PfCRT and the trans‐vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX

Summary It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ‐resistant (CQR) parasite lines accumulate less CQ than do CQ‐sens...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 62; no. 1; pp. 238 - 251
Main Authors Bray, Patrick G., Mungthin, Mathirut, Hastings, Ian M., Biagini, Giancarlo A., Saidu, Dauda K., Lakshmanan, Viswanathan, Johnson, David J., Hughes, Ruth H., Stocks, Paul A., O'Neill, Paul M., Fidock, David A., Warhurst, David C., Ward, Stephen A.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.10.2006
Blackwell Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ‐resistant (CQR) parasite lines accumulate less CQ than do CQ‐sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy‐dependent CQ uptake and an additional component that resembles energy‐dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt‐modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV.
AbstractList It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ-resistant (CQR) parasite lines accumulate less CQ than do CQ-sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy-dependent CQ uptake and an additional component that resembles energy-dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt-modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV. [PUBLICATION ABSTRACT]
It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ-resistant (CQR) parasite lines accumulate less CQ than do CQ-sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy-dependent CQ uptake and an additional component that resembles energy-dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt-modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV.
It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ-resistant (CQR) parasite lines accumulate less CQ than do CQ-sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy-dependent CQ uptake and an additional component that resembles energy-dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt-modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV.It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ-resistant (CQR) parasite lines accumulate less CQ than do CQ-sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy-dependent CQ uptake and an additional component that resembles energy-dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt-modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV.
Summary It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ‐resistant (CQR) parasite lines accumulate less CQ than do CQ‐sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy‐dependent CQ uptake and an additional component that resembles energy‐dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt ‐modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV.
It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ-resistant (CQR) parasite lines accumulate less CQ than do CQ-sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy-dependent CQ uptake and an additional component that resembles energy-dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt -modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV.
Summary It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ‐resistant (CQR) parasite lines accumulate less CQ than do CQ‐sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy‐dependent CQ uptake and an additional component that resembles energy‐dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt‐modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV.
Author Lakshmanan, Viswanathan
Biagini, Giancarlo A.
Bray, Patrick G.
Hastings, Ian M.
O'Neill, Paul M.
Stocks, Paul A.
Mungthin, Mathirut
Fidock, David A.
Saidu, Dauda K.
Johnson, David J.
Hughes, Ruth H.
Warhurst, David C.
Ward, Stephen A.
AuthorAffiliation 1 Department of Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
3 Cancer Center, NYU School of Medicine, 522 First Avenue, Smilow 1307, New York, NY 10016, USA
2 Phramongkutklao College of Medicine, Bangkok 10400, Thailand
6 ITD, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
5 Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
4 Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer 403, 1300 Morris Park Ave, the Bronx, NY 10461, USA
AuthorAffiliation_xml – name: 3 Cancer Center, NYU School of Medicine, 522 First Avenue, Smilow 1307, New York, NY 10016, USA
– name: 1 Department of Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
– name: 4 Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer 403, 1300 Morris Park Ave, the Bronx, NY 10461, USA
– name: 5 Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
– name: 6 ITD, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
– name: 2 Phramongkutklao College of Medicine, Bangkok 10400, Thailand
Author_xml – sequence: 1
  givenname: Patrick G.
  surname: Bray
  fullname: Bray, Patrick G.
– sequence: 2
  givenname: Mathirut
  surname: Mungthin
  fullname: Mungthin, Mathirut
– sequence: 3
  givenname: Ian M.
  surname: Hastings
  fullname: Hastings, Ian M.
– sequence: 4
  givenname: Giancarlo A.
  surname: Biagini
  fullname: Biagini, Giancarlo A.
– sequence: 5
  givenname: Dauda K.
  surname: Saidu
  fullname: Saidu, Dauda K.
– sequence: 6
  givenname: Viswanathan
  surname: Lakshmanan
  fullname: Lakshmanan, Viswanathan
– sequence: 7
  givenname: David J.
  surname: Johnson
  fullname: Johnson, David J.
– sequence: 8
  givenname: Ruth H.
  surname: Hughes
  fullname: Hughes, Ruth H.
– sequence: 9
  givenname: Paul A.
  surname: Stocks
  fullname: Stocks, Paul A.
– sequence: 10
  givenname: Paul M.
  surname: O'Neill
  fullname: O'Neill, Paul M.
– sequence: 11
  givenname: David A.
  surname: Fidock
  fullname: Fidock, David A.
– sequence: 12
  givenname: David C.
  surname: Warhurst
  fullname: Warhurst, David C.
– sequence: 13
  givenname: Stephen A.
  surname: Ward
  fullname: Ward, Stephen A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18123698$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16956382$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9qFDEUxoNU7Lb6ChIEvZsxfyaZjKAgi9WFFkUq9C5kM5mdLLPJmMzU7k3xEXxGn8TM7tKqN5qb5HB-5-OcfOcEHDnvDAAQoxyn83KdY8pZRiomcoIQzxGjXOQ3D8DsLnEEZqhiKKOCXB2DkxjXCGGKOH0EjjGvGE-JGbj91Mw_X0Llaji0Bg5Bufjz-49rpUffqQD74AfvoOmMHoLXrdlYrTq4Cqq2xg2vYDCrsVODdaudgNLaxAh9A3Xb-eC_jtYlWQ8bE4LdqfU-9O02WAcXV4_Bw0Z10Tw53Kfgy9m7y_mH7Pzj-8X87XmmOeEiUyU2jBac1RUiTGtCCtzUyqBiWdCS8gJjrUiDqyVd4gbrFGmiaVmKglao0vQUvNnr9uNyY2qdWg-qk32wGxW20isr_8w428qVv5akKmiBWRJ4cRCYZjJxkBsbtek65Ywfo-RClIwJ_E8QV8kqjIsEPvsLXPsxuPQLieEsOcVIgsQe0sHHGExz1zJGcloFuZaT43JyXE6rIHerIG9S6dPfR74vPHifgOcHQMXkaZOs1zbecwITyiuRuNd77pvtzPa_G5AXF4vpRX8BC63UpA
CitedBy_id crossref_primary_10_1007_s00018_011_0906_0
crossref_primary_10_1038_s41467_018_05652_0
crossref_primary_10_1016_j_ijpara_2010_04_001
crossref_primary_10_1073_pnas_1322965111
crossref_primary_10_1016_j_molbiopara_2007_12_014
crossref_primary_10_1021_jm7009292
crossref_primary_10_2217_fmb_10_136
crossref_primary_10_1038_nrg2126
crossref_primary_10_4103_0256_4947_62826
crossref_primary_10_1021_bi901034r
crossref_primary_10_1371_journal_pone_0039569
crossref_primary_10_1073_pnas_1417102112
crossref_primary_10_1016_j_bmc_2012_10_019
crossref_primary_10_1074_jbc_M109_049726
crossref_primary_10_1371_journal_pone_0002484
crossref_primary_10_2139_ssrn_4106544
crossref_primary_10_2147_CPAA_S331660
crossref_primary_10_2139_ssrn_4069890
crossref_primary_10_1128_AAC_01111_08
crossref_primary_10_1128_AAC_05667_11
crossref_primary_10_1016_j_pt_2008_09_005
crossref_primary_10_1111_j_1600_0854_2009_01018_x
crossref_primary_10_1007_s00436_010_1756_7
crossref_primary_10_1007_s00436_011_2251_5
crossref_primary_10_1021_op7002776
crossref_primary_10_1111_j_1365_2958_2007_05664_x
crossref_primary_10_1039_c2dt12083f
crossref_primary_10_1016_j_exppara_2007_04_002
crossref_primary_10_1016_j_bbrc_2023_05_096
crossref_primary_10_1371_journal_ppat_1010926
crossref_primary_10_1242_jcs_016758
crossref_primary_10_1111_j_1365_2958_2006_05511_x
crossref_primary_10_1111_j_1365_2958_2008_06108_x
crossref_primary_10_1021_bi101638n
crossref_primary_10_1016_j_coph_2018_07_010
crossref_primary_10_1186_1471_2164_13_106
crossref_primary_10_1021_bi8010658
crossref_primary_10_1111_j_1472_8206_2009_00709_x
crossref_primary_10_1042_BSR20140134
crossref_primary_10_3390_physchem1030017
crossref_primary_10_1146_annurev_micro_020518_115546
crossref_primary_10_1371_journal_ppat_1005976
crossref_primary_10_1111_j_1365_2958_2008_06413_x
crossref_primary_10_1371_journal_pcbi_1008243
crossref_primary_10_1016_j_pt_2007_11_002
crossref_primary_10_1016_j_pt_2007_04_013
crossref_primary_10_1038_s41598_018_31715_9
crossref_primary_10_1002_cmdc_201100265
crossref_primary_10_1149_1945_7111_ac71d9
crossref_primary_10_1016_j_parint_2022_102623
crossref_primary_10_1016_j_ejmech_2015_02_002
crossref_primary_10_1016_j_ejmech_2020_112330
crossref_primary_10_1128_AAC_00536_09
crossref_primary_10_1128_AAC_00666_08
crossref_primary_10_1021_bi901765v
crossref_primary_10_1111_j_1365_2958_2009_06863_x
crossref_primary_10_1111_j_1742_4658_2007_05999_x
crossref_primary_10_1128_AAC_01167_10
crossref_primary_10_1016_j_pt_2012_08_002
crossref_primary_10_1371_journal_ppat_1005725
crossref_primary_10_1016_j_bbrc_2021_04_034
crossref_primary_10_1016_j_exppara_2007_10_016
crossref_primary_10_1021_cb4008953
crossref_primary_10_1126_science_1175667
crossref_primary_10_1074_jbc_M111_286054
crossref_primary_10_1038_s41598_018_29422_6
crossref_primary_10_1016_j_bcp_2007_03_011
crossref_primary_10_1021_bi901035j
crossref_primary_10_1093_infdis_jiv509
Cites_doi 10.1046/j.1432-1327.2001.02265.x
10.1016/S0006-2952(97)00509-1
10.1016/S0166-6851(98)00077-2
10.1016/S0923-2508(03)00036-6
10.1126/science.781840
10.1046/j.1365-201X.2003.01060.x
10.1128/AAC.47.8.2584-2589.2003
10.4269/ajtmh.2001.64.12
10.1016/0006-2952(92)90532-N
10.1083/jcb.97.3.929
10.1016/0006-2952(89)90550-9
10.1074/jbc.M208648200
10.1038/345253a0
10.1021/bi048241x
10.1073/pnas.82.9.2784
10.1038/sj.emboj.7600681
10.1093/molbev/msh205
10.1126/science.3317830
10.1021/bi034269h
10.1016/S0162-0134(98)10095-8
10.1021/bi050061f
10.1016/j.exppara.2004.08.005
10.1016/S1097-2765(05)00077-8
10.1080/00034983.1983.11811717
10.1074/jbc.272.5.2652
10.1017/S003118200006580X
10.1074/jbc.M407030200
10.1016/S0140-6736(02)11577-7
10.1038/35005132
10.1002/jps.10479
10.1074/jbc.273.47.31103
10.1074/jbc.M204005200
10.1124/mol.61.1.35
10.1016/0006-2952(91)90407-V
10.1111/j.1365-2958.2005.04556.x
10.1021/bi00549a600
10.1016/0006-2952(92)90661-2
10.1099/mic.0.26818-0
10.1016/S0006-2952(98)00140-3
10.1016/S0006-3495(83)84449-X
10.1074/jbc.M503227200
10.1124/mol.54.1.170
10.1084/jem.173.4.961
10.1126/science.1074045
10.1083/jcb.145.2.363
10.1038/235050a0
10.1016/j.molcel.2004.09.012
10.1038/355167a0
10.1038/nature04713
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright Blackwell Publishing Oct 2006
Journal compilation © 2006 Blackwell Publishing Ltd 2006
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright Blackwell Publishing Oct 2006
– notice: Journal compilation © 2006 Blackwell Publishing Ltd 2006
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1111/j.1365-2958.2006.05368.x
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 251
ExternalDocumentID 1152015741
10_1111_j_1365_2958_2006_05368_x
16956382
18123698
MMI5368
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI50234
– fundername: NIAID NIH HHS
  grantid: R01 AI050234-07
– fundername: Wellcome Trust
– fundername: NIAID NIH HHS
  grantid: R37 AI050234
– fundername: NIAID NIH HHS
  grantid: R01 AI050234
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAJUZ
AAPBV
AAUGY
ABCVL
ABHUG
ABPTK
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
AKALU
IQODW
XFK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c6268-a71e53465d9025cc2241fdae04b43736411ca2f19b3b1f1c1cac2c377843909c3
IEDL.DBID DR2
ISSN 0950-382X
IngestDate Tue Sep 17 21:22:29 EDT 2024
Sat Oct 26 04:55:49 EDT 2024
Fri Aug 16 12:20:53 EDT 2024
Thu Oct 10 20:20:32 EDT 2024
Fri Aug 23 02:57:40 EDT 2024
Sat Nov 02 12:05:38 EDT 2024
Sun Oct 22 16:10:06 EDT 2023
Sat Aug 24 00:53:16 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Antimalarial
Parasiticide
Antirheumatic agent
Microbiology
Chloroquine
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6268-a71e53465d9025cc2241fdae04b43736411ca2f19b3b1f1c1cac2c377843909c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2006.05368.x
PMID 16956382
PQID 196530652
PQPubID 35968
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2943415
proquest_miscellaneous_68875581
proquest_miscellaneous_19536114
proquest_journals_196530652
crossref_primary_10_1111_j_1365_2958_2006_05368_x
pubmed_primary_16956382
pascalfrancis_primary_18123698
wiley_primary_10_1111_j_1365_2958_2006_05368_x_MMI5368
PublicationCentury 2000
PublicationDate October 2006
PublicationDateYYYYMMDD 2006-10-01
PublicationDate_xml – month: 10
  year: 2006
  text: October 2006
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2006
Publisher Blackwell Publishing Ltd
Blackwell Science
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Science
References 2004; 21
1990; 345
2000; 6
1997; 272
2002; 277
1983; 97
2003; 278
2001; 268
2003; 154
2005; 24
1998; 273
2003; 92
1987; 238
1991; 42
2000; 404
1992; 355
2003; 47
2006; 440
1998; 94
1989; 38
1992; 43
1992; 44
1998; 54
1998; 56
2003; 42
1998; 55
2004; 43
1991; 173
2002; 298
1988; 17
1996; 50
1985; 82
1999; 145
1976; 193
2004; 108
2003; 177
2005; 44
1983; 77
2001; 64
1972; 235
2005; 280
1980; 19
2002; 61
2002; 360
2004; 15
2004; 150
1983; 41
1999; 73
1996; 112
2005; 56
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
Blauer G. (e_1_2_6_4_1) 1988; 17
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
Bray P.G. (e_1_2_6_6_1) 1996; 50
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 73
  start-page: 101
  year: 1999
  end-page: 107
  article-title: Characterisation of synthetic beta‐haematin and effects of the antimalarial drugs quinidine, halofantrine, desbutylhalofantrine and mefloquine on its formation
  publication-title: J Inorg Biochem
– volume: 238
  start-page: 1283
  year: 1987
  end-page: 1285
  article-title: Efflux of chloroquine from : mechanism of chloroquine resistance
  publication-title: Science
– volume: 145
  start-page: 363
  year: 1999
  end-page: 376
  article-title: Cellular uptake of chloroquine is dependent on binding to ferriprotoporphyrin IX and is independent of NHE activity in
  publication-title: J Cell Biol
– volume: 360
  start-page: 1527
  year: 2002
  end-page: 1529
  article-title: Lysosomes and drug resistance in malaria
  publication-title: Lancet
– volume: 440
  start-page: 484
  year: 2006
  end-page: 489
  article-title: ClC chloride channels viewed through a transporter lens
  publication-title: Nature
– volume: 42
  start-page: S167
  issue: Suppl.
  year: 1991
  end-page: S179
  article-title: Simulation of kinetic data on the influx and efflux of chloroquine by erythrocytes infected with . Evidence for a drug‐importer in chloroquine‐sensitive strains
  publication-title: Biochem Pharmacol
– volume: 50
  start-page: 1559
  year: 1996
  end-page: 1566
  article-title: Physicochemical properties correlated with drug resistance and the reversal of drug resistance in
  publication-title: Mol Pharmacol
– volume: 94
  start-page: 297
  year: 1998
  end-page: 301
  article-title: Uptake of an antiplasmodial protease inhibitor into ‐infected human erythrocytes via a parasite‐induced pathway
  publication-title: Mol Biochem Parasitol
– volume: 44
  start-page: 9862
  year: 2005
  end-page: 9870
  article-title: Evidence for a pfcrt‐associated chloroquine efflux system in the human malarial parasite
  publication-title: Biochemistry
– volume: 6
  start-page: 861
  year: 2000
  end-page: 871
  article-title: Mutations in the digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance
  publication-title: Mol Cell
– volume: 235
  start-page: 50
  year: 1972
  end-page: 52
  article-title: Lysosomes, pH and the anti‐malarial action of chloroquine
  publication-title: Nature
– volume: 61
  start-page: 35
  year: 2002
  end-page: 42
  article-title: Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in
  publication-title: Mol Pharmacol
– volume: 277
  start-page: 49767
  year: 2002
  end-page: 49775
  article-title: Analysis of the antimalarial drug resistance protein Pfcrt expressed in yeast
  publication-title: J Biol Chem
– volume: 44
  start-page: 1317
  year: 1992
  end-page: 1324
  article-title: Rapid chloroquine efflux phenotype in both chloroquine‐sensitive and chloroquine‐resistant . A correlation of chloroquine sensitivity with energy‐dependent drug accumulation
  publication-title: Biochem Pharmacol
– volume: 404
  start-page: 307
  year: 2000
  end-page: 310
  article-title: The structure of malaria pigment beta‐haematin
  publication-title: Nature
– volume: 112
  start-page: 285
  year: 1996
  end-page: 294
  article-title: Patterns of haemozoin accumulation in tissue
  publication-title: Parasitology
– volume: 92
  start-page: 2217
  year: 2003
  end-page: 2228
  article-title: Partitioning of halofantrine hydrochloride between water, micellar solutions, and soybean oil: effects on its apparent ionization constant
  publication-title: J Pharm Sci
– volume: 42
  start-page: 9383
  year: 2003
  end-page: 9394
  article-title: Trans stimulation provides evidence for a drug efflux carrier as the mechanism of chloroquine resistance in
  publication-title: Biochemistry
– volume: 268
  start-page: 3620
  year: 2001
  end-page: 3639
  article-title: The drug/metabolite transporter superfamily
  publication-title: Eur J Biochem
– volume: 173
  start-page: 961
  year: 1991
  end-page: 969
  article-title: Hemoglobin degradation in the human malaria pathogen : a catabolic pathway initiated by a specific aspartic protease
  publication-title: J Exp Med
– volume: 19
  start-page: 1543
  year: 1980
  end-page: 1549
  article-title: Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites
  publication-title: Biochemistry
– volume: 280
  start-page: 25596
  year: 2005
  end-page: 25603
  article-title: expresses a malaria chloroquine resistance mechanism upon transfection with mutant, but not wild‐type, transporter PfCRT
  publication-title: J Biol Chem
– volume: 55
  start-page: 737
  year: 1998
  end-page: 747
  article-title: A comparison and analysis of several ways to promote haematin (haem) polymerisation and an assessment of its initiation in vitro
  publication-title: Biochem Pharmacol
– volume: 41
  start-page: 381
  year: 1983
  end-page: 398
  article-title: The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p‐trifluoromethoxyphenylhydrazone)
  publication-title: Biophys J
– volume: 108
  start-page: 89
  year: 2004
  end-page: 100
  article-title: : correlation of assessment methods to measure erythrocyte digestion, and effect of cysteine proteinases inhibitors in HM‐1: IMSS and HK‐9: NIH strains
  publication-title: Exp Parasitol
– volume: 154
  start-page: 123
  year: 2003
  end-page: 135
  article-title: Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in
  publication-title: Res Microbiol
– volume: 82
  start-page: 2784
  year: 1985
  end-page: 2788
  article-title: Susceptibility of human malaria parasites to chloroquine is pH dependent
  publication-title: Proc Natl Acad Sci USA
– volume: 355
  start-page: 167
  year: 1992
  end-page: 169
  article-title: Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites [see comments]
  publication-title: Nature
– volume: 273
  start-page: 31103
  year: 1998
  end-page: 31107
  article-title: A common mechanism for blockade of heme polymerization by antimalarial quinolines
  publication-title: J Biol Chem
– volume: 193
  start-page: 673
  year: 1976
  end-page: 675
  article-title: Human malaria parasites in continuous culture
  publication-title: Science
– volume: 24
  start-page: 2294
  year: 2005
  end-page: 2305
  article-title: A critical role for PfCRT K76T in verapamil‐reversible chloroquine resistance
  publication-title: EMBO J
– volume: 64
  start-page: 12
  year: 2001
  end-page: 17
  article-title: The public health impact of chloroquine resistance in Africa
  publication-title: Am J Trop Med Hyg
– volume: 47
  start-page: 2584
  year: 2003
  end-page: 2589
  article-title: Heme binding contributes to antimalarial activity of bis‐quaternary ammoniums
  publication-title: Antimicrob Agents Chemother
– volume: 272
  start-page: 2652
  year: 1997
  end-page: 2658
  article-title: Identification of a chloroquine importer in . Differences in import kinetics are genetically linked with the chloroquine‐resistant phenotype
  publication-title: J Biol Chem
– volume: 43
  start-page: 57
  year: 1992
  end-page: 62
  article-title: Energy dependence of chloroquine accumulation and chloroquine efflux in
  publication-title: Biochem Pharmacol
– volume: 56
  start-page: 323
  year: 2005
  end-page: 333
  article-title: Defining the role of PfCRT in chloroquine resistance
  publication-title: Mol Microbiol
– volume: 21
  start-page: 1938
  year: 2004
  end-page: 1949
  article-title: The malaria parasite's chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily
  publication-title: Mol Biol Evol
– volume: 345
  start-page: 253
  year: 1990
  end-page: 255
  article-title: Chloroquine resistance not linked to mdr‐like genes in a cross [see comments]
  publication-title: Nature
– volume: 150
  start-page: 1
  year: 2004
  end-page: 3
  article-title: The principal chloroquine resistance protein of is a member of the drug/metabolite transporter superfamily
  publication-title: Microbiology
– volume: 298
  start-page: 210
  year: 2002
  end-page: 213
  article-title: Chloroquine resistance in malaria parasites conferred by pfcrt mutations
  publication-title: Science
– volume: 43
  start-page: 16365
  year: 2004
  end-page: 16373
  article-title: Evidence for a substrate specific and inhibitable drug efflux system in chloroquine resistant strains
  publication-title: Biochemistry
– volume: 278
  start-page: 5605
  year: 2003
  end-page: 5612
  article-title: Acidification of the malaria parasite's digestive vacuole by a H+‐ATPase and a H+‐pyrophosphatase
  publication-title: J Biol Chem
– volume: 177
  start-page: 119
  year: 2003
  end-page: 147
  article-title: Amazing chloride channels: an overview
  publication-title: Acta Physiol Scand
– volume: 77
  start-page: 325
  year: 1983
  end-page: 326
  article-title: Accumulation of 14C‐chloroquine by
  publication-title: Ann Trop Med Parasitol
– volume: 54
  start-page: 170
  year: 1998
  end-page: 179
  article-title: Access to hematin: the basis of chloroquine resistance
  publication-title: Mol Pharmacol
– volume: 38
  start-page: 2645
  year: 1989
  end-page: 2654
  article-title: Alkalinization of the food vacuole of malaria parasites by quinoline drugs and alkylamines is not correlated with their antimalarial activity
  publication-title: Biochem Pharmacol
– volume: 97
  start-page: 929
  year: 1983
  end-page: 934
  article-title: Acidification of endocytic vesicles by an ATP‐dependent proton pump
  publication-title: J Cell Biol
– volume: 280
  start-page: 1241
  year: 2005
  end-page: 1247
  article-title: ClC‐3 chloride channels facilitate endosomal acidification and chloride accumulation
  publication-title: J Biol Chem
– volume: 17
  start-page: 729
  year: 1988
  end-page: 734
  article-title: Interaction of ferriprotoporphyrin IX with the antimalarials amodiaquine and halofantrine
  publication-title: Biochem Int
– volume: 15
  start-page: 867
  year: 2004
  end-page: 877
  article-title: Evidence for a central role for PfCRT in conferring resistance to diverse antimalarial agents
  publication-title: Mol Cell
– volume: 56
  start-page: 313
  year: 1998
  end-page: 320
  article-title: Role for the digestive vacuole in chloroquine resistance
  publication-title: Biochem Pharmacol
– volume: 50
  start-page: 1559
  year: 1996
  ident: e_1_2_6_6_1
  article-title: Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum
  publication-title: Mol Pharmacol
  contributor:
    fullname: Bray P.G.
– ident: e_1_2_6_21_1
  doi: 10.1046/j.1432-1327.2001.02265.x
– ident: e_1_2_6_12_1
  doi: 10.1016/S0006-2952(97)00509-1
– ident: e_1_2_6_33_1
  doi: 10.1016/S0166-6851(98)00077-2
– ident: e_1_2_6_26_1
  doi: 10.1016/S0923-2508(03)00036-6
– ident: e_1_2_6_45_1
  doi: 10.1126/science.781840
– ident: e_1_2_6_31_1
  doi: 10.1046/j.1365-201X.2003.01060.x
– ident: e_1_2_6_3_1
  doi: 10.1128/AAC.47.8.2584-2589.2003
– ident: e_1_2_6_47_1
  doi: 10.4269/ajtmh.2001.64.12
– ident: e_1_2_6_5_1
  doi: 10.1016/0006-2952(92)90532-N
– ident: e_1_2_6_50_1
  doi: 10.1083/jcb.97.3.929
– ident: e_1_2_6_16_1
  doi: 10.1016/0006-2952(89)90550-9
– ident: e_1_2_6_35_1
  doi: 10.1074/jbc.M208648200
– ident: e_1_2_6_49_1
  doi: 10.1038/345253a0
– ident: e_1_2_6_38_1
  doi: 10.1021/bi048241x
– ident: e_1_2_6_51_1
  doi: 10.1073/pnas.82.9.2784
– ident: e_1_2_6_25_1
  doi: 10.1038/sj.emboj.7600681
– ident: e_1_2_6_27_1
  doi: 10.1093/molbev/msh205
– ident: e_1_2_6_23_1
  doi: 10.1126/science.3317830
– ident: e_1_2_6_37_1
  doi: 10.1021/bi034269h
– ident: e_1_2_6_13_1
  doi: 10.1016/S0162-0134(98)10095-8
– ident: e_1_2_6_39_1
  doi: 10.1021/bi050061f
– ident: e_1_2_6_29_1
  doi: 10.1016/j.exppara.2004.08.005
– ident: e_1_2_6_15_1
  doi: 10.1016/S1097-2765(05)00077-8
– volume: 17
  start-page: 729
  year: 1988
  ident: e_1_2_6_4_1
  article-title: Interaction of ferriprotoporphyrin IX with the antimalarials amodiaquine and halofantrine
  publication-title: Biochem Int
  contributor:
    fullname: Blauer G.
– ident: e_1_2_6_20_1
  doi: 10.1080/00034983.1983.11811717
– ident: e_1_2_6_36_1
  doi: 10.1074/jbc.272.5.2652
– ident: e_1_2_6_42_1
  doi: 10.1017/S003118200006580X
– ident: e_1_2_6_18_1
  doi: 10.1074/jbc.M407030200
– ident: e_1_2_6_48_1
  doi: 10.1016/S0140-6736(02)11577-7
– ident: e_1_2_6_32_1
  doi: 10.1038/35005132
– ident: e_1_2_6_44_1
  doi: 10.1002/jps.10479
– ident: e_1_2_6_43_1
  doi: 10.1074/jbc.273.47.31103
– ident: e_1_2_6_52_1
  doi: 10.1074/jbc.M204005200
– ident: e_1_2_6_11_1
  doi: 10.1124/mol.61.1.35
– ident: e_1_2_6_14_1
  doi: 10.1016/0006-2952(91)90407-V
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-2958.2005.04556.x
– ident: e_1_2_6_10_1
  doi: 10.1021/bi00549a600
– ident: e_1_2_6_24_1
  doi: 10.1016/0006-2952(92)90661-2
– ident: e_1_2_6_46_1
  doi: 10.1099/mic.0.26818-0
– ident: e_1_2_6_34_1
  doi: 10.1016/S0006-2952(98)00140-3
– ident: e_1_2_6_2_1
  doi: 10.1016/S0006-3495(83)84449-X
– ident: e_1_2_6_30_1
  doi: 10.1074/jbc.M503227200
– ident: e_1_2_6_7_1
  doi: 10.1124/mol.54.1.170
– ident: e_1_2_6_17_1
  doi: 10.1084/jem.173.4.961
– ident: e_1_2_6_40_1
  doi: 10.1126/science.1074045
– ident: e_1_2_6_8_1
  doi: 10.1083/jcb.145.2.363
– ident: e_1_2_6_19_1
  doi: 10.1038/235050a0
– ident: e_1_2_6_22_1
  doi: 10.1016/j.molcel.2004.09.012
– ident: e_1_2_6_41_1
  doi: 10.1038/355167a0
– ident: e_1_2_6_28_1
  doi: 10.1038/nature04713
SSID ssj0013063
Score 2.2190797
Snippet Summary It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus...
It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not...
Summary It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus...
It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 238
SubjectTerms Amino acids
Animals
Biological and medical sciences
Chloroquine - metabolism
Chloroquine - pharmacology
Drug Resistance - genetics
Fundamental and applied biological sciences. Psychology
Genes
Genotype & phenotype
Glucose - metabolism
Hemin - metabolism
Membrane Transport Proteins - genetics
Membrane Transport Proteins - physiology
Microbiology
Mutation
Mutation - genetics
Parasites
Parasitic Sensitivity Tests
Plasmodium falciparum
Plasmodium falciparum - drug effects
Plasmodium falciparum - genetics
Plasmodium falciparum - metabolism
Protons
Protozoan Proteins - genetics
Protozoan Proteins - physiology
Vacuoles - metabolism
Title PfCRT and the trans‐vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2006.05368.x
https://www.ncbi.nlm.nih.gov/pubmed/16956382
https://www.proquest.com/docview/196530652
https://search.proquest.com/docview/19536114
https://www.proquest.com/docview/68875581
https://pubmed.ncbi.nlm.nih.gov/PMC2943415
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB5KIFAo_f9x0qY69Oolsi3Zyq2kTZPClhIS8M3IsrQJCXbY9ZYmh9JHyDP2SToje3fjNoVSejE2kmU0_kYzY42_AXgTVaqsuJOhQvsaJrJyoS5LGaLldSYyymSafhQef5L7x8nHXOR9_hP9C9PxQyw_uJFm-PWaFFyXs6GS-wwtJbJ-T0HEMhuRP8njlLK73h1Gqw2FvqiaEkQnG-XDpJ5bBxpYqnsXeoZCc121i9vc0d-zKm96u95c7T2As8VEuyyVs9G8LUfm6hcOyP8jiYdwv_dq2dsOho_gjq0fw3pX5_LyCXz77HYPj5iuK4b-JmvJPv74fv1FmzlF1ozIIpqa9SV5TM9hwCZTn4_W7rCpnfgyY_XED6B9lUfWOGZOzhsSEc6BtQ1zxDPpR8OwAgE0Pa3ZQf4UjvfeH-3uh33hh9BgfJWFOuVWxIkUFW2CGkNuhqu03U5KYmKSCedGR46rMi654wavEFdxmmboXm0rEz-Dtbqp7QtgBtcYgTGWtBJjIY3I1DxyceIsLkZK2gD44iUXFx2_R3EjLkK5FiRXqtYpCy_X4msAWwM0rG7MiMtGZQFsLuBR9EvCrCDqRkShiAJ4vWxFXaYNGl3bZk5d8AEYoP65h0SbIETGA3jegW31bImRLiI7gHQAw2UH4hEfttSnJ55PPCKOQC4CkB5lfy2HYjw-oLONf71xE-76L1o-N_IlrLXTuX2FPl5bbnntxeOHnP8E11FIlQ
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6hTQgkxO9BGGx-4DXVnMRusjc0mFpYJzR1Ut8sx7G7iSmZuhTBHib-BP5G_hLunLRdYEgI8dYqTqJcvvPd2ZfvA3gdFVlecCfDDONrmMjChTrPZYiR15nIZCbV9KHw6FAOjpP3EzFp5YDoW5iGH2K54Eae4edrcnBakO56uW_RykTabiqIWKY9TCjX0ftj0nF4exStthRaWbVMEKFsNOm29dx4pU6suneuL9BsrtG7uCkh_b2v8nq-6wPW_gM4Wzxq06fyqTev8565_IUF8j_Z4iHcbxNb9qZB4iO4ZcvHcLuRuvz6BK4-ur2jMdNlwTDlZDWFyB_fvn_WZk7FNSO-iKpkrSqPaWkM2HTmW9LqXTazU680Vk79BbQXemSVY-bkrCIb4UOwumKOqCb91bCyQAzNTks2nDyF4_13471B2Go_hAZLrDTUfW5FnEhR0D6oMZRpuELbnSQnMiaZcG505HiWxzl33OA_hFbc76eYYe1kJt6AtbIq7XNgBqcZgWWWtBLLIY3g1DxyceIszkeZtAHwxVtW5w3Fh7pWGqFdFdmVBDul8nZVXwLY6sBhdWJKdDZZGsDmAh-qnRUuFLE3IgxFFMD28ii6M-3R6NJWcxqCN8Aa9c8jJIYFIVIewLMGbat7Syx2EdoB9Ds4XA4gKvHukfL0xFOKR0QTyEUA0sPsr-2gRqMh_Xrxryduw53BeHSgDoaHHzbhrl_g8q2SL2Gtns3tK0z56nzLu_JPcsJLvA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6hTSAkxO9BGGx-4DXVnMRusjc0qFag0zRtUt8ix7G7acipuhTBHib-BP5G_hLunLRdYEgI8dYqjqNcvvN9F1--A3gdlVlRcivDDONrmMjShqooZIiR1-pIZzpV9KHw6EDunyTvx2Lc1j_RtzCNPsTyhRt5hl-vycGnpe06ua_QykTa7imIWKY95JPriUQiTATpKFrtKLRd1TJBerLRuFvVc-NMnVB1b6ou0Gq2aXdxEx_9vazyOt318WrwAM4Xd9qUqZz35nXR05e_iED-H1M8hPstrWVvGhw-glvGPYbbTaPLr0_g6tDuHR0z5UqGhJPVFCB_fPv-Wek5pdaM1CIqx9qePLoVMWCTmS9Iq3fZzEx8nzE38RMo3-aRVZbp008VmQjvgdUVsyQ06WfDvAIRNDtzbDh-CieDd8d7-2Hb-SHUmGCloepzI-JEipJ2QbUmnmFLZXaSgqSYZMK5VpHlWREX3HKN_xBYcb-fIr_ayXS8AWuucuY5MI2LjMAkSxqJyZBCaCoe2TixBlejTJoA-OIh59NG4CO_lhihXXOyK7XrlLm3a_4lgK0OGlYnpiRmk6UBbC7gkbdrwkVO2o2IQhEFsL08is5MOzTKmWpOQ_ACmKH-eYTEoCBEygN41oBtdW2JqS4iO4B-B4bLASQk3j3izk69oHhEIoFcBCA9yv7aDvloNKRfL_71xG24c_h2kH8cHnzYhLv-7Zavk3wJa_Vsbl4h36uLLe_IPwFP70pr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PfCRT+and+the+trans-vacuolar+proton+electrochemical+gradient%3A+regulating+the+access+of+chloroquine+to+ferriprotoporphyrin+IX&rft.jtitle=Molecular+microbiology&rft.au=Bray%2C+Patrick+G&rft.au=Mungthin%2C+Mathirut&rft.au=Hastings%2C+Ian+M&rft.au=Biagini%2C+Giancarlo+A&rft.date=2006-10-01&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=62&rft.issue=1&rft.spage=238&rft.epage=251&rft_id=info:doi/10.1111%2Fj.1365-2958.2006.05368.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon