Strongly-Confined CsPbBr 3 Perovskite Quantum Dots with Ultralow Trap Density and Narrow Size Distribution for Efficient Pure-Blue Light-Emitting Diodes
The development of pure-blue perovskite light-emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to phase separation in mixed halide compositions. Perovskite quantum dots (QDs) with strong confinement effects are promising alternatives to ac...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) p. e2400885 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
15.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of pure-blue perovskite light-emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to phase separation in mixed halide compositions. Perovskite quantum dots (QDs) with strong confinement effects are promising alternatives to achieve high-quality pure-blue PeLEDs, yet their performance is often hindered by the poor size distribution and high trap density. A strategy combining thermodynamic control with a polishing-driven ligand exchange process to produce high-quality QDs is developed. The strongly-confined pure-blue (≈470 nm) CsPbBr
QDs exhibit narrow size distribution (12% dispersion) and are achieved in Br-rich ion environment based on growth thermodynamic control. Subsequent polishing-driven ligand exchange process removes imperfect surface sites and replaces initial long-chain organic ligands with short-chain benzene ligands. The resulting QDs exhibit high photoluminescence quantum yield (PLQY) to near-unity. The resulting PeLEDs exhibit a pure-blue electroluminescence (EL) emission at 472 nm with narrow full-width at half-maximum (FWHM) of 25 nm, achieving a maximum EQE of 10.7% and a bright maximum luminance of 7697 cd m
. The pure-blue PeLEDs show ultrahigh spectral stability under high voltage, a low roll-off of EQE, and an operational half-lifetime (T
) of 127 min at an initial luminance of 103 cd m
under continuous operation. |
---|---|
AbstractList | The development of pure-blue perovskite light-emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to phase separation in mixed halide compositions. Perovskite quantum dots (QDs) with strong confinement effects are promising alternatives to achieve high-quality pure-blue PeLEDs, yet their performance is often hindered by the poor size distribution and high trap density. A strategy combining thermodynamic control with a polishing-driven ligand exchange process to produce high-quality QDs is developed. The strongly-confined pure-blue (≈470 nm) CsPbBr
QDs exhibit narrow size distribution (12% dispersion) and are achieved in Br-rich ion environment based on growth thermodynamic control. Subsequent polishing-driven ligand exchange process removes imperfect surface sites and replaces initial long-chain organic ligands with short-chain benzene ligands. The resulting QDs exhibit high photoluminescence quantum yield (PLQY) to near-unity. The resulting PeLEDs exhibit a pure-blue electroluminescence (EL) emission at 472 nm with narrow full-width at half-maximum (FWHM) of 25 nm, achieving a maximum EQE of 10.7% and a bright maximum luminance of 7697 cd m
. The pure-blue PeLEDs show ultrahigh spectral stability under high voltage, a low roll-off of EQE, and an operational half-lifetime (T
) of 127 min at an initial luminance of 103 cd m
under continuous operation. Abstract The development of pure‐blue perovskite light‐emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to phase separation in mixed halide compositions. Perovskite quantum dots (QDs) with strong confinement effects are promising alternatives to achieve high‐quality pure‐blue PeLEDs, yet their performance is often hindered by the poor size distribution and high trap density. A strategy combining thermodynamic control with a polishing‐driven ligand exchange process to produce high‐quality QDs is developed. The strongly‐confined pure‐blue (≈470 nm) CsPbBr 3 QDs exhibit narrow size distribution (12% dispersion) and are achieved in Br‐rich ion environment based on growth thermodynamic control. Subsequent polishing‐driven ligand exchange process removes imperfect surface sites and replaces initial long‐chain organic ligands with short‐chain benzene ligands. The resulting QDs exhibit high photoluminescence quantum yield (PLQY) to near‐unity. The resulting PeLEDs exhibit a pure‐blue electroluminescence (EL) emission at 472 nm with narrow full‐width at half‐maximum (FWHM) of 25 nm, achieving a maximum EQE of 10.7% and a bright maximum luminance of 7697 cd m −2 . The pure‐blue PeLEDs show ultrahigh spectral stability under high voltage, a low roll‐off of EQE, and an operational half‐lifetime (T 50 ) of 127 min at an initial luminance of 103 cd m −2 under continuous operation. |
Author | Hu, Jingcong de de Leeuw, Nora H Lu, Yue Wei, Shibo Ren, Ke Wang, Xingyu Wang, Wenxin Sui, Manling Bi, Chenghao |
Author_xml | – sequence: 1 givenname: Shibo surname: Wei fullname: Wei, Shibo organization: College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China – sequence: 2 givenname: Jingcong surname: Hu fullname: Hu, Jingcong organization: Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China – sequence: 3 givenname: Chenghao orcidid: 0000-0002-6074-1412 surname: Bi fullname: Bi, Chenghao organization: Yantai Research Institute, Harbin Engineering University, Yantai, 264000, China – sequence: 4 givenname: Ke surname: Ren fullname: Ren, Ke organization: College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China – sequence: 5 givenname: Xingyu surname: Wang fullname: Wang, Xingyu organization: Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, The Netherlands – sequence: 6 givenname: Nora H surname: de de Leeuw fullname: de de Leeuw, Nora H organization: Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, The Netherlands – sequence: 7 givenname: Yue surname: Lu fullname: Lu, Yue organization: Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China – sequence: 8 givenname: Manling orcidid: 0000-0002-0415-5881 surname: Sui fullname: Sui, Manling organization: Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China – sequence: 9 givenname: Wenxin orcidid: 0000-0001-8191-3976 surname: Wang fullname: Wang, Wenxin organization: College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38616736$$D View this record in MEDLINE/PubMed |
BookMark | eNo90MlOwzAQBmALgegCV47IL5DiJXGcI11YpAqKWs6REzutIbEr26EqT8LjkqrQ04xG_z-HbwDOjTUKgBuMRhghcuebuh4RRGKEOE_OQB8zTCPGSXZ-2jHqgYH3HwhRTOL0EvQoZ5illPXBzzI4a9b1PppYU2mjJJz4RTF2kMKFcvbLf-qg4FsrTGgbOLXBw50OG_heBydqu4MrJ7ZwqozXYQ-FkfBFONfdl_pbwan2wemiDdoaWFkHZ1WlS61MgIvWqWhctwrO9XoTolmjQ9Bm3XWsVP4KXFSi9ur6bw7B6mG2mjxF89fH58n9PCoZYREvM9kxVBwVpJKSYiqY4IzHSUpTWSQF4ajERRZnKe2QKBUpZkokMkFEEoLoEIyOb0tnvXeqyrdON8Ltc4zyg3B-EM5Pwl3h9ljYtkWj5Cn-T0p_AS2BeoM |
Cites_doi | 10.1002/adma.202006722 10.1038/s41586-022-05486-3 10.1002/adom.202300473 10.1021/acs.nanolett.2c03062 10.1038/s41586-021-03217-8 10.1021/acsanm.7b00212 10.1021/acs.nanolett.9b01666 10.1038/s41566-020-00732-4 10.1038/s41586-021-03997-z 10.1021/acs.nanolett.3c00548 10.1021/acsenergylett.0c00057 10.1021/acsnano.2c02795 10.1038/s41467-019-13580-w 10.1016/j.nanoen.2022.106974 10.1016/j.apsusc.2023.157289 10.1002/advs.201500194 10.1002/adma.202209002 10.1016/j.nantod.2022.101449 10.1021/acsenergylett.2c02613 10.1002/adfm.201600109 10.1021/acsenergylett.3c01576 10.1021/acsami.6b08528 10.1002/adma.201900767 10.1038/s41586-018-0575-3 10.1038/s41377-022-00855-z 10.1021/acsenergylett.8b01441 10.1002/adfm.201902008 10.1007/s12274-018-2266-7 10.3390/nano9081147 10.1021/jacs.1c12556 10.1021/acs.jpclett.9b00290 10.1021/acsnano.7b06363 10.1038/s41563-018-0018-4 10.1126/science.287.5455.1011 10.1002/ange.202004668 10.1021/acsenergylett.1c00291 10.1038/nmat4526 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH. |
DBID | NPM AAYXX CITATION |
DOI | 10.1002/smll.202400885 |
DatabaseName | PubMed CrossRef |
DatabaseTitle | PubMed CrossRef |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
ExternalDocumentID | 10_1002_smll_202400885 38616736 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Heilongjiang Provincial Natural Science Foundation of China grantid: LH2023F026 – fundername: Fundamental Research Funds for the Central Universities grantid: 79000012/012 – fundername: Teaching Reform Research Project of Harbin Engineering University grantid: 79005023/013 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2023QF005 – fundername: Fundamental Research Funds for the Central Universities grantid: 3072022TS2613 – fundername: Heilongjiang Provincial Natural Science Foundation of China grantid: LH2020A007 – fundername: National Natural Science Foundation of China grantid: No. 52302171 – fundername: New Era Longjiang Excellent Doctoral Dissertation Project grantid: LJYXL2022-003 – fundername: Heilongjiang Provincial Natural Science Foundation of China grantid: LH2020F027 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NPM O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- AAYXX CITATION |
ID | FETCH-LOGICAL-c626-8c9d002f80b2fdd313a6a86845737db5b280c1b9497302433a716ea5d502d2203 |
ISSN | 1613-6810 |
IngestDate | Fri Aug 23 03:49:22 EDT 2024 Sat Nov 02 12:26:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | perovskite light‐emitting diodes perovskite quantum dots polishing‐driven ligand exchange pure‐blue emission size distribution |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c626-8c9d002f80b2fdd313a6a86845737db5b280c1b9497302433a716ea5d502d2203 |
ORCID | 0000-0001-8191-3976 0000-0002-0415-5881 0000-0002-6074-1412 |
PMID | 38616736 |
ParticipantIDs | crossref_primary_10_1002_smll_202400885 pubmed_primary_38616736 |
PublicationCentury | 2000 |
PublicationDate | 2024-Apr-15 2024-04-15 |
PublicationDateYYYYMMDD | 2024-04-15 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-Apr-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
References | e_1_2_8_6_5 e_1_2_8_1_3 e_1_2_8_2_2 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_5_3 e_1_2_8_6_2 e_1_2_8_7_1 e_1_2_8_4_3 e_1_2_8_5_2 e_1_2_8_6_1 e_1_2_8_6_4 e_1_2_8_9_1 e_1_2_8_6_3 e_1_2_8_7_2 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_19_1 e_1_2_8_18_3 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 |
References_xml | – ident: e_1_2_8_11_1 doi: 10.1002/adma.202006722 – ident: e_1_2_8_3_1 doi: 10.1038/s41586-022-05486-3 – ident: e_1_2_8_9_1 doi: 10.1002/adom.202300473 – ident: e_1_2_8_15_1 doi: 10.1021/acs.nanolett.2c03062 – ident: e_1_2_8_1_2 doi: 10.1038/s41586-021-03217-8 – ident: e_1_2_8_14_1 doi: 10.1021/acsanm.7b00212 – ident: e_1_2_8_16_1 doi: 10.1021/acs.nanolett.9b01666 – ident: e_1_2_8_2_2 doi: 10.1038/s41566-020-00732-4 – ident: e_1_2_8_1_1 doi: 10.1038/s41586-021-03997-z – ident: e_1_2_8_12_1 doi: 10.1021/acs.nanolett.3c00548 – ident: e_1_2_8_5_1 doi: 10.1021/acsenergylett.0c00057 – ident: e_1_2_8_6_4 doi: 10.1021/acsnano.2c02795 – ident: e_1_2_8_6_5 doi: 10.1038/s41467-019-13580-w – ident: e_1_2_8_4_1 doi: 10.1016/j.nanoen.2022.106974 – ident: e_1_2_8_19_1 doi: 10.1016/j.apsusc.2023.157289 – ident: e_1_2_8_7_2 doi: 10.1002/advs.201500194 – ident: e_1_2_8_2_1 doi: 10.1002/adma.202209002 – ident: e_1_2_8_2_3 doi: 10.1016/j.nantod.2022.101449 – ident: e_1_2_8_17_1 doi: 10.1021/acsenergylett.2c02613 – ident: e_1_2_8_4_3 doi: 10.1002/adfm.201600109 – ident: e_1_2_8_8_1 doi: 10.1021/acsenergylett.3c01576 – ident: e_1_2_8_6_2 doi: 10.1021/acsami.6b08528 – ident: e_1_2_8_13_1 doi: 10.1002/adma.201900767 – ident: e_1_2_8_1_4 doi: 10.1038/s41586-018-0575-3 – ident: e_1_2_8_21_1 doi: 10.1038/s41377-022-00855-z – ident: e_1_2_8_5_3 doi: 10.1021/acsenergylett.8b01441 – ident: e_1_2_8_4_2 doi: 10.1002/adfm.201902008 – ident: e_1_2_8_18_2 doi: 10.1007/s12274-018-2266-7 – ident: e_1_2_8_7_1 doi: 10.3390/nano9081147 – ident: e_1_2_8_6_1 doi: 10.1021/jacs.1c12556 – ident: e_1_2_8_5_2 doi: 10.1021/acs.jpclett.9b00290 – ident: e_1_2_8_10_1 doi: 10.1021/acsnano.7b06363 – ident: e_1_2_8_1_3 doi: 10.1038/s41563-018-0018-4 – ident: e_1_2_8_18_3 doi: 10.1126/science.287.5455.1011 – ident: e_1_2_8_18_1 doi: 10.1002/ange.202004668 – ident: e_1_2_8_20_1 doi: 10.1021/acsenergylett.1c00291 – ident: e_1_2_8_6_3 doi: 10.1038/nmat4526 |
SSID | ssj0031247 |
Score | 2.4827173 |
Snippet | The development of pure-blue perovskite light-emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to... Abstract The development of pure‐blue perovskite light‐emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency... |
SourceID | crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | e2400885 |
Title | Strongly-Confined CsPbBr 3 Perovskite Quantum Dots with Ultralow Trap Density and Narrow Size Distribution for Efficient Pure-Blue Light-Emitting Diodes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38616736 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkNB4QFzHuMkPSDxUHomdWx_ZKEwgpmntxN4qO3baSE1S9QLa_gYv_FzOsZO0ZUMCXqIqcWrJ59PJd47P-UzIa2ABWQI8iCkdeiyIRcqU4iFTPteyx7NQR9iN_OUkOj4PPl2EF53Oj42qpdVSHaRXN_aV_I9V4R7YFbtk_8Gy7Z_CDfgN9oUrWBiuf2XjAeaxx9NLhn17QBd192hxqg7nXYGV7dW3BaZmsW4TPiwFcOWml-18ivmN6jtKm8_A5ZS2MANT6CdWk7E7yK8MCnO2x2HZasS-lZvA4oHT1dyww-nKQEyPQiT9Inf10-_zStdViTXjHRS4-Q089qvJy4nJ8UiOrrbKjPMx5lkW7mjHj_iJKC83MhPwgs3NTnJVrdFnYQdTQRw_Xmf4XeWAKccT2Y49cx71s9nMbHBbEON6Ow-M88bANViU1BM7D2uw6DVxx_xcc_9OTnZRTHFT6YaBYL5ZYcEgksivux5-F9xuHt0itzl4L7v3f9ZqkgkgRHGj_unxt9uT7ZI7zetbRGcrZLHUZXif3KtjDvrOAegB6ZjyIbm7oUT5iPy8BiXqoEQFXUOJ1lCiCCWKUKINlChCidZQogAl6qBEEUp0E0oUoERbKNEWSnQbStRB6TEZfugPj45ZfWgHSyE2Zkna07AsWeIpnmktfCEjmURJEMYi1ipUPPFSX_WCHnxaeCCEhIDdyBA8Bdece-IJ2Smr0jwlNFDSC9M4kSaQgRdHSmoujY8cO00zFe2TN80Cj2ZOmmXkRLj5CK0yaq2yT_bc-rfjGiM9--OT52R3jckXZGc5X5mXwD-X6pXFwy__54fH |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strongly-Confined+CsPbBr+3+Perovskite+Quantum+Dots+with+Ultralow+Trap+Density+and+Narrow+Size+Distribution+for+Efficient+Pure-Blue+Light-Emitting+Diodes&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wei%2C+Shibo&rft.au=Hu%2C+Jingcong&rft.au=Bi%2C+Chenghao&rft.au=Ren%2C+Ke&rft.date=2024-04-15&rft.eissn=1613-6829&rft.spage=e2400885&rft_id=info:doi/10.1002%2Fsmll.202400885&rft_id=info%3Apmid%2F38616736&rft.externalDocID=38616736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |