PfCRT and the trans‐vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX
Summary It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ‐resistant (CQR) parasite lines accumulate less CQ than do CQ‐sens...
Saved in:
Published in | Molecular microbiology Vol. 62; no. 1; pp. 238 - 251 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.10.2006
Blackwell Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ‐resistant (CQR) parasite lines accumulate less CQ than do CQ‐sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy‐dependent CQ uptake and an additional component that resembles energy‐dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt‐modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV. |
---|---|
AbstractList | It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ-resistant (CQR) parasite lines accumulate less CQ than do CQ-sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy-dependent CQ uptake and an additional component that resembles energy-dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt-modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV. [PUBLICATION ABSTRACT] It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ-resistant (CQR) parasite lines accumulate less CQ than do CQ-sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy-dependent CQ uptake and an additional component that resembles energy-dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt-modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV. It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ-resistant (CQR) parasite lines accumulate less CQ than do CQ-sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy-dependent CQ uptake and an additional component that resembles energy-dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt-modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV.It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ-resistant (CQR) parasite lines accumulate less CQ than do CQ-sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy-dependent CQ uptake and an additional component that resembles energy-dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt-modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV. Summary It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ‐resistant (CQR) parasite lines accumulate less CQ than do CQ‐sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy‐dependent CQ uptake and an additional component that resembles energy‐dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt ‐modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV. It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ-resistant (CQR) parasite lines accumulate less CQ than do CQ-sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy-dependent CQ uptake and an additional component that resembles energy-dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt -modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV. Summary It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ‐resistant (CQR) parasite lines accumulate less CQ than do CQ‐sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy‐dependent CQ uptake and an additional component that resembles energy‐dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt‐modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV. |
Author | Lakshmanan, Viswanathan Biagini, Giancarlo A. Bray, Patrick G. Hastings, Ian M. O'Neill, Paul M. Stocks, Paul A. Mungthin, Mathirut Fidock, David A. Saidu, Dauda K. Johnson, David J. Hughes, Ruth H. Warhurst, David C. Ward, Stephen A. |
AuthorAffiliation | 1 Department of Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK 3 Cancer Center, NYU School of Medicine, 522 First Avenue, Smilow 1307, New York, NY 10016, USA 2 Phramongkutklao College of Medicine, Bangkok 10400, Thailand 6 ITD, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK 5 Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK 4 Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer 403, 1300 Morris Park Ave, the Bronx, NY 10461, USA |
AuthorAffiliation_xml | – name: 3 Cancer Center, NYU School of Medicine, 522 First Avenue, Smilow 1307, New York, NY 10016, USA – name: 1 Department of Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK – name: 4 Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer 403, 1300 Morris Park Ave, the Bronx, NY 10461, USA – name: 5 Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK – name: 6 ITD, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK – name: 2 Phramongkutklao College of Medicine, Bangkok 10400, Thailand |
Author_xml | – sequence: 1 givenname: Patrick G. surname: Bray fullname: Bray, Patrick G. – sequence: 2 givenname: Mathirut surname: Mungthin fullname: Mungthin, Mathirut – sequence: 3 givenname: Ian M. surname: Hastings fullname: Hastings, Ian M. – sequence: 4 givenname: Giancarlo A. surname: Biagini fullname: Biagini, Giancarlo A. – sequence: 5 givenname: Dauda K. surname: Saidu fullname: Saidu, Dauda K. – sequence: 6 givenname: Viswanathan surname: Lakshmanan fullname: Lakshmanan, Viswanathan – sequence: 7 givenname: David J. surname: Johnson fullname: Johnson, David J. – sequence: 8 givenname: Ruth H. surname: Hughes fullname: Hughes, Ruth H. – sequence: 9 givenname: Paul A. surname: Stocks fullname: Stocks, Paul A. – sequence: 10 givenname: Paul M. surname: O'Neill fullname: O'Neill, Paul M. – sequence: 11 givenname: David A. surname: Fidock fullname: Fidock, David A. – sequence: 12 givenname: David C. surname: Warhurst fullname: Warhurst, David C. – sequence: 13 givenname: Stephen A. surname: Ward fullname: Ward, Stephen A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18123698$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16956382$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt9qFDEUxoNU7Lb6ChIEvZsxfyaZjKAgi9WFFkUq9C5kM5mdLLPJmMzU7k3xEXxGn8TM7tKqN5qb5HB-5-OcfOcEHDnvDAAQoxyn83KdY8pZRiomcoIQzxGjXOQ3D8DsLnEEZqhiKKOCXB2DkxjXCGGKOH0EjjGvGE-JGbj91Mw_X0Llaji0Bg5Bufjz-49rpUffqQD74AfvoOmMHoLXrdlYrTq4Cqq2xg2vYDCrsVODdaudgNLaxAh9A3Xb-eC_jtYlWQ8bE4LdqfU-9O02WAcXV4_Bw0Z10Tw53Kfgy9m7y_mH7Pzj-8X87XmmOeEiUyU2jBac1RUiTGtCCtzUyqBiWdCS8gJjrUiDqyVd4gbrFGmiaVmKglao0vQUvNnr9uNyY2qdWg-qk32wGxW20isr_8w428qVv5akKmiBWRJ4cRCYZjJxkBsbtek65Ywfo-RClIwJ_E8QV8kqjIsEPvsLXPsxuPQLieEsOcVIgsQe0sHHGExz1zJGcloFuZaT43JyXE6rIHerIG9S6dPfR74vPHifgOcHQMXkaZOs1zbecwITyiuRuNd77pvtzPa_G5AXF4vpRX8BC63UpA |
CitedBy_id | crossref_primary_10_1007_s00018_011_0906_0 crossref_primary_10_1038_s41467_018_05652_0 crossref_primary_10_1016_j_ijpara_2010_04_001 crossref_primary_10_1073_pnas_1322965111 crossref_primary_10_1016_j_molbiopara_2007_12_014 crossref_primary_10_1021_jm7009292 crossref_primary_10_2217_fmb_10_136 crossref_primary_10_1038_nrg2126 crossref_primary_10_4103_0256_4947_62826 crossref_primary_10_1021_bi901034r crossref_primary_10_1371_journal_pone_0039569 crossref_primary_10_1073_pnas_1417102112 crossref_primary_10_1016_j_bmc_2012_10_019 crossref_primary_10_1074_jbc_M109_049726 crossref_primary_10_1371_journal_pone_0002484 crossref_primary_10_2139_ssrn_4106544 crossref_primary_10_2147_CPAA_S331660 crossref_primary_10_2139_ssrn_4069890 crossref_primary_10_1128_AAC_01111_08 crossref_primary_10_1128_AAC_05667_11 crossref_primary_10_1016_j_pt_2008_09_005 crossref_primary_10_1111_j_1600_0854_2009_01018_x crossref_primary_10_1007_s00436_010_1756_7 crossref_primary_10_1007_s00436_011_2251_5 crossref_primary_10_1021_op7002776 crossref_primary_10_1111_j_1365_2958_2007_05664_x crossref_primary_10_1039_c2dt12083f crossref_primary_10_1016_j_exppara_2007_04_002 crossref_primary_10_1016_j_bbrc_2023_05_096 crossref_primary_10_1371_journal_ppat_1010926 crossref_primary_10_1242_jcs_016758 crossref_primary_10_1111_j_1365_2958_2006_05511_x crossref_primary_10_1111_j_1365_2958_2008_06108_x crossref_primary_10_1021_bi101638n crossref_primary_10_1016_j_coph_2018_07_010 crossref_primary_10_1186_1471_2164_13_106 crossref_primary_10_1021_bi8010658 crossref_primary_10_1111_j_1472_8206_2009_00709_x crossref_primary_10_1042_BSR20140134 crossref_primary_10_3390_physchem1030017 crossref_primary_10_1146_annurev_micro_020518_115546 crossref_primary_10_1371_journal_ppat_1005976 crossref_primary_10_1111_j_1365_2958_2008_06413_x crossref_primary_10_1371_journal_pcbi_1008243 crossref_primary_10_1016_j_pt_2007_11_002 crossref_primary_10_1016_j_pt_2007_04_013 crossref_primary_10_1038_s41598_018_31715_9 crossref_primary_10_1002_cmdc_201100265 crossref_primary_10_1149_1945_7111_ac71d9 crossref_primary_10_1016_j_parint_2022_102623 crossref_primary_10_1016_j_ejmech_2015_02_002 crossref_primary_10_1016_j_ejmech_2020_112330 crossref_primary_10_1128_AAC_00536_09 crossref_primary_10_1128_AAC_00666_08 crossref_primary_10_1021_bi901765v crossref_primary_10_1111_j_1365_2958_2009_06863_x crossref_primary_10_1111_j_1742_4658_2007_05999_x crossref_primary_10_1128_AAC_01167_10 crossref_primary_10_1016_j_pt_2012_08_002 crossref_primary_10_1371_journal_ppat_1005725 crossref_primary_10_1016_j_bbrc_2021_04_034 crossref_primary_10_1016_j_exppara_2007_10_016 crossref_primary_10_1021_cb4008953 crossref_primary_10_1126_science_1175667 crossref_primary_10_1074_jbc_M111_286054 crossref_primary_10_1038_s41598_018_29422_6 crossref_primary_10_1016_j_bcp_2007_03_011 crossref_primary_10_1021_bi901035j crossref_primary_10_1093_infdis_jiv509 |
Cites_doi | 10.1046/j.1432-1327.2001.02265.x 10.1016/S0006-2952(97)00509-1 10.1016/S0166-6851(98)00077-2 10.1016/S0923-2508(03)00036-6 10.1126/science.781840 10.1046/j.1365-201X.2003.01060.x 10.1128/AAC.47.8.2584-2589.2003 10.4269/ajtmh.2001.64.12 10.1016/0006-2952(92)90532-N 10.1083/jcb.97.3.929 10.1016/0006-2952(89)90550-9 10.1074/jbc.M208648200 10.1038/345253a0 10.1021/bi048241x 10.1073/pnas.82.9.2784 10.1038/sj.emboj.7600681 10.1093/molbev/msh205 10.1126/science.3317830 10.1021/bi034269h 10.1016/S0162-0134(98)10095-8 10.1021/bi050061f 10.1016/j.exppara.2004.08.005 10.1016/S1097-2765(05)00077-8 10.1080/00034983.1983.11811717 10.1074/jbc.272.5.2652 10.1017/S003118200006580X 10.1074/jbc.M407030200 10.1016/S0140-6736(02)11577-7 10.1038/35005132 10.1002/jps.10479 10.1074/jbc.273.47.31103 10.1074/jbc.M204005200 10.1124/mol.61.1.35 10.1016/0006-2952(91)90407-V 10.1111/j.1365-2958.2005.04556.x 10.1021/bi00549a600 10.1016/0006-2952(92)90661-2 10.1099/mic.0.26818-0 10.1016/S0006-2952(98)00140-3 10.1016/S0006-3495(83)84449-X 10.1074/jbc.M503227200 10.1124/mol.54.1.170 10.1084/jem.173.4.961 10.1126/science.1074045 10.1083/jcb.145.2.363 10.1038/235050a0 10.1016/j.molcel.2004.09.012 10.1038/355167a0 10.1038/nature04713 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Copyright Blackwell Publishing Oct 2006 Journal compilation © 2006 Blackwell Publishing Ltd 2006 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Copyright Blackwell Publishing Oct 2006 – notice: Journal compilation © 2006 Blackwell Publishing Ltd 2006 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1111/j.1365-2958.2006.05368.x |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2958 |
EndPage | 251 |
ExternalDocumentID | 1152015741 10_1111_j_1365_2958_2006_05368_x 16956382 18123698 MMI5368 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI50234 – fundername: NIAID NIH HHS grantid: R01 AI050234-07 – fundername: Wellcome Trust – fundername: NIAID NIH HHS grantid: R37 AI050234 – fundername: NIAID NIH HHS grantid: R01 AI050234 |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AAJUZ AAPBV AAUGY ABCVL ABHUG ABPTK ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS AKALU IQODW XFK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c6268-a71e53465d9025cc2241fdae04b43736411ca2f19b3b1f1c1cac2c377843909c3 |
IEDL.DBID | DR2 |
ISSN | 0950-382X |
IngestDate | Tue Sep 17 21:22:29 EDT 2024 Sat Oct 26 04:55:49 EDT 2024 Fri Aug 16 12:20:53 EDT 2024 Thu Oct 10 20:20:32 EDT 2024 Fri Aug 23 02:57:40 EDT 2024 Sat Nov 02 12:05:38 EDT 2024 Sun Oct 22 16:10:06 EDT 2023 Sat Aug 24 00:53:16 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Antimalarial Parasiticide Antirheumatic agent Microbiology Chloroquine |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6268-a71e53465d9025cc2241fdae04b43736411ca2f19b3b1f1c1cac2c377843909c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2006.05368.x |
PMID | 16956382 |
PQID | 196530652 |
PQPubID | 35968 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2943415 proquest_miscellaneous_68875581 proquest_miscellaneous_19536114 proquest_journals_196530652 crossref_primary_10_1111_j_1365_2958_2006_05368_x pubmed_primary_16956382 pascalfrancis_primary_18123698 wiley_primary_10_1111_j_1365_2958_2006_05368_x_MMI5368 |
PublicationCentury | 2000 |
PublicationDate | October 2006 |
PublicationDateYYYYMMDD | 2006-10-01 |
PublicationDate_xml | – month: 10 year: 2006 text: October 2006 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Mol Microbiol |
PublicationYear | 2006 |
Publisher | Blackwell Publishing Ltd Blackwell Science |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Science |
References | 2004; 21 1990; 345 2000; 6 1997; 272 2002; 277 1983; 97 2003; 278 2001; 268 2003; 154 2005; 24 1998; 273 2003; 92 1987; 238 1991; 42 2000; 404 1992; 355 2003; 47 2006; 440 1998; 94 1989; 38 1992; 43 1992; 44 1998; 54 1998; 56 2003; 42 1998; 55 2004; 43 1991; 173 2002; 298 1988; 17 1996; 50 1985; 82 1999; 145 1976; 193 2004; 108 2003; 177 2005; 44 1983; 77 2001; 64 1972; 235 2005; 280 1980; 19 2002; 61 2002; 360 2004; 15 2004; 150 1983; 41 1999; 73 1996; 112 2005; 56 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 Blauer G. (e_1_2_6_4_1) 1988; 17 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 Bray P.G. (e_1_2_6_6_1) 1996; 50 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 73 start-page: 101 year: 1999 end-page: 107 article-title: Characterisation of synthetic beta‐haematin and effects of the antimalarial drugs quinidine, halofantrine, desbutylhalofantrine and mefloquine on its formation publication-title: J Inorg Biochem – volume: 238 start-page: 1283 year: 1987 end-page: 1285 article-title: Efflux of chloroquine from : mechanism of chloroquine resistance publication-title: Science – volume: 145 start-page: 363 year: 1999 end-page: 376 article-title: Cellular uptake of chloroquine is dependent on binding to ferriprotoporphyrin IX and is independent of NHE activity in publication-title: J Cell Biol – volume: 360 start-page: 1527 year: 2002 end-page: 1529 article-title: Lysosomes and drug resistance in malaria publication-title: Lancet – volume: 440 start-page: 484 year: 2006 end-page: 489 article-title: ClC chloride channels viewed through a transporter lens publication-title: Nature – volume: 42 start-page: S167 issue: Suppl. year: 1991 end-page: S179 article-title: Simulation of kinetic data on the influx and efflux of chloroquine by erythrocytes infected with . Evidence for a drug‐importer in chloroquine‐sensitive strains publication-title: Biochem Pharmacol – volume: 50 start-page: 1559 year: 1996 end-page: 1566 article-title: Physicochemical properties correlated with drug resistance and the reversal of drug resistance in publication-title: Mol Pharmacol – volume: 94 start-page: 297 year: 1998 end-page: 301 article-title: Uptake of an antiplasmodial protease inhibitor into ‐infected human erythrocytes via a parasite‐induced pathway publication-title: Mol Biochem Parasitol – volume: 44 start-page: 9862 year: 2005 end-page: 9870 article-title: Evidence for a pfcrt‐associated chloroquine efflux system in the human malarial parasite publication-title: Biochemistry – volume: 6 start-page: 861 year: 2000 end-page: 871 article-title: Mutations in the digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance publication-title: Mol Cell – volume: 235 start-page: 50 year: 1972 end-page: 52 article-title: Lysosomes, pH and the anti‐malarial action of chloroquine publication-title: Nature – volume: 61 start-page: 35 year: 2002 end-page: 42 article-title: Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in publication-title: Mol Pharmacol – volume: 277 start-page: 49767 year: 2002 end-page: 49775 article-title: Analysis of the antimalarial drug resistance protein Pfcrt expressed in yeast publication-title: J Biol Chem – volume: 44 start-page: 1317 year: 1992 end-page: 1324 article-title: Rapid chloroquine efflux phenotype in both chloroquine‐sensitive and chloroquine‐resistant . A correlation of chloroquine sensitivity with energy‐dependent drug accumulation publication-title: Biochem Pharmacol – volume: 404 start-page: 307 year: 2000 end-page: 310 article-title: The structure of malaria pigment beta‐haematin publication-title: Nature – volume: 112 start-page: 285 year: 1996 end-page: 294 article-title: Patterns of haemozoin accumulation in tissue publication-title: Parasitology – volume: 92 start-page: 2217 year: 2003 end-page: 2228 article-title: Partitioning of halofantrine hydrochloride between water, micellar solutions, and soybean oil: effects on its apparent ionization constant publication-title: J Pharm Sci – volume: 42 start-page: 9383 year: 2003 end-page: 9394 article-title: Trans stimulation provides evidence for a drug efflux carrier as the mechanism of chloroquine resistance in publication-title: Biochemistry – volume: 268 start-page: 3620 year: 2001 end-page: 3639 article-title: The drug/metabolite transporter superfamily publication-title: Eur J Biochem – volume: 173 start-page: 961 year: 1991 end-page: 969 article-title: Hemoglobin degradation in the human malaria pathogen : a catabolic pathway initiated by a specific aspartic protease publication-title: J Exp Med – volume: 19 start-page: 1543 year: 1980 end-page: 1549 article-title: Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites publication-title: Biochemistry – volume: 280 start-page: 25596 year: 2005 end-page: 25603 article-title: expresses a malaria chloroquine resistance mechanism upon transfection with mutant, but not wild‐type, transporter PfCRT publication-title: J Biol Chem – volume: 55 start-page: 737 year: 1998 end-page: 747 article-title: A comparison and analysis of several ways to promote haematin (haem) polymerisation and an assessment of its initiation in vitro publication-title: Biochem Pharmacol – volume: 41 start-page: 381 year: 1983 end-page: 398 article-title: The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p‐trifluoromethoxyphenylhydrazone) publication-title: Biophys J – volume: 108 start-page: 89 year: 2004 end-page: 100 article-title: : correlation of assessment methods to measure erythrocyte digestion, and effect of cysteine proteinases inhibitors in HM‐1: IMSS and HK‐9: NIH strains publication-title: Exp Parasitol – volume: 154 start-page: 123 year: 2003 end-page: 135 article-title: Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in publication-title: Res Microbiol – volume: 82 start-page: 2784 year: 1985 end-page: 2788 article-title: Susceptibility of human malaria parasites to chloroquine is pH dependent publication-title: Proc Natl Acad Sci USA – volume: 355 start-page: 167 year: 1992 end-page: 169 article-title: Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites [see comments] publication-title: Nature – volume: 273 start-page: 31103 year: 1998 end-page: 31107 article-title: A common mechanism for blockade of heme polymerization by antimalarial quinolines publication-title: J Biol Chem – volume: 193 start-page: 673 year: 1976 end-page: 675 article-title: Human malaria parasites in continuous culture publication-title: Science – volume: 24 start-page: 2294 year: 2005 end-page: 2305 article-title: A critical role for PfCRT K76T in verapamil‐reversible chloroquine resistance publication-title: EMBO J – volume: 64 start-page: 12 year: 2001 end-page: 17 article-title: The public health impact of chloroquine resistance in Africa publication-title: Am J Trop Med Hyg – volume: 47 start-page: 2584 year: 2003 end-page: 2589 article-title: Heme binding contributes to antimalarial activity of bis‐quaternary ammoniums publication-title: Antimicrob Agents Chemother – volume: 272 start-page: 2652 year: 1997 end-page: 2658 article-title: Identification of a chloroquine importer in . Differences in import kinetics are genetically linked with the chloroquine‐resistant phenotype publication-title: J Biol Chem – volume: 43 start-page: 57 year: 1992 end-page: 62 article-title: Energy dependence of chloroquine accumulation and chloroquine efflux in publication-title: Biochem Pharmacol – volume: 56 start-page: 323 year: 2005 end-page: 333 article-title: Defining the role of PfCRT in chloroquine resistance publication-title: Mol Microbiol – volume: 21 start-page: 1938 year: 2004 end-page: 1949 article-title: The malaria parasite's chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily publication-title: Mol Biol Evol – volume: 345 start-page: 253 year: 1990 end-page: 255 article-title: Chloroquine resistance not linked to mdr‐like genes in a cross [see comments] publication-title: Nature – volume: 150 start-page: 1 year: 2004 end-page: 3 article-title: The principal chloroquine resistance protein of is a member of the drug/metabolite transporter superfamily publication-title: Microbiology – volume: 298 start-page: 210 year: 2002 end-page: 213 article-title: Chloroquine resistance in malaria parasites conferred by pfcrt mutations publication-title: Science – volume: 43 start-page: 16365 year: 2004 end-page: 16373 article-title: Evidence for a substrate specific and inhibitable drug efflux system in chloroquine resistant strains publication-title: Biochemistry – volume: 278 start-page: 5605 year: 2003 end-page: 5612 article-title: Acidification of the malaria parasite's digestive vacuole by a H+‐ATPase and a H+‐pyrophosphatase publication-title: J Biol Chem – volume: 177 start-page: 119 year: 2003 end-page: 147 article-title: Amazing chloride channels: an overview publication-title: Acta Physiol Scand – volume: 77 start-page: 325 year: 1983 end-page: 326 article-title: Accumulation of 14C‐chloroquine by publication-title: Ann Trop Med Parasitol – volume: 54 start-page: 170 year: 1998 end-page: 179 article-title: Access to hematin: the basis of chloroquine resistance publication-title: Mol Pharmacol – volume: 38 start-page: 2645 year: 1989 end-page: 2654 article-title: Alkalinization of the food vacuole of malaria parasites by quinoline drugs and alkylamines is not correlated with their antimalarial activity publication-title: Biochem Pharmacol – volume: 97 start-page: 929 year: 1983 end-page: 934 article-title: Acidification of endocytic vesicles by an ATP‐dependent proton pump publication-title: J Cell Biol – volume: 280 start-page: 1241 year: 2005 end-page: 1247 article-title: ClC‐3 chloride channels facilitate endosomal acidification and chloride accumulation publication-title: J Biol Chem – volume: 17 start-page: 729 year: 1988 end-page: 734 article-title: Interaction of ferriprotoporphyrin IX with the antimalarials amodiaquine and halofantrine publication-title: Biochem Int – volume: 15 start-page: 867 year: 2004 end-page: 877 article-title: Evidence for a central role for PfCRT in conferring resistance to diverse antimalarial agents publication-title: Mol Cell – volume: 56 start-page: 313 year: 1998 end-page: 320 article-title: Role for the digestive vacuole in chloroquine resistance publication-title: Biochem Pharmacol – volume: 50 start-page: 1559 year: 1996 ident: e_1_2_6_6_1 article-title: Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum publication-title: Mol Pharmacol contributor: fullname: Bray P.G. – ident: e_1_2_6_21_1 doi: 10.1046/j.1432-1327.2001.02265.x – ident: e_1_2_6_12_1 doi: 10.1016/S0006-2952(97)00509-1 – ident: e_1_2_6_33_1 doi: 10.1016/S0166-6851(98)00077-2 – ident: e_1_2_6_26_1 doi: 10.1016/S0923-2508(03)00036-6 – ident: e_1_2_6_45_1 doi: 10.1126/science.781840 – ident: e_1_2_6_31_1 doi: 10.1046/j.1365-201X.2003.01060.x – ident: e_1_2_6_3_1 doi: 10.1128/AAC.47.8.2584-2589.2003 – ident: e_1_2_6_47_1 doi: 10.4269/ajtmh.2001.64.12 – ident: e_1_2_6_5_1 doi: 10.1016/0006-2952(92)90532-N – ident: e_1_2_6_50_1 doi: 10.1083/jcb.97.3.929 – ident: e_1_2_6_16_1 doi: 10.1016/0006-2952(89)90550-9 – ident: e_1_2_6_35_1 doi: 10.1074/jbc.M208648200 – ident: e_1_2_6_49_1 doi: 10.1038/345253a0 – ident: e_1_2_6_38_1 doi: 10.1021/bi048241x – ident: e_1_2_6_51_1 doi: 10.1073/pnas.82.9.2784 – ident: e_1_2_6_25_1 doi: 10.1038/sj.emboj.7600681 – ident: e_1_2_6_27_1 doi: 10.1093/molbev/msh205 – ident: e_1_2_6_23_1 doi: 10.1126/science.3317830 – ident: e_1_2_6_37_1 doi: 10.1021/bi034269h – ident: e_1_2_6_13_1 doi: 10.1016/S0162-0134(98)10095-8 – ident: e_1_2_6_39_1 doi: 10.1021/bi050061f – ident: e_1_2_6_29_1 doi: 10.1016/j.exppara.2004.08.005 – ident: e_1_2_6_15_1 doi: 10.1016/S1097-2765(05)00077-8 – volume: 17 start-page: 729 year: 1988 ident: e_1_2_6_4_1 article-title: Interaction of ferriprotoporphyrin IX with the antimalarials amodiaquine and halofantrine publication-title: Biochem Int contributor: fullname: Blauer G. – ident: e_1_2_6_20_1 doi: 10.1080/00034983.1983.11811717 – ident: e_1_2_6_36_1 doi: 10.1074/jbc.272.5.2652 – ident: e_1_2_6_42_1 doi: 10.1017/S003118200006580X – ident: e_1_2_6_18_1 doi: 10.1074/jbc.M407030200 – ident: e_1_2_6_48_1 doi: 10.1016/S0140-6736(02)11577-7 – ident: e_1_2_6_32_1 doi: 10.1038/35005132 – ident: e_1_2_6_44_1 doi: 10.1002/jps.10479 – ident: e_1_2_6_43_1 doi: 10.1074/jbc.273.47.31103 – ident: e_1_2_6_52_1 doi: 10.1074/jbc.M204005200 – ident: e_1_2_6_11_1 doi: 10.1124/mol.61.1.35 – ident: e_1_2_6_14_1 doi: 10.1016/0006-2952(91)90407-V – ident: e_1_2_6_9_1 doi: 10.1111/j.1365-2958.2005.04556.x – ident: e_1_2_6_10_1 doi: 10.1021/bi00549a600 – ident: e_1_2_6_24_1 doi: 10.1016/0006-2952(92)90661-2 – ident: e_1_2_6_46_1 doi: 10.1099/mic.0.26818-0 – ident: e_1_2_6_34_1 doi: 10.1016/S0006-2952(98)00140-3 – ident: e_1_2_6_2_1 doi: 10.1016/S0006-3495(83)84449-X – ident: e_1_2_6_30_1 doi: 10.1074/jbc.M503227200 – ident: e_1_2_6_7_1 doi: 10.1124/mol.54.1.170 – ident: e_1_2_6_17_1 doi: 10.1084/jem.173.4.961 – ident: e_1_2_6_40_1 doi: 10.1126/science.1074045 – ident: e_1_2_6_8_1 doi: 10.1083/jcb.145.2.363 – ident: e_1_2_6_19_1 doi: 10.1038/235050a0 – ident: e_1_2_6_22_1 doi: 10.1016/j.molcel.2004.09.012 – ident: e_1_2_6_41_1 doi: 10.1038/355167a0 – ident: e_1_2_6_28_1 doi: 10.1038/nature04713 |
SSID | ssj0013063 |
Score | 2.2190797 |
Snippet | Summary
It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus... It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not... Summary It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus... It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 238 |
SubjectTerms | Amino acids Animals Biological and medical sciences Chloroquine - metabolism Chloroquine - pharmacology Drug Resistance - genetics Fundamental and applied biological sciences. Psychology Genes Genotype & phenotype Glucose - metabolism Hemin - metabolism Membrane Transport Proteins - genetics Membrane Transport Proteins - physiology Microbiology Mutation Mutation - genetics Parasites Parasitic Sensitivity Tests Plasmodium falciparum Plasmodium falciparum - drug effects Plasmodium falciparum - genetics Plasmodium falciparum - metabolism Protons Protozoan Proteins - genetics Protozoan Proteins - physiology Vacuoles - metabolism |
Title | PfCRT and the trans‐vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2006.05368.x https://www.ncbi.nlm.nih.gov/pubmed/16956382 https://www.proquest.com/docview/196530652 https://search.proquest.com/docview/19536114 https://www.proquest.com/docview/68875581 https://pubmed.ncbi.nlm.nih.gov/PMC2943415 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB5KIFAo_f9x0qY69Oolsi3Zyq2kTZPClhIS8M3IsrQJCXbY9ZYmh9JHyDP2SToje3fjNoVSejE2kmU0_kYzY42_AXgTVaqsuJOhQvsaJrJyoS5LGaLldSYyymSafhQef5L7x8nHXOR9_hP9C9PxQyw_uJFm-PWaFFyXs6GS-wwtJbJ-T0HEMhuRP8njlLK73h1Gqw2FvqiaEkQnG-XDpJ5bBxpYqnsXeoZCc121i9vc0d-zKm96u95c7T2As8VEuyyVs9G8LUfm6hcOyP8jiYdwv_dq2dsOho_gjq0fw3pX5_LyCXz77HYPj5iuK4b-JmvJPv74fv1FmzlF1ozIIpqa9SV5TM9hwCZTn4_W7rCpnfgyY_XED6B9lUfWOGZOzhsSEc6BtQ1zxDPpR8OwAgE0Pa3ZQf4UjvfeH-3uh33hh9BgfJWFOuVWxIkUFW2CGkNuhqu03U5KYmKSCedGR46rMi654wavEFdxmmboXm0rEz-Dtbqp7QtgBtcYgTGWtBJjIY3I1DxyceIsLkZK2gD44iUXFx2_R3EjLkK5FiRXqtYpCy_X4msAWwM0rG7MiMtGZQFsLuBR9EvCrCDqRkShiAJ4vWxFXaYNGl3bZk5d8AEYoP65h0SbIETGA3jegW31bImRLiI7gHQAw2UH4hEfttSnJ55PPCKOQC4CkB5lfy2HYjw-oLONf71xE-76L1o-N_IlrLXTuX2FPl5bbnntxeOHnP8E11FIlQ |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6hTQgkxO9BGGx-4DXVnMRusjc0mFpYJzR1Ut8sx7G7iSmZuhTBHib-BP5G_hLunLRdYEgI8dYqTqJcvvPd2ZfvA3gdFVlecCfDDONrmMjChTrPZYiR15nIZCbV9KHw6FAOjpP3EzFp5YDoW5iGH2K54Eae4edrcnBakO56uW_RykTabiqIWKY9TCjX0ftj0nF4exStthRaWbVMEKFsNOm29dx4pU6suneuL9BsrtG7uCkh_b2v8nq-6wPW_gM4Wzxq06fyqTev8565_IUF8j_Z4iHcbxNb9qZB4iO4ZcvHcLuRuvz6BK4-ur2jMdNlwTDlZDWFyB_fvn_WZk7FNSO-iKpkrSqPaWkM2HTmW9LqXTazU680Vk79BbQXemSVY-bkrCIb4UOwumKOqCb91bCyQAzNTks2nDyF4_13471B2Go_hAZLrDTUfW5FnEhR0D6oMZRpuELbnSQnMiaZcG505HiWxzl33OA_hFbc76eYYe1kJt6AtbIq7XNgBqcZgWWWtBLLIY3g1DxyceIszkeZtAHwxVtW5w3Fh7pWGqFdFdmVBDul8nZVXwLY6sBhdWJKdDZZGsDmAh-qnRUuFLE3IgxFFMD28ii6M-3R6NJWcxqCN8Aa9c8jJIYFIVIewLMGbat7Syx2EdoB9Ds4XA4gKvHukfL0xFOKR0QTyEUA0sPsr-2gRqMh_Xrxryduw53BeHSgDoaHHzbhrl_g8q2SL2Gtns3tK0z56nzLu_JPcsJLvA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6hTSAkxO9BGGx-4DXVnMRusjc0qFag0zRtUt8ix7G7acipuhTBHib-BP5G_hLunLRdYEgI8dYqjqNcvvN9F1--A3gdlVlRcivDDONrmMjShqooZIiR1-pIZzpV9KHw6EDunyTvx2Lc1j_RtzCNPsTyhRt5hl-vycGnpe06ua_QykTa7imIWKY95JPriUQiTATpKFrtKLRd1TJBerLRuFvVc-NMnVB1b6ou0Gq2aXdxEx_9vazyOt318WrwAM4Xd9qUqZz35nXR05e_iED-H1M8hPstrWVvGhw-glvGPYbbTaPLr0_g6tDuHR0z5UqGhJPVFCB_fPv-Wek5pdaM1CIqx9qePLoVMWCTmS9Iq3fZzEx8nzE38RMo3-aRVZbp008VmQjvgdUVsyQ06WfDvAIRNDtzbDh-CieDd8d7-2Hb-SHUmGCloepzI-JEipJ2QbUmnmFLZXaSgqSYZMK5VpHlWREX3HKN_xBYcb-fIr_ayXS8AWuucuY5MI2LjMAkSxqJyZBCaCoe2TixBlejTJoA-OIh59NG4CO_lhihXXOyK7XrlLm3a_4lgK0OGlYnpiRmk6UBbC7gkbdrwkVO2o2IQhEFsL08is5MOzTKmWpOQ_ACmKH-eYTEoCBEygN41oBtdW2JqS4iO4B-B4bLASQk3j3izk69oHhEIoFcBCA9yv7aDvloNKRfL_71xG24c_h2kH8cHnzYhLv-7Zavk3wJa_Vsbl4h36uLLe_IPwFP70pr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PfCRT+and+the+trans-vacuolar+proton+electrochemical+gradient%3A+regulating+the+access+of+chloroquine+to+ferriprotoporphyrin+IX&rft.jtitle=Molecular+microbiology&rft.au=Bray%2C+Patrick+G&rft.au=Mungthin%2C+Mathirut&rft.au=Hastings%2C+Ian+M&rft.au=Biagini%2C+Giancarlo+A&rft.date=2006-10-01&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=62&rft.issue=1&rft.spage=238&rft.epage=251&rft_id=info:doi/10.1111%2Fj.1365-2958.2006.05368.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |