Statistical Analysis of fMRI Time-Series: A Critical Review of the GLM Approach
Functional magnetic resonance imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a general linear model (GLM) approach to separate stimulus induced signals from noise. Crucially, this approach relies on a...
Saved in:
Published in | Frontiers in human neuroscience Vol. 5; p. 28 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
2011
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-5161 1662-5161 |
DOI | 10.3389/fnhum.2011.00028 |
Cover
Loading…
Abstract | Functional magnetic resonance imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a general linear model (GLM) approach to separate stimulus induced signals from noise. Crucially, this approach relies on a number of assumptions about the data which, for inferences to be valid, must be met. The current paper reviews the GLM approach to analysis of fMRI time-series, focusing in particular on the degree to which such data abides by the assumptions of the GLM framework, and on the methods that have been developed to correct for any violation of those assumptions. Rather than biasing estimates of effect size, the major consequence of non-conformity to the assumptions is to introduce bias into estimates of the variance, thus affecting test statistics, power, and false positive rates. Furthermore, this bias can have pervasive effects on both individual subject and group-level statistics, potentially yielding qualitatively different results across replications, especially after the thresholding procedures commonly used for inference-making. |
---|---|
AbstractList | Functional magnetic resonance imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a general linear model (GLM) approach to separate stimulus induced signals from noise. Crucially, this approach relies on a number of assumptions about the data which, for inferences to be valid, must be met. The current paper reviews the GLM approach to analysis of fMRI time-series, focusing in particular on the degree to which such data abides by the assumptions of the GLM framework, and on the methods that have been developed to correct for any violation of those assumptions. Rather than biasing estimates of effect size, the major consequence of non-conformity to the assumptions is to introduce bias into estimates of the variance, thus affecting test statistics, power, and false positive rates. Furthermore, this bias can have pervasive effects on both individual subject and group-level statistics, potentially yielding qualitatively different results across replications, especially after the thresholding procedures commonly used for inference-making. Functional magnetic resonance imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a general linear model (GLM) approach to separate stimulus induced signals from noise. Crucially, this approach relies on a number of assumptions about the data which, for inferences to be valid, must be met. The current paper reviews the GLM approach to analysis of fMRI time-series, focusing in particular on the degree to which such data abides by the assumptions of the GLM framework, and on the methods that have been developed to correct for any violation of those assumptions. Rather than biasing estimates of effect size, the major consequence of non-conformity to the assumptions is to introduce bias into estimates of the variance, thus affecting test statistics, power, and false positive rates. Furthermore, this bias can have pervasive effects on both individual subject and group-level statistics, potentially yielding qualitatively different results across replications, especially after the thresholding procedures commonly used for inference-making.Functional magnetic resonance imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a general linear model (GLM) approach to separate stimulus induced signals from noise. Crucially, this approach relies on a number of assumptions about the data which, for inferences to be valid, must be met. The current paper reviews the GLM approach to analysis of fMRI time-series, focusing in particular on the degree to which such data abides by the assumptions of the GLM framework, and on the methods that have been developed to correct for any violation of those assumptions. Rather than biasing estimates of effect size, the major consequence of non-conformity to the assumptions is to introduce bias into estimates of the variance, thus affecting test statistics, power, and false positive rates. Furthermore, this bias can have pervasive effects on both individual subject and group-level statistics, potentially yielding qualitatively different results across replications, especially after the thresholding procedures commonly used for inference-making. |
Author | Monti, Martin |
AuthorAffiliation | 1 Department of Psychology, University of California Los Angeles, CA, USA |
AuthorAffiliation_xml | – name: 1 Department of Psychology, University of California Los Angeles, CA, USA |
Author_xml | – sequence: 1 givenname: Martin surname: Monti fullname: Monti, Martin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21442013$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uk1r3DAUFCWlSba991QMPeTkrT5tuYfCsjTpwoZAkp6FLD9ltdjWVrJT8u8j76YhCRQdJKSZeaP35hQd9b4HhD4TPGdMVt9svxm7OcWEzDHGVL5DJ6QoaC5IQY5enI_RaYxbjAtaCPIBHVPCeWKxE3R1M-jBxcEZ3WaLXrcP0cXM28xeXq-yW9dBfgPBQfyeLbJlcAfgNdw7-DvBhg1kF-vLbLHbBa_N5iN6b3Ub4dPTPkO_z3_eLn_l66uL1XKxzk1BxZBrY7htMNOWEUKrohFcN8zUrDTGQlNaKYTUUNLGGMoSBTccmkJKQSytpGYztDroNl5v1S64TocH5bVT-wsf7pQOyWwLqkxleI1LDqXmFaskrimpBTCZFtc8af04aO3GuoPGQD8E3b4Sff3Su4268_eKpYZWSX6Gzp4Egv8zQhxU56KBttU9-DEqKSospsoJ-fUNcuvHkNoeFaUVIwWlYjL05aWhZyf_xpYA-AAwwccYwD5DCFZTMtQ-GWpKhtonI1GKNxTjptH76Uuu_T_xEYjgvHA |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2023_119880 crossref_primary_10_1007_s00362_019_01148_1 crossref_primary_10_1016_j_jsxm_2022_03_217 crossref_primary_10_1093_biomtc_ujae159 crossref_primary_10_1016_j_neuroimage_2017_01_059 crossref_primary_10_1007_s12021_022_09580_9 crossref_primary_10_1155_2016_1068434 crossref_primary_10_1162_jocn_a_02132 crossref_primary_10_1007_s11065_015_9294_9 crossref_primary_10_1038_s41598_022_05601_4 crossref_primary_10_1155_2013_645043 crossref_primary_10_1007_s10278_024_01189_5 crossref_primary_10_1016_j_bandl_2018_07_003 crossref_primary_10_5691_jjb_33_145 crossref_primary_10_3390_app10062137 crossref_primary_10_3390_brainsci11050606 crossref_primary_10_1167_jov_20_8_17 crossref_primary_10_3389_fneur_2018_00826 crossref_primary_10_3389_fnbeh_2014_00221 crossref_primary_10_1007_s11336_012_9294_0 crossref_primary_10_1016_j_media_2023_102892 crossref_primary_10_1007_s00062_024_01422_2 crossref_primary_10_1038_npp_2016_151 crossref_primary_10_3389_fnagi_2022_958656 crossref_primary_10_1073_pnas_1212785110 crossref_primary_10_3390_s21155117 crossref_primary_10_1109_TMI_2012_2195327 crossref_primary_10_1038_s41598_021_85504_y crossref_primary_10_1117_1_NPh_3_3_031402 crossref_primary_10_1016_j_neuroimage_2019_02_008 crossref_primary_10_1371_journal_pcbi_1006397 crossref_primary_10_1016_j_destud_2022_101148 crossref_primary_10_3390_ijms21176273 crossref_primary_10_1109_RBME_2011_2170675 crossref_primary_10_1155_2021_6660866 crossref_primary_10_7717_peerj_10448 crossref_primary_10_1016_j_neuroimage_2023_120118 crossref_primary_10_2139_ssrn_2881692 crossref_primary_10_1117_1_NPh_6_1_015001 crossref_primary_10_1002_ana_24423 crossref_primary_10_1088_1741_2552_ab965b crossref_primary_10_1093_cercor_bhab377 crossref_primary_10_3389_fnagi_2021_744139 crossref_primary_10_1007_s00221_024_06977_7 crossref_primary_10_1523_ENEURO_0069_22_2022 crossref_primary_10_3389_fpsyg_2023_1211528 crossref_primary_10_3390_a11050067 crossref_primary_10_1109_TMI_2016_2520024 crossref_primary_10_3389_fpsyt_2020_608928 crossref_primary_10_3390_s23073382 crossref_primary_10_1007_s10916_019_1475_2 crossref_primary_10_1109_TMI_2019_2915052 crossref_primary_10_1371_journal_pcbi_1003079 crossref_primary_10_1016_j_jneumeth_2018_05_017 crossref_primary_10_1111_spc3_12898 crossref_primary_10_1155_2022_1124927 crossref_primary_10_1016_j_nicl_2014_07_002 crossref_primary_10_1155_2013_643129 crossref_primary_10_3389_fnins_2017_00504 crossref_primary_10_1002_hbm_22459 crossref_primary_10_1002_sim_10162 crossref_primary_10_1016_j_neuroimage_2019_04_042 crossref_primary_10_1007_s10334_024_01197_0 crossref_primary_10_1016_j_brs_2019_09_003 crossref_primary_10_1093_cercor_bhac235 crossref_primary_10_1152_jn_00105_2013 crossref_primary_10_1016_j_isci_2023_107592 crossref_primary_10_1371_journal_pone_0303278 crossref_primary_10_3389_fpsyt_2021_665536 crossref_primary_10_1038_s41598_021_86171_9 crossref_primary_10_1089_brain_2014_0261 crossref_primary_10_1177_1094428118802631 crossref_primary_10_1038_s41398_024_03108_2 crossref_primary_10_1097_MD_0000000000020041 crossref_primary_10_1109_JBHI_2015_2439685 crossref_primary_10_1016_j_neuroimage_2019_05_081 crossref_primary_10_1073_pnas_2303562120 crossref_primary_10_1016_j_nut_2013_01_020 crossref_primary_10_1109_TBME_2024_3395154 crossref_primary_10_4103_jmss_JMSS_2_17 crossref_primary_10_1038_s41598_018_24874_2 crossref_primary_10_1002_hbm_26648 crossref_primary_10_1016_j_compbiomed_2022_106240 crossref_primary_10_1038_s41598_021_83420_9 crossref_primary_10_1117_1_NPh_5_1_011018 crossref_primary_10_1038_s41398_023_02526_y crossref_primary_10_35848_1347_4065_ab77f3 crossref_primary_10_1038_s41598_021_98506_7 crossref_primary_10_1016_j_neuroimage_2012_01_133 crossref_primary_10_3389_fnins_2017_00718 crossref_primary_10_1016_j_neuroimage_2017_05_037 crossref_primary_10_1016_j_nicl_2017_12_008 crossref_primary_10_3389_fnins_2016_00461 crossref_primary_10_1016_j_neuroimage_2016_07_047 crossref_primary_10_3390_e22121380 crossref_primary_10_1371_journal_pone_0085460 crossref_primary_10_1371_journal_pcbi_1002441 crossref_primary_10_1016_j_cortex_2022_03_024 crossref_primary_10_1016_j_biopsycho_2024_108967 crossref_primary_10_1214_19_AOAS1316 crossref_primary_10_1038_s41467_017_02722_7 crossref_primary_10_3390_e26090751 crossref_primary_10_3389_fnins_2016_00515 crossref_primary_10_1371_journal_pone_0299925 crossref_primary_10_1016_j_neuroimage_2019_116449 crossref_primary_10_1002_wics_1609 crossref_primary_10_7554_eLife_77599 crossref_primary_10_1371_journal_pone_0105169 crossref_primary_10_1093_toxsci_kfv083 crossref_primary_10_5812_ans_90089 crossref_primary_10_3389_fnins_2023_1098441 crossref_primary_10_1016_j_neuroimage_2014_07_045 crossref_primary_10_3389_fnhum_2018_00103 crossref_primary_10_1016_j_neuroimage_2021_118369 crossref_primary_10_3389_fnhum_2018_00505 crossref_primary_10_1002_hbm_26425 crossref_primary_10_1162_imag_a_00058 crossref_primary_10_1016_j_cortex_2019_08_006 crossref_primary_10_3389_fncom_2023_1302010 crossref_primary_10_1002_hbm_22660 crossref_primary_10_3389_fnins_2022_1051424 crossref_primary_10_1016_j_neuroimage_2019_03_046 crossref_primary_10_3389_fpsyg_2019_01087 crossref_primary_10_1016_j_neuroimage_2022_119588 crossref_primary_10_3389_fnins_2016_00322 crossref_primary_10_1002_jnr_24115 crossref_primary_10_1016_j_jneumeth_2018_04_009 crossref_primary_10_1109_JSTSP_2016_2599010 crossref_primary_10_1016_j_mri_2021_02_009 crossref_primary_10_1002_hbm_22816 crossref_primary_10_1002_mrm_28328 crossref_primary_10_1016_j_jneumeth_2012_08_022 crossref_primary_10_1016_j_neuroimage_2017_06_056 crossref_primary_10_1016_j_neuroimage_2018_08_064 crossref_primary_10_1155_2015_542467 crossref_primary_10_3389_fnins_2020_575589 crossref_primary_10_1016_j_neuroimage_2022_119180 crossref_primary_10_1016_j_jmp_2016_06_009 crossref_primary_10_1080_10543406_2011_610027 crossref_primary_10_3390_biomedicines9040337 crossref_primary_10_2139_ssrn_4174993 crossref_primary_10_1002_ima_23195 crossref_primary_10_1093_cercor_bhae100 crossref_primary_10_1002_hbm_26699 crossref_primary_10_3389_fnhum_2018_00093 crossref_primary_10_3389_fnins_2020_00226 crossref_primary_10_1007_s42113_018_0013_5 crossref_primary_10_1016_j_neuroimage_2013_05_088 crossref_primary_10_3390_brainsci12040428 crossref_primary_10_1214_18_BA1108 crossref_primary_10_1162_jocn_a_00426 crossref_primary_10_1061__ASCE_CP_1943_5487_0000848 crossref_primary_10_3390_s19040849 crossref_primary_10_1109_TITS_2022_3211089 crossref_primary_10_1038_s41598_018_23747_y crossref_primary_10_1038_nprot_2018_003 crossref_primary_10_1007_s11682_016_9580_z crossref_primary_10_1089_brain_2020_0758 crossref_primary_10_22430_22565337_1626 |
ContentType | Journal Article |
Copyright | 2011. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.frontiersin.org/articles/10.3389/fnhum.2011.00028 . Copyright © 2011 Monti. 2011 |
Copyright_xml | – notice: 2011. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.frontiersin.org/articles/10.3389/fnhum.2011.00028 . – notice: Copyright © 2011 Monti. 2011 |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnhum.2011.00028 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5161 |
ExternalDocumentID | oai_doaj_org_article_703a4b074e7a493980b21b5e383834a4 PMC3062970 21442013 10_3389_fnhum_2011_00028 |
Genre | Journal Article |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ C1A CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE IPNFZ KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RIG RNS RPM TR2 NPM PQGLB 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c625t-acc4fd03af311296d54ad3cb37ccfed7f8558ae72dcc236250d4ed68851f298a3 |
IEDL.DBID | M48 |
ISSN | 1662-5161 |
IngestDate | Wed Aug 27 01:21:13 EDT 2025 Thu Aug 21 14:10:39 EDT 2025 Thu Jul 10 23:37:51 EDT 2025 Fri Jul 25 12:08:24 EDT 2025 Mon Jul 21 05:29:53 EDT 2025 Tue Jul 01 02:01:25 EDT 2025 Thu Apr 24 23:09:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | multicollinearity fixed effects mixed effects blood oxygenation level-dependent ordinary least squares functional magnetic resonance imaging general linear model autocorrelation |
Language | English |
License | This is an open-access article subject to an exclusive license agreement between the authors and Frontiers Media SA, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c625t-acc4fd03af311296d54ad3cb37ccfed7f8558ae72dcc236250d4ed68851f298a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Russell A. Poldrack, University of California, USA; Sean L. Simpson, Wake Forest University, USA Edited by: Michael X. Cohen, University of Amsterdam, Netherlands |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2011.00028 |
PMID | 21442013 |
PQID | 2293162254 |
PQPubID | 4424408 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_703a4b074e7a493980b21b5e383834a4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3062970 proquest_miscellaneous_859059398 proquest_journals_2293162254 pubmed_primary_21442013 crossref_primary_10_3389_fnhum_2011_00028 crossref_citationtrail_10_3389_fnhum_2011_00028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-00-00 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – year: 2011 text: 2011-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in human neuroscience |
PublicationTitleAlternate | Front Hum Neurosci |
PublicationYear | 2011 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
SSID | ssj0062651 |
Score | 2.3985367 |
Snippet | Functional magnetic resonance imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of... Functional Magnetic Resonance Imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 28 |
SubjectTerms | autocorrelation Blood Blood Oxygenation Level-Dependent (BOLD) Cognition Data analysis Fixed Effects Functional magnetic resonance imaging functional magnetic resonance imaging (fMRI) General Linear Model (GLM) Metabolism Mixed Effects Neuroscience NMR Nuclear magnetic resonance Physiology Statistical analysis |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBbFp1xKEvfhvNChFHpYvNZjd5WbE-KmpW4hxOCb0OqBA8k6xPYh_z4z0trEISSXgi9raWF2dqT5Pkn7DSHfvCpN4HnIgsllJlThMrh2WV4XzAlWDwLHr5HHf4vLifg9ldNnpb7wTFiSB06O60NEGlFDovOlEYqrKq_ZoJYemFXFhYlKoJDz1mQqzcGA0uUgbUoCBVP90MxWd61eJ7KMrSQUtfpfA5gvz0k-SzyjXfKxRYx0mCzdIx98s0-6wwbY8t0j_U7jGc64ON4l_xA7RullvKPVG6HzQMP46hfFzz0yXA7zi1M6pOsqBzTtD2A3QIP0558xHbZK45_IZHRxfX6ZtSUTMgtEZpkZa0Vw4LLAEUgVTgrjuK15aW3wrgyVlJXxJXPWMshdMnfCu6IC3BWYqgz_TDrNvPFfCY1MAqZC3OQVljnlK-sUAC4nZS2d6JH-2ofatnriWNbiVgOvQK_r6HWNXtfR6z3yY3PHfdLSeKPvGb6WTT9UwY5_QGzoNjb0e7HRI0frl6rbobnQDADOoIBpDJrpphkGFe6UmMbPVwsND46lDhWY8SWFwMYQlJgDM3mPlFvBsWXpdktzM4u63cDOmCrzg__xaIdkJ61u4--IdJYPK38M8GhZn8SR8AR5KQuc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvfSCKIV2oSAfEBIHa7N-JDGXaotaCmLbqqJSb5bjB0WiSenuHvj3zDjOwlaoUi6bONLseDz-Zsb5hpC3QVc2iiKyaAvFpC49g9-eFU3JveTNJAr8Gnl2Wp5cyi9X6ion3Ob5WOXgE5Oj9p3DHPmYw740KcH65MHtL4Zdo7C6mltoPCab4IJrsPDNw6PT84vBFwNaV5O-OAmhmB7H9np5k3k7MdpY24wSZ___gOb985L_bEDHT8mTjBzptJ_qbfIotM_IzrSFqPnmN31H01nOlCTfIWeIIRMFM76ReUdoF2mcXXym-NkHw7RYmH-gUzp0O6B9nQCHASqkn77O6DQzjj8nl8dH3z6esNw6gTkIaBbMOiejLwToHQFV6ZW0XrhGVM7F4KtYK1XbUHHvHIc9TBVeBl_WgL8i17UVL8hG27Vhj9AUUYBLxGKvdNzrUDuvAXh5pRrl5YiMBx0al3nFsb3FTwPxBWrdJK0b1LpJWh-R96s3bntOjQfGHuK0rMYhG3a60d19N3lxGfBaVjYAhkJlpRa6Lho-aVSA6LsW0oKI-8OkmrxE5-avQY0IXT2GxYUVE9uGbjk38Mex5aEGMXZ7E1gJglRzIKYYkWrNONYkXX_S_rhO_N0QpXFdFS8fluoV2erz13jtk43F3TK8BgC0aN5kK_8DpL0F5g priority: 102 providerName: ProQuest |
Title | Statistical Analysis of fMRI Time-Series: A Critical Review of the GLM Approach |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21442013 https://www.proquest.com/docview/2293162254 https://www.proquest.com/docview/859059398 https://pubmed.ncbi.nlm.nih.gov/PMC3062970 https://doaj.org/article/703a4b074e7a493980b21b5e383834a4 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEG40efFFTOKxmiz9IIIPY2b6mJkOiGwkh-JGCS7sW9PTRyIks7oHmH9vVc-hK4sPwjAwfUDPVHXXV13TXxHy0qvCBJ6GJJhUJkLlLoFnl6RVzpxgVRY4nkYeX-TnE_FxKqe_j0e3H3Cx0bXDfFKT-c2bnz_u3sGEf4seJ9jbw1Bfr25bNk70Ie6TbbBLBSZyGIs-pgDIXWZNoHJjr0gLLAQU8DUbFan8N-HPv3-j_MMunT4iD1tASUeNBuyQe77eJXujGpzp2zv6isZfPOPe-R75jNAyMjNjj5aOhM4CDePLDxRPgyS4W-YXR3REuyQItAkfYDMAi_Ts05iOWiLyx2RyevL1_XnSZlRILPg5y8RYK4JLOYgDcVbupDCO24oX1gbvilBKWRpfMGctA9MmUye8y0uAZYGp0vAnZKue1f4ZodHRgJUSY8DCMqd8aZ0CPOakrKQTA3LYfUNtW7pxzHpxo8HtQAHoKACNAtBRAAPyuu_xvaHa-EfbYxRL3w5JsmPBbH6l2zmnYTEzogKM5AsjFFdlWrGskh6c8pILA0Pc74SqO8XTDPBPlsMqB9W0r4Y5h4EUU_vZaqHhxTETooJhPG1UoB9Ip0IDUqwpx9pI12vqb9eR1hucN6aK9Pl_93xBHjQ73njtk63lfOUPADItqyHZPj65-HI5jFsOcD-bZsM4O34Blf8Y6w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvCBgfhQF-ACQeoqb-SGIkhDrYaFlb0LRJe_McfzAklo61Fdo_xd_InZMUitDeJvUljRNdzufz73z27wh54VVuAk9DEkwqE6Eyl8C1S9IyY06wsh84nkaeTLPhkfh0LI83yK_2LAxuq2x9YnTUbmZxjbzHYF7qZ2B94t35jwSrRmF2tS2hUZvFvr_8CSHb_O3oA_TvS8b2dg_fD5OmqkBiAesvEmOtCC7lIBJijcxJYRy3Jc-tDd7loZCyMD5nzloG7l2mTniXFQBNAlOF4fDeG2RTcIAKHbK5szv9ctD6fogOZL9OhkLop3qhOl2eNTyhGN2sTX6xRsD_gO2_-zP_mvD27pDbDVKlg9q07pINX90jW4MKovSzS_qKxr2jcVF-i3xGzBopn_GJhueEzgINk4MRxWMmCS7D-fkbOqBtdQVa5yWwGaBQ-nE8oYOG4fw-OboWpT4gnWpW-UeExggGXDAml4VlTvnCOgVAz0lZSie6pNfqUNuGxxzLaXzXEM-g1nXUukat66j1Lnm9euK85vC4ou0OdsuqHbJvxz9mF191M5g1eEkjSgBfPjdCcVWkJeuX0kO0X3BhQMTttlN14xLm-o8Bdwld3YbBjBkaU_nZcq7hw7HEogIxHtYmsBIEqe1ATN4l-ZpxrEm6fqf6dhr5wiEqZCpPH18t1XNyc3g4GevxaLr_hNyq187xt006i4ulfwrga1E-ayyekpPrHmS_ActYRA8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEDA-CgP8AEg8RE0dO4mREOrYysrWMk1M2ptx_MEmbelYW6H9a_x13DlOoQjtbVJf0jjR5Xw-_85n_46QV04W2mepT7xORcJlbhO4tkla5cxyVvV9hqeRx5N894h_PhbHa-RXexYGt1W2PjE4ajs1uEbeYzAv9XOwPt7zcVvEwfbww8WPBCtIYaa1LafRmMieu_oJ4dvs_Wgb-vo1Y8Odrx93k1hhIDGA--eJNoZ7m2YgHuKO3AqubWaqrDDGO1v4UohSu4JZYxi4epFa7mxeAkzxTJY6g_feIusFHh_tkPWtncnBYTsPQKQg-k1iFMJA2fP1yeI8coZipLMyEYZ6Af8Duf_u1fxr8hveI3cjaqWDxszukzVXPyAbgxoi9vMr-oaGfaRhgX6DfEH8Guif8YnIeUKnnvrx4YjikZMEl-Tc7B0d0LbSAm1yFNgMECn9tD-mg8h2_pAc3YhSH5FOPa3dE0JDNAPuGBPN3DArXWmsBNBnhaiE5V3Sa3WoTOQ0x9IaZwpiG9S6ClpXqHUVtN4lb5dPXDR8Hte03cJuWbZDJu7wx_Tyu4oDW4HH1LwCIOYKzWUmy7Ri_Uo4iPzLjGsQcbPtVBXdw0z9MeYuocvbMLAxW6NrN13MFHw4lluUIMbjxgSWgiDNHYiZdUmxYhwrkq7eqU9PAnc4RIhMFunT66V6SW7D4FL7o8neM3KnWUbH3ybpzC8X7jngsHn1Iho8Jd9ueoz9BtvNSE0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Analysis+of+fMRI+Time-Series%3A+A+Critical+Review+of+the+GLM+Approach&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Monti%2C+Martin+M.&rft.date=2011&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5161&rft.volume=5&rft_id=info:doi/10.3389%2Ffnhum.2011.00028&rft_id=info%3Apmid%2F21442013&rft.externalDocID=PMC3062970 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |