Genomic Selection for Processing and End‐Use Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program

Core Ideas Genomic selection applied for wheat quality in CIMMYT spring bread wheat breeding program. All wheat quality traits predicted and validated using forward genomic selection. Dough and loaf traits have moderately high predictive ability in CIMMYT breeding program. Genomic selection genetic...

Full description

Saved in:
Bibliographic Details
Published inThe plant genome Vol. 9; no. 2; pp. 1 - 12
Main Authors Battenfield, Sarah D., Guzmán, Carlos, Gaynor, R. Chris, Singh, Ravi P., Peña, Roberto J., Dreisigacker, Susanne, Fritz, Allan K., Poland, Jesse A.
Format Journal Article
LanguageEnglish
Published United States Crop Science Society of America 01.07.2016
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Core Ideas Genomic selection applied for wheat quality in CIMMYT spring bread wheat breeding program. All wheat quality traits predicted and validated using forward genomic selection. Dough and loaf traits have moderately high predictive ability in CIMMYT breeding program. Genomic selection genetic gain 1.4 to 2.7 times higher than phenotypic selection. Wheat (Triticum aestivum L.) cultivars must possess suitable end‐use quality for release and consumer acceptability. However, breeding for quality traits is often considered a secondary target relative to yield largely because of amount of seed needed and expense. Without testing and selection, many undesirable materials are advanced, expending additional resources. Here, we develop and validate whole‐genome prediction models for end‐use quality phenotypes in the CIMMYT bread wheat breeding program. Model accuracy was tested using forward prediction on breeding lines (n = 5520) tested in unbalanced yield trials from 2009 to 2015 at Ciudad Obregon, Sonora, Mexico. Quality parameters included test weight, 1000‐kernel weight, hardness, grain and flour protein, flour yield, sodium dodecyl sulfate sedimentation, Mixograph and Alveograph performance, and loaf volume. In general, prediction accuracy substantially increased over time as more data was available to train the model. Reflecting practical implementation of genomic selection (GS) in the breeding program, forward prediction accuracies (r) for quality parameters were assessed in 2015 and ranged from 0.32 (grain hardness) to 0.62 (mixing time). Increased selection intensity was possible with GS since more entries can be genotyped than phenotyped and expected genetic gain was 1.4 to 2.7 times higher across all traits than phenotypic selection. Given the limitations in measuring many lines for quality, we conclude that GS is a powerful tool to facilitate early generation selection for end‐use quality in wheat, leaving larger populations for selection on yield during advanced testing and leading to better gain for both quality and yield in bread wheat breeding programs.
AbstractList Core Ideas Genomic selection applied for wheat quality in CIMMYT spring bread wheat breeding program. All wheat quality traits predicted and validated using forward genomic selection. Dough and loaf traits have moderately high predictive ability in CIMMYT breeding program. Genomic selection genetic gain 1.4 to 2.7 times higher than phenotypic selection. Wheat (Triticum aestivum L.) cultivars must possess suitable end‐use quality for release and consumer acceptability. However, breeding for quality traits is often considered a secondary target relative to yield largely because of amount of seed needed and expense. Without testing and selection, many undesirable materials are advanced, expending additional resources. Here, we develop and validate whole‐genome prediction models for end‐use quality phenotypes in the CIMMYT bread wheat breeding program. Model accuracy was tested using forward prediction on breeding lines (n = 5520) tested in unbalanced yield trials from 2009 to 2015 at Ciudad Obregon, Sonora, Mexico. Quality parameters included test weight, 1000‐kernel weight, hardness, grain and flour protein, flour yield, sodium dodecyl sulfate sedimentation, Mixograph and Alveograph performance, and loaf volume. In general, prediction accuracy substantially increased over time as more data was available to train the model. Reflecting practical implementation of genomic selection (GS) in the breeding program, forward prediction accuracies (r) for quality parameters were assessed in 2015 and ranged from 0.32 (grain hardness) to 0.62 (mixing time). Increased selection intensity was possible with GS since more entries can be genotyped than phenotyped and expected genetic gain was 1.4 to 2.7 times higher across all traits than phenotypic selection. Given the limitations in measuring many lines for quality, we conclude that GS is a powerful tool to facilitate early generation selection for end‐use quality in wheat, leaving larger populations for selection on yield during advanced testing and leading to better gain for both quality and yield in bread wheat breeding programs.
Wheat ( L.) cultivars must possess suitable end-use quality for release and consumer acceptability. However, breeding for quality traits is often considered a secondary target relative to yield largely because of amount of seed needed and expense. Without testing and selection, many undesirable materials are advanced, expending additional resources. Here, we develop and validate whole-genome prediction models for end-use quality phenotypes in the CIMMYT bread wheat breeding program. Model accuracy was tested using forward prediction on breeding lines ( = 5520) tested in unbalanced yield trials from 2009 to 2015 at Ciudad Obregon, Sonora, Mexico. Quality parameters included test weight, 1000-kernel weight, hardness, grain and flour protein, flour yield, sodium dodecyl sulfate sedimentation, Mixograph and Alveograph performance, and loaf volume. In general, prediction accuracy substantially increased over time as more data was available to train the model. Reflecting practical implementation of genomic selection (GS) in the breeding program, forward prediction accuracies () for quality parameters were assessed in 2015 and ranged from 0.32 (grain hardness) to 0.62 (mixing time). Increased selection intensity was possible with GS since more entries can be genotyped than phenotyped and expected genetic gain was 1.4 to 2.7 times higher across all traits than phenotypic selection. Given the limitations in measuring many lines for quality, we conclude that GS is a powerful tool to facilitate early generation selection for end-use quality in wheat, leaving larger populations for selection on yield during advanced testing and leading to better gain for both quality and yield in bread wheat breeding programs.
Wheat (Triticum aestivum L.) cultivars must possess suitable end‐use quality for release and consumer acceptability. However, breeding for quality traits is often considered a secondary target relative to yield largely because of amount of seed needed and expense. Without testing and selection, many undesirable materials are advanced, expending additional resources. Here, we develop and validate whole‐genome prediction models for end‐use quality phenotypes in the CIMMYT bread wheat breeding program. Model accuracy was tested using forward prediction on breeding lines (n = 5520) tested in unbalanced yield trials from 2009 to 2015 at Ciudad Obregon, Sonora, Mexico. Quality parameters included test weight, 1000‐kernel weight, hardness, grain and flour protein, flour yield, sodium dodecyl sulfate sedimentation, Mixograph and Alveograph performance, and loaf volume. In general, prediction accuracy substantially increased over time as more data was available to train the model. Reflecting practical implementation of genomic selection (GS) in the breeding program, forward prediction accuracies (r) for quality parameters were assessed in 2015 and ranged from 0.32 (grain hardness) to 0.62 (mixing time). Increased selection intensity was possible with GS since more entries can be genotyped than phenotyped and expected genetic gain was 1.4 to 2.7 times higher across all traits than phenotypic selection. Given the limitations in measuring many lines for quality, we conclude that GS is a powerful tool to facilitate early generation selection for end‐use quality in wheat, leaving larger populations for selection on yield during advanced testing and leading to better gain for both quality and yield in bread wheat breeding programs.
Author Guzmán, Carlos
Fritz, Allan K.
Poland, Jesse A.
Gaynor, R. Chris
Battenfield, Sarah D.
Dreisigacker, Susanne
Singh, Ravi P.
Peña, Roberto J.
Author_xml – sequence: 1
  givenname: Sarah D.
  surname: Battenfield
  fullname: Battenfield, Sarah D.
  organization: Kansas State Univ
– sequence: 2
  givenname: Carlos
  surname: Guzmán
  fullname: Guzmán, Carlos
  organization: Global Wheat Program, International Maize and Wheat Improvement Center
– sequence: 3
  givenname: R. Chris
  surname: Gaynor
  fullname: Gaynor, R. Chris
  organization: The Roslin Institute and Royal (Dick) School of Veterinary Studies, Univ. of Edinburgh
– sequence: 4
  givenname: Ravi P.
  surname: Singh
  fullname: Singh, Ravi P.
  organization: Global Wheat Program, International Maize and Wheat Improvement Center
– sequence: 5
  givenname: Roberto J.
  surname: Peña
  fullname: Peña, Roberto J.
  organization: Global Wheat Program, International Maize and Wheat Improvement Center
– sequence: 6
  givenname: Susanne
  surname: Dreisigacker
  fullname: Dreisigacker, Susanne
  organization: Global Wheat Program, International Maize and Wheat Improvement Center
– sequence: 7
  givenname: Allan K.
  surname: Fritz
  fullname: Fritz, Allan K.
  organization: Kansas State Univ
– sequence: 8
  givenname: Jesse A.
  surname: Poland
  fullname: Poland, Jesse A.
  email: jpoland@ksu.edu
  organization: Kansas State Univ
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27898810$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhkeoiF7gFcASGzYJvoxvCxYlCiFSkgY1FWJleTzH6USTcbAnQtnxCDwjT8JMUyrUDV356Pj7f1_Of56dNKGBLHtD8JApxt_vatu0a2jCFigmYojJEGPMn2VnROd4wJikJ__Up9l5SpsOkFrlL7JTKpVWiuCzLEx6k8qha6jBtVVokA8RLWNwkFLVrJFtSjRuyt8_f90kQF_2tq7aA1pFW7UJVQ1qbwGNpvP5txW63sVe8TGCLdHXW7BtX0PZNzvHdbTbl9lzb-sEr-7Xi-zm03g1-jyYXU2mo8vZwAkq-ECxnErHvSOWUwCnNSeYAxSF4OAK4aDk2udSScCQMyW8s4oRRzTxQjnKLrLp0bcMdmO6e21tPJhgK3PXCHFtbGwrV4MpvPUYK2AK-7zQXnvAimMlBRee0d7r3dFrF8P3PaTWbKvkoO5mAGGfDM2lFIxKnf8XJSrnlGOmRYe-fYRuwj423acYKkSuFSWCdNTre2pfbKF8eMnfCXaAPAIuhpQi-AeEYNNnxTzKisHE9FnplB8eKV3V2j4CbTfc-gn6xVH_o6rh8NRjzWo5ocvZ5WI1GS-u5uN-D5M7wz_Pr-CC
CitedBy_id crossref_primary_10_1002_csc2_20304
crossref_primary_10_1111_ppl_14480
crossref_primary_10_1016_j_jplph_2020_153354
crossref_primary_10_1007_s10722_021_01261_x
crossref_primary_10_3389_fpls_2023_1167221
crossref_primary_10_3389_fpls_2025_1520087
crossref_primary_10_1016_j_cj_2018_05_003
crossref_primary_10_1016_j_cj_2022_03_010
crossref_primary_10_1534_g3_118_200415
crossref_primary_10_3389_fpls_2019_01509
crossref_primary_10_3390_ijms23063086
crossref_primary_10_3389_fsufs_2023_1256717
crossref_primary_10_3390_agronomy12051126
crossref_primary_10_1007_s42976_020_00122_0
crossref_primary_10_1007_s00122_021_03863_6
crossref_primary_10_3390_genes13081494
crossref_primary_10_1007_s11032_019_1081_5
crossref_primary_10_3390_biology10070689
crossref_primary_10_3389_fgene_2021_829131
crossref_primary_10_1038_s41598_020_69381_5
crossref_primary_10_3835_plantgenome2018_01_0004
crossref_primary_10_1007_s00122_019_03386_1
crossref_primary_10_1007_s12011_020_02338_x
crossref_primary_10_1016_j_xplc_2019_100005
crossref_primary_10_3389_fpls_2021_676269
crossref_primary_10_3389_fgene_2022_1032601
crossref_primary_10_1007_s00122_017_2975_4
crossref_primary_10_1007_s00425_022_03996_y
crossref_primary_10_1016_j_agwat_2024_109049
crossref_primary_10_3389_fpls_2020_00319
crossref_primary_10_1002_leg3_254
crossref_primary_10_3835_plantgenome2016_12_0130
crossref_primary_10_1111_nph_14174
crossref_primary_10_3835_plantgenome2017_05_0043
crossref_primary_10_2135_cropsci2017_10_0638
crossref_primary_10_1021_acs_jafc_7b05450
crossref_primary_10_3835_plantgenome2018_11_0090
crossref_primary_10_1016_j_jcs_2017_07_012
crossref_primary_10_1007_s00122_018_3186_3
crossref_primary_10_1111_jipb_13791
crossref_primary_10_1093_g3journal_jkab270
crossref_primary_10_3389_fpls_2018_00069
crossref_primary_10_3389_fpls_2021_709545
crossref_primary_10_1002_tpg2_20326
crossref_primary_10_3389_fpls_2023_1127357
crossref_primary_10_3835_plantgenome2017_05_0038
crossref_primary_10_20900_cbgg20210008
crossref_primary_10_1002_tpg2_20164
crossref_primary_10_1111_ppl_14544
crossref_primary_10_1007_s11032_018_0818_x
crossref_primary_10_1111_pbi_12888
crossref_primary_10_3390_plants12132571
crossref_primary_10_1371_journal_pone_0212200
crossref_primary_10_3835_plantgenome2017_09_0084
crossref_primary_10_3390_plants13213071
crossref_primary_10_1111_pbr_12862
crossref_primary_10_3390_genes11111270
crossref_primary_10_1038_s41598_018_31951_z
crossref_primary_10_1007_s00122_017_2972_7
crossref_primary_10_1016_j_molp_2024_05_006
crossref_primary_10_3390_plants13111477
crossref_primary_10_1002_csc2_20683
crossref_primary_10_1002_tpg2_20034
crossref_primary_10_1007_s00122_021_03982_0
crossref_primary_10_3390_ijms21010165
crossref_primary_10_1080_09064710_2020_1818818
crossref_primary_10_3390_agronomy11122528
crossref_primary_10_1007_s10681_021_02846_4
crossref_primary_10_3389_fpls_2019_01390
crossref_primary_10_1590_s1678_3921_pab2023_v58_03549
crossref_primary_10_1007_s00122_022_04039_6
crossref_primary_10_1371_journal_pone_0211718
crossref_primary_10_1038_s41598_020_63919_3
crossref_primary_10_3390_plants10051027
crossref_primary_10_1016_j_jia_2023_09_006
crossref_primary_10_3389_fpls_2016_00991
crossref_primary_10_1371_journal_pone_0204757
crossref_primary_10_1371_journal_pone_0229535
crossref_primary_10_3389_fgene_2022_831020
crossref_primary_10_3390_plants11070952
crossref_primary_10_1002_csc2_21321
crossref_primary_10_1007_s00122_023_04294_1
crossref_primary_10_3389_fpls_2022_851079
crossref_primary_10_14720_aas_2021_117_1_1523
crossref_primary_10_1371_journal_pone_0235089
crossref_primary_10_3835_plantgenome2016_12_0128
crossref_primary_10_3390_biology10080756
crossref_primary_10_1007_s11738_019_2946_2
crossref_primary_10_1007_s00122_019_03286_4
crossref_primary_10_1007_s00122_019_03312_5
crossref_primary_10_1016_j_eja_2024_127385
crossref_primary_10_1016_j_fcr_2017_10_003
crossref_primary_10_3389_fpls_2019_00464
crossref_primary_10_1002_tpg2_20457
crossref_primary_10_1016_j_jfca_2023_105253
crossref_primary_10_2298_GENSR2201015R
crossref_primary_10_1002_csc2_20583
crossref_primary_10_1002_tpg2_20331
crossref_primary_10_1038_s41598_020_73321_8
crossref_primary_10_3390_genes11080838
crossref_primary_10_3390_agronomy10091221
crossref_primary_10_3390_agronomy11061022
crossref_primary_10_2135_cropsci2016_09_0742
crossref_primary_10_1007_s00122_018_3206_3
crossref_primary_10_1016_j_atg_2016_10_004
crossref_primary_10_3390_agronomy9030126
crossref_primary_10_3390_agronomy10010062
crossref_primary_10_1094_CCHEM_05_17_0103_FI
crossref_primary_10_1002_fes3_376
crossref_primary_10_1007_s11033_022_07326_z
crossref_primary_10_1002_tpg2_20529
crossref_primary_10_3389_fgene_2023_1164935
crossref_primary_10_1002_csc2_20130
crossref_primary_10_1002_tpg2_20128
crossref_primary_10_1016_j_jcs_2021_103343
crossref_primary_10_1371_journal_pone_0233056
crossref_primary_10_1007_s13353_023_00826_z
crossref_primary_10_3389_fsufs_2020_583367
crossref_primary_10_2135_cropsci2018_10_0655
crossref_primary_10_36953_ECJ_30560424
crossref_primary_10_3389_fpls_2019_01445
crossref_primary_10_1002_tpg2_20089
crossref_primary_10_1002_tpg2_20002
crossref_primary_10_1111_gfs_12557
crossref_primary_10_3390_plants10040745
crossref_primary_10_3389_fpls_2017_01916
crossref_primary_10_1007_s00122_017_2998_x
crossref_primary_10_3835_plantgenome2018_03_0017
crossref_primary_10_3390_genes10090669
crossref_primary_10_1002_tpg2_20118
crossref_primary_10_1007_s10681_022_03062_4
Cites_doi 10.1534/g3.112.004911
10.3835/plantgenome2015.01.0003
10.1093/genetics/157.4.1819
10.1371/journal.pone.0032253
10.3835/plantgenome2012.06.0006
10.3835/plantgenome.2010.12.0029
10.1094/9781891127632
10.1016/j.jcs.2015.10.009
10.1073/pnas.81.24.8014
10.1038/hdy.2013.16
10.2135/cropsci2014.09.0601
10.1126/science.1257469
10.18637/jss.v018.i02
10.2135/cropsci2011.05.0253
10.1007/s10681‐010‐0301‐1
10.1016/j.jcs.2009.06.008
10.1093/bioinformatics/btm308
10.1534/genetics.105.044586
10.1177/1082013210379691
10.1080/01904160600830134
10.1016/j.jcs.2006.03.004
10.1111/j.2517-6161.1964.tb00553.x
10.1007/s001220050636
10.3835/plantgenome2014.02.0006
10.1016/S0733‐5210(09)80092‐1
10.1534/genetics.110.118521
10.2135/cropsci2009.11.0662
10.1016/j.fcr.2013.07.020
10.1002/jsfa.2740400108
10.1007/s00122‐006‐0252‐z
10.2134/agronj1969.00021962006100050031x
10.3835/plantgenome2012.05.0005
10.1186/s13059‐015‐0582‐8
10.3835/plantgenome2011.08.0024
10.1126/science.1251788
10.3835/plantgenome2012.02.0001
10.2135/cropsci2008.08.0512
ContentType Journal Article
Copyright Copyright © 2016 Crop Science Society of America
Copyright © 2016 Crop Science Society of America.
2016. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2016 Crop Science Society of America
– notice: Copyright © 2016 Crop Science Society of America.
– notice: 2016. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
DOA
DOI 10.3835/plantgenome2016.01.0005
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1940-3372
EndPage 12
ExternalDocumentID oai_doaj_org_article_bfaf008e380f4b9f9fe085087656f322
27898810
10_3835_plantgenome2016_01_0005
TPG2PLANTGENOME2016010005
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Poland
Mexico
GeographicLocations_xml – name: Poland
– name: Mexico
GrantInformation_xml – fundername: NSF
  funderid: CNS‐1006860; EPS‐1006860; EPS‐0919443
– fundername: US Agency for International Development Feed the Future Initiative
  funderid: AID‐OAA‐A‐13‐0005
– fundername: CGIAR CRP WHEAT
– fundername: SAGARPA‐CONACYT
  funderid: 146788
GroupedDBID .~0
0R~
123
18M
1OC
24P
5VS
6KN
AAHBH
AAHHS
ACAWQ
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CS3
EBS
ECGQY
EJD
FRP
GROUPED_DOAJ
H13
HCIFZ
IAO
IPNFZ
ITC
KQ8
M7P
MV1
M~E
NHAZY
O9-
OK1
PIMPY
RIG
TR2
WIN
AAYXX
CITATION
PHGZM
PHGZT
NPM
8FE
8FH
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c6265-83427c5fc1a52eec995105eebb65ecb6ced59f4787e0e4386fca831c191f68c23
IEDL.DBID DOA
ISSN 1940-3372
IngestDate Wed Aug 27 01:29:51 EDT 2025
Fri Jul 11 18:24:30 EDT 2025
Fri Jul 11 04:55:33 EDT 2025
Wed Aug 13 02:43:01 EDT 2025
Wed Feb 19 02:43:03 EST 2025
Tue Jul 01 02:10:35 EDT 2025
Thu Apr 24 23:03:23 EDT 2025
Wed Jan 22 16:40:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial-NoDerivs
Copyright © 2016 Crop Science Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6265-83427c5fc1a52eec995105eebb65ecb6ced59f4787e0e4386fca831c191f68c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/bfaf008e380f4b9f9fe085087656f322
PMID 27898810
PQID 2664982161
PQPubID 5069926
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_bfaf008e380f4b9f9fe085087656f322
proquest_miscellaneous_2477632794
proquest_miscellaneous_1845250396
proquest_journals_2664982161
pubmed_primary_27898810
crossref_primary_10_3835_plantgenome2016_01_0005
crossref_citationtrail_10_3835_plantgenome2016_01_0005
wiley_primary_10_3835_plantgenome2016_01_0005_TPG2PLANTGENOME2016010005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2016
2016-07-00
20160701
2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: July 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Madison
PublicationTitle The plant genome
PublicationTitleAlternate Plant Genome
PublicationYear 2016
Publisher Crop Science Society of America
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Crop Science Society of America
– name: John Wiley & Sons, Inc
– name: Wiley
References 2012a; 7
2007; 18
2013; 3
2015; 16
1990; 12
1984; 81
2010
2015; 55
1996
2010; 186
2011a; 51
1964; 26
2006; 172
2002
2011; 4
2015; 8
2009; 49
2006; 112
2014; 112
2001; 157
1997; 95
1987; 40
2011b; 4
2000
1969; 61
2009; 50
2002; 2–3
2006; 44
2015; 66
2010; 179
2006; 29
2015
2013; 154
2014
2013
2009; 1
2014; 7
2007; 23
2012; 5
2014; 345
2012b; 5
2014; 346
2010; 50
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_2_1
e_1_2_8_4_1
SAS Institute (e_1_2_8_45_1) 2013
e_1_2_8_7_1
Falconer D.S. (e_1_2_8_14_1) 1996
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
Liaw A. (e_1_2_8_27_1) 2002; 2
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_35_1
e_1_2_8_38_1
Friedman J. (e_1_2_8_15_1) 2009; 1
e_1_2_8_16_1
e_1_2_8_37_1
American Association of Cereal Chemists (e_1_2_8_3_1) 2000
Peña R.J. (e_1_2_8_36_1) 2002
Box G.E.P. (e_1_2_8_5_1) 1964; 26
Peña R. (e_1_2_8_34_1) 2002
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
R Development Core Team (e_1_2_8_40_1) 2014
Gaynor R.C. (e_1_2_8_17_1) 2015
e_1_2_8_30_1
References_xml – volume: 172
  start-page: 1165
  year: 2006
  end-page: 1177
  article-title: Association mapping of kernel size and milling quality in wheat ( l.) cultivars
  publication-title: Genetics
– volume: 4
  start-page: 65
  year: 2011b
  end-page: 75
  article-title: Genomic selection accuracy using multifamily prediction models in a wheat breeding program
  publication-title: Plant Genome
– volume: 18
  start-page: 1
  year: 2007
  end-page: 24
  article-title: The pls package: Principal component and partial least squares regression in R
  publication-title: J. Stat. Softw.
– volume: 40
  start-page: 51
  year: 1987
  end-page: 65
  article-title: The relationship between HMW glutenin subunit composition and the bread‐making quality of British‐grown wheat varieties
  publication-title: J. Sci. Food Agric.
– year: 2010
  article-title: Grain hardness: A major determinant of wheat quality
– volume: 112
  start-page: 48
  year: 2014
  end-page: 60
  article-title: Genomic prediction in CIMMYT maize and wheat breeding programs
  publication-title: Heredity
– volume: 3
  start-page: 481
  year: 2013
  end-page: 491
  article-title: Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: A simulation experiment
  publication-title: G3: Genes, Genomes, Genet.
– volume: 55
  start-page: 1749
  year: 2015
  article-title: The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009
  publication-title: Crop Sci.
– volume: 2–3
  start-page: 18
  year: 2002
  end-page: 22
  article-title: Classification and regression by randomForest
  publication-title: R News
– start-page: 1
  year: 2002
  end-page: 37
– volume: 95
  start-page: 857
  year: 1997
  end-page: 864
  article-title: A glycine to serine change in is associated with wheat grain hardness and low levels of starch‐surface friabilin
  publication-title: Theor. Appl. Genet.
– year: 2000
– year: 1996
– volume: 154
  start-page: 12
  year: 2013
  end-page: 22
  article-title: The use of unbalanced historical data for genomic selection in an international wheat breeding program
  publication-title: Field Crops Res.
– volume: 66
  start-page: 59
  year: 2015
  end-page: 65
  article-title: A new standard water absorption criteria based on solvent retention capacity (SRC) to determine dough mixing properties, viscoelasticity, and bread‐making quality
  publication-title: J. Cereal Sci.
– volume: 345
  start-page: 1251788
  year: 2014
  article-title: A chromosome‐based draft sequence of the hexaploid bread wheat ( ) genome
  publication-title: Science
– volume: 5
  start-page: 103
  year: 2012b
  article-title: Genomic selection in wheat breeding using genotyping‐by‐sequencing
  publication-title: Plant Genome
– year: 2014
– volume: 26
  start-page: 211
  year: 1964
  end-page: 252
  article-title: An analysis of transformation
  publication-title: J. R. Stat. Soc. [Ser A]
– year: 2010
– volume: 5
  start-page: 51
  year: 2012
  article-title: Evaluation of genomic prediction methods for fusarium head blight resistance in wheat
  publication-title: Plant Genome
– volume: 81
  start-page: 8014
  year: 1984
  end-page: 8018
  article-title: Ribosomal DNA spacer‐length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 23
  start-page: 2633
  year: 2007
  end-page: 2635
  article-title: TASSEL: Software for association mapping of complex traits in diverse samples
  publication-title: Bioinformatics
– volume: 51
  start-page: 2597
  year: 2011a
  article-title: Genomic selection accuracy for grain quality traits in biparental wheat populations
  publication-title: Crop Sci.
– volume: 5
  start-page: 92
  year: 2012
  article-title: Genotyping‐by‐sequencing for plant breeding and genetics
  publication-title: Plant Genome
– volume: 49
  start-page: 1
  year: 2009
  article-title: Genomic selection for crop improvement
  publication-title: Crop Sci.
– volume: 50
  start-page: 283
  year: 2009
  end-page: 290
  article-title: Association analysis reveals effects of wheat glutenin alleles and rye translocations on dough‐mixing properties
  publication-title: J. Cereal Sci.
– volume: 44
  start-page: 86
  year: 2006
  end-page: 92
  article-title: Puroindoline grain hardness alleles in CIMMYT bread wheat germplasm
  publication-title: J. Cereal Sci.
– volume: 4
  start-page: 250
  year: 2011
  article-title: Ridge regression and other kernels for genomic selection with R package rrBLUP
  publication-title: Plant Genome
– volume: 29
  start-page: 1357
  year: 2006
  end-page: 1369
  article-title: Genetic control of high protein content and its association with bread‐making quality in wheat
  publication-title: J. Plant Nutr.
– start-page: 483
  year: 2002
  end-page: 542
– volume: 7
  start-page: 3
  year: 2014
  article-title: Genomic selection for quantitative adult plant stem rust resistance in wheat
  publication-title: Plant Genome
– volume: 186
  start-page: 713
  year: 2010
  end-page: 724
  article-title: Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers
  publication-title: Genetics
– volume: 346
  start-page: 234
  year: 2014
  end-page: 237
  article-title: World population stabilization unlikely this century
  publication-title: Science
– volume: 157
  start-page: 1819
  year: 2001
  end-page: 1829
  article-title: Prediction of total genetic value using genome‐wide dense marker maps
  publication-title: Genetics
– volume: 179
  start-page: 161
  year: 2010
  end-page: 173
  article-title: Genomic selection for durable stem rust resistance in wheat
  publication-title: Euphytica
– volume: 7
  year: 2012a
  article-title: Development of high‐density genetic maps for barley and wheat using a novel two‐enzyme genotyping‐by‐sequencing approach
  publication-title: PLoS One
– volume: 50
  start-page: 1681
  year: 2010
  end-page: 1690
  article-title: Plant breeding with genomic selection: Gain per unit time and cost
  publication-title: Crop Sci.
– volume: 61
  start-page: 755
  year: 1969
  end-page: 759
  article-title: Yield‐protein relationships in wheat grain, as affected by nitrogen and water
  publication-title: Agron. J.
– volume: 16
  start-page: 26
  year: 2015
  article-title: A whole‐genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome
  publication-title: Genome Biol.
– volume: 1
  year: 2009
  article-title: Glmnet: Lasso and elastic‐net regularized generalized linear models
  publication-title: R package version
– volume: 112
  start-page: 1487
  year: 2006
  end-page: 1495
  article-title: The genetic control of milling yield, dough rheology and baking quality of wheat
  publication-title: Theor. Appl. Genet.
– volume: 12
  start-page: 105
  year: 1990
  end-page: 112
  article-title: Variation in quality characteristics associated with some spring 1B/1R translocation wheats
  publication-title: J. Cereal Sci.
– volume: 8
  year: 2015
  article-title: Genomic selection for predicting head blight resistance in a wheat breeding program
  publication-title: Plant Genome
– year: 2015
– year: 2013
– ident: e_1_2_8_29_1
  doi: 10.1534/g3.112.004911
– volume: 2
  start-page: 18
  year: 2002
  ident: e_1_2_8_27_1
  article-title: Classification and regression by randomForest
  publication-title: R News
– ident: e_1_2_8_4_1
  doi: 10.3835/plantgenome2015.01.0003
– ident: e_1_2_8_30_1
  doi: 10.1093/genetics/157.4.1819
– ident: e_1_2_8_37_1
  doi: 10.1371/journal.pone.0032253
– ident: e_1_2_8_38_1
  doi: 10.3835/plantgenome2012.06.0006
– ident: e_1_2_8_22_1
  doi: 10.3835/plantgenome.2010.12.0029
– ident: e_1_2_8_12_1
  doi: 10.1094/9781891127632
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jcs.2015.10.009
– ident: e_1_2_8_44_1
  doi: 10.1073/pnas.81.24.8014
– ident: e_1_2_8_10_1
  doi: 10.1038/hdy.2013.16
– ident: e_1_2_8_2_1
  doi: 10.2135/cropsci2014.09.0601
– volume-title: Approved methods of analysis
  year: 2000
  ident: e_1_2_8_3_1
– ident: e_1_2_8_18_1
  doi: 10.1126/science.1257469
– volume-title: JMP Genomics 7.1
  year: 2013
  ident: e_1_2_8_45_1
– ident: e_1_2_8_31_1
  doi: 10.18637/jss.v018.i02
– ident: e_1_2_8_21_1
  doi: 10.2135/cropsci2011.05.0253
– ident: e_1_2_8_42_1
  doi: 10.1007/s10681‐010‐0301‐1
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jcs.2009.06.008
– ident: e_1_2_8_6_1
  doi: 10.1093/bioinformatics/btm308
– ident: e_1_2_8_7_1
  doi: 10.1534/genetics.105.044586
– ident: e_1_2_8_32_1
  doi: 10.1177/1082013210379691
– ident: e_1_2_8_16_1
  doi: 10.1080/01904160600830134
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jcs.2006.03.004
– volume: 26
  start-page: 211
  year: 1964
  ident: e_1_2_8_5_1
  article-title: An analysis of transformation
  publication-title: J. R. Stat. Soc. [Ser A]
  doi: 10.1111/j.2517-6161.1964.tb00553.x
– ident: e_1_2_8_19_1
  doi: 10.1007/s001220050636
– ident: e_1_2_8_43_1
  doi: 10.3835/plantgenome2014.02.0006
– ident: e_1_2_8_35_1
  doi: 10.1016/S0733‐5210(09)80092‐1
– volume-title: Introduction to quantitative genetics
  year: 1996
  ident: e_1_2_8_14_1
– ident: e_1_2_8_9_1
  doi: 10.1534/genetics.110.118521
– ident: e_1_2_8_23_1
  doi: 10.2135/cropsci2009.11.0662
– ident: e_1_2_8_11_1
  doi: 10.1016/j.fcr.2013.07.020
– volume-title: Genomic selection for Kansas wheat
  year: 2015
  ident: e_1_2_8_17_1
– start-page: 483
  volume-title: Wheat for bread and other foods. Bread wheat improvement and production
  year: 2002
  ident: e_1_2_8_34_1
– ident: e_1_2_8_33_1
  doi: 10.1002/jsfa.2740400108
– ident: e_1_2_8_26_1
  doi: 10.1007/s00122‐006‐0252‐z
– ident: e_1_2_8_46_1
  doi: 10.2134/agronj1969.00021962006100050031x
– ident: e_1_2_8_39_1
  doi: 10.3835/plantgenome2012.05.0005
– ident: e_1_2_8_8_1
  doi: 10.1186/s13059‐015‐0582‐8
– ident: e_1_2_8_13_1
  doi: 10.3835/plantgenome2011.08.0024
– start-page: 1
  volume-title: Quality improvement in field crops
  year: 2002
  ident: e_1_2_8_36_1
– volume-title: R: A language and environment for statistical computing
  year: 2014
  ident: e_1_2_8_40_1
– ident: e_1_2_8_25_1
  doi: 10.1126/science.1251788
– ident: e_1_2_8_41_1
  doi: 10.3835/plantgenome2012.02.0001
– ident: e_1_2_8_24_1
  doi: 10.2135/cropsci2008.08.0512
– volume: 1
  year: 2009
  ident: e_1_2_8_15_1
  article-title: Glmnet: Lasso and elastic‐net regularized generalized linear models
  publication-title: R package version
SSID ssj0057984
Score 2.4443731
Snippet Core Ideas Genomic selection applied for wheat quality in CIMMYT spring bread wheat breeding program. All wheat quality traits predicted and validated using...
Wheat ( L.) cultivars must possess suitable end-use quality for release and consumer acceptability. However, breeding for quality traits is often considered a...
Wheat (Triticum aestivum L.) cultivars must possess suitable end‐use quality for release and consumer acceptability. However, breeding for quality traits is...
SourceID doaj
proquest
pubmed
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Accuracy
Bread
breeding lines
breeding programs
consumer acceptance
Cultivars
Flour
genetic improvement
genome
Genomics
Genotype & phenotype
genotyping
Gluten
Grain
hardness
loaves
marker-assisted selection
Mexico
phenotype
Phenotypes
phenotypic selection
Plant breeding
Population
prediction
Prediction models
Proteins
Rheology
seed weight
selection intensity
sodium dodecyl sulfate
Sodium lauryl sulfate
spring wheat
Triticum aestivum
Viscoelasticity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgy4EL4k1KQUbiGjVx7MQ5Vd0q3YLYZQW7UjlZjmNXlUqyNNtDb_wEfiO_hBnHuzzE6xYlTmRnPN9847FnCHnJCldLwLk4A1sSc6NZrEWSxSbjXGihwSnCA87TWX6y5K9PxWlYcOvDtsoNJnqgbjqDa-T7YEh4KRkQlIPVpxirRmF0NZTQuEl2AIKlHJGdcTWbv9tgsShKOcSVOaBNVrBhhxd0QOyvLqDrmAj1owUjmPvknQlWsfvBPvk0_r_jnj9TWW-Lju-SO4FE0sNB6vfIDdveJ7fGHRC96wekm1h_1pi-9zVu4MdTYKY0HAkAU0V129Cqbb5-_rLsLR3SaFxTMFvn656etxRIIT16NZ1-WNBh4Y-OgVs21CM3XnuLh1_EvV0PyfK4WhydxKGuQmzAfRGxzDgrjHAm1YJZa0rPsqyt61xYU-fGNqJ0mLXHJpZnMndGyyw14Nq5XBqWPSKjtmvtE0JTVjQFaG6ZOMGhrbasEKIWTaNZAegRkXzzN5UJScex9sWFAucDxaB-EYNKUoyHi4gk2xdXQ96Nf78yRnFtm2PibH-juzxTQQ9V7bQD2mMzmThel650FpP2gU0QuQNwi8jeRtgqaHOvvs-9iLzYPgY9xOCKbm131SvwlDFCnJX5n9swXgCcM4DAiDweJtK2t3giWco0icjEz6z_HbVazCds_uZwtphUs7fTCp8lGLQRu38fylNyG9sOW4_3yGh9eWWfAcFa18-DFn0D5rYg1w
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ4cAF8SZQkJG4RiR-xTl2q-0WxC4rsSuVk2U7NqrUJlV3e-iNn8Bv5Jcw42QjFVHBgVsetvOYzMw3Gc9nQt6xKjoNdi7n4Ety4S3LrSx47rkQ0koLQREWOM8X6ngtPp7Ik4FSCGthen6I8Ycbakay16jg1qVVSKA78iFcnMGlkcj0PIATU4l8M7GZ3sVCW5zdx8RyZ5RlVes-wSzA7PCK9VO9cKj3twx0w1ElPv8_gdCbmDY5paOH5MGAJulBL_5H5E5oH5N7kw4Q3_UT0s1CKjqmX9JiNyABChCVDrUB4LOobRs6bZuf33-sN4H2fBrXFPzX6XZDT1sK6JAefpjPv65o_weQTgBkNjSZcNxOrg9HxEleT8n6aLo6PM6HBRZyD3GMzDUXrPIy-tJKFoKvE9wKwTklg3fKh0bWEel7QhEE1yp6q3npIcaLSnvGn5G9tmvDC0JLVjUVqHBdRCmgrQ2sktLJprGsAjOSEbV7m8YP7OO4CMaZgSgExWB-E4MpSkyMy4wUY8eLnoDj710mKK6xOTJopwPd5TczKKRx0UbAP4HrIgpXxzoGZO8D5yBVBCuXkf2dsM2g1hsDaEbUmgFKzsjb8TQoJGZZbBu6q42BkBlTxbxWt7dhogK7zsAWZuR5_yGNd4ulyVqXRUZm6cv616c2q-WMLT8dLFaz6eLzfIrnCszeyJf_baRX5D7u9NOV98ne9vIqvAZQtnVvkrr9AmaTLUU
  priority: 102
  providerName: Wiley-Blackwell
Title Genomic Selection for Processing and End‐Use Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program
URI https://onlinelibrary.wiley.com/doi/abs/10.3835%2Fplantgenome2016.01.0005
https://www.ncbi.nlm.nih.gov/pubmed/27898810
https://www.proquest.com/docview/2664982161
https://www.proquest.com/docview/1845250396
https://www.proquest.com/docview/2477632794
https://doaj.org/article/bfaf008e380f4b9f9fe085087656f322
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgcOCC-CZsVEbiGi3xV5zjOmUdiJYKWmmcLMexpUlbOtHusP9-79lpNRBoHLhFiZM49vv4vTz79wj5yKrQarBzOQdfkgtnWW5lwXPHhZBWWgiKcIPzdKZOl-LzmTy7U-oL14QleuA0cIdtsAH8lOe6CKKtQx08sqyBEksVQBrR-oLP2wZTyQbLqtYpnyzAyvCKpZVd8GJ5eHUBXUYC1EsPzk9F0s4Cq9fd8UuRvv9PmPNXCBt90Mkz8nQAj_Qodfo5eeD7F-TxeAUA7-YluZz4uMeYfo-1bWDAKSBSOmwFABdFbd_Rpu_y5drTRJ5xQ8FZnW_W9LynAAXp8afp9MeCpt99dAyIsqPRXuNx9HP4PFzR9YosT5rF8Wk-VFPIHQQtMtdcsMrJ4EormfeujtjK-7ZV0rtWOd_JOiBXjy-84FoFZzUvHQR0QWnH-Guy1696_5bQklVdBfpaF0EKaGs9q6RsZddZVoHNyIjajqVxA9U4Vry4MBBy4CSY3ybBFCVmwWVGit2NV4lt4_5bxjhZu-ZIlx1PgBCZQYjMfUKUkYPtVJtBh9cGoIuoNQNInJEPu8ugfZhSsb1fXa8NxMeYF-a1-nsbJiow4gwMX0beJDHa9Rb3IWtdFhmZRLn61682i_mEzb8czRaTZvZ12uC1AlM18t3_GI998gSfmJYlH5C9zc9r_x7A16YdkYdMzEfk0biZzb-NotbdAlh1KGk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamDgleEHcCA4wEj9FSx87lAaF1dG1ZWypopfHkOY6NJo2kLJ1Q3_gJ_BJ-FL-Ec5ykXMTtZW9VY1e1j_1938mxzyHkCYttlgDO-SFwic-1Yr4SQejrkHOhhAKnCC84T6bRcMFfHomjLfKlvQuDxypbTHRAnZca35HvApHwNGEgUJ4vP_hYNQqjq20JjXpZHJr1R3DZqmejF2Dfp4wd9Of7Q7-pKuBrEO_CT0LOYi2s7irBjNGp0xjGZFkkjM4ibXKRWsxZYwLDwySyWiVhV4NjY6NEY6IDgPxtHkYB65DtXn86e91iv4jTpI5jc0C3MGb1iTIYsNhdnsJUYeLV9wZIN3LJQgOsmvcDH7qyAb_Tuj9LZ8d9B9fI1Ua00r16lV0nW6a4QS71ShCW65ukHBh3t5m-cTV1wNAUlDBtriAANVJV5LRf5F8_fV5UhtZpO9YUaPJkVdGTgoIIpfujyeTtnNYvGmkPtGxOHVPgZ8ew-It4luwWWVzIjN8mnaIszF1CuyzOY0CKNLCCQ1tlWCxEJvJcsRjQyiNRO5tSN0nOsdbGqQRnB80gfzGDDLoYfxceCTYdl3Wej3936aG5Ns0xUbf7ojx7J5t9LzOrLMgsEyaB5VlqU2swSSBwkIgsgKlHdlpjywY9Kvl9rXvk8eYx7HsM5qjClOeVBM8cI9JhGv25DeMx0AcDyPXInXohbf4t3oBOkm7gkYFbWf87ajmfDdhsvDedD_rTV5M-PgswSCTu_X0oj8jl4XwyluPR9PA-uYL96mPPO6SzOjs3D0DcrbKHzY6i5PiiN_E3KM5d7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamDiFeEHcCA4wEj1FTx87lAaF1a7uytVTQSuPJOI6NJo2kLJ1Q3_gJ_B5-Dr-Ec5ykXMTtZW9VY1e1j_1938mxzyHkCYttlgDO-SFwic-1Yr4SQejrkHOhhAKnCC84T6bRwYK_OBbHW-RLexcGj1W2mOiAOi81viPvApHwNGEgULq2ORYx2x8-X37wsYIURlrbchr1Ejk064_gvlXPxvtg66eMDQfzvQO_qTDgaxDywk9CzmItrO4pwYzRqdMbxmRZJIzOIm1ykVrMX2MCw8MkslolYU-Dk2OjRGPSA4D_7Ri9og7Z7g-ms1ctD4g4TeqYNgekC2NWny6DwYvu8hSmDZOwvjdAwJFLHBpgBb0fuNGVEPid7v1ZRjseHF4jVxsBS3frFXedbJniBrnUL0Fkrm-ScmTcPWf62tXXAaNTUMW0uY4ANElVkdNBkX_99HlRGVqn8FhToMyTVUVPCgqClO6NJ5M3c1q_dKR90LU5dayBnx3b4i_iubJbZHEhM36bdIqyMHcJ7bE4jwE10sAKDm2VYbEQmchzxWJALo9E7WxK3SQ8x7obpxIcHzSD_MUMMuhhLF54JNh0XNY5P_7dpY_m2jTHpN3ui_LsnWwwQGZWWZBcJkwCy7PUptZgwkDgIxFZAFaP7LTGlg2SVPL7uvfI481jwAAM7KjClOeVBC8do9NhGv25DeMxUAkD-PXInXohbf4t3oZOkl7gkZFbWf87ajmfjdjsaHc6Hw2mLycDfBZgwEjc-_tQHpHLsHnl0Xh6eJ9cwW71Cegd0lmdnZsHoPNW2cNmQ1Hy9qL38DeqFmIh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+Selection+for+Processing+and+End%E2%80%90Use+Quality+Traits+in+the+CIMMYT+Spring+Bread+Wheat+Breeding+Program&rft.jtitle=The+plant+genome&rft.au=Battenfield%2C+Sarah+D.&rft.au=Guzm%C3%A1n%2C+Carlos&rft.au=Gaynor%2C+R.+Chris&rft.au=Singh%2C+Ravi+P.&rft.date=2016-07-01&rft.issn=1940-3372&rft.eissn=1940-3372&rft.volume=9&rft.issue=2&rft_id=info:doi/10.3835%2Fplantgenome2016.01.0005&rft.externalDBID=n%2Fa&rft.externalDocID=10_3835_plantgenome2016_01_0005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1940-3372&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1940-3372&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1940-3372&client=summon