Strongly-Confined CsPbBr 3 Perovskite Quantum Dots with Ultralow Trap Density and Narrow Size Distribution for Efficient Pure-Blue Light-Emitting Diodes

The development of pure-blue perovskite light-emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to phase separation in mixed halide compositions. Perovskite quantum dots (QDs) with strong confinement effects are promising alternatives to ac...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) p. e2400885
Main Authors Wei, Shibo, Hu, Jingcong, Bi, Chenghao, Ren, Ke, Wang, Xingyu, de de Leeuw, Nora H, Lu, Yue, Sui, Manling, Wang, Wenxin
Format Journal Article
LanguageEnglish
Published Germany 15.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of pure-blue perovskite light-emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to phase separation in mixed halide compositions. Perovskite quantum dots (QDs) with strong confinement effects are promising alternatives to achieve high-quality pure-blue PeLEDs, yet their performance is often hindered by the poor size distribution and high trap density. A strategy combining thermodynamic control with a polishing-driven ligand exchange process to produce high-quality QDs is developed. The strongly-confined pure-blue (≈470 nm) CsPbBr QDs exhibit narrow size distribution (12% dispersion) and are achieved in Br-rich ion environment based on growth thermodynamic control. Subsequent polishing-driven ligand exchange process removes imperfect surface sites and replaces initial long-chain organic ligands with short-chain benzene ligands. The resulting QDs exhibit high photoluminescence quantum yield (PLQY) to near-unity. The resulting PeLEDs exhibit a pure-blue electroluminescence (EL) emission at 472 nm with narrow full-width at half-maximum (FWHM) of 25 nm, achieving a maximum EQE of 10.7% and a bright maximum luminance of 7697 cd m . The pure-blue PeLEDs show ultrahigh spectral stability under high voltage, a low roll-off of EQE, and an operational half-lifetime (T ) of 127 min at an initial luminance of 103 cd m under continuous operation.
AbstractList The development of pure-blue perovskite light-emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to phase separation in mixed halide compositions. Perovskite quantum dots (QDs) with strong confinement effects are promising alternatives to achieve high-quality pure-blue PeLEDs, yet their performance is often hindered by the poor size distribution and high trap density. A strategy combining thermodynamic control with a polishing-driven ligand exchange process to produce high-quality QDs is developed. The strongly-confined pure-blue (≈470 nm) CsPbBr QDs exhibit narrow size distribution (12% dispersion) and are achieved in Br-rich ion environment based on growth thermodynamic control. Subsequent polishing-driven ligand exchange process removes imperfect surface sites and replaces initial long-chain organic ligands with short-chain benzene ligands. The resulting QDs exhibit high photoluminescence quantum yield (PLQY) to near-unity. The resulting PeLEDs exhibit a pure-blue electroluminescence (EL) emission at 472 nm with narrow full-width at half-maximum (FWHM) of 25 nm, achieving a maximum EQE of 10.7% and a bright maximum luminance of 7697 cd m . The pure-blue PeLEDs show ultrahigh spectral stability under high voltage, a low roll-off of EQE, and an operational half-lifetime (T ) of 127 min at an initial luminance of 103 cd m under continuous operation.
Abstract The development of pure‐blue perovskite light‐emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to phase separation in mixed halide compositions. Perovskite quantum dots (QDs) with strong confinement effects are promising alternatives to achieve high‐quality pure‐blue PeLEDs, yet their performance is often hindered by the poor size distribution and high trap density. A strategy combining thermodynamic control with a polishing‐driven ligand exchange process to produce high‐quality QDs is developed. The strongly‐confined pure‐blue (≈470 nm) CsPbBr 3 QDs exhibit narrow size distribution (12% dispersion) and are achieved in Br‐rich ion environment based on growth thermodynamic control. Subsequent polishing‐driven ligand exchange process removes imperfect surface sites and replaces initial long‐chain organic ligands with short‐chain benzene ligands. The resulting QDs exhibit high photoluminescence quantum yield (PLQY) to near‐unity. The resulting PeLEDs exhibit a pure‐blue electroluminescence (EL) emission at 472 nm with narrow full‐width at half‐maximum (FWHM) of 25 nm, achieving a maximum EQE of 10.7% and a bright maximum luminance of 7697 cd m −2 . The pure‐blue PeLEDs show ultrahigh spectral stability under high voltage, a low roll‐off of EQE, and an operational half‐lifetime (T 50 ) of 127 min at an initial luminance of 103 cd m −2 under continuous operation.
Author Hu, Jingcong
de de Leeuw, Nora H
Lu, Yue
Wei, Shibo
Ren, Ke
Wang, Xingyu
Wang, Wenxin
Sui, Manling
Bi, Chenghao
Author_xml – sequence: 1
  givenname: Shibo
  surname: Wei
  fullname: Wei, Shibo
  organization: College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
– sequence: 2
  givenname: Jingcong
  surname: Hu
  fullname: Hu, Jingcong
  organization: Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
– sequence: 3
  givenname: Chenghao
  orcidid: 0000-0002-6074-1412
  surname: Bi
  fullname: Bi, Chenghao
  organization: Yantai Research Institute, Harbin Engineering University, Yantai, 264000, China
– sequence: 4
  givenname: Ke
  surname: Ren
  fullname: Ren, Ke
  organization: College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
– sequence: 5
  givenname: Xingyu
  surname: Wang
  fullname: Wang, Xingyu
  organization: Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, The Netherlands
– sequence: 6
  givenname: Nora H
  surname: de de Leeuw
  fullname: de de Leeuw, Nora H
  organization: Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, The Netherlands
– sequence: 7
  givenname: Yue
  surname: Lu
  fullname: Lu, Yue
  organization: Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
– sequence: 8
  givenname: Manling
  orcidid: 0000-0002-0415-5881
  surname: Sui
  fullname: Sui, Manling
  organization: Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
– sequence: 9
  givenname: Wenxin
  orcidid: 0000-0001-8191-3976
  surname: Wang
  fullname: Wang, Wenxin
  organization: College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38616736$$D View this record in MEDLINE/PubMed
BookMark eNo90MlOwzAQBmALgegCV47IL5DiJXGcI11YpAqKWs6REzutIbEr26EqT8LjkqrQ04xG_z-HbwDOjTUKgBuMRhghcuebuh4RRGKEOE_OQB8zTCPGSXZ-2jHqgYH3HwhRTOL0EvQoZ5illPXBzzI4a9b1PppYU2mjJJz4RTF2kMKFcvbLf-qg4FsrTGgbOLXBw50OG_heBydqu4MrJ7ZwqozXYQ-FkfBFONfdl_pbwan2wemiDdoaWFkHZ1WlS61MgIvWqWhctwrO9XoTolmjQ9Bm3XWsVP4KXFSi9ur6bw7B6mG2mjxF89fH58n9PCoZYREvM9kxVBwVpJKSYiqY4IzHSUpTWSQF4ajERRZnKe2QKBUpZkokMkFEEoLoEIyOb0tnvXeqyrdON8Ltc4zyg3B-EM5Pwl3h9ljYtkWj5Cn-T0p_AS2BeoM
Cites_doi 10.1002/adma.202006722
10.1038/s41586-022-05486-3
10.1002/adom.202300473
10.1021/acs.nanolett.2c03062
10.1038/s41586-021-03217-8
10.1021/acsanm.7b00212
10.1021/acs.nanolett.9b01666
10.1038/s41566-020-00732-4
10.1038/s41586-021-03997-z
10.1021/acs.nanolett.3c00548
10.1021/acsenergylett.0c00057
10.1021/acsnano.2c02795
10.1038/s41467-019-13580-w
10.1016/j.nanoen.2022.106974
10.1016/j.apsusc.2023.157289
10.1002/advs.201500194
10.1002/adma.202209002
10.1016/j.nantod.2022.101449
10.1021/acsenergylett.2c02613
10.1002/adfm.201600109
10.1021/acsenergylett.3c01576
10.1021/acsami.6b08528
10.1002/adma.201900767
10.1038/s41586-018-0575-3
10.1038/s41377-022-00855-z
10.1021/acsenergylett.8b01441
10.1002/adfm.201902008
10.1007/s12274-018-2266-7
10.3390/nano9081147
10.1021/jacs.1c12556
10.1021/acs.jpclett.9b00290
10.1021/acsnano.7b06363
10.1038/s41563-018-0018-4
10.1126/science.287.5455.1011
10.1002/ange.202004668
10.1021/acsenergylett.1c00291
10.1038/nmat4526
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH.
DBID NPM
AAYXX
CITATION
DOI 10.1002/smll.202400885
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
ExternalDocumentID 10_1002_smll_202400885
38616736
Genre Journal Article
GrantInformation_xml – fundername: Heilongjiang Provincial Natural Science Foundation of China
  grantid: LH2023F026
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 79000012/012
– fundername: Teaching Reform Research Project of Harbin Engineering University
  grantid: 79005023/013
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2023QF005
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3072022TS2613
– fundername: Heilongjiang Provincial Natural Science Foundation of China
  grantid: LH2020A007
– fundername: National Natural Science Foundation of China
  grantid: No. 52302171
– fundername: New Era Longjiang Excellent Doctoral Dissertation Project
  grantid: LJYXL2022-003
– fundername: Heilongjiang Provincial Natural Science Foundation of China
  grantid: LH2020F027
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NPM
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
AAYXX
CITATION
ID FETCH-LOGICAL-c626-8c9d002f80b2fdd313a6a86845737db5b280c1b9497302433a716ea5d502d2203
ISSN 1613-6810
IngestDate Fri Aug 23 03:49:22 EDT 2024
Sat Nov 02 12:26:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords perovskite light‐emitting diodes
perovskite quantum dots
polishing‐driven ligand exchange
pure‐blue emission
size distribution
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c626-8c9d002f80b2fdd313a6a86845737db5b280c1b9497302433a716ea5d502d2203
ORCID 0000-0001-8191-3976
0000-0002-0415-5881
0000-0002-6074-1412
PMID 38616736
ParticipantIDs crossref_primary_10_1002_smll_202400885
pubmed_primary_38616736
PublicationCentury 2000
PublicationDate 2024-Apr-15
2024-04-15
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-Apr-15
  day: 15
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
References e_1_2_8_6_5
e_1_2_8_1_3
e_1_2_8_2_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_5_3
e_1_2_8_6_2
e_1_2_8_7_1
e_1_2_8_4_3
e_1_2_8_5_2
e_1_2_8_6_1
e_1_2_8_6_4
e_1_2_8_9_1
e_1_2_8_6_3
e_1_2_8_7_2
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_19_1
e_1_2_8_18_3
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – ident: e_1_2_8_11_1
  doi: 10.1002/adma.202006722
– ident: e_1_2_8_3_1
  doi: 10.1038/s41586-022-05486-3
– ident: e_1_2_8_9_1
  doi: 10.1002/adom.202300473
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.nanolett.2c03062
– ident: e_1_2_8_1_2
  doi: 10.1038/s41586-021-03217-8
– ident: e_1_2_8_14_1
  doi: 10.1021/acsanm.7b00212
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.nanolett.9b01666
– ident: e_1_2_8_2_2
  doi: 10.1038/s41566-020-00732-4
– ident: e_1_2_8_1_1
  doi: 10.1038/s41586-021-03997-z
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.nanolett.3c00548
– ident: e_1_2_8_5_1
  doi: 10.1021/acsenergylett.0c00057
– ident: e_1_2_8_6_4
  doi: 10.1021/acsnano.2c02795
– ident: e_1_2_8_6_5
  doi: 10.1038/s41467-019-13580-w
– ident: e_1_2_8_4_1
  doi: 10.1016/j.nanoen.2022.106974
– ident: e_1_2_8_19_1
  doi: 10.1016/j.apsusc.2023.157289
– ident: e_1_2_8_7_2
  doi: 10.1002/advs.201500194
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.202209002
– ident: e_1_2_8_2_3
  doi: 10.1016/j.nantod.2022.101449
– ident: e_1_2_8_17_1
  doi: 10.1021/acsenergylett.2c02613
– ident: e_1_2_8_4_3
  doi: 10.1002/adfm.201600109
– ident: e_1_2_8_8_1
  doi: 10.1021/acsenergylett.3c01576
– ident: e_1_2_8_6_2
  doi: 10.1021/acsami.6b08528
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.201900767
– ident: e_1_2_8_1_4
  doi: 10.1038/s41586-018-0575-3
– ident: e_1_2_8_21_1
  doi: 10.1038/s41377-022-00855-z
– ident: e_1_2_8_5_3
  doi: 10.1021/acsenergylett.8b01441
– ident: e_1_2_8_4_2
  doi: 10.1002/adfm.201902008
– ident: e_1_2_8_18_2
  doi: 10.1007/s12274-018-2266-7
– ident: e_1_2_8_7_1
  doi: 10.3390/nano9081147
– ident: e_1_2_8_6_1
  doi: 10.1021/jacs.1c12556
– ident: e_1_2_8_5_2
  doi: 10.1021/acs.jpclett.9b00290
– ident: e_1_2_8_10_1
  doi: 10.1021/acsnano.7b06363
– ident: e_1_2_8_1_3
  doi: 10.1038/s41563-018-0018-4
– ident: e_1_2_8_18_3
  doi: 10.1126/science.287.5455.1011
– ident: e_1_2_8_18_1
  doi: 10.1002/ange.202004668
– ident: e_1_2_8_20_1
  doi: 10.1021/acsenergylett.1c00291
– ident: e_1_2_8_6_3
  doi: 10.1038/nmat4526
SSID ssj0031247
Score 2.4827173
Snippet The development of pure-blue perovskite light-emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to...
Abstract The development of pure‐blue perovskite light‐emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage e2400885
Title Strongly-Confined CsPbBr 3 Perovskite Quantum Dots with Ultralow Trap Density and Narrow Size Distribution for Efficient Pure-Blue Light-Emitting Diodes
URI https://www.ncbi.nlm.nih.gov/pubmed/38616736
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkNB4QFzHuMkPSDxUHomdWx_ZKEwgpmntxN4qO3baSE1S9QLa_gYv_FzOsZO0ZUMCXqIqcWrJ59PJd47P-UzIa2ABWQI8iCkdeiyIRcqU4iFTPteyx7NQR9iN_OUkOj4PPl2EF53Oj42qpdVSHaRXN_aV_I9V4R7YFbtk_8Gy7Z_CDfgN9oUrWBiuf2XjAeaxx9NLhn17QBd192hxqg7nXYGV7dW3BaZmsW4TPiwFcOWml-18ivmN6jtKm8_A5ZS2MANT6CdWk7E7yK8MCnO2x2HZasS-lZvA4oHT1dyww-nKQEyPQiT9Inf10-_zStdViTXjHRS4-Q089qvJy4nJ8UiOrrbKjPMx5lkW7mjHj_iJKC83MhPwgs3NTnJVrdFnYQdTQRw_Xmf4XeWAKccT2Y49cx71s9nMbHBbEON6Ow-M88bANViU1BM7D2uw6DVxx_xcc_9OTnZRTHFT6YaBYL5ZYcEgksivux5-F9xuHt0itzl4L7v3f9ZqkgkgRHGj_unxt9uT7ZI7zetbRGcrZLHUZXif3KtjDvrOAegB6ZjyIbm7oUT5iPy8BiXqoEQFXUOJ1lCiCCWKUKINlChCidZQogAl6qBEEUp0E0oUoERbKNEWSnQbStRB6TEZfugPj45ZfWgHSyE2Zkna07AsWeIpnmktfCEjmURJEMYi1ipUPPFSX_WCHnxaeCCEhIDdyBA8Bdece-IJ2Smr0jwlNFDSC9M4kSaQgRdHSmoujY8cO00zFe2TN80Cj2ZOmmXkRLj5CK0yaq2yT_bc-rfjGiM9--OT52R3jckXZGc5X5mXwD-X6pXFwy__54fH
link.rule.ids 315,783,787,27936,27937
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strongly-Confined+CsPbBr+3+Perovskite+Quantum+Dots+with+Ultralow+Trap+Density+and+Narrow+Size+Distribution+for+Efficient+Pure-Blue+Light-Emitting+Diodes&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wei%2C+Shibo&rft.au=Hu%2C+Jingcong&rft.au=Bi%2C+Chenghao&rft.au=Ren%2C+Ke&rft.date=2024-04-15&rft.eissn=1613-6829&rft.spage=e2400885&rft_id=info:doi/10.1002%2Fsmll.202400885&rft_id=info%3Apmid%2F38616736&rft.externalDocID=38616736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon