB-2FxnNJNXROpJH9WHDLCmWoFOSq-f1uvPpUdGDe4CSZM5RhDHzElF3wZuvIaR5iCwWGYB4ilgWicD1sobx2UW7GqLubPlcURvUU_lTi6Hj1OzpTJDegz3C-a8_UX8rx42sGQ8MXdelJ8fX--Pruorj5-uDxbXVVGUDFVoAQXhgvokIGytbKCdsSajsoGlLSNgtqiYWgVJZ3aKIobJjpLBEiK3LKT4nLntQFu9BjdFuJPHcDp3x9C7DXEfMIBtWHKWk6MaYDyvBtw1W2IIAhcspar7Hq3c43zZovW5B4jDHvS_T_eXes-3Goha94olgVv7gQx_JgxTXrr0jJO8BjmpCkjsmlZzWhGXz9Cb8IcfR6VprRlWSgb9pfqITfgfBfyvmaR6lXTSiEYF02mTv9B5cfi1pkcoy7fzn7Bq4eN3nf4JyoZIDvAxJBSxO4eIbVe4qh3cdQ5jnqJo16mJx_VmCVlOVr5NG74T-UvDtvjWQ
CitedBy_id crossref_primary_10_1007_s11356_023_30710_6
crossref_primary_10_1007_s12640_023_00653_4
crossref_primary_10_1038_s41598_024_76326_9
crossref_primary_10_1016_j_xinn_2020_100066
crossref_primary_10_1038_s41575_023_00884_y
crossref_primary_10_3390_cancers15072068
crossref_primary_10_1002_cbin_11459
crossref_primary_10_1016_j_biopha_2020_110731
crossref_primary_10_1186_s13046_021_01871_4
crossref_primary_10_1002_ijc_35067
crossref_primary_10_1155_2022_7730433
crossref_primary_10_1038_s41417_020_00208_1
crossref_primary_10_1016_j_apsb_2024_01_011
crossref_primary_10_1007_s00535_023_02008_4
crossref_primary_10_1016_j_dld_2022_12_005
crossref_primary_10_1158_0008_5472_CAN_23_0337
crossref_primary_10_7717_peerj_14379
crossref_primary_10_1007_s11033_022_07126_5
crossref_primary_10_3389_fimmu_2022_1022720
crossref_primary_10_1016_j_omtn_2019_11_022
crossref_primary_10_1038_s41418_021_00905_w
crossref_primary_10_3390_curroncol32030159
crossref_primary_10_1089_cbr_2023_0186
crossref_primary_10_3389_fimmu_2023_1285370
crossref_primary_10_1093_toxres_tfae099
crossref_primary_10_3389_fimmu_2022_905211
crossref_primary_10_1007_s11427_023_2494_x
crossref_primary_10_1152_ajpcell_00214_2022
crossref_primary_10_18632_aging_203778
crossref_primary_10_1016_j_bcp_2024_116419
crossref_primary_10_1177_15330338221085373
crossref_primary_10_3389_fgene_2020_614566
crossref_primary_10_2147_JIR_S339670
crossref_primary_10_1016_j_bcp_2020_114258
crossref_primary_10_18632_aging_204836
crossref_primary_10_1016_j_cyto_2023_156480
crossref_primary_10_18632_aging_203506
crossref_primary_10_1016_j_omtn_2021_08_009
crossref_primary_10_3390_cells11091516
crossref_primary_10_1186_s12935_024_03307_3
crossref_primary_10_3390_pharmaceutics15041249
crossref_primary_10_1016_j_omto_2020_06_007
crossref_primary_10_1007_s12032_022_01726_8
crossref_primary_10_1016_j_biopha_2020_109976
crossref_primary_10_3389_fcell_2023_1275475
crossref_primary_10_1186_s13578_020_00479_z
crossref_primary_10_3389_fimmu_2021_789914
crossref_primary_10_1186_s12958_021_00872_4
crossref_primary_10_3390_ph16020185
crossref_primary_10_1038_s41419_023_05565_x
crossref_primary_10_3389_fonc_2021_691372
crossref_primary_10_3389_fcell_2021_762588
crossref_primary_10_1002_cbin_11570
crossref_primary_10_1007_s10753_023_01958_4
crossref_primary_10_1186_s12967_022_03814_9
crossref_primary_10_1016_j_neo_2024_101049
crossref_primary_10_1186_s12935_020_01283_y
crossref_primary_10_1007_s00210_023_02793_y
crossref_primary_10_1002_iub_2410
crossref_primary_10_1007_s11033_025_10419_0
crossref_primary_10_1111_jcmm_16800
crossref_primary_10_1186_s12967_024_05771_x
crossref_primary_10_1155_2022_8301888
crossref_primary_10_3390_ijms22179428
crossref_primary_10_18632_aging_204811
crossref_primary_10_1016_j_molcel_2021_03_010
crossref_primary_10_1016_j_cbi_2024_111352
crossref_primary_10_1016_j_pbiomolbio_2024_10_003
crossref_primary_10_1186_s13045_022_01231_5
crossref_primary_10_1038_s41392_022_01003_0
crossref_primary_10_1097_JS9_0000000000001794
crossref_primary_10_1097_MD_0000000000031376
crossref_primary_10_18632_aging_204827
crossref_primary_10_4252_wjsc_v14_i7_539
crossref_primary_10_1111_cas_15366
crossref_primary_10_1016_j_hbpd_2024_12_004
crossref_primary_10_18632_aging_202761
crossref_primary_10_1002_tox_24031
crossref_primary_10_1038_s41401_023_01214_3
crossref_primary_10_1186_s12943_019_1109_9
crossref_primary_10_2174_0929867329666220922102949
crossref_primary_10_3389_fimmu_2024_1423378
crossref_primary_10_1186_s12935_020_01679_w
crossref_primary_10_1016_j_canlet_2022_215815
crossref_primary_10_1038_s41419_020_02847_6
crossref_primary_10_15252_embr_202052101
crossref_primary_10_1016_j_bbrc_2022_02_041
crossref_primary_10_1016_j_jaut_2022_102872
crossref_primary_10_3892_ijo_2022_5445
crossref_primary_10_1186_s12967_023_04209_0
crossref_primary_10_1016_j_heliyon_2022_e10931
crossref_primary_10_1016_j_phrs_2021_105846
crossref_primary_10_1016_j_jbc_2022_102715
crossref_primary_10_3389_fonc_2021_716921
crossref_primary_10_1186_s12935_021_02288_x
crossref_primary_10_3390_ncrna8020021
crossref_primary_10_1016_j_tranon_2024_102257
crossref_primary_10_1080_10408398_2021_1927975
crossref_primary_10_3389_fphar_2022_873030
crossref_primary_10_1016_j_prp_2024_155268
crossref_primary_10_1186_s12885_022_09925_2
crossref_primary_10_1186_s12964_023_01357_0
crossref_primary_10_3892_ijmm_2023_5289
crossref_primary_10_11569_wcjd_v29_i23_1373
crossref_primary_10_1002_cam4_4157
crossref_primary_10_1016_j_biopha_2023_114953
crossref_primary_10_1186_s12943_022_01508_w
crossref_primary_10_1007_s12032_022_01830_9
crossref_primary_10_1186_s12876_023_02757_9
crossref_primary_10_1080_21655979_2022_2051686
crossref_primary_10_3390_cancers14133195
crossref_primary_10_1016_j_intimp_2020_106918
crossref_primary_10_1126_scitranslmed_abk2709
crossref_primary_10_3389_fonc_2023_1290330
crossref_primary_10_3389_fcell_2022_813581
crossref_primary_10_18632_aging_205666
crossref_primary_10_3389_fonc_2025_1516867
crossref_primary_10_2217_fon_2020_0630
crossref_primary_10_1186_s12943_022_01634_5
crossref_primary_10_1186_s13062_025_00620_3
crossref_primary_10_1080_15592294_2023_2242688
crossref_primary_10_1615_JEnvironPatholToxicolOncol_2024050167
crossref_primary_10_1111_jcmm_16859
crossref_primary_10_1186_s12885_024_12956_6
crossref_primary_10_18632_aging_205312
crossref_primary_10_1016_j_bcp_2024_116375
crossref_primary_10_3389_fendo_2021_568397
crossref_primary_10_1155_2021_6614331
crossref_primary_10_1186_s12859_023_05379_w
crossref_primary_10_1167_iovs_66_2_58
crossref_primary_10_1016_j_trecan_2022_02_010
crossref_primary_10_3389_fimmu_2021_731842
crossref_primary_10_1002_iub_2678
crossref_primary_10_1002_tox_23780
crossref_primary_10_1002_SMMD_20230008
crossref_primary_10_1088_1748_605X_acc43e
crossref_primary_10_1007_s10620_024_08780_4
crossref_primary_10_1007_s12033_024_01134_5
crossref_primary_10_1186_s43556_025_00256_9
crossref_primary_10_1016_j_intimp_2024_113670
crossref_primary_10_1016_j_clim_2023_109325
crossref_primary_10_1155_2021_6670390
crossref_primary_10_1016_j_omtn_2020_05_032
crossref_primary_10_1007_s40199_023_00482_y
crossref_primary_10_1016_j_omtn_2022_01_013
crossref_primary_10_3389_fonc_2020_01435
crossref_primary_10_3389_fimmu_2021_782551
crossref_primary_10_1007_s10142_023_01096_y
crossref_primary_10_1038_s41419_021_04459_0
crossref_primary_10_1155_2022_6130806
crossref_primary_10_1038_s41420_024_01959_8
crossref_primary_10_1016_j_virol_2023_03_007
crossref_primary_10_1016_j_jhep_2020_04_009
crossref_primary_10_1016_j_phytochem_2022_113217
crossref_primary_10_1002_cbin_12266
crossref_primary_10_1155_2021_6461552
crossref_primary_10_1016_j_bbadis_2024_167290
crossref_primary_10_1038_s41598_022_22211_2
crossref_primary_10_3389_fimmu_2022_923533
crossref_primary_10_3389_fphar_2022_857774
crossref_primary_10_1093_stcltm_szad020
crossref_primary_10_1016_j_biopha_2024_116365
crossref_primary_10_3390_cancers15113053
crossref_primary_10_3389_fimmu_2025_1533940
crossref_primary_10_1016_j_ymthe_2022_12_013
crossref_primary_10_1016_j_heliyon_2023_e21285
crossref_primary_10_1016_j_bbrc_2024_150152
crossref_primary_10_3389_fcell_2022_822011
crossref_primary_10_1158_0008_5472_CAN_21_0494
crossref_primary_10_1111_jcmm_70207
crossref_primary_10_1186_s12967_023_03983_1
crossref_primary_10_3892_ijo_2024_5674
crossref_primary_10_1016_j_canlet_2024_216691
crossref_primary_10_3389_fcell_2021_650023
crossref_primary_10_3389_fcell_2020_629030
crossref_primary_10_3389_fonc_2021_611544
crossref_primary_10_3389_fcell_2021_777007
crossref_primary_10_1186_s13045_024_01546_5
crossref_primary_10_3389_fgene_2020_540186
crossref_primary_10_1007_s10528_023_10417_6
crossref_primary_10_3389_fcell_2021_778582
crossref_primary_10_1186_s12920_023_01509_8
crossref_primary_10_3389_fonc_2023_1138238
crossref_primary_10_1515_med_2023_0818
crossref_primary_10_1097_MD_0000000000032399
crossref_primary_10_1002_cac2_12161
crossref_primary_10_3390_biom10071071
crossref_primary_10_1007_s00403_024_03281_w
crossref_primary_10_1038_s41420_021_00703_w
crossref_primary_10_3389_fimmu_2021_735170
crossref_primary_10_1097_MD_0000000000031195
crossref_primary_10_1016_j_omtn_2020_12_021
crossref_primary_10_1155_2022_1395557
crossref_primary_10_1111_cas_15658
crossref_primary_10_1016_j_canlet_2023_216598
crossref_primary_10_1186_s13045_024_01545_6
crossref_primary_10_1016_j_aohep_2021_100538
crossref_primary_10_1097_JCMA_0000000000000251
crossref_primary_10_1111_jcmm_70344
crossref_primary_10_1007_s10142_023_01225_7
crossref_primary_10_1016_j_biopha_2020_110098
crossref_primary_10_1016_j_cellsig_2024_111572
crossref_primary_10_1016_j_gene_2020_144348
crossref_primary_10_3389_fonc_2021_690641
crossref_primary_10_1002_mc_23602
crossref_primary_10_1038_s41598_024_81642_1
crossref_primary_10_1016_j_placenta_2022_05_008
crossref_primary_10_1007_s11010_022_04617_8
crossref_primary_10_1007_s12033_023_00834_8
crossref_primary_10_3389_fcell_2021_766020
crossref_primary_10_1016_j_yexcr_2023_113764
crossref_primary_10_3389_fcell_2021_642443
crossref_primary_10_1186_s12935_025_03715_z
crossref_primary_10_1002_wrna_1725
crossref_primary_10_1016_j_biopha_2024_116966
crossref_primary_10_3389_fgene_2020_00863
crossref_primary_10_3389_fmolb_2024_1521839
crossref_primary_10_1155_2022_2427987
crossref_primary_10_1186_s12967_022_03395_7
crossref_primary_10_1038_s41388_023_02704_8
crossref_primary_10_1002_tox_23852
crossref_primary_10_1096_fj_202202145RRR
crossref_primary_10_1360_SSV_2023_0127
crossref_primary_10_3389_fonc_2020_578963
crossref_primary_10_1080_21655979_2021_1990578
crossref_primary_10_1016_j_lfs_2020_118082
crossref_primary_10_3389_fonc_2022_1018333
crossref_primary_10_2147_CMAR_S262450
crossref_primary_10_1016_j_gene_2021_146050
crossref_primary_10_1038_s41419_022_05268_9
crossref_primary_10_18632_aging_204280
crossref_primary_10_1186_s12943_020_01159_9
crossref_primary_10_1002_jbt_23031
crossref_primary_10_1016_j_gene_2020_144839
crossref_primary_10_1038_s41598_022_05035_y
crossref_primary_10_3389_fimmu_2021_722642
crossref_primary_10_1155_2022_3888798
crossref_primary_10_3389_fcell_2022_973548
crossref_primary_10_3389_fphar_2022_903699
crossref_primary_10_18632_aging_203062
crossref_primary_10_1007_s12035_024_04604_8
crossref_primary_10_1155_2021_7479326
crossref_primary_10_3389_fphar_2022_984453
crossref_primary_10_1186_s12920_022_01207_x
crossref_primary_10_1002_jbt_70117
crossref_primary_10_1155_2021_6545728
crossref_primary_10_1016_j_heliyon_2023_e16280
crossref_primary_10_1007_s10266_024_00977_3
crossref_primary_10_1111_imcb_12620
crossref_primary_10_1155_2022_4169150
crossref_primary_10_1016_j_heliyon_2024_e26262
crossref_primary_10_3389_fimmu_2022_892750
crossref_primary_10_3389_fonc_2021_755206
crossref_primary_10_2217_bmm_2020_0178
crossref_primary_10_1186_s12967_020_02417_6
crossref_primary_10_1186_s40364_020_00203_6
crossref_primary_10_1016_j_biopha_2023_115398
crossref_primary_10_1038_s41420_024_02092_2
crossref_primary_10_3389_fmolb_2020_604766
crossref_primary_10_1038_s41420_022_01125_y
crossref_primary_10_1111_cas_15924
crossref_primary_10_1016_j_tice_2022_101794
crossref_primary_10_1111_jgh_15999
crossref_primary_10_1186_s12967_023_04805_0
crossref_primary_10_1016_j_omtn_2020_10_031
crossref_primary_10_1186_s12967_023_04651_0
crossref_primary_10_3389_fonc_2020_623634
crossref_primary_10_3390_biom14050514
crossref_primary_10_1016_j_prp_2022_154114
crossref_primary_10_1186_s40001_023_01016_7
crossref_primary_10_3389_fphar_2024_1376005
crossref_primary_10_1016_j_biopha_2023_114298
crossref_primary_10_1186_s12943_022_01500_4
crossref_primary_10_1186_s12943_023_01759_1
crossref_primary_10_3390_ijms23137165
crossref_primary_10_1016_j_ymthe_2020_06_024
crossref_primary_10_3389_fonc_2020_620352
crossref_primary_10_1016_j_cellsig_2024_111076
crossref_primary_10_1186_s13046_021_01859_0
crossref_primary_10_3389_fgene_2022_975190
crossref_primary_10_1002_mco2_256
crossref_primary_10_1158_0008_5472_CAN_21_1628
crossref_primary_10_1002_stem_3279
crossref_primary_10_1186_s40164_021_00234_1
crossref_primary_10_1002_cac2_12443
crossref_primary_10_1186_s12943_022_01510_2
crossref_primary_10_3892_ol_2021_12482
crossref_primary_10_1186_s13048_020_00710_y
crossref_primary_10_1002_ctm2_661
crossref_primary_10_1186_s13045_022_01304_5
crossref_primary_10_1002_cac2_12325
crossref_primary_10_1007_s10528_023_10423_8
crossref_primary_10_11569_wcjd_v29_i14_747
crossref_primary_10_1186_s12935_023_03197_x
crossref_primary_10_3390_jcm12010155
crossref_primary_10_1038_s41374_022_00811_w
crossref_primary_10_1016_j_drudis_2021_06_004
crossref_primary_10_1016_j_jare_2025_01_008
crossref_primary_10_1158_0008_5472_CAN_21_1518
crossref_primary_10_3390_ijms252111803
crossref_primary_10_1016_j_isci_2022_105075
crossref_primary_10_1002_wrna_1719
crossref_primary_10_1080_19336918_2023_2180196
crossref_primary_10_1016_j_bbamcr_2024_119880
crossref_primary_10_3389_fonc_2022_852000
crossref_primary_10_1038_s41420_022_01050_0
crossref_primary_10_3390_cancers13102487
crossref_primary_10_3389_fgene_2021_805607
crossref_primary_10_1155_2021_8859590
crossref_primary_10_1186_s12943_024_02041_8
crossref_primary_10_3389_fonc_2020_01105
crossref_primary_10_1002_mc_23330
crossref_primary_10_1186_s12943_022_01619_4
crossref_primary_10_3389_fgene_2022_1042543
crossref_primary_10_1016_j_biopha_2019_109694
crossref_primary_10_3389_fimmu_2022_918140
crossref_primary_10_3389_fmed_2022_922219
crossref_primary_10_1007_s13273_023_00383_w
crossref_primary_10_1016_j_ymeth_2022_07_011
crossref_primary_10_1016_j_envpol_2023_121897
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107613
crossref_primary_10_3389_fgene_2021_825109
crossref_primary_10_3389_fmed_2020_572494
crossref_primary_10_1016_j_ymthe_2022_01_002
crossref_primary_10_1038_s41388_023_02665_y
crossref_primary_10_1038_s41598_022_20730_6
crossref_primary_10_1080_21655979_2021_2023792
crossref_primary_10_1038_s41417_024_00789_1
crossref_primary_10_3389_fimmu_2023_1148722
crossref_primary_10_1016_j_isci_2023_107931
crossref_primary_10_1016_j_heliyon_2024_e26767
crossref_primary_10_3389_fcell_2022_820562
crossref_primary_10_3389_fmolb_2022_1096679
crossref_primary_10_1016_j_semcancer_2020_11_007
crossref_primary_10_3389_fcell_2021_783322
crossref_primary_10_1007_s10620_022_07620_7
crossref_primary_10_1111_cas_16137
crossref_primary_10_1155_2022_8114731
crossref_primary_10_18632_aging_202723
crossref_primary_10_3892_etm_2021_10358
crossref_primary_10_3389_fimmu_2022_917153
crossref_primary_10_1186_s40164_022_00298_7
crossref_primary_10_3390_biom12091224
crossref_primary_10_1007_s10616_024_00648_9
crossref_primary_10_3389_fimmu_2024_1439485
crossref_primary_10_1186_s12964_024_01595_w
crossref_primary_10_1016_j_canlet_2021_08_027
crossref_primary_10_1016_j_phrs_2021_105648
crossref_primary_10_1007_s11010_024_05040_x
crossref_primary_10_3389_fmolb_2021_665222
crossref_primary_10_1186_s12943_020_01239_w
crossref_primary_10_1093_lifemeta_loac028
crossref_primary_10_1002_mco2_715
crossref_primary_10_1016_j_vetmic_2023_109887
crossref_primary_10_1080_08830185_2023_2280544
crossref_primary_10_1016_j_canlet_2024_217395
crossref_primary_10_1016_j_ecoenv_2021_113059
crossref_primary_10_1016_j_ccell_2020_02_004
crossref_primary_10_3389_fgene_2022_1007696
crossref_primary_10_1186_s12943_020_01204_7
crossref_primary_10_1371_journal_pone_0294144
crossref_primary_10_1158_0008_5472_CAN_20_4107
crossref_primary_10_1186_s13046_021_01952_4
crossref_primary_10_1016_j_mtbio_2022_100503
crossref_primary_10_1038_s42003_022_03878_9
crossref_primary_10_62347_NZIJ5785
crossref_primary_10_1177_11769343221142013
crossref_primary_10_1155_2021_5516100
crossref_primary_10_1186_s12943_020_01172_y
crossref_primary_10_3389_fonc_2022_861807
crossref_primary_10_1007_s12013_024_01342_5
crossref_primary_10_3389_fbioe_2022_822835
crossref_primary_10_3389_fphar_2022_1052177
crossref_primary_10_3390_cancers14112666
crossref_primary_10_1186_s12943_020_01216_3
crossref_primary_10_1002_1878_0261_13326
crossref_primary_10_1007_s10528_024_10947_7
crossref_primary_10_3389_fimmu_2022_997316
crossref_primary_10_2174_1566523221666211126105940
crossref_primary_10_3389_fcell_2022_946219
crossref_primary_10_3389_fmed_2022_821710
crossref_primary_10_1007_s00438_024_02203_9
crossref_primary_10_1038_s41420_023_01746_x
crossref_primary_10_3389_fonc_2021_670353
crossref_primary_10_1038_s41420_024_02220_y
crossref_primary_10_1038_s41401_024_01309_5
crossref_primary_10_3892_ol_2024_14585
crossref_primary_10_2174_0929867330666230525143252
crossref_primary_10_1016_j_bbcan_2025_189299
crossref_primary_10_1038_s41388_021_02066_z
crossref_primary_10_3389_fphar_2022_933332
crossref_primary_10_1016_j_virusres_2021_198510
crossref_primary_10_1016_j_ymthe_2022_02_021
crossref_primary_10_1111_jdv_19933
crossref_primary_10_2147_OTT_S286326
crossref_primary_10_3389_fendo_2022_857765
crossref_primary_10_1007_s10585_024_10316_z
crossref_primary_10_3389_fonc_2021_624395
crossref_primary_10_1080_14796694_2024_2442296
crossref_primary_10_1093_bib_bbad498
crossref_primary_10_1097_MD_0000000000031747
crossref_primary_10_1007_s00277_023_05302_6
crossref_primary_10_1038_s41420_023_01669_7
crossref_primary_10_1016_j_ajpath_2024_05_004
crossref_primary_10_3389_fcell_2021_681745
crossref_primary_10_1186_s11658_022_00350_8
crossref_primary_10_1210_clinem_dgab652
crossref_primary_10_3389_fgene_2021_744113
crossref_primary_10_1016_j_jbc_2023_105301
crossref_primary_10_1016_j_bbcan_2023_188872
crossref_primary_10_1007_s44337_025_00199_8
crossref_primary_10_1155_2020_2053902
crossref_primary_10_1038_s41375_023_01904_1
crossref_primary_10_1080_1061186X_2023_2300682
crossref_primary_10_1186_s13578_020_00513_0
crossref_primary_10_1016_j_biopha_2023_114669
crossref_primary_10_1371_journal_pone_0263749
crossref_primary_10_1016_j_heliyon_2024_e34079
crossref_primary_10_1038_s41420_024_02058_4
crossref_primary_10_1016_j_prmcm_2021_100023
Cites_doi 10.1038/nature18298
10.1038/nature14234
10.1038/nature20577
10.1111/cas.12022
10.1038/cr.2017.15
10.1038/cr.2014.3
10.1136/gutjnl-2014-308614
10.3322/caac.21387
10.1016/j.ccell.2017.02.013
10.1016/j.semcancer.2015.09.010
10.1016/0092-8674(75)90158-0
10.1038/s41556-018-0045-z
10.1038/onc.2017.351
10.1016/j.celrep.2014.05.048
10.1186/s12943-018-0847-4
10.1038/ncb2902
10.1038/nchembio.1654
10.1016/j.ccell.2016.11.017
10.1186/s13046-018-0706-6
10.1038/nature12730
10.1016/j.cell.2015.05.014
10.1016/j.cell.2015.08.011
10.1002/hep.29683
10.1128/MCB.5.9.2298
10.1038/sj.onc.1200914
10.1038/leu.2014.16
10.1038/nrm.2016.132
10.1186/s12964-018-0258-6
10.1002/hep.27732
10.1002/ijc.25516
10.1038/s41421-018-0019-0
10.1038/nature19342
10.1053/j.gastro.2008.02.090
10.15252/embr.201744940
10.1007/s00535-013-0748-7
10.1126/sciadv.aar8263
10.1016/j.molcel.2018.02.015
10.1016/j.cell.2012.05.003
10.1016/j.celrep.2015.06.053
10.1309/RAVV-8NM1-CJB7-GJFR
10.1016/j.canlet.2017.11.018
10.1093/oxfordjournals.hmg.a018914
10.1002/ijc.28881
10.1002/hep.28885
10.1074/jbc.M304328200
10.1073/pnas.71.10.3971
10.1038/s41556-018-0174-4
10.1038/nchembio.1432
10.1016/j.molcel.2012.10.015
10.1038/nchembio.687
10.1073/pnas.0608357103
ContentType Journal Article
Copyright COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2019
Copyright_xml – notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TO
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12943-019-1053-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1476-4598
EndPage 19
ExternalDocumentID oai_doaj_org_article_c38dd41cc5a243a8a48fb161ea473948
PMC6704583
A597663465
31438961
10_1186_s12943_019_1053_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 81874228
– fundername: ;
  grantid: LQ19H160035
– fundername: ;
  grantid: 2019FZA7002
– fundername: ;
  grantid: 2017ZX10203205
– fundername: ;
  grantid: 81721091
– fundername: ;
  grantid: 2015C03034
GroupedDBID ---
0R~
123
29M
2WC
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PZZ
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7TO
7XB
8FK
AZQEC
DWQXO
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c626t-a8646c46afe3a8d08d62f1dcf275a87d58a0dec3ed821f8b82eb36fd16a72e4d3
IEDL.DBID M48
ISSN 1476-4598
IngestDate Wed Aug 27 01:20:19 EDT 2025
Thu Aug 21 14:04:01 EDT 2025
Fri Jul 11 15:34:53 EDT 2025
Fri Jul 25 19:50:32 EDT 2025
Tue Jun 17 21:22:13 EDT 2025
Tue Jun 10 20:17:52 EDT 2025
Thu Apr 03 06:57:49 EDT 2025
Tue Jul 01 01:01:16 EDT 2025
Thu Apr 24 23:10:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords N6-methyladenosine (m6A)
Wilms tumor 1-associated protein (WTAP)
ETS1
Hepatocellular carcinoma (HCC)
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c626t-a8646c46afe3a8d08d62f1dcf275a87d58a0dec3ed821f8b82eb36fd16a72e4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2293704753?pq-origsite=%requestingapplication%
PMID 31438961
PQID 2293704753
PQPubID 42702
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_c38dd41cc5a243a8a48fb161ea473948
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6704583
proquest_miscellaneous_2317593032
proquest_journals_2293704753
gale_infotracmisc_A597663465
gale_infotracacademiconefile_A597663465
pubmed_primary_31438961
crossref_primary_10_1186_s12943_019_1053_8
crossref_citationtrail_10_1186_s12943_019_1053_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-22
PublicationDateYYYYMMDD 2019-08-22
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-22
  day: 22
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Molecular cancer
PublicationTitleAlternate Mol Cancer
PublicationYear 2019
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References G Jia (1053_CR17) 2011; 7
A Furlan (1053_CR51) 2014; 135
Y Ito (1053_CR50) 2000; 114
Z Li (1053_CR25) 2017; 31
KD Meyer (1053_CR8) 2012; 149
H Bansal (1053_CR37) 2014; 28
J Dittmer (1053_CR49) 2015; 35
C Zhang (1053_CR52) 2003; 278
CM Wei (1053_CR6) 1975; 4
X Wang (1053_CR18) 2014; 505
Y Yue (1053_CR14) 2018; 4
H Huang (1053_CR24) 2018; 20
HJ Jo (1053_CR39) 2013; 48
AS Warda (1053_CR11) 2017; 18
C Xu (1053_CR21) 2014; 10
J Tang (1053_CR35) 2018; 37
S Wang (1053_CR44) 2018; 17
NA Little (1053_CR31) 2000; 9
XL Ping (1053_CR9) 2014; 24
CR Alarcon (1053_CR22) 2015; 162
Y Kuai (1053_CR38) 2018; 16
DI Jin (1053_CR36) 2012; 103
X Cai (1053_CR27) 2018; 415
J Wen (1053_CR15) 2018; 69
S Fujiwara (1053_CR41) 1988; 2
N Liu (1053_CR23) 2015; 518
B Moindrot (1053_CR34) 2015; 12
IU Haussmann (1053_CR33) 2016; 540
SE Kane (1053_CR7) 1985; 5
DP Patil (1053_CR13) 2016; 537
J Liu (1053_CR40) 2014; 10
HB El-Serag (1053_CR3) 2008; 134
A Villanueva (1053_CR4) 2015; 61
R Desrosiers (1053_CR5) 1974; 71
H Shi (1053_CR20) 2017; 27
K Horiuchi (1053_CR32) 2006; 103
J Zhang (1053_CR45) 2016; 65
S Schwartz (1053_CR12) 2014; 8
X Wang (1053_CR10) 2016; 534
G Zheng (1053_CR16) 2013; 49
J Liu (1053_CR28) 2018; 20
C Wasylyk (1053_CR48) 1997; 14
JZ Ma (1053_CR29) 2017; 65
RL Siegel (1053_CR1) 2017; 67
X Wang (1053_CR19) 2015; 161
BS Zhao (1053_CR43) 2017; 18
M Chen (1053_CR30) 2018; 67
Y Wang (1053_CR42) 2014; 16
S Panneerdoss (1053_CR46) 2018; 4
J Ferlay (1053_CR2) 2010; 127
A Visvanathan (1053_CR47) 2018; 37
S Zhang (1053_CR26) 2017; 31
References_xml – volume: 534
  start-page: 575
  year: 2016
  ident: 1053_CR10
  publication-title: Nature
  doi: 10.1038/nature18298
– volume: 518
  start-page: 560
  year: 2015
  ident: 1053_CR23
  publication-title: Nature
  doi: 10.1038/nature14234
– volume: 540
  start-page: 301
  year: 2016
  ident: 1053_CR33
  publication-title: Nature
  doi: 10.1038/nature20577
– volume: 103
  start-page: 2102
  year: 2012
  ident: 1053_CR36
  publication-title: Cancer Sci
  doi: 10.1111/cas.12022
– volume: 27
  start-page: 315
  year: 2017
  ident: 1053_CR20
  publication-title: Cell Res
  doi: 10.1038/cr.2017.15
– volume: 24
  start-page: 177
  year: 2014
  ident: 1053_CR9
  publication-title: Cell Res
  doi: 10.1038/cr.2014.3
– volume: 65
  start-page: 1482
  year: 2016
  ident: 1053_CR45
  publication-title: Gut
  doi: 10.1136/gutjnl-2014-308614
– volume: 67
  start-page: 7
  year: 2017
  ident: 1053_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21387
– volume: 31
  start-page: 591
  year: 2017
  ident: 1053_CR26
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.02.013
– volume: 35
  start-page: 20
  year: 2015
  ident: 1053_CR49
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2015.09.010
– volume: 4
  start-page: 379
  year: 1975
  ident: 1053_CR6
  publication-title: Cell
  doi: 10.1016/0092-8674(75)90158-0
– volume: 20
  start-page: 285
  year: 2018
  ident: 1053_CR24
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-018-0045-z
– volume: 37
  start-page: 522
  year: 2018
  ident: 1053_CR47
  publication-title: Oncogene
  doi: 10.1038/onc.2017.351
– volume: 8
  start-page: 284
  year: 2014
  ident: 1053_CR12
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.05.048
– volume: 17
  start-page: 101
  year: 2018
  ident: 1053_CR44
  publication-title: Mol Cancer
  doi: 10.1186/s12943-018-0847-4
– volume: 16
  start-page: 191
  year: 2014
  ident: 1053_CR42
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2902
– volume: 10
  start-page: 927
  year: 2014
  ident: 1053_CR21
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1654
– volume: 31
  start-page: 127
  year: 2017
  ident: 1053_CR25
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.11.017
– volume: 37
  start-page: 40
  year: 2018
  ident: 1053_CR35
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-018-0706-6
– volume: 505
  start-page: 117
  year: 2014
  ident: 1053_CR18
  publication-title: Nature
  doi: 10.1038/nature12730
– volume: 161
  start-page: 1388
  year: 2015
  ident: 1053_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.014
– volume: 162
  start-page: 1299
  year: 2015
  ident: 1053_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.011
– volume: 67
  start-page: 2254
  year: 2018
  ident: 1053_CR30
  publication-title: Hepatology
  doi: 10.1002/hep.29683
– volume: 5
  start-page: 2298
  year: 1985
  ident: 1053_CR7
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.5.9.2298
– volume: 14
  start-page: 899
  year: 1997
  ident: 1053_CR48
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1200914
– volume: 28
  start-page: 1171
  year: 2014
  ident: 1053_CR37
  publication-title: Leukemia
  doi: 10.1038/leu.2014.16
– volume: 18
  start-page: 31
  year: 2017
  ident: 1053_CR43
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2016.132
– volume: 16
  start-page: 50
  year: 2018
  ident: 1053_CR38
  publication-title: Cell Commun Signal
  doi: 10.1186/s12964-018-0258-6
– volume: 61
  start-page: 1945
  year: 2015
  ident: 1053_CR4
  publication-title: Hepatology
  doi: 10.1002/hep.27732
– volume: 127
  start-page: 2893
  year: 2010
  ident: 1053_CR2
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25516
– volume: 4
  start-page: 10
  year: 2018
  ident: 1053_CR14
  publication-title: Cell Discovery
  doi: 10.1038/s41421-018-0019-0
– volume: 537
  start-page: 369
  year: 2016
  ident: 1053_CR13
  publication-title: Nature
  doi: 10.1038/nature19342
– volume: 134
  start-page: 1752
  year: 2008
  ident: 1053_CR3
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.02.090
– volume: 18
  start-page: 2004
  year: 2017
  ident: 1053_CR11
  publication-title: EMBO Rep
  doi: 10.15252/embr.201744940
– volume: 48
  start-page: 1271
  year: 2013
  ident: 1053_CR39
  publication-title: J Gastroenterol
  doi: 10.1007/s00535-013-0748-7
– volume: 4
  start-page: eaar8263
  year: 2018
  ident: 1053_CR46
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aar8263
– volume: 69
  start-page: 1028
  year: 2018
  ident: 1053_CR15
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2018.02.015
– volume: 149
  start-page: 1635
  year: 2012
  ident: 1053_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.003
– volume: 2
  start-page: 99
  year: 1988
  ident: 1053_CR41
  publication-title: Oncogene
– volume: 12
  start-page: 562
  year: 2015
  ident: 1053_CR34
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.06.053
– volume: 114
  start-page: 719
  year: 2000
  ident: 1053_CR50
  publication-title: Am J Clin Pathol
  doi: 10.1309/RAVV-8NM1-CJB7-GJFR
– volume: 415
  start-page: 11
  year: 2018
  ident: 1053_CR27
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2017.11.018
– volume: 9
  start-page: 2231
  year: 2000
  ident: 1053_CR31
  publication-title: Hum Mol Genet
  doi: 10.1093/oxfordjournals.hmg.a018914
– volume: 135
  start-page: 2317
  year: 2014
  ident: 1053_CR51
  publication-title: Int J Cancer
  doi: 10.1002/ijc.28881
– volume: 65
  start-page: 529
  year: 2017
  ident: 1053_CR29
  publication-title: Hepatology
  doi: 10.1002/hep.28885
– volume: 278
  start-page: 27903
  year: 2003
  ident: 1053_CR52
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M304328200
– volume: 71
  start-page: 3971
  year: 1974
  ident: 1053_CR5
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.71.10.3971
– volume: 20
  start-page: 1074
  year: 2018
  ident: 1053_CR28
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-018-0174-4
– volume: 10
  start-page: 93
  year: 2014
  ident: 1053_CR40
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1432
– volume: 49
  start-page: 18
  year: 2013
  ident: 1053_CR16
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.10.015
– volume: 7
  start-page: 885
  year: 2011
  ident: 1053_CR17
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.687
– volume: 103
  start-page: 17278
  year: 2006
  ident: 1053_CR32
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0608357103
SSID ssj0017874
Score 2.6728861
Snippet N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis of...
Background N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the tumorigenesis...
Abstract Background N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 127
SubjectTerms Animals
Antigens
Cancer
Cancer genetics
Cancer therapies
Carcinogenesis
Carcinoma
Carcinoma, Hepatocellular - genetics
Carcinoma, Hepatocellular - metabolism
Carcinoma, Hepatocellular - mortality
Carcinoma, Hepatocellular - pathology
Care and treatment
Cell cycle
Cell Cycle - genetics
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Line, Tumor
Cell proliferation
Cell Transformation, Neoplastic
Chromatin
Cyclin-dependent kinase inhibitor p21
Development and progression
Disease Models, Animal
DNA Methylation
DNA microarrays
ELAV-Like Protein 1 - metabolism
Enzymes
Epigenesis, Genetic
Epigenetic inheritance
Epigenetics
Ets-1 protein
ETS1
Female
Gene expression
Gene Silencing
Genes
Genetic aspects
Genomes
Genomics
Hepatocellular carcinoma
Hepatocellular carcinoma (HCC)
Humans
HuR protein
Immunoprecipitation
Liver
Liver cancer
Liver Neoplasms - genetics
Liver Neoplasms - metabolism
Liver Neoplasms - mortality
Liver Neoplasms - pathology
Luciferase
Male
Medical prognosis
Metastasis
Methylation
Methyltransferases
Methyltransferases - metabolism
Mice
Models, Biological
N6-methyladenosine
N6-methyladenosine (m6A)
Neoplasm Staging
Nephroblastoma
Novels
Patient outcomes
Phenotypes
Post-transcription
Prognosis
Proteins
Proto-Oncogene Protein c-ets-1 - genetics
Ribonucleic acid
RNA
RNA sequencing
RNA Splicing Factors - genetics
RNA Splicing Factors - metabolism
Survival analysis
Therapeutic applications
Tumor Burden
Tumorigenesis
Tumors
Wilms tumor 1-associated protein (WTAP)
Writers
WT1 protein
Xenograft Model Antitumor Assays
Xenografts
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yoPgien5VT4kgCEK55qNJ-rjKHYugiO7hvYVsPrjlvPZwuwf33zuTdpctgr742iSlycxkftNMfkPIW6c8b7yuSxbByGUjUulqpsrIoqhi4o0Lme3zi5qfyU_n9fleqS_MCRvogYeFO_bChCCZ97XjUjjjpElLgCnRSS0ama_5gs_bBlPj-QGooRzPMJlRx2vwahLzhhrYdmpRmokXymT9f27Jez5pmi-554BOH5IHI3Kks-GLH5E7sT0kd4dakreH5N7n8ZT8Mbn8sZh9pcn5gYE7rmnOwhoYOGiX6AX4oL7Df_aYhEo91hNquytHb1aOXqlZOd98K7flcXsar5GyE2870vUKLymBu8PXnCy-syfk7PRk8XFejkUVSg-xS186o6TyUrkUYTVDZYLiiQWfuK6d0aE2rgrRixgMZ8ksDYdwW6XAlNM8yiCekoO2a-NzQnVYRoBXIjmZZFLagdQFUsA5wBmV0AWptots_cg4joUvftoceRhlB7lYkItFuVhTkPe7IdcD3cbfOn9Aye06IlN2fgD6Y0f9sf_Sn4K8Q7lbtGf4OO_GawkwRWTGsjOIuACVSVUX5GjSE-zQT5u3mmPHfWBtOaApXUmICQvyZteMIzG3rY3dBvoghGsASvCCPBsUbTclkavTK1YQPVHByZynLe3qIrOEK53PxF_8j0V6Se5zNJ4KdlV-RA76X5v4CsBYv3yd7e433vYwVQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA5aUXwRrbfRKhEEQRg6uUySeZJVWhZBEd1i30I2l3bRzqzdXcF_7zkz2bWD0NdNZpjsuX0nOfkOIa-d8rzxui5ZBCOXjUilq5kqI4uiiok3LvRsn5_V9ER-PK1P84bbKpdVbn1i76hD53GP_JBDXNKVBHT9bvmrxK5ReLqaW2jcJLeQugy1Wp_uEi4GyijzSSYz6nAFsU1i9VADzqcWpRnFop6y_3_HfCUyjasmr4Sh4_vkXsaPdDII_AG5Edt9cnvoKPlnn9z5lM_KH5If32eTLzQ5P_BwxxXta7EGHg7aJXoOkWjd4c49lqJSj12F2u7C0d8LRy_UpJxuvpbbJrlrGpdI3Il3HulqgVeVIOjha45m39gjcnJ8NPswLXNrhdJDBrMunVFSealcisKZUJmgeGLBJ65rZ3SojatC9CIGw1kyc8Mh6VYpMOU0jzKIx2Sv7dr4lFAd5hFAlkhOJpmUdiB7gURwDtBGJXRBqu2fbH3mHcf2Fz9tn38YZQe5WJCLRblYU5C3u0eWA-nGdZPfo-R2E5Evu_-huzyz2fysFyYEybyvHZewYidNmgPYjU5q0Uh4yRuUu0Wrho_zLl9OgCUiP5adQN4F2EyquiAHo5lgjX48vNUcm73Byv7T3YK82g3jk1jh1sZuA3MQyDUAKHhBngyKtluS6HvUK1YQPVLB0ZrHI-3ivOcKV7o_GX92_Wc9J3c5mkUFXpMfkL315Sa-ALC1nr_sLeov91knxw
  priority: 102
  providerName: ProQuest
Title WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1
URI https://www.ncbi.nlm.nih.gov/pubmed/31438961
https://www.proquest.com/docview/2293704753
https://www.proquest.com/docview/2317593032
https://pubmed.ncbi.nlm.nih.gov/PMC6704583
https://doaj.org/article/c38dd41cc5a243a8a48fb161ea473948
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3raxQxEA99oPhFan2ttkcEQRBWd5Nskv0gcpUrh9BS6h3et5DLwx62u_UeYv97J9m9s4tF_LrJhp2dmcxMZvIbhF5rbkhpRJHmDpScldSnush56nJHM-dJqW1E-zzlwzH7PCkmW2jd3qr9gYs7Q7vQT2o8v3z368fNR1D4D1HhJX-_AJvFQlVQCZtKQVO5jXbBMInQ0OCE_UkqgGzGJDMTPGVFKdsk551LdMxURPP_e8--ZbS6BZW3LNTxHnrYupa438jCI7Tlqn10r2k2ebOP7p-0afTH6PvXUf8Me20aiG63wLFMq4HowLXHF2CklnU41A9VqtiEhkNVfaXxz5nGV7yfDlfn6bp_7hK764DpGa5D4sUs3GICexiWGYy-5E_Q-Hgw-jRM264LqYHgZplqyRk3jGvvqJY2k5YTn1vjiSi0FLaQOrPOUGclyb2cSgLxOPc251oQxyx9inaqunLPERZ26sD_ol4zzzwXGsSCBow4DY5IRkWCsvVPVqaFJA-dMS5VDE0kVw1fFPBFBb4omaC3m1euGzyOf00-CpzbTAxQ2vFBPf-mWs1UhkprWW5MoQkDijWTfgp-sNNM0JLBIm8C31UQQfg4o9t7C0BigM5SfQjJwG1jvEjQQWcmKKrpDq8lR63lXBFwt0TGIGhM0KvNcHgzFL9Vrl7BnODjleBrkAQ9awRtQxKN7et5niDREcEOzd2RanYRYcS5iEnzF_9N30v0gAQNyWBvJQdoZzlfuUNwyZbTHtoWE9FDu0eD07PzXjzY6EXl-w0FajRI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEccLgnIFCgQJhIQUNbEd23lAaIFWW3oIwVbdN-P1QVfQZOluQf1T_EZmciyNkPrW17VjxZnrm_X4G0JeGGFpYWWeZB6MnBcsJCbPROIzz1IfaGFczfa5L4YH_OM4H6-QP91dGCyr7Hxi7ahdZfE_8g0KcUmmHND129nPBLtG4elq10KjUYsdf_YbUrb5m-0PIN-XlG5tjt4Pk7arQGIBvC8SowQXlgsTPDPKpcoJGjJnA5W5UdLlyqTOW-adollQE0Uh3xTBZcJI6rljsO4VchUCb4rJnhwvE7wMlJ-3J6eZEhtziKUcq5UKcHY5S1Qv9tUtAv4PBOciYb9K81zY27pNbrV4NR40CnaHrPhyjVxrOlierZHre-3Z_F3y_XA0-BQHYxvebz-P69qvhvcjrkJ8BJFvUeFJAZa-xha7GJXVsYl_TU18LAbJ8PRz0jXlXcR-hkSheMcynk_xahQEWVxmc_Qlu0cOLuWj3yerZVX6hySWbuIB1LFgeOBBSAO6xpB4zgC6SZmMSNp9ZG1bnnNst_FD1_mOErqRiwa5aJSLVhF5vXxk1pB8XDT5HUpuORH5uesfqpNvujV3bZlyjmfW5oZy2LHhKkwAXHvDJSs4LPIK5a7Ri8DLWdNehoAtIh-XHkCeB1iQizwi672ZYP22P9xpjm69z1z_s5WIPF8O45NYUVf66hTmIHAsAMDQiDxoFG25JQYgWhUii4jsqWBvz_2RcnpUc5MLWZ_EP7r4tZ6RG8PR3q7e3d7feUxuUjSRFDw2XSeri5NT_wSA3mLytLaumHy9bHP-C9HCZl4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WTAP+facilitates+progression+of+hepatocellular+carcinoma+via+m6A-HuR-dependent+epigenetic+silencing+of+ETS1&rft.jtitle=Molecular+cancer&rft.au=Chen%2C+Yunhao&rft.au=Peng%2C+Chuanhui&rft.au=Chen%2C+Junru&rft.au=Chen%2C+Diyu&rft.date=2019-08-22&rft.pub=BioMed+Central+Ltd&rft.issn=1476-4598&rft.eissn=1476-4598&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12943-019-1053-8&rft.externalDocID=A597663465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-4598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-4598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-4598&client=summon