Statistical Analysis of fMRI Time-Series: A Critical Review of the GLM Approach

Functional magnetic resonance imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a general linear model (GLM) approach to separate stimulus induced signals from noise. Crucially, this approach relies on a...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 5; p. 28
Main Author Monti, Martin
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 2011
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5161
1662-5161
DOI10.3389/fnhum.2011.00028

Cover

Loading…
Abstract Functional magnetic resonance imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a general linear model (GLM) approach to separate stimulus induced signals from noise. Crucially, this approach relies on a number of assumptions about the data which, for inferences to be valid, must be met. The current paper reviews the GLM approach to analysis of fMRI time-series, focusing in particular on the degree to which such data abides by the assumptions of the GLM framework, and on the methods that have been developed to correct for any violation of those assumptions. Rather than biasing estimates of effect size, the major consequence of non-conformity to the assumptions is to introduce bias into estimates of the variance, thus affecting test statistics, power, and false positive rates. Furthermore, this bias can have pervasive effects on both individual subject and group-level statistics, potentially yielding qualitatively different results across replications, especially after the thresholding procedures commonly used for inference-making.
AbstractList Functional magnetic resonance imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a general linear model (GLM) approach to separate stimulus induced signals from noise. Crucially, this approach relies on a number of assumptions about the data which, for inferences to be valid, must be met. The current paper reviews the GLM approach to analysis of fMRI time-series, focusing in particular on the degree to which such data abides by the assumptions of the GLM framework, and on the methods that have been developed to correct for any violation of those assumptions. Rather than biasing estimates of effect size, the major consequence of non-conformity to the assumptions is to introduce bias into estimates of the variance, thus affecting test statistics, power, and false positive rates. Furthermore, this bias can have pervasive effects on both individual subject and group-level statistics, potentially yielding qualitatively different results across replications, especially after the thresholding procedures commonly used for inference-making.
Functional magnetic resonance imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a general linear model (GLM) approach to separate stimulus induced signals from noise. Crucially, this approach relies on a number of assumptions about the data which, for inferences to be valid, must be met. The current paper reviews the GLM approach to analysis of fMRI time-series, focusing in particular on the degree to which such data abides by the assumptions of the GLM framework, and on the methods that have been developed to correct for any violation of those assumptions. Rather than biasing estimates of effect size, the major consequence of non-conformity to the assumptions is to introduce bias into estimates of the variance, thus affecting test statistics, power, and false positive rates. Furthermore, this bias can have pervasive effects on both individual subject and group-level statistics, potentially yielding qualitatively different results across replications, especially after the thresholding procedures commonly used for inference-making.Functional magnetic resonance imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a general linear model (GLM) approach to separate stimulus induced signals from noise. Crucially, this approach relies on a number of assumptions about the data which, for inferences to be valid, must be met. The current paper reviews the GLM approach to analysis of fMRI time-series, focusing in particular on the degree to which such data abides by the assumptions of the GLM framework, and on the methods that have been developed to correct for any violation of those assumptions. Rather than biasing estimates of effect size, the major consequence of non-conformity to the assumptions is to introduce bias into estimates of the variance, thus affecting test statistics, power, and false positive rates. Furthermore, this bias can have pervasive effects on both individual subject and group-level statistics, potentially yielding qualitatively different results across replications, especially after the thresholding procedures commonly used for inference-making.
Author Monti, Martin
AuthorAffiliation 1 Department of Psychology, University of California Los Angeles, CA, USA
AuthorAffiliation_xml – name: 1 Department of Psychology, University of California Los Angeles, CA, USA
Author_xml – sequence: 1
  givenname: Martin
  surname: Monti
  fullname: Monti, Martin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21442013$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk1r3DAUFCWlSba991QMPeTkrT5tuYfCsjTpwoZAkp6FLD9ltdjWVrJT8u8j76YhCRQdJKSZeaP35hQd9b4HhD4TPGdMVt9svxm7OcWEzDHGVL5DJ6QoaC5IQY5enI_RaYxbjAtaCPIBHVPCeWKxE3R1M-jBxcEZ3WaLXrcP0cXM28xeXq-yW9dBfgPBQfyeLbJlcAfgNdw7-DvBhg1kF-vLbLHbBa_N5iN6b3Ub4dPTPkO_z3_eLn_l66uL1XKxzk1BxZBrY7htMNOWEUKrohFcN8zUrDTGQlNaKYTUUNLGGMoSBTccmkJKQSytpGYztDroNl5v1S64TocH5bVT-wsf7pQOyWwLqkxleI1LDqXmFaskrimpBTCZFtc8af04aO3GuoPGQD8E3b4Sff3Su4268_eKpYZWSX6Gzp4Egv8zQhxU56KBttU9-DEqKSospsoJ-fUNcuvHkNoeFaUVIwWlYjL05aWhZyf_xpYA-AAwwccYwD5DCFZTMtQ-GWpKhtonI1GKNxTjptH76Uuu_T_xEYjgvHA
CitedBy_id crossref_primary_10_1016_j_neuroimage_2023_119880
crossref_primary_10_1007_s00362_019_01148_1
crossref_primary_10_1016_j_jsxm_2022_03_217
crossref_primary_10_1093_biomtc_ujae159
crossref_primary_10_1016_j_neuroimage_2017_01_059
crossref_primary_10_1007_s12021_022_09580_9
crossref_primary_10_1155_2016_1068434
crossref_primary_10_1162_jocn_a_02132
crossref_primary_10_1007_s11065_015_9294_9
crossref_primary_10_1038_s41598_022_05601_4
crossref_primary_10_1155_2013_645043
crossref_primary_10_1007_s10278_024_01189_5
crossref_primary_10_1016_j_bandl_2018_07_003
crossref_primary_10_5691_jjb_33_145
crossref_primary_10_3390_app10062137
crossref_primary_10_3390_brainsci11050606
crossref_primary_10_1167_jov_20_8_17
crossref_primary_10_3389_fneur_2018_00826
crossref_primary_10_3389_fnbeh_2014_00221
crossref_primary_10_1007_s11336_012_9294_0
crossref_primary_10_1016_j_media_2023_102892
crossref_primary_10_1007_s00062_024_01422_2
crossref_primary_10_1038_npp_2016_151
crossref_primary_10_3389_fnagi_2022_958656
crossref_primary_10_1073_pnas_1212785110
crossref_primary_10_3390_s21155117
crossref_primary_10_1109_TMI_2012_2195327
crossref_primary_10_1038_s41598_021_85504_y
crossref_primary_10_1117_1_NPh_3_3_031402
crossref_primary_10_1016_j_neuroimage_2019_02_008
crossref_primary_10_1371_journal_pcbi_1006397
crossref_primary_10_1016_j_destud_2022_101148
crossref_primary_10_3390_ijms21176273
crossref_primary_10_1109_RBME_2011_2170675
crossref_primary_10_1155_2021_6660866
crossref_primary_10_7717_peerj_10448
crossref_primary_10_1016_j_neuroimage_2023_120118
crossref_primary_10_2139_ssrn_2881692
crossref_primary_10_1117_1_NPh_6_1_015001
crossref_primary_10_1002_ana_24423
crossref_primary_10_1088_1741_2552_ab965b
crossref_primary_10_1093_cercor_bhab377
crossref_primary_10_3389_fnagi_2021_744139
crossref_primary_10_1007_s00221_024_06977_7
crossref_primary_10_1523_ENEURO_0069_22_2022
crossref_primary_10_3389_fpsyg_2023_1211528
crossref_primary_10_3390_a11050067
crossref_primary_10_1109_TMI_2016_2520024
crossref_primary_10_3389_fpsyt_2020_608928
crossref_primary_10_3390_s23073382
crossref_primary_10_1007_s10916_019_1475_2
crossref_primary_10_1109_TMI_2019_2915052
crossref_primary_10_1371_journal_pcbi_1003079
crossref_primary_10_1016_j_jneumeth_2018_05_017
crossref_primary_10_1111_spc3_12898
crossref_primary_10_1155_2022_1124927
crossref_primary_10_1016_j_nicl_2014_07_002
crossref_primary_10_1155_2013_643129
crossref_primary_10_3389_fnins_2017_00504
crossref_primary_10_1002_hbm_22459
crossref_primary_10_1002_sim_10162
crossref_primary_10_1016_j_neuroimage_2019_04_042
crossref_primary_10_1007_s10334_024_01197_0
crossref_primary_10_1016_j_brs_2019_09_003
crossref_primary_10_1093_cercor_bhac235
crossref_primary_10_1152_jn_00105_2013
crossref_primary_10_1016_j_isci_2023_107592
crossref_primary_10_1371_journal_pone_0303278
crossref_primary_10_3389_fpsyt_2021_665536
crossref_primary_10_1038_s41598_021_86171_9
crossref_primary_10_1089_brain_2014_0261
crossref_primary_10_1177_1094428118802631
crossref_primary_10_1038_s41398_024_03108_2
crossref_primary_10_1097_MD_0000000000020041
crossref_primary_10_1109_JBHI_2015_2439685
crossref_primary_10_1016_j_neuroimage_2019_05_081
crossref_primary_10_1073_pnas_2303562120
crossref_primary_10_1016_j_nut_2013_01_020
crossref_primary_10_1109_TBME_2024_3395154
crossref_primary_10_4103_jmss_JMSS_2_17
crossref_primary_10_1038_s41598_018_24874_2
crossref_primary_10_1002_hbm_26648
crossref_primary_10_1016_j_compbiomed_2022_106240
crossref_primary_10_1038_s41598_021_83420_9
crossref_primary_10_1117_1_NPh_5_1_011018
crossref_primary_10_1038_s41398_023_02526_y
crossref_primary_10_35848_1347_4065_ab77f3
crossref_primary_10_1038_s41598_021_98506_7
crossref_primary_10_1016_j_neuroimage_2012_01_133
crossref_primary_10_3389_fnins_2017_00718
crossref_primary_10_1016_j_neuroimage_2017_05_037
crossref_primary_10_1016_j_nicl_2017_12_008
crossref_primary_10_3389_fnins_2016_00461
crossref_primary_10_1016_j_neuroimage_2016_07_047
crossref_primary_10_3390_e22121380
crossref_primary_10_1371_journal_pone_0085460
crossref_primary_10_1371_journal_pcbi_1002441
crossref_primary_10_1016_j_cortex_2022_03_024
crossref_primary_10_1016_j_biopsycho_2024_108967
crossref_primary_10_1214_19_AOAS1316
crossref_primary_10_1038_s41467_017_02722_7
crossref_primary_10_3390_e26090751
crossref_primary_10_3389_fnins_2016_00515
crossref_primary_10_1371_journal_pone_0299925
crossref_primary_10_1016_j_neuroimage_2019_116449
crossref_primary_10_1002_wics_1609
crossref_primary_10_7554_eLife_77599
crossref_primary_10_1371_journal_pone_0105169
crossref_primary_10_1093_toxsci_kfv083
crossref_primary_10_5812_ans_90089
crossref_primary_10_3389_fnins_2023_1098441
crossref_primary_10_1016_j_neuroimage_2014_07_045
crossref_primary_10_3389_fnhum_2018_00103
crossref_primary_10_1016_j_neuroimage_2021_118369
crossref_primary_10_3389_fnhum_2018_00505
crossref_primary_10_1002_hbm_26425
crossref_primary_10_1162_imag_a_00058
crossref_primary_10_1016_j_cortex_2019_08_006
crossref_primary_10_3389_fncom_2023_1302010
crossref_primary_10_1002_hbm_22660
crossref_primary_10_3389_fnins_2022_1051424
crossref_primary_10_1016_j_neuroimage_2019_03_046
crossref_primary_10_3389_fpsyg_2019_01087
crossref_primary_10_1016_j_neuroimage_2022_119588
crossref_primary_10_3389_fnins_2016_00322
crossref_primary_10_1002_jnr_24115
crossref_primary_10_1016_j_jneumeth_2018_04_009
crossref_primary_10_1109_JSTSP_2016_2599010
crossref_primary_10_1016_j_mri_2021_02_009
crossref_primary_10_1002_hbm_22816
crossref_primary_10_1002_mrm_28328
crossref_primary_10_1016_j_jneumeth_2012_08_022
crossref_primary_10_1016_j_neuroimage_2017_06_056
crossref_primary_10_1016_j_neuroimage_2018_08_064
crossref_primary_10_1155_2015_542467
crossref_primary_10_3389_fnins_2020_575589
crossref_primary_10_1016_j_neuroimage_2022_119180
crossref_primary_10_1016_j_jmp_2016_06_009
crossref_primary_10_1080_10543406_2011_610027
crossref_primary_10_3390_biomedicines9040337
crossref_primary_10_2139_ssrn_4174993
crossref_primary_10_1002_ima_23195
crossref_primary_10_1093_cercor_bhae100
crossref_primary_10_1002_hbm_26699
crossref_primary_10_3389_fnhum_2018_00093
crossref_primary_10_3389_fnins_2020_00226
crossref_primary_10_1007_s42113_018_0013_5
crossref_primary_10_1016_j_neuroimage_2013_05_088
crossref_primary_10_3390_brainsci12040428
crossref_primary_10_1214_18_BA1108
crossref_primary_10_1162_jocn_a_00426
crossref_primary_10_1061__ASCE_CP_1943_5487_0000848
crossref_primary_10_3390_s19040849
crossref_primary_10_1109_TITS_2022_3211089
crossref_primary_10_1038_s41598_018_23747_y
crossref_primary_10_1038_nprot_2018_003
crossref_primary_10_1007_s11682_016_9580_z
crossref_primary_10_1089_brain_2020_0758
crossref_primary_10_22430_22565337_1626
ContentType Journal Article
Copyright 2011. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.frontiersin.org/articles/10.3389/fnhum.2011.00028 .
Copyright © 2011 Monti. 2011
Copyright_xml – notice: 2011. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.frontiersin.org/articles/10.3389/fnhum.2011.00028 .
– notice: Copyright © 2011 Monti. 2011
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2011.00028
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_703a4b074e7a493980b21b5e383834a4
PMC3062970
21442013
10_3389_fnhum_2011_00028
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
C1A
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IPNFZ
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RIG
RNS
RPM
TR2
NPM
PQGLB
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c625t-acc4fd03af311296d54ad3cb37ccfed7f8558ae72dcc236250d4ed68851f298a3
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 01:21:13 EDT 2025
Thu Aug 21 14:10:39 EDT 2025
Thu Jul 10 23:37:51 EDT 2025
Fri Jul 25 12:08:24 EDT 2025
Mon Jul 21 05:29:53 EDT 2025
Tue Jul 01 02:01:25 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords multicollinearity
fixed effects
mixed effects
blood oxygenation level-dependent
ordinary least squares
functional magnetic resonance imaging
general linear model
autocorrelation
Language English
License This is an open-access article subject to an exclusive license agreement between the authors and Frontiers Media SA, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c625t-acc4fd03af311296d54ad3cb37ccfed7f8558ae72dcc236250d4ed68851f298a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Russell A. Poldrack, University of California, USA; Sean L. Simpson, Wake Forest University, USA
Edited by: Michael X. Cohen, University of Amsterdam, Netherlands
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2011.00028
PMID 21442013
PQID 2293162254
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_703a4b074e7a493980b21b5e383834a4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3062970
proquest_miscellaneous_859059398
proquest_journals_2293162254
pubmed_primary_21442013
crossref_primary_10_3389_fnhum_2011_00028
crossref_citationtrail_10_3389_fnhum_2011_00028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-00-00
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011-00-00
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2011
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
SSID ssj0062651
Score 2.3985367
Snippet Functional magnetic resonance imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of...
Functional Magnetic Resonance Imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 28
SubjectTerms autocorrelation
Blood
Blood Oxygenation Level-Dependent (BOLD)
Cognition
Data analysis
Fixed Effects
Functional magnetic resonance imaging
functional magnetic resonance imaging (fMRI)
General Linear Model (GLM)
Metabolism
Mixed Effects
Neuroscience
NMR
Nuclear magnetic resonance
Physiology
Statistical analysis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBbFp1xKEvfhvNChFHpYvNZjd5WbE-KmpW4hxOCb0OqBA8k6xPYh_z4z0trEISSXgi9raWF2dqT5Pkn7DSHfvCpN4HnIgsllJlThMrh2WV4XzAlWDwLHr5HHf4vLifg9ldNnpb7wTFiSB06O60NEGlFDovOlEYqrKq_ZoJYemFXFhYlKoJDz1mQqzcGA0uUgbUoCBVP90MxWd61eJ7KMrSQUtfpfA5gvz0k-SzyjXfKxRYx0mCzdIx98s0-6wwbY8t0j_U7jGc64ON4l_xA7RullvKPVG6HzQMP46hfFzz0yXA7zi1M6pOsqBzTtD2A3QIP0558xHbZK45_IZHRxfX6ZtSUTMgtEZpkZa0Vw4LLAEUgVTgrjuK15aW3wrgyVlJXxJXPWMshdMnfCu6IC3BWYqgz_TDrNvPFfCY1MAqZC3OQVljnlK-sUAC4nZS2d6JH-2ofatnriWNbiVgOvQK_r6HWNXtfR6z3yY3PHfdLSeKPvGb6WTT9UwY5_QGzoNjb0e7HRI0frl6rbobnQDADOoIBpDJrpphkGFe6UmMbPVwsND46lDhWY8SWFwMYQlJgDM3mPlFvBsWXpdktzM4u63cDOmCrzg__xaIdkJ61u4--IdJYPK38M8GhZn8SR8AR5KQuc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvfSCKIV2oSAfEBIHa7N-JDGXaotaCmLbqqJSb5bjB0WiSenuHvj3zDjOwlaoUi6bONLseDz-Zsb5hpC3QVc2iiKyaAvFpC49g9-eFU3JveTNJAr8Gnl2Wp5cyi9X6ion3Ob5WOXgE5Oj9p3DHPmYw740KcH65MHtL4Zdo7C6mltoPCab4IJrsPDNw6PT84vBFwNaV5O-OAmhmB7H9np5k3k7MdpY24wSZ___gOb985L_bEDHT8mTjBzptJ_qbfIotM_IzrSFqPnmN31H01nOlCTfIWeIIRMFM76ReUdoF2mcXXym-NkHw7RYmH-gUzp0O6B9nQCHASqkn77O6DQzjj8nl8dH3z6esNw6gTkIaBbMOiejLwToHQFV6ZW0XrhGVM7F4KtYK1XbUHHvHIc9TBVeBl_WgL8i17UVL8hG27Vhj9AUUYBLxGKvdNzrUDuvAXh5pRrl5YiMBx0al3nFsb3FTwPxBWrdJK0b1LpJWh-R96s3bntOjQfGHuK0rMYhG3a60d19N3lxGfBaVjYAhkJlpRa6Lho-aVSA6LsW0oKI-8OkmrxE5-avQY0IXT2GxYUVE9uGbjk38Mex5aEGMXZ7E1gJglRzIKYYkWrNONYkXX_S_rhO_N0QpXFdFS8fluoV2erz13jtk43F3TK8BgC0aN5kK_8DpL0F5g
  priority: 102
  providerName: ProQuest
Title Statistical Analysis of fMRI Time-Series: A Critical Review of the GLM Approach
URI https://www.ncbi.nlm.nih.gov/pubmed/21442013
https://www.proquest.com/docview/2293162254
https://www.proquest.com/docview/859059398
https://pubmed.ncbi.nlm.nih.gov/PMC3062970
https://doaj.org/article/703a4b074e7a493980b21b5e383834a4
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEG40efFFTOKxmiz9IIIPY2b6mJkOiGwkh-JGCS7sW9PTRyIks7oHmH9vVc-hK4sPwjAwfUDPVHXXV13TXxHy0qvCBJ6GJJhUJkLlLoFnl6RVzpxgVRY4nkYeX-TnE_FxKqe_j0e3H3Cx0bXDfFKT-c2bnz_u3sGEf4seJ9jbw1Bfr25bNk70Ie6TbbBLBSZyGIs-pgDIXWZNoHJjr0gLLAQU8DUbFan8N-HPv3-j_MMunT4iD1tASUeNBuyQe77eJXujGpzp2zv6isZfPOPe-R75jNAyMjNjj5aOhM4CDePLDxRPgyS4W-YXR3REuyQItAkfYDMAi_Ts05iOWiLyx2RyevL1_XnSZlRILPg5y8RYK4JLOYgDcVbupDCO24oX1gbvilBKWRpfMGctA9MmUye8y0uAZYGp0vAnZKue1f4ZodHRgJUSY8DCMqd8aZ0CPOakrKQTA3LYfUNtW7pxzHpxo8HtQAHoKACNAtBRAAPyuu_xvaHa-EfbYxRL3w5JsmPBbH6l2zmnYTEzogKM5AsjFFdlWrGskh6c8pILA0Pc74SqO8XTDPBPlsMqB9W0r4Y5h4EUU_vZaqHhxTETooJhPG1UoB9Ip0IDUqwpx9pI12vqb9eR1hucN6aK9Pl_93xBHjQ73njtk63lfOUPADItqyHZPj65-HI5jFsOcD-bZsM4O34Blf8Y6w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvCBgfhQF-ACQeoqb-SGIkhDrYaFlb0LRJe_McfzAklo61Fdo_xd_InZMUitDeJvUljRNdzufz73z27wh54VVuAk9DEkwqE6Eyl8C1S9IyY06wsh84nkaeTLPhkfh0LI83yK_2LAxuq2x9YnTUbmZxjbzHYF7qZ2B94t35jwSrRmF2tS2hUZvFvr_8CSHb_O3oA_TvS8b2dg_fD5OmqkBiAesvEmOtCC7lIBJijcxJYRy3Jc-tDd7loZCyMD5nzloG7l2mTniXFQBNAlOF4fDeG2RTcIAKHbK5szv9ctD6fogOZL9OhkLop3qhOl2eNTyhGN2sTX6xRsD_gO2_-zP_mvD27pDbDVKlg9q07pINX90jW4MKovSzS_qKxr2jcVF-i3xGzBopn_GJhueEzgINk4MRxWMmCS7D-fkbOqBtdQVa5yWwGaBQ-nE8oYOG4fw-OboWpT4gnWpW-UeExggGXDAml4VlTvnCOgVAz0lZSie6pNfqUNuGxxzLaXzXEM-g1nXUukat66j1Lnm9euK85vC4ou0OdsuqHbJvxz9mF191M5g1eEkjSgBfPjdCcVWkJeuX0kO0X3BhQMTttlN14xLm-o8Bdwld3YbBjBkaU_nZcq7hw7HEogIxHtYmsBIEqe1ATN4l-ZpxrEm6fqf6dhr5wiEqZCpPH18t1XNyc3g4GevxaLr_hNyq187xt006i4ulfwrga1E-ayyekpPrHmS_ActYRA8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEDA-CgP8AEg8RE0dO4mREOrYysrWMk1M2ptx_MEmbelYW6H9a_x13DlOoQjtbVJf0jjR5Xw-_85n_46QV04W2mepT7xORcJlbhO4tkla5cxyVvV9hqeRx5N894h_PhbHa-RXexYGt1W2PjE4ajs1uEbeYzAv9XOwPt7zcVvEwfbww8WPBCtIYaa1LafRmMieu_oJ4dvs_Wgb-vo1Y8Odrx93k1hhIDGA--eJNoZ7m2YgHuKO3AqubWaqrDDGO1v4UohSu4JZYxi4epFa7mxeAkzxTJY6g_feIusFHh_tkPWtncnBYTsPQKQg-k1iFMJA2fP1yeI8coZipLMyEYZ6Af8Duf_u1fxr8hveI3cjaqWDxszukzVXPyAbgxoi9vMr-oaGfaRhgX6DfEH8Guif8YnIeUKnnvrx4YjikZMEl-Tc7B0d0LbSAm1yFNgMECn9tD-mg8h2_pAc3YhSH5FOPa3dE0JDNAPuGBPN3DArXWmsBNBnhaiE5V3Sa3WoTOQ0x9IaZwpiG9S6ClpXqHUVtN4lb5dPXDR8Hte03cJuWbZDJu7wx_Tyu4oDW4HH1LwCIOYKzWUmy7Ri_Uo4iPzLjGsQcbPtVBXdw0z9MeYuocvbMLAxW6NrN13MFHw4lluUIMbjxgSWgiDNHYiZdUmxYhwrkq7eqU9PAnc4RIhMFunT66V6SW7D4FL7o8neM3KnWUbH3ybpzC8X7jngsHn1Iho8Jd9ueoz9BtvNSE0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Analysis+of+fMRI+Time-Series%3A+A+Critical+Review+of+the+GLM+Approach&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Monti%2C+Martin+M.&rft.date=2011&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5161&rft.volume=5&rft_id=info:doi/10.3389%2Ffnhum.2011.00028&rft_id=info%3Apmid%2F21442013&rft.externalDocID=PMC3062970
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon