Ai-lncRNA EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions in human cancer
The biology function of antisense intronic long noncoding RNA (Ai-lncRNA) is still unknown. Meanwhile, cancer patients with paclitaxel resistance have limited therapeutic options in the clinic. However, the potential involvement of Ai-lncRNA in paclitaxel sensitivity remains unclear in human cancer....
Saved in:
Published in | Molecular cancer Vol. 18; no. 1; pp. 89 - 18 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
18.04.2019
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The biology function of antisense intronic long noncoding RNA (Ai-lncRNA) is still unknown. Meanwhile, cancer patients with paclitaxel resistance have limited therapeutic options in the clinic. However, the potential involvement of Ai-lncRNA in paclitaxel sensitivity remains unclear in human cancer.
Whole transcriptome sequencing of 33 breast specimens was performed to identify Ai-lncRNA EGOT. Next, the role of EGOT in regulation of paclitaxel sensitivity was investigated. Moreover, the mechanism of EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions was investigated in detail. Furthermore, upstream transcriptional regulation of EGOT expression was also investigated by co-immunoprecipitation and chromatin immunoprecipitation. Finally, clinical breast specimens in our cohort, TCGA and ICGC were applied to validate the role of EGOT in enhancing of paclitaxel sensitivity.
EGOT enhances autophagosome accumulation via the up-regulation of ITPR1 expression, thereby sensitizing cells to paclitaxel toxicity. Mechanistically, on one hand, EGOT upregulates ITPR1 levels via formation of a pre-ITPR1/EGOT dsRNA that induces pre-ITPR1 accumulation to increase ITPR1 protein expression in cis. On the other hand, EGOT recruits hnRNPH1 to enhance the alternative splicing of pre-ITPR1 in trans via two binding motifs in EGOT segment 2 (324-645 nucleotides) in exon 1. Moreover, EGOT is transcriptionally regulated by stress conditions. Finally, EGOT expression enhances paclitaxel sensitivity via assessment of cancer specimens.
These findings broaden comprehensive understanding of the biology function of Ai-lncRNAs. Proper regulation of EGOT may be a novel synergistic strategy for enhancing paclitaxel sensitivity in cancer therapy. |
---|---|
AbstractList | Abstract Background The biology function of antisense intronic long noncoding RNA (Ai-lncRNA) is still unknown. Meanwhile, cancer patients with paclitaxel resistance have limited therapeutic options in the clinic. However, the potential involvement of Ai-lncRNA in paclitaxel sensitivity remains unclear in human cancer. Methods Whole transcriptome sequencing of 33 breast specimens was performed to identify Ai-lncRNA EGOT. Next, the role of EGOT in regulation of paclitaxel sensitivity was investigated. Moreover, the mechanism of EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions was investigated in detail. Furthermore, upstream transcriptional regulation of EGOT expression was also investigated by co-immunoprecipitation and chromatin immunoprecipitation. Finally, clinical breast specimens in our cohort, TCGA and ICGC were applied to validate the role of EGOT in enhancing of paclitaxel sensitivity. Results EGOT enhances autophagosome accumulation via the up-regulation of ITPR1 expression, thereby sensitizing cells to paclitaxel toxicity. Mechanistically, on one hand, EGOT upregulates ITPR1 levels via formation of a pre-ITPR1/EGOT dsRNA that induces pre-ITPR1 accumulation to increase ITPR1 protein expression in cis. On the other hand, EGOT recruits hnRNPH1 to enhance the alternative splicing of pre-ITPR1 in trans via two binding motifs in EGOT segment 2 (324–645 nucleotides) in exon 1. Moreover, EGOT is transcriptionally regulated by stress conditions. Finally, EGOT expression enhances paclitaxel sensitivity via assessment of cancer specimens. Conclusions These findings broaden comprehensive understanding of the biology function of Ai-lncRNAs. Proper regulation of EGOT may be a novel synergistic strategy for enhancing paclitaxel sensitivity in cancer therapy. The biology function of antisense intronic long noncoding RNA (Ai-lncRNA) is still unknown. Meanwhile, cancer patients with paclitaxel resistance have limited therapeutic options in the clinic. However, the potential involvement of Ai-lncRNA in paclitaxel sensitivity remains unclear in human cancer.BACKGROUNDThe biology function of antisense intronic long noncoding RNA (Ai-lncRNA) is still unknown. Meanwhile, cancer patients with paclitaxel resistance have limited therapeutic options in the clinic. However, the potential involvement of Ai-lncRNA in paclitaxel sensitivity remains unclear in human cancer.Whole transcriptome sequencing of 33 breast specimens was performed to identify Ai-lncRNA EGOT. Next, the role of EGOT in regulation of paclitaxel sensitivity was investigated. Moreover, the mechanism of EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions was investigated in detail. Furthermore, upstream transcriptional regulation of EGOT expression was also investigated by co-immunoprecipitation and chromatin immunoprecipitation. Finally, clinical breast specimens in our cohort, TCGA and ICGC were applied to validate the role of EGOT in enhancing of paclitaxel sensitivity.METHODSWhole transcriptome sequencing of 33 breast specimens was performed to identify Ai-lncRNA EGOT. Next, the role of EGOT in regulation of paclitaxel sensitivity was investigated. Moreover, the mechanism of EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions was investigated in detail. Furthermore, upstream transcriptional regulation of EGOT expression was also investigated by co-immunoprecipitation and chromatin immunoprecipitation. Finally, clinical breast specimens in our cohort, TCGA and ICGC were applied to validate the role of EGOT in enhancing of paclitaxel sensitivity.EGOT enhances autophagosome accumulation via the up-regulation of ITPR1 expression, thereby sensitizing cells to paclitaxel toxicity. Mechanistically, on one hand, EGOT upregulates ITPR1 levels via formation of a pre-ITPR1/EGOT dsRNA that induces pre-ITPR1 accumulation to increase ITPR1 protein expression in cis. On the other hand, EGOT recruits hnRNPH1 to enhance the alternative splicing of pre-ITPR1 in trans via two binding motifs in EGOT segment 2 (324-645 nucleotides) in exon 1. Moreover, EGOT is transcriptionally regulated by stress conditions. Finally, EGOT expression enhances paclitaxel sensitivity via assessment of cancer specimens.RESULTSEGOT enhances autophagosome accumulation via the up-regulation of ITPR1 expression, thereby sensitizing cells to paclitaxel toxicity. Mechanistically, on one hand, EGOT upregulates ITPR1 levels via formation of a pre-ITPR1/EGOT dsRNA that induces pre-ITPR1 accumulation to increase ITPR1 protein expression in cis. On the other hand, EGOT recruits hnRNPH1 to enhance the alternative splicing of pre-ITPR1 in trans via two binding motifs in EGOT segment 2 (324-645 nucleotides) in exon 1. Moreover, EGOT is transcriptionally regulated by stress conditions. Finally, EGOT expression enhances paclitaxel sensitivity via assessment of cancer specimens.These findings broaden comprehensive understanding of the biology function of Ai-lncRNAs. Proper regulation of EGOT may be a novel synergistic strategy for enhancing paclitaxel sensitivity in cancer therapy.CONCLUSIONSThese findings broaden comprehensive understanding of the biology function of Ai-lncRNAs. Proper regulation of EGOT may be a novel synergistic strategy for enhancing paclitaxel sensitivity in cancer therapy. Background The biology function of antisense intronic long noncoding RNA (Ai-lncRNA) is still unknown. Meanwhile, cancer patients with paclitaxel resistance have limited therapeutic options in the clinic. However, the potential involvement of Ai-lncRNA in paclitaxel sensitivity remains unclear in human cancer. Methods Whole transcriptome sequencing of 33 breast specimens was performed to identify Ai-lncRNA EGOT. Next, the role of EGOT in regulation of paclitaxel sensitivity was investigated. Moreover, the mechanism of EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions was investigated in detail. Furthermore, upstream transcriptional regulation of EGOT expression was also investigated by co-immunoprecipitation and chromatin immunoprecipitation. Finally, clinical breast specimens in our cohort, TCGA and ICGC were applied to validate the role of EGOT in enhancing of paclitaxel sensitivity. Results EGOT enhances autophagosome accumulation via the up-regulation of ITPR1 expression, thereby sensitizing cells to paclitaxel toxicity. Mechanistically, on one hand, EGOT upregulates ITPR1 levels via formation of a pre-ITPR1/EGOT dsRNA that induces pre-ITPR1 accumulation to increase ITPR1 protein expression in cis. On the other hand, EGOT recruits hnRNPH1 to enhance the alternative splicing of pre-ITPR1 in trans via two binding motifs in EGOT segment 2 (324-645 nucleotides) in exon 1. Moreover, EGOT is transcriptionally regulated by stress conditions. Finally, EGOT expression enhances paclitaxel sensitivity via assessment of cancer specimens. Conclusions These findings broaden comprehensive understanding of the biology function of Ai-lncRNAs. Proper regulation of EGOT may be a novel synergistic strategy for enhancing paclitaxel sensitivity in cancer therapy. Keywords: Ai-lncRNA, EGOT, ITPR1, Paclitaxel, Autophagy, Cancer The biology function of antisense intronic long noncoding RNA (Ai-lncRNA) is still unknown. Meanwhile, cancer patients with paclitaxel resistance have limited therapeutic options in the clinic. However, the potential involvement of Ai-lncRNA in paclitaxel sensitivity remains unclear in human cancer. Whole transcriptome sequencing of 33 breast specimens was performed to identify Ai-lncRNA EGOT. Next, the role of EGOT in regulation of paclitaxel sensitivity was investigated. Moreover, the mechanism of EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions was investigated in detail. Furthermore, upstream transcriptional regulation of EGOT expression was also investigated by co-immunoprecipitation and chromatin immunoprecipitation. Finally, clinical breast specimens in our cohort, TCGA and ICGC were applied to validate the role of EGOT in enhancing of paclitaxel sensitivity. EGOT enhances autophagosome accumulation via the up-regulation of ITPR1 expression, thereby sensitizing cells to paclitaxel toxicity. Mechanistically, on one hand, EGOT upregulates ITPR1 levels via formation of a pre-ITPR1/EGOT dsRNA that induces pre-ITPR1 accumulation to increase ITPR1 protein expression in cis. On the other hand, EGOT recruits hnRNPH1 to enhance the alternative splicing of pre-ITPR1 in trans via two binding motifs in EGOT segment 2 (324-645 nucleotides) in exon 1. Moreover, EGOT is transcriptionally regulated by stress conditions. Finally, EGOT expression enhances paclitaxel sensitivity via assessment of cancer specimens. These findings broaden comprehensive understanding of the biology function of Ai-lncRNAs. Proper regulation of EGOT may be a novel synergistic strategy for enhancing paclitaxel sensitivity in cancer therapy. Background The biology function of antisense intronic long noncoding RNA (Ai-lncRNA) is still unknown. Meanwhile, cancer patients with paclitaxel resistance have limited therapeutic options in the clinic. However, the potential involvement of Ai-lncRNA in paclitaxel sensitivity remains unclear in human cancer. Methods Whole transcriptome sequencing of 33 breast specimens was performed to identify Ai-lncRNA EGOT. Next, the role of EGOT in regulation of paclitaxel sensitivity was investigated. Moreover, the mechanism of EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions was investigated in detail. Furthermore, upstream transcriptional regulation of EGOT expression was also investigated by co-immunoprecipitation and chromatin immunoprecipitation. Finally, clinical breast specimens in our cohort, TCGA and ICGC were applied to validate the role of EGOT in enhancing of paclitaxel sensitivity. Results EGOT enhances autophagosome accumulation via the up-regulation of ITPR1 expression, thereby sensitizing cells to paclitaxel toxicity. Mechanistically, on one hand, EGOT upregulates ITPR1 levels via formation of a pre-ITPR1/EGOT dsRNA that induces pre-ITPR1 accumulation to increase ITPR1 protein expression in cis. On the other hand, EGOT recruits hnRNPH1 to enhance the alternative splicing of pre-ITPR1 in trans via two binding motifs in EGOT segment 2 (324–645 nucleotides) in exon 1. Moreover, EGOT is transcriptionally regulated by stress conditions. Finally, EGOT expression enhances paclitaxel sensitivity via assessment of cancer specimens. Conclusions These findings broaden comprehensive understanding of the biology function of Ai-lncRNAs. Proper regulation of EGOT may be a novel synergistic strategy for enhancing paclitaxel sensitivity in cancer therapy. The biology function of antisense intronic long noncoding RNA (Ai-lncRNA) is still unknown. Meanwhile, cancer patients with paclitaxel resistance have limited therapeutic options in the clinic. However, the potential involvement of Ai-lncRNA in paclitaxel sensitivity remains unclear in human cancer. Whole transcriptome sequencing of 33 breast specimens was performed to identify Ai-lncRNA EGOT. Next, the role of EGOT in regulation of paclitaxel sensitivity was investigated. Moreover, the mechanism of EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions was investigated in detail. Furthermore, upstream transcriptional regulation of EGOT expression was also investigated by co-immunoprecipitation and chromatin immunoprecipitation. Finally, clinical breast specimens in our cohort, TCGA and ICGC were applied to validate the role of EGOT in enhancing of paclitaxel sensitivity. EGOT enhances autophagosome accumulation via the up-regulation of ITPR1 expression, thereby sensitizing cells to paclitaxel toxicity. Mechanistically, on one hand, EGOT upregulates ITPR1 levels via formation of a pre-ITPR1/EGOT dsRNA that induces pre-ITPR1 accumulation to increase ITPR1 protein expression in cis. On the other hand, EGOT recruits hnRNPH1 to enhance the alternative splicing of pre-ITPR1 in trans via two binding motifs in EGOT segment 2 (324-645 nucleotides) in exon 1. Moreover, EGOT is transcriptionally regulated by stress conditions. Finally, EGOT expression enhances paclitaxel sensitivity via assessment of cancer specimens. These findings broaden comprehensive understanding of the biology function of Ai-lncRNAs. Proper regulation of EGOT may be a novel synergistic strategy for enhancing paclitaxel sensitivity in cancer therapy. |
ArticleNumber | 89 |
Audience | Academic |
Author | Xu, Shouping Zhang, Jinfeng Wu, Hao Pang, Da Zhang, Jian Yang, Weiwei Wang, Peiyuan Xu, Hongbiao Sui, Shiyao Qiao, Kun Wang, Qin |
Author_xml | – sequence: 1 givenname: Shouping surname: Xu fullname: Xu, Shouping – sequence: 2 givenname: Peiyuan surname: Wang fullname: Wang, Peiyuan – sequence: 3 givenname: Jian surname: Zhang fullname: Zhang, Jian – sequence: 4 givenname: Hao surname: Wu fullname: Wu, Hao – sequence: 5 givenname: Shiyao surname: Sui fullname: Sui, Shiyao – sequence: 6 givenname: Jinfeng surname: Zhang fullname: Zhang, Jinfeng – sequence: 7 givenname: Qin surname: Wang fullname: Wang, Qin – sequence: 8 givenname: Kun surname: Qiao fullname: Qiao, Kun – sequence: 9 givenname: Weiwei surname: Yang fullname: Yang, Weiwei – sequence: 10 givenname: Hongbiao surname: Xu fullname: Xu, Hongbiao – sequence: 11 givenname: Da orcidid: 0000-0003-2853-4170 surname: Pang fullname: Pang, Da |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30999914$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1u1DAUhSNURH_gAdggS2y6SYkdO3E2SKOqlJEqiqphbd04TsZVxg62U83M4_CkODMtdCpIFnFuzvmur3NOkyNjjUqS9zi7wJgXnzwmFc3TDFcpznCZbl8lJ5iWRUpZxY-erY-TU-_vs6jhJX2THOdZFS9MT5JfM532Rt59m6Gr69sFUmYJRmrTIRiDHZbQbZBXxuugt8qjAWSvA6xVj-Qm2GDXWuqwQQ8a0Dg41Y09BG0Nsi2aL77fYaTWsez9VKs3KPZJp15gmt16cDYobZA2QTmQk9XHF7QcV2CQjFtR7m3yuoXeq3ePz7Pkx5erxeXX9Ob2en45u0llQYqQclpWbVswUmNgvM1xRQooCCOqlpIBzqq6qXCb8Rpa3vCMFmVRUlbnrGUFAZyfJfM9t7FwLwanV-A2woIWu4J1nQAXtOyVIJwzxTijuJY0awhAAwSTtioIpVLyyPq8Zw1jvVKNVCY46A-gh1-MXorOPoiClvHPToDzR4CzP0flg1hpL1Xfg1F29IIQjCuWUZJF6ccX0ns7OhOPaqdieUlz9lfVQRxAm9bGvnKCihnjOY7B2LEu_qGKd6NWWsb0tTrWDwwfng_6Z8KnhEVBuRdIZ713qhUxMLuMRLLuBc7ElGWxz7KIWRZTlsU2OvEL5xP8_57fdWf2bQ |
CitedBy_id | crossref_primary_10_3389_fchem_2023_1335330 crossref_primary_10_1007_s13105_022_00924_2 crossref_primary_10_1007_s12031_021_01942_3 crossref_primary_10_1186_s13046_020_01700_0 crossref_primary_10_3390_cancers12102926 crossref_primary_10_1002_cnr2_70115 crossref_primary_10_3389_fonc_2024_1337579 crossref_primary_10_1111_and_14079 crossref_primary_10_3390_cancers16193379 crossref_primary_10_1016_j_lfs_2019_117234 crossref_primary_10_1186_s13148_023_01501_0 crossref_primary_10_1002_ctm2_241 crossref_primary_10_1016_j_prp_2021_153373 crossref_primary_10_1038_s41421_021_00342_6 crossref_primary_10_1155_2022_3922739 crossref_primary_10_1002_2211_5463_12833 crossref_primary_10_1016_j_prp_2020_153327 crossref_primary_10_1007_s11033_022_07669_7 crossref_primary_10_1007_s12094_023_03189_3 crossref_primary_10_3390_cancers12051245 crossref_primary_10_1007_s10555_020_09910_w crossref_primary_10_3389_fphar_2021_729062 crossref_primary_10_3389_fgene_2022_919857 crossref_primary_10_1002_advs_202207257 crossref_primary_10_3389_fonc_2020_01728 crossref_primary_10_1016_j_biopha_2020_110985 crossref_primary_10_1007_s13577_021_00541_z crossref_primary_10_1016_j_genrep_2023_101871 crossref_primary_10_1038_s41416_021_01600_w crossref_primary_10_1093_cvr_cvaf037 crossref_primary_10_1007_s00280_023_04582_z crossref_primary_10_1002_ctm2_1445 crossref_primary_10_1016_j_prp_2022_154274 crossref_primary_10_1186_s12943_020_1132_x crossref_primary_10_3390_cells10102633 crossref_primary_10_3390_ijms25189922 crossref_primary_10_1038_s41417_022_00487_w crossref_primary_10_3390_ijms21239179 crossref_primary_10_1016_j_drup_2020_100683 crossref_primary_10_1038_s41419_020_2633_7 crossref_primary_10_1128_mSystems_00245_19 crossref_primary_10_1007_s00018_022_04675_7 crossref_primary_10_1016_j_diff_2020_05_004 crossref_primary_10_3390_ijms21103711 crossref_primary_10_1186_s13045_021_01059_5 crossref_primary_10_1016_j_yexcr_2025_114434 crossref_primary_10_1186_s12929_021_00715_9 crossref_primary_10_1080_15476286_2022_2062846 crossref_primary_10_1155_2021_8493431 crossref_primary_10_18632_aging_204080 crossref_primary_10_2147_CMAR_S285254 crossref_primary_10_3389_fcell_2021_607142 crossref_primary_10_1016_j_intimp_2020_107071 crossref_primary_10_1016_j_semcancer_2021_04_017 crossref_primary_10_1111_jcmm_16545 crossref_primary_10_3390_cells11030441 crossref_primary_10_1186_s12864_020_07000_3 crossref_primary_10_3390_molecules25245986 crossref_primary_10_3389_fcell_2021_718721 crossref_primary_10_1002_btm2_10172 crossref_primary_10_1016_j_drup_2022_100851 crossref_primary_10_1016_j_dld_2022_02_011 crossref_primary_10_3389_fcell_2021_705291 crossref_primary_10_3389_fphar_2024_1387243 crossref_primary_10_1186_s12964_022_00896_2 crossref_primary_10_18632_aging_205284 crossref_primary_10_1016_j_bbagrm_2024_195017 crossref_primary_10_1186_s13046_020_01798_2 crossref_primary_10_1007_s13353_024_00848_1 crossref_primary_10_1002_jcp_30751 crossref_primary_10_1038_s41419_019_1835_3 crossref_primary_10_1186_s13058_023_01672_x crossref_primary_10_4049_jimmunol_1900776 crossref_primary_10_1038_s41598_021_86097_2 crossref_primary_10_1186_s12943_020_01181_x crossref_primary_10_3389_fnins_2021_682247 crossref_primary_10_3389_fcell_2022_869011 crossref_primary_10_3389_fcell_2022_808591 crossref_primary_10_1016_j_prp_2024_155101 crossref_primary_10_3390_ijms24065086 crossref_primary_10_1152_ajpcell_00790_2024 crossref_primary_10_1186_s13046_019_1421_7 crossref_primary_10_3390_cancers14092101 crossref_primary_10_1016_j_gendis_2023_04_015 crossref_primary_10_2147_OTT_S274623 crossref_primary_10_1016_j_canlet_2022_215929 crossref_primary_10_1080_14737159_2023_2169072 crossref_primary_10_1007_s10495_022_01750_z crossref_primary_10_1007_s10549_020_05940_8 crossref_primary_10_1177_1559325819899265 |
Cites_doi | 10.1016/j.celrep.2012.02.001 10.1080/15548627.2017.1312041 10.1158/1078-0432.CCR-17-0419 10.1038/ng.1049 10.1016/j.cmet.2016.11.016 10.1080/15548627.2015.1106663 10.1016/j.ccell.2014.09.015 10.1038/ng1901 10.1016/j.bbrc.2015.02.037 10.1038/nature23451 10.1186/s12943-017-0696-6 10.1101/gad.287524.116 10.1016/j.ccell.2015.05.009 10.1155/2015/473942 10.1042/bj3450357 10.1038/ncomms15916 10.1038/ncb3231 10.1016/j.jmb.2013.01.022 10.1038/nrc3081 10.1038/ncomms15760 10.1038/ncb980 10.1016/j.ccell.2016.09.010 10.1038/ncb3328 10.1038/cddis.2017.205 10.1038/ncb3338 10.1038/ncomms7779 10.1016/j.cell.2014.03.008 10.1016/j.mam.2016.01.003 10.1038/onc.2015.340 10.1038/ncomms13608 10.1016/j.pharmthera.2016.04.009 10.1038/nsmb.2219 10.1161/CIRCRESAHA.114.305197 10.1073/pnas.1507882112 10.1016/j.cell.2013.02.012 10.1007/s13277-015-3746-y 10.1038/onc.2012.92 10.1038/nrc.2016.116 10.1172/JCI28833 10.1038/nmeth.1528 10.1038/ncb3473 10.1038/s41467-017-01969-4 10.1038/nsmb.2480 10.1016/j.cell.2011.10.026 10.1016/j.tcb.2017.06.003 10.1007/s13238-014-0053-0 10.1073/pnas.0700007104 10.4161/auto.7.10.16610 10.1016/j.ccell.2015.02.006 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 BioMed Central Ltd. 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2019 |
Copyright_xml | – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TO 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12943-019-1017-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1476-4598 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_2885e58541bc40d2aada212f96244cc8 PMC6471868 A583187420 30999914 10_1186_s12943_019_1017_z |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GrantInformation_xml | – fundername: ; grantid: 201402003 – fundername: ; grantid: Nn102017-02 – fundername: ; grantid: 81602323, 81872149 – fundername: ; grantid: JCQN2018-03 – fundername: ; grantid: JY2016-02 – fundername: ; grantid: 2014BAI09B08 – fundername: ; grantid: WLD-QN1706 |
GroupedDBID | --- 0R~ 123 29M 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PZZ RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PMFND 3V. 7TO 7XB 8FK AZQEC DWQXO H94 K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c626t-8479ff652b1a58f31926a6252ebcc5a109bd91f08baf8d804676745b35f562a13 |
IEDL.DBID | M48 |
ISSN | 1476-4598 |
IngestDate | Wed Aug 27 00:53:25 EDT 2025 Thu Aug 21 18:27:12 EDT 2025 Tue Aug 05 09:54:24 EDT 2025 Fri Jul 25 19:54:49 EDT 2025 Tue Jun 17 21:37:36 EDT 2025 Tue Jun 10 20:47:28 EDT 2025 Thu Apr 03 06:56:09 EDT 2025 Thu Apr 24 23:09:49 EDT 2025 Tue Jul 01 01:01:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ITPR1 Ai-lncRNA Autophagy EGOT Paclitaxel Cancer |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c626t-8479ff652b1a58f31926a6252ebcc5a109bd91f08baf8d804676745b35f562a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2853-4170 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12943-019-1017-z |
PMID | 30999914 |
PQID | 2211537435 |
PQPubID | 42702 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2885e58541bc40d2aada212f96244cc8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6471868 proquest_miscellaneous_2211950420 proquest_journals_2211537435 gale_infotracmisc_A583187420 gale_infotracacademiconefile_A583187420 pubmed_primary_30999914 crossref_citationtrail_10_1186_s12943_019_1017_z crossref_primary_10_1186_s12943_019_1017_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-18 |
PublicationDateYYYYMMDD | 2019-04-18 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Molecular cancer |
PublicationTitleAlternate | Mol Cancer |
PublicationYear | 2019 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | TP Xu (1017_CR21) 2017; 8 X Xue (1017_CR22) 2016; 35 TR Cech (1017_CR7) 2014; 157 CE Adkins (1017_CR13) 2000; 345 S Vijayaraghavan (1017_CR32) 2017; 8 L Shan (1017_CR18) 2016; 30 I Sergin (1017_CR31) 2014; 115 S Xu (1017_CR23) 2017; 16 JJ Tyson (1017_CR34) 2011; 11 CA Lyssiotis (1017_CR45) 2017; 27 S Huang (1017_CR25) 2015; 11 YJ Jeon (1017_CR4) 2015; 27 RK Amaravadi (1017_CR30) 2007; 117 J Zhang (1017_CR10) 2017; 13 Y Yu (1017_CR1) 2015; 28 NY Fu (1017_CR16) 2007; 104 A Salameh (1017_CR24) 2015; 112 JS Carroll (1017_CR47) 2017; 17 PJ Batista (1017_CR8) 2013; 152 X Liu (1017_CR40) 2016; 18 LW Dong (1017_CR39) 2011; 7 J Joung (1017_CR9) 2017; 548 F Natale (1017_CR20) 2017; 8 JS Carroll (1017_CR35) 2006; 38 L Wang (1017_CR38) 2015; 458 K Wang (1017_CR19) 2015; 6 SC Huelga (1017_CR43) 2012; 1 N Mizushima (1017_CR3) 2011; 147 SP Xu (1017_CR14) 2015; 36 L Amicone (1017_CR26) 2015; 2015 I Akerman (1017_CR17) 2017; 25 H Choudhry (1017_CR46) 2016; 47-48 Q Zeng (1017_CR37) 2018; 24 TR Mercer (1017_CR27) 2013; 20 Y Luo (1017_CR2) 2014; 5 Y Katz (1017_CR42) 2010; 7 M Chen (1017_CR29) 2012; 19 B Bilanges (1017_CR33) 2017; 8 A Bhan (1017_CR48) 2013; 425 DP Hall (1017_CR15) 2014; 26 X Li (1017_CR28) 2016; 18 M Ghoussaini (1017_CR49) 2012; 44 R Amaravadi (1017_CR36) 2016; 30 E Domenech (1017_CR5) 2015; 17 A Lin (1017_CR11) 2017; 19 RA Veldhoen (1017_CR6) 2013; 32 W Echevarria (1017_CR12) 2003; 5 C Wigerup (1017_CR44) 2016; 164 P Zhu (1017_CR41) 2016; 7 |
References_xml | – volume: 1 start-page: 167 year: 2012 ident: 1017_CR43 publication-title: Cell Rep doi: 10.1016/j.celrep.2012.02.001 – volume: 13 start-page: 1004 year: 2017 ident: 1017_CR10 publication-title: Autophagy doi: 10.1080/15548627.2017.1312041 – volume: 24 start-page: 445 year: 2018 ident: 1017_CR37 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-0419 – volume: 44 start-page: 312 year: 2012 ident: 1017_CR49 publication-title: Nat Genet doi: 10.1038/ng.1049 – volume: 25 start-page: 400 year: 2017 ident: 1017_CR17 publication-title: Cell Metab doi: 10.1016/j.cmet.2016.11.016 – volume: 11 start-page: 2172 year: 2015 ident: 1017_CR25 publication-title: Autophagy doi: 10.1080/15548627.2015.1106663 – volume: 26 start-page: 738 year: 2014 ident: 1017_CR15 publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.09.015 – volume: 38 start-page: 1289 year: 2006 ident: 1017_CR35 publication-title: Nat Genet doi: 10.1038/ng1901 – volume: 458 start-page: 816 year: 2015 ident: 1017_CR38 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2015.02.037 – volume: 548 start-page: 343 year: 2017 ident: 1017_CR9 publication-title: Nature doi: 10.1038/nature23451 – volume: 16 start-page: 129 year: 2017 ident: 1017_CR23 publication-title: Mol Cancer doi: 10.1186/s12943-017-0696-6 – volume: 30 start-page: 1913 year: 2016 ident: 1017_CR36 publication-title: Genes Dev doi: 10.1101/gad.287524.116 – volume: 28 start-page: 82 year: 2015 ident: 1017_CR1 publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.05.009 – volume: 2015 start-page: 473942 year: 2015 ident: 1017_CR26 publication-title: Biomed Res Int doi: 10.1155/2015/473942 – volume: 345 start-page: 357 issue: Pt 2 year: 2000 ident: 1017_CR13 publication-title: Biochem J doi: 10.1042/bj3450357 – volume: 8 year: 2017 ident: 1017_CR32 publication-title: Nat Commun doi: 10.1038/ncomms15916 – volume: 17 start-page: 1304 year: 2015 ident: 1017_CR5 publication-title: Nat Cell Biol doi: 10.1038/ncb3231 – volume: 425 start-page: 3707 year: 2013 ident: 1017_CR48 publication-title: J Mol Biol doi: 10.1016/j.jmb.2013.01.022 – volume: 11 start-page: 523 year: 2011 ident: 1017_CR34 publication-title: Nat Rev Cancer doi: 10.1038/nrc3081 – volume: 8 year: 2017 ident: 1017_CR20 publication-title: Nat Commun doi: 10.1038/ncomms15760 – volume: 5 start-page: 440 year: 2003 ident: 1017_CR12 publication-title: Nat Cell Biol doi: 10.1038/ncb980 – volume: 30 start-page: 708 year: 2016 ident: 1017_CR18 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.09.010 – volume: 18 start-page: 431 issue: 4 year: 2016 ident: 1017_CR40 publication-title: Nat Cell Biol doi: 10.1038/ncb3328 – volume: 8 year: 2017 ident: 1017_CR21 publication-title: Cell Death Dis doi: 10.1038/cddis.2017.205 – volume: 18 start-page: 561 year: 2016 ident: 1017_CR28 publication-title: Nat Cell Biol doi: 10.1038/ncb3338 – volume: 6 start-page: 6779 year: 2015 ident: 1017_CR19 publication-title: Nat Commun doi: 10.1038/ncomms7779 – volume: 157 start-page: 77 year: 2014 ident: 1017_CR7 publication-title: Cell doi: 10.1016/j.cell.2014.03.008 – volume: 47-48 start-page: 35 year: 2016 ident: 1017_CR46 publication-title: Mol Asp Med doi: 10.1016/j.mam.2016.01.003 – volume: 35 start-page: 2746 year: 2016 ident: 1017_CR22 publication-title: Oncogene doi: 10.1038/onc.2015.340 – volume: 7 year: 2016 ident: 1017_CR41 publication-title: Nat Commun doi: 10.1038/ncomms13608 – volume: 164 start-page: 152 year: 2016 ident: 1017_CR44 publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2016.04.009 – volume: 19 start-page: 346 year: 2012 ident: 1017_CR29 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2219 – volume: 115 start-page: 817 year: 2014 ident: 1017_CR31 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.114.305197 – volume: 112 start-page: 8403 year: 2015 ident: 1017_CR24 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1507882112 – volume: 152 start-page: 1298 year: 2013 ident: 1017_CR8 publication-title: Cell doi: 10.1016/j.cell.2013.02.012 – volume: 36 start-page: 9807 year: 2015 ident: 1017_CR14 publication-title: Tumour Biol doi: 10.1007/s13277-015-3746-y – volume: 32 start-page: 736 year: 2013 ident: 1017_CR6 publication-title: Oncogene doi: 10.1038/onc.2012.92 – volume: 17 start-page: 54 year: 2017 ident: 1017_CR47 publication-title: Nat Rev Cancer doi: 10.1038/nrc.2016.116 – volume: 117 start-page: 326 year: 2007 ident: 1017_CR30 publication-title: J Clin Invest doi: 10.1172/JCI28833 – volume: 7 start-page: 1009 year: 2010 ident: 1017_CR42 publication-title: Nat Methods doi: 10.1038/nmeth.1528 – volume: 19 start-page: 238 year: 2017 ident: 1017_CR11 publication-title: Nat Cell Biol doi: 10.1038/ncb3473 – volume: 8 start-page: 1804 year: 2017 ident: 1017_CR33 publication-title: Nat Commun doi: 10.1038/s41467-017-01969-4 – volume: 20 start-page: 300 year: 2013 ident: 1017_CR27 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2480 – volume: 147 start-page: 728 year: 2011 ident: 1017_CR3 publication-title: Cell doi: 10.1016/j.cell.2011.10.026 – volume: 27 start-page: 863 year: 2017 ident: 1017_CR45 publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2017.06.003 – volume: 5 start-page: 469 year: 2014 ident: 1017_CR2 publication-title: Protein Cell doi: 10.1007/s13238-014-0053-0 – volume: 104 start-page: 10051 year: 2007 ident: 1017_CR16 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0700007104 – volume: 7 start-page: 1222 year: 2011 ident: 1017_CR39 publication-title: Autophagy doi: 10.4161/auto.7.10.16610 – volume: 27 start-page: 354 year: 2015 ident: 1017_CR4 publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.02.006 |
SSID | ssj0017874 |
Score | 2.5523453 |
Snippet | The biology function of antisense intronic long noncoding RNA (Ai-lncRNA) is still unknown. Meanwhile, cancer patients with paclitaxel resistance have limited... Background The biology function of antisense intronic long noncoding RNA (Ai-lncRNA) is still unknown. Meanwhile, cancer patients with paclitaxel resistance... Abstract Background The biology function of antisense intronic long noncoding RNA (Ai-lncRNA) is still unknown. Meanwhile, cancer patients with paclitaxel... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 89 |
SubjectTerms | Adult Aged Ai-lncRNA Alternative splicing Animals Antineoplastic agents Antineoplastic Agents, Phytogenic - pharmacology Antisense RNA Autophagosomes - metabolism Autophagy Autophagy - drug effects Autophagy - genetics Binding sites Breast cancer Breast Neoplasms - drug therapy Breast Neoplasms - genetics Breast Neoplasms - mortality Breast Neoplasms - pathology Cancer Cancer patients Cancer therapies Cell Line, Tumor Chemotherapy Chromatin Cytotoxicity Double-stranded RNA Drug Resistance, Neoplasm - genetics EGOT Experiments Female Gene expression Gene Expression Regulation, Neoplastic Gene regulation Genomes Health aspects Heterogeneous-Nuclear Ribonucleoprotein Group F-H - genetics Heterogeneous-Nuclear Ribonucleoprotein Group F-H - metabolism Humans Hypoxia Immunoprecipitation Inositol 1,4,5-Trisphosphate Receptors - antagonists & inhibitors Inositol 1,4,5-Trisphosphate Receptors - genetics Inositol 1,4,5-Trisphosphate Receptors - metabolism ITPR1 Medical prognosis Metabolism Mice Mice, Nude Middle Aged Novels Nucleotides Paclitaxel Paclitaxel - pharmacology Phagocytosis Protein Binding Protein interaction Ribonucleic acid RNA RNA, Double-Stranded - genetics RNA, Double-Stranded - metabolism RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism RNA, Small Interfering - genetics RNA, Small Interfering - metabolism RNA-protein interactions Signal Transduction Survival Analysis Toxicity Transcription Transcription (Genetics) Transcriptome Tumors Up-regulation Xenograft Model Antitumor Assays |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yoPgiev6qnhJBEIRwbdqk6eMqd57CnXLswb2FJE3uFpbssduV3f1z_EudabvLFkFffGubpGk6XzIzZPINIe9D6UywoWR18AUrTC5YJWrL8jwYWUtuncCDwucX8uyq-HYtrvdSfWFMWEcP3P24Y66U8GDTFpl1RVpzY2oDy22oJCgm59pjvqDzts5Uv38AMCz6PcxMyeMFaLUC44YqhhBkm4EWasn6_1yS93TSMF5yTwGdPiaPesuRjrovfkLu-XhI7ne5JNeH5MF5v0v-lPwaTdg0usuLET358n1MfbxFVo14Q80SeQTMzZouMHC9mWz8goLXjEzdKz-lbt3MmtkK3tOs6c-Jocu7eZesHsRHZ4F-Hf-4zKhf9eGzkdo1hX4Y9mVi3V631A-TSJGJYt6dm1jADW3TAVKHMJs_I1enJ-PPZ6zPxcAcuDwNAyVWhSAFt5kRKsDE5dKA78S9dU6YLK1sXWUhVdYEVSvwupElSNhcBLCwTJY_JwdxFv1LQkuwIksPZkElXRF4BQ3yOsiQCq7qvOAJSbey0a4nKsd8GVPdOixK6k6cGsSJEWql3iTk467JXcfS8bfKn1Dgu4pIsN0-ANjpHnb6X7BLyAeEi8ZlAD7Omf40AwwRCbX0SKgc0x3yNCFHg5owfd2weAs43S8fC83BLRc5GHciIe92xdgSQ-Kiny27OpVI21e86PC5G1KOdn-VFQkpB8gdjHlYEie3Lbm4RGtFqlf_4ye9Jg85zjmkxlRH5KCZL_0bsOEa-7adrr8BcAxEBA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66ovgiut6qq0QQBCFsmzZp-iSj7LoKu8oyC_NW0jSZHRjacdqRmfk5_lLPaTPjFmHf2iZpGs69OfkOIe9darQrXMpKZxOW6FiwTJQFi2OnZSl5YQQeFD6_kGdXyfeJmPgfbo1Pq9zpxE5Rl7XBf-THHCIVEYO9E58WvxhWjcLdVV9C4y65h9BlyNXpZB9wRcCMid_JjJQ8bsC2JZg9lDFkRLYd2KIOsv9_xXzDMg2zJm-YodPH5JH3H-moJ_gTcsdWh-R-X1Fyc0genPu98qfkz2jG5pW5vBjRk68_xtRW14itUU2pXiGagJ5uaIPp6-1saxsKsTPida_tnJpNW7f1Gt7TbujvmaarxbIvWQ9EpLWj38Y_LyNq1z6JtqLFhsI8DOfSVdlddwAQs4oiHsWyPz3RwA3tigJSg8y2fEauTk_GX86Yr8jADAQ-LQNTljknBS8iLZQD8eVSQwTFbWGM0FGYFWUWuVAV2qlSQeyNWEGiiIUDP0tH8XNyUNWVfUloCr5kasE5yKRJHM9gQFw66ULBVRknPCDhjja58XDlWDVjnndhi5J5T84cyIl5amm-DcjH_ZBFj9VxW-fPSPB9R4TZ7h7Uy2nupTbnSgkLAVUSFSYJS651qcHWu0yCV2SMCsgHZJcclQF8nNH-TAMsEWG18pFQMRY95GFAjgY9QYjNsHnHcLlXIk3-j-UD8m7fjCMxMa6y9arvk4mwe8WLnj_3S4rR-8-iJCDpgHMHax62VLPrDmJcos8i1avbP-s1echRmhD6Uh2Rg3a5sm_AR2uLt50g_gVOBTvM priority: 102 providerName: ProQuest |
Title | Ai-lncRNA EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions in human cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30999914 https://www.proquest.com/docview/2211537435 https://www.proquest.com/docview/2211950420 https://pubmed.ncbi.nlm.nih.gov/PMC6471868 https://doaj.org/article/2885e58541bc40d2aada212f96244cc8 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELb2Q0x7QTBgBEZlJCQkpEDixInzgFCHOgZSy1S10t4ix7G7SlUy0hQ1_XP4S7lL0rKIiQfe2tqX1L273nfx-TtC3phQSZOY0E6N9m1fetyOeJrYnmdkkAYsURwPCg9HweXU_3bNr_fItr1V-wMu703tsJ_UtFi8X_-oPoHDf6wdXgQflhCzfKwKimw0MHuzTw4hMIXY0GDo_9lUANv0243Ne8WOyZGHgCly_U6Uqsn8__7LvhOzuvWUdwLUxSPysEWWtN-YwmOyp7MT8qDpNVmdkKNhu4v-hPzqz-1FpsajPh18-T6hOrtB1o1sRuUKeQbkrKJLLGwv5xu9pJBVI5P3Wi-oqsq8zNdwnbKiP-eSrm6Lppk9qJfmhn6dXI1dqtdteW1Gk4rCfWy8l8zS-nVNDTHPKDJVFM25iiW8oXW7QKrQDIunZHoxmHy-tNteDbaClKi0IchFxgScJa7kwoBjs0BCbsV0ohSXrhMlaeQaRyTSiFRAVo4sQjzxuAEEJl3vGTnI8kw_JzQElBlqgA1RoHzDIhDwUhMYhzORej6ziLPVTaxaInPsp7GI64RGBHGj2Rg0ixVsYbyxyLudyG3D4vGvyeeo8N1EJOCuP8iLWdz6c8yE4BpSLd9NlO-kTMpUAgowUQB4SSlhkbdoLjEaLnw5JdvTDrBEJNyK-1x42A6RORY568wE91bd4a3BxVvviBmk7dwD8Mct8no3jJJYMpfpfNXMibhTX-K0sc_dkrZmbpGwY7mdNXdHsvlNTT4eIJoJxIv_lnxJjhn6HPJlijNyUBYr_QqAXZn0yH54HfbI4flgdDXu1Y9HerUL_wY5Zk_z |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGEC9fEIy3wAAjgZCQoiVOnDgfECqw0bK1oKmT-i04jt1VqpLSptD05_AD-I3cJWlZhLRv-9bWL4l157t76vNzhLwyoZImMaGdGu3bvvS4HfE0sT3PyCANWKI4XhTuD4Lumf9lxEc75M_mLgymVW5sYmWo01zhf-QHDJAK98Df8fezHzZWjcLT1U0JjVotjnX5CyDb4l3vE8j3NWNHh8OPXbupKmArCN4LG8xxZEzAWeJKLgyoIAskoACmE6W4dJ0oSSPXOCKRRqQC8CPy3fDE4wZiBel6MO81ch0cr4NgLxxtAZ4Lyu83J6euCA4W4Et9zFaKbFR8e93yfVWJgP8dwQVP2M7SvOD2ju6SO028Sju1gt0jOzrbIzfqCpblHrnZb87m75PfnYk9zdTpoEMPP38dUp2dI5dHNqZyiewFclzSBabLF5O1XlDA6sgPvtJTqsoiL_IVzFOU9OdE0uVsrsdNXTGaG9obfjt1qV41SbsZTUoKz7HxWTJLq88V4cQko8h_Ma9vayzgC62KEFKFyj1_QM6uRFYPyW6WZ_oxoSHErqGGYCQKlG9YBAO81ATG4Uykns8s4mxkE6uGHh2rdEzjCiaJIK7FGYM4MS8ujNcWebsdMqu5QS7r_AEFvu2ItN7VD_l8HDdWImZCcA0AzncT5TspkzKVEFuYKIAoTClhkTeoLjEaH3g5JZs7FLBEpPGKO1x4WGSRORbZb_UEo6HazRuFixujtYj_bTGLvNw240hMxMt0vqz7RNyppnhU6-d2SR6ijcj1LRK2NLe15nZLNjmvKM0DjJEC8eTy13pBbnWH_ZP4pDc4fkpuM9xZSLsp9sluMV_qZxAfFsnzalNS8v2qrcBf_F53Yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ai-lncRNA+EGOT+enhancing+autophagy+sensitizes+paclitaxel+cytotoxicity+via+upregulation+of+ITPR1+expression+by+RNA-RNA+and+RNA-protein+interactions+in+human+cancer&rft.jtitle=Molecular+cancer&rft.au=Xu%2C+Shouping&rft.au=Wang%2C+Peiyuan&rft.au=Zhang%2C+Jian&rft.au=Wu%2C+Hao&rft.date=2019-04-18&rft.pub=BioMed+Central&rft.eissn=1476-4598&rft.volume=18&rft_id=info:doi/10.1186%2Fs12943-019-1017-z&rft_id=info%3Apmid%2F30999914&rft.externalDocID=PMC6471868 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-4598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-4598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-4598&client=summon |