Global Patterns and Determinants of Vascular Plant Diversity
Plants, with an estimated 300,000 species, provide crucial primary production and ecosystem structure. To date, our quantitative understanding of diversity gradients of megadiverse clades such as plants has been hampered by the paucity of distribution data. Here, we investigate the global-scale spec...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 104; no. 14; pp. 5925 - 5930 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.04.2007
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plants, with an estimated 300,000 species, provide crucial primary production and ecosystem structure. To date, our quantitative understanding of diversity gradients of megadiverse clades such as plants has been hampered by the paucity of distribution data. Here, we investigate the global-scale species-richness pattern of vascular plants and examine its environmental and potential historical determinants. Across 1,032 geographic regions worldwide, potential evapotranspiration, the number of wet days per year, and measurements of topographical and habitat heterogeneity emerge as core predictors of species richness. After accounting for environmental effects, the residual differences across the major floristic kingdoms are minor, with the exception of the uniquely diverse Cape Region, highlighting the important role of historical contingencies. Notably, the South African Cape region contains more than twice as many species as expected by the global environmental model, confirming its uniquely evolved flora. A combined multipredictor model explains ≈70% of the global variation in species richness and fully accounts for the enigmatic latitudinal gradient in species richness. The models illustrate the geographic interplay of different environmental predictors of species richness. Our findings highlight that different hypotheses about the causes of diversity gradients are not mutually exclusive, but likely act synergistically with water-energy dynamics playing a dominant role. The presented geostatistical approach is likely to prove instrumental for identifying richness patterns of the many other taxa without single-species distribution data that still escape our understanding. |
---|---|
AbstractList | Plants, with an estimated 300,000 species, provide crucial primary production and ecosystem structure. To date, our quantitative understanding of diversity gradients of megadiverse clades such as plants has been hampered by the paucity of distribution data. Here, we investigate the global-scale species-richness pattern of vascular plants and examine its environmental and potential historical determinants. Across 1,032 geographic regions worldwide, potential evapotranspiration, the number of wet days per year, and measurements of topographical and habitat heterogeneity emerge as core predictors of species richness. After accounting for environmental effects, the residual differences across the major floristic kingdoms are minor, with the exception of the uniquely diverse Cape Region, highlighting the important role of historical contingencies. Notably, the South African Cape region contains more than twice as many species as expected by the global environmental model, confirming its uniquely evolved flora. A combined multipredictor model explains ≈70% of the global variation in species richness and fully accounts for the enigmatic latitudinal gradient in species richness. The models illustrate the geographic interplay of different environmental predictors of species richness. Our findings highlight that different hypotheses about the causes of diversity gradients are not mutually exclusive, but likely act synergistically with water–energy dynamics playing a dominant role. The presented geostatistical approach is likely to prove instrumental for identifying richness patterns of the many other taxa without single-species distribution data that still escape our understanding. Plants, with an estimated 300,000 species, provide crucial primary production and ecosystem structure. To date, our quantitative understanding of diversity gradients of megadiverse clades such as plants has been hampered by the paucity of distribution data. Here, we investigate the global-scale species-richness pattern of vascular plants and examine its environmental and potential historical determinants. Across 1,032 geographic regions worldwide, potential evapotranspiration, the number of wet days per year, and measurements of topographical and habitat heterogeneity emerge as core predictors of species richness. After accounting for environmental effects, the residual differences across the major floristic kingdoms are minor, with the exception of the uniquely diverse Cape Region, highlighting the important role of historical contingencies. Notably, the South African Cape region contains more than twice as many species as expected by the global environmental model, confirming its uniquely evolved flora. A combined multipredictor model explains ...70% of the global variation in species richness and fully accounts for the enigmatic latitudinal gradient in species richness. The models illustrate the geographic interplay of different environmental predictors of species richness. Our findings highlight that different hypotheses about the causes of diversity gradients are not mutually exclusive, but likely act synergistically with water-energy dynamics playing a dominant role. The presented geostatistical approach is likely to prove instrumental for identifying richness patterns of the many other taxa without single-species distribution data that still escape our understanding. (ProQuest-CSA LLC: ... denotes formulae/symbols omitted.) Plants, with an estimated 300,000 species, provide crucial primary production and ecosystem structure. To date, our quantitative understanding of diversity gradients of megadiverse clades such as plants has been hampered by the paucity of distribution data. Here, we investigate the global-scale species-richness pattern of vascular plants and examine its environmental and potential historical determinants. Across 1,032 geographic regions worldwide, potential evapotranspiration, the number of wet days per year, and measurements of topographical and habitat heterogeneity emerge as core predictors of species richness. After accounting for environmental effects, the residual differences across the major floristic kingdoms are minor, with the exception of the uniquely diverse Cape Region, highlighting the important role of historical contingencies. Notably, the South African Cape region contains more than twice as many species as expected by the global environmental model, confirming its uniquely evolved flora. A combined multipredictor model explains approximately 70% of the global variation in species richness and fully accounts for the enigmatic latitudinal gradient in species richness. The models illustrate the geographic interplay of different environmental predictors of species richness. Our findings highlight that different hypotheses about the causes of diversity gradients are not mutually exclusive, but likely act synergistically with water-energy dynamics playing a dominant role. The presented geostatistical approach is likely to prove instrumental for identifying richness patterns of the many other taxa without single-species distribution data that still escape our understanding.Plants, with an estimated 300,000 species, provide crucial primary production and ecosystem structure. To date, our quantitative understanding of diversity gradients of megadiverse clades such as plants has been hampered by the paucity of distribution data. Here, we investigate the global-scale species-richness pattern of vascular plants and examine its environmental and potential historical determinants. Across 1,032 geographic regions worldwide, potential evapotranspiration, the number of wet days per year, and measurements of topographical and habitat heterogeneity emerge as core predictors of species richness. After accounting for environmental effects, the residual differences across the major floristic kingdoms are minor, with the exception of the uniquely diverse Cape Region, highlighting the important role of historical contingencies. Notably, the South African Cape region contains more than twice as many species as expected by the global environmental model, confirming its uniquely evolved flora. A combined multipredictor model explains approximately 70% of the global variation in species richness and fully accounts for the enigmatic latitudinal gradient in species richness. The models illustrate the geographic interplay of different environmental predictors of species richness. Our findings highlight that different hypotheses about the causes of diversity gradients are not mutually exclusive, but likely act synergistically with water-energy dynamics playing a dominant role. The presented geostatistical approach is likely to prove instrumental for identifying richness patterns of the many other taxa without single-species distribution data that still escape our understanding. Plants, with an estimated 300,000 species, provide crucial primary production and ecosystem structure. To date, our quantitative understanding of diversity gradients of megadiverse clades such as plants has been hampered by the paucity of distribution data. Here, we investigate the global-scale species-richness pattern of vascular plants and examine its environmental and potential historical determinants. Across 1,032 geographic regions worldwide, potential evapotranspiration, the number of wet days per year, and measurements of topographical and habitat heterogeneity emerge as core predictors of species richness. After accounting for environmental effects, the residual differences across the major floristic kingdoms are minor, with the exception of the uniquely diverse Cape Region, highlighting the important role of historical contingencies. Notably, the South African Cape region contains more than twice as many species as expected by the global environmental model, confirming its uniquely evolved flora. A combined multipredictor model explains approximately 70% of the global variation in species richness and fully accounts for the enigmatic latitudinal gradient in species richness. The models illustrate the geographic interplay of different environmental predictors of species richness. Our findings highlight that different hypotheses about the causes of diversity gradients are not mutually exclusive, but likely act synergistically with water-energy dynamics playing a dominant role. The presented geostatistical approach is likely to prove instrumental for identifying richness patterns of the many other taxa without single-species distribution data that still escape our understanding. Plants, with an estimated 300,000 species, provide crucial primary production and ecosystem structure. To date, our quantitative understanding of diversity gradients of megadiverse clades such as plants has been hampered by the paucity of distribution data. Here, we investigate the global-scale species-richness pattern of vascular plants and examine its environmental and potential historical determinants. Across 1,032 geographic regions worldwide, potential evapotranspiration, the number of wet days per year, and measurements of topographical and habitat heterogeneity emerge as core predictors of species richness. After accounting for environmental effects, the residual differences across the major floristic kingdoms are minor, with the exception of the uniquely diverse Cape Region, highlighting the important role of historical contingencies. Notably, the South African Cape region contains more than twice as many species as expected by the global environmental model, confirming its uniquely evolved flora. A combined multipredictor model explains ≈70% of the global variation in species richness and fully accounts for the enigmatic latitudinal gradient in species richness. The models illustrate the geographic interplay of different environmental predictors of species richness. Our findings highlight that different hypotheses about the causes of diversity gradients are not mutually exclusive, but likely act synergistically with water–energy dynamics playing a dominant role. The presented geostatistical approach is likely to prove instrumental for identifying richness patterns of the many other taxa without single-species distribution data that still escape our understanding. biodiversity historical contingency latitudinal gradient macroecology species richness Plants, with an estimated 300,000 species, provide crucial primary production and ecosystem structure. To date, our quantitative understanding of diversity gradients of megadiverse clades such as plants has been hampered by the paucity of distribution data. Here, we investigate the global-scale species-richness pattern of vascular plants and examine its environmental and potential historical determinants. Across 1,032 geographic regions worldwide, potential evapotranspiration, the number of wet days per year, and measurements of topographical and habitat heterogeneity emerge as core predictors of species richness. After accounting for environmental effects, the residual differences across the major floristic kingdoms are minor, with the exception of the uniquely diverse Cape Region, highlighting the important role of historical contingencies. Notably, the South African Cape region contains more than twice as many species as expected by the global environmental model, confirming its uniquely evolved flora. A combined multipredictor model explains [almost equal to]70% of the global variation in species richness and fully accounts for the enigmatic latitudinal gradient in species richness. The models illustrate the geographic interplay of different environmental predictors of species richness. Our findings highlight that different hypotheses about the causes of diversity gradients are not mutually exclusive, but likely act synergistically with water-energy dynamics playing a dominant role. The presented geostatistical approach is likely to prove instrumental for identifying richness patterns of the many other taxa without single-species distribution data that still escape our understanding. |
Author | Jetz, Walter Kreft, Holger |
Author_xml | – sequence: 1 givenname: Holger surname: Kreft fullname: Kreft, Holger – sequence: 2 givenname: Walter surname: Jetz fullname: Jetz, Walter |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17379667$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9rFDEUx4NU7LZ69qQOPYiXbV9-T0AEabUKBXtQryGbyWiW7GSbZIr975th160WtKeEvM_78r7fvAO0N8TBIfQcwzEGSU_Wg8nHIKClAmNgj9AMg8JzwRTsoRkAkfOWEbaPDnJeAoDiLTxB-1hSqYSQM_T2PMSFCc2lKcWlITdm6JozV-8rP5ih5Cb2zXeT7RhMai5DfWrO_LVL2Zebp-hxb0J2z7bnIfr28cPX00_ziy_nn0_fX8ytILzMZW-lJaZnToBoHRcLgI5xzow1UrWqTqw6SolgC4Od6Sm11FHbOSUUx52gh-jdRnc9Llaus24oyQS9Tn5l0o2Oxuu_K4P_qX_Ea41bjrmiVeD1ViDFq9Hlolc-WxeqHRfHrCVQjmuGD4JMMiKUwA-CuMYLjE2KR_fAZRzTUOPSBDCjHIBV6OWfBnfOfv9TBfgGsCnmnFyvrS-m-Dj59UFj0NM-6Gkf9N0-1L6Te3076X92vNqOMhXuaKYx01wRXok3_yd0P4ZQ3K9S0RcbdJlLTDuWcEYkBUpvAStS2Io |
CitedBy_id | crossref_primary_10_12705_622_12 crossref_primary_10_1007_s10668_024_04636_z crossref_primary_10_1016_j_ecolind_2023_111280 crossref_primary_10_1073_pnas_0900698106 crossref_primary_10_3390_plants9070853 crossref_primary_10_1016_j_agee_2011_05_026 crossref_primary_10_1111_j_1466_8238_2011_00660_x crossref_primary_10_1111_j_1461_0248_2008_01240_x crossref_primary_10_1016_j_jenvman_2022_114833 crossref_primary_10_1111_j_1472_4642_2011_00770_x crossref_primary_10_1007_s11442_014_1074_6 crossref_primary_10_1111_jbi_12498 crossref_primary_10_1371_journal_pone_0224444 crossref_primary_10_5194_hess_21_83_2017 crossref_primary_10_1016_j_ympev_2013_10_010 crossref_primary_10_1038_s41559_025_02664_0 crossref_primary_10_1016_j_cities_2022_103949 crossref_primary_10_1111_j_1600_0587_2009_05991_x crossref_primary_10_1111_gcb_15962 crossref_primary_10_1111_j_1365_2699_2012_02723_x crossref_primary_10_1007_s11104_021_04886_0 crossref_primary_10_1111_1365_2745_14428 crossref_primary_10_1111_ddi_12858 crossref_primary_10_1111_jvs_13285 crossref_primary_10_1111_j_1600_0587_2012_00126_x crossref_primary_10_1016_j_foreco_2021_119605 crossref_primary_10_1073_pnas_0811421106 crossref_primary_10_1007_s00442_022_05208_6 crossref_primary_10_3389_fpls_2021_715730 crossref_primary_10_1111_ecog_07062 crossref_primary_10_1111_j_1466_8238_2009_00468_x crossref_primary_10_1073_pnas_2021132118 crossref_primary_10_1111_jbi_12480 crossref_primary_10_1038_s41559_023_02047_3 crossref_primary_10_7717_peerj_2989 crossref_primary_10_1007_s11676_017_0509_1 crossref_primary_10_1186_s13256_022_03524_2 crossref_primary_10_1111_nph_18533 crossref_primary_10_1111_ddi_13717 crossref_primary_10_1186_s40529_016_0123_0 crossref_primary_10_1111_jse_12158 crossref_primary_10_1890_09_0704_1 crossref_primary_10_1017_S1089332600001650 crossref_primary_10_1016_j_pld_2023_07_006 crossref_primary_10_1016_j_scitotenv_2021_151209 crossref_primary_10_1038_s41586_023_05725_1 crossref_primary_10_1111_nph_15027 crossref_primary_10_1155_2023_8521303 crossref_primary_10_2166_ws_2020_121 crossref_primary_10_1017_S0266467408005798 crossref_primary_10_1016_j_chempr_2024_04_016 crossref_primary_10_3390_rs8080691 crossref_primary_10_1111_jbi_12219 crossref_primary_10_1007_s10113_015_0754_9 crossref_primary_10_1111_jbi_13789 crossref_primary_10_1016_j_atmosenv_2024_120696 crossref_primary_10_1111_j_1365_2699_2008_01968_x crossref_primary_10_1038_s41559_022_01831_x crossref_primary_10_1007_s10531_016_1205_8 crossref_primary_10_1007_s11852_020_00774_4 crossref_primary_10_1007_s11258_010_9725_x crossref_primary_10_1002_eap_2157 crossref_primary_10_1093_aob_mcae207 crossref_primary_10_1175_JHM_D_11_023_1 crossref_primary_10_1002_ece3_10884 crossref_primary_10_1021_acs_est_6b02311 crossref_primary_10_1111_1365_2664_13955 crossref_primary_10_1002_ece3_2131 crossref_primary_10_1111_j_1466_8238_2010_00621_x crossref_primary_10_1111_jbi_12209 crossref_primary_10_1111_jvs_12145 crossref_primary_10_1016_j_biocon_2019_108313 crossref_primary_10_1111_jbi_13787 crossref_primary_10_1111_1365_2745_12299 crossref_primary_10_1111_j_1461_0248_2007_01138_x crossref_primary_10_1111_jbi_12213 crossref_primary_10_1038_s41467_023_43396_8 crossref_primary_10_1016_j_ympev_2018_03_020 crossref_primary_10_1038_srep22400 crossref_primary_10_1088_2050_6120_ac82a6 crossref_primary_10_1016_j_ecolind_2018_02_016 crossref_primary_10_1038_s41598_022_13678_0 crossref_primary_10_1007_s11227_023_05591_8 crossref_primary_10_5194_bg_20_2869_2023 crossref_primary_10_1111_j_1472_4642_2011_00813_x crossref_primary_10_3390_plants9091128 crossref_primary_10_1080_01490451_2014_1001094 crossref_primary_10_1111_ecog_03985 crossref_primary_10_1111_1365_2745_13134 crossref_primary_10_1016_j_jgg_2023_06_001 crossref_primary_10_1111_1365_2745_13373 crossref_primary_10_1007_s10531_011_0042_z crossref_primary_10_1007_s11676_024_01732_8 crossref_primary_10_1590_S2175_78602013000200001 crossref_primary_10_1016_j_scitotenv_2023_165193 crossref_primary_10_1111_bij_12141 crossref_primary_10_1111_nph_19421 crossref_primary_10_1371_journal_pone_0052035 crossref_primary_10_1126_sciadv_adi1897 crossref_primary_10_3390_plants10040636 crossref_primary_10_1111_ddi_13513 crossref_primary_10_1111_fwb_13528 crossref_primary_10_1038_srep25546 crossref_primary_10_1038_s41598_022_24600_z crossref_primary_10_1038_srep36674 crossref_primary_10_1111_jbi_12429 crossref_primary_10_1111_jbi_13763 crossref_primary_10_5402_2011_138487 crossref_primary_10_3389_fpls_2022_839407 crossref_primary_10_3390_buildings12081167 crossref_primary_10_3389_fevo_2019_00216 crossref_primary_10_1007_s10708_018_9961_5 crossref_primary_10_1111_een_12859 crossref_primary_10_1111_j_1466_8238_2010_00578_x crossref_primary_10_1073_pnas_1423147112 crossref_primary_10_1016_j_actao_2009_08_009 crossref_primary_10_1111_brv_12544 crossref_primary_10_1360_TB_2022_0916 crossref_primary_10_1002_tax_602010 crossref_primary_10_1111_jse_13052 crossref_primary_10_1111_j_1466_8238_2012_00777_x crossref_primary_10_1016_j_envsoft_2024_106268 crossref_primary_10_1111_ecog_02438 crossref_primary_10_1111_jvs_70015 crossref_primary_10_1111_jvs_12175 crossref_primary_10_1111_jbi_14842 crossref_primary_10_1016_j_cub_2012_08_015 crossref_primary_10_1088_1748_9326_6_3_034019 crossref_primary_10_1098_rspb_2013_3330 crossref_primary_10_1073_pnas_1715638115 crossref_primary_10_1111_1365_2745_14483 crossref_primary_10_1016_j_chemosphere_2022_136020 crossref_primary_10_1016_j_pld_2016_01_001 crossref_primary_10_3389_fpls_2016_01533 crossref_primary_10_1093_aob_mcad134 crossref_primary_10_1111_j_1744_7429_2010_00696_x crossref_primary_10_1111_nph_18158 crossref_primary_10_1002_jqs_3136 crossref_primary_10_1007_s13762_025_06412_6 crossref_primary_10_1080_13504509_2022_2163717 crossref_primary_10_1093_sysbio_syu047 crossref_primary_10_1002_ece3_1405 crossref_primary_10_1007_s00442_012_2542_2 crossref_primary_10_1371_journal_pone_0070953 crossref_primary_10_3923_asb_2023_31_46 crossref_primary_10_1016_j_jenvman_2025_124653 crossref_primary_10_1126_science_aam5690 crossref_primary_10_1111_cobi_12799 crossref_primary_10_1016_j_jhydrol_2022_128923 crossref_primary_10_1111_1365_2745_14270 crossref_primary_10_1016_j_gloplacha_2021_103451 crossref_primary_10_1111_ddi_12695 crossref_primary_10_1029_2024JG008391 crossref_primary_10_1371_journal_pone_0165522 crossref_primary_10_1093_jxb_erx201 crossref_primary_10_13102_sociobiology_v71i3_10279 crossref_primary_10_1098_rsta_2023_0065 crossref_primary_10_1371_journal_pone_0143996 crossref_primary_10_1371_journal_pone_0066450 crossref_primary_10_1007_s10980_017_0508_9 crossref_primary_10_1073_pnas_1910489116 crossref_primary_10_1111_j_1461_0248_2007_01129_x crossref_primary_10_1111_ecog_05282 crossref_primary_10_1111_ele_13456 crossref_primary_10_1111_ddi_13793 crossref_primary_10_1016_j_jenvman_2013_12_014 crossref_primary_10_1186_s40663_018_0138_y crossref_primary_10_1111_jbi_13959 crossref_primary_10_1007_s10533_020_00714_2 crossref_primary_10_2981_wlb_00409 crossref_primary_10_1016_j_ecolecon_2013_08_004 crossref_primary_10_3389_fpls_2020_01195 crossref_primary_10_1109_TNSRE_2023_3241941 crossref_primary_10_1111_aje_12517 crossref_primary_10_1111_nph_13920 crossref_primary_10_1111_bij_12792 crossref_primary_10_1016_j_ecolind_2021_108181 crossref_primary_10_1016_j_jaridenv_2019_02_003 crossref_primary_10_3389_fevo_2015_00052 crossref_primary_10_1007_s40823_021_00064_1 crossref_primary_10_3389_ffgc_2023_1243996 crossref_primary_10_1088_1748_9326_acd396 crossref_primary_10_1002_biuz_201290043 crossref_primary_10_1007_s11284_011_0923_3 crossref_primary_10_1016_j_jaridenv_2010_05_015 crossref_primary_10_1111_jbi_12616 crossref_primary_10_1111_j_1466_8238_2009_00486_x crossref_primary_10_1111_jbi_13710 crossref_primary_10_1111_1365_2745_14047 crossref_primary_10_1038_srep12213 crossref_primary_10_1111_jbi_12620 crossref_primary_10_1126_sciadv_adh9719 crossref_primary_10_1002_ecy_4000 crossref_primary_10_1111_jvs_12816 crossref_primary_10_1128_AEM_01010_21 crossref_primary_10_1016_j_ecocom_2019_03_002 crossref_primary_10_1111_geb_13516 crossref_primary_10_3389_fpls_2019_00340 crossref_primary_10_1016_j_ecolind_2019_105741 crossref_primary_10_1073_pnas_1703798114 crossref_primary_10_1073_pnas_2305228121 crossref_primary_10_1111_geb_12665 crossref_primary_10_1016_j_scitotenv_2024_175683 crossref_primary_10_38211_joarps_2023_04_02_132 crossref_primary_10_1111_jbi_13938 crossref_primary_10_1111_nph_19283 crossref_primary_10_1080_13102818_2020_1773312 crossref_primary_10_5814_j_issn_1674_764x_2021_03_002 crossref_primary_10_1371_journal_pone_0233597 crossref_primary_10_1111_1365_2745_14075 crossref_primary_10_3389_fpls_2023_1106035 crossref_primary_10_1073_pnas_1408701111 crossref_primary_10_1098_rstb_2022_0300 crossref_primary_10_1111_geb_13746 crossref_primary_10_1007_s11367_019_01627_5 crossref_primary_10_3389_fevo_2023_1231553 crossref_primary_10_1007_s10531_010_9785_1 crossref_primary_10_1007_s10531_012_0328_9 crossref_primary_10_1111_jbi_12835 crossref_primary_10_1111_jbi_13925 crossref_primary_10_1371_journal_pone_0142621 crossref_primary_10_1111_een_12672 crossref_primary_10_1111_j_1469_8137_2011_03721_x crossref_primary_10_1098_rspb_2019_0242 crossref_primary_10_1093_femsec_fiad131 crossref_primary_10_1111_j_1365_2745_2011_01834_x crossref_primary_10_1007_s11427_023_2430_2 crossref_primary_10_1111_j_1600_0587_2008_05538_x crossref_primary_10_1111_ddi_13581 crossref_primary_10_1073_pnas_0903811106 crossref_primary_10_1111_ddi_12021 crossref_primary_10_1111_geb_12887 crossref_primary_10_1016_j_pce_2020_102858 crossref_primary_10_1098_rspb_2010_1035 crossref_primary_10_1098_rspb_2008_1919 crossref_primary_10_1038_srep42038 crossref_primary_10_1111_j_1744_7429_2010_00702_x crossref_primary_10_1098_rspb_2014_1416 crossref_primary_10_1111_j_1469_8137_2009_02782_x crossref_primary_10_3390_ijms24108555 crossref_primary_10_1016_j_biocon_2013_04_005 crossref_primary_10_3390_plants13243567 crossref_primary_10_1007_s10531_018_1588_9 crossref_primary_10_1111_geb_12631 crossref_primary_10_1111_mec_12659 crossref_primary_10_1002_ece3_847 crossref_primary_10_1111_nph_19011 crossref_primary_10_1038_s41559_019_0799_0 crossref_primary_10_1111_j_1365_2699_2008_01924_x crossref_primary_10_1038_s41598_021_02870_3 crossref_primary_10_3390_d11030032 crossref_primary_10_1007_s11442_019_1650_x crossref_primary_10_1038_s41598_023_30177_y crossref_primary_10_1086_665820 crossref_primary_10_1371_journal_pone_0165815 crossref_primary_10_1134_S1067413618010046 crossref_primary_10_1016_j_chemphyslip_2024_105422 crossref_primary_10_1088_1748_9326_4_1_014007 crossref_primary_10_17129_botsci_1865 crossref_primary_10_1002_ece3_5286 crossref_primary_10_1111_geb_12469 crossref_primary_10_1111_afe_12496 crossref_primary_10_1111_geb_12225 crossref_primary_10_1371_journal_pone_0140992 crossref_primary_10_3390_su14052611 crossref_primary_10_1111_j_1654_1103_2011_01371_x crossref_primary_10_3389_fpls_2021_652500 crossref_primary_10_1007_s10531_015_1031_4 crossref_primary_10_1111_ecog_06426 crossref_primary_10_3390_plants14030338 crossref_primary_10_1007_s41060_024_00517_w crossref_primary_10_1038_s41467_022_32063_z crossref_primary_10_3390_rs13163179 crossref_primary_10_1038_s41467_024_49522_4 crossref_primary_10_1007_s11295_019_1393_y crossref_primary_10_1016_j_flora_2013_03_003 crossref_primary_10_1111_geb_13310 crossref_primary_10_1111_1462_2920_13797 crossref_primary_10_1186_s42408_019_0025_0 crossref_primary_10_1111_1574_6941_12197 crossref_primary_10_1111_ddi_12179 crossref_primary_10_1126_science_1256688 crossref_primary_10_1002_2015WR017037 crossref_primary_10_1111_j_0906_7590_2008_5333_x crossref_primary_10_3389_fevo_2018_00194 crossref_primary_10_1007_s10531_013_0447_y crossref_primary_10_3389_fgene_2015_00132 crossref_primary_10_1038_srep42988 crossref_primary_10_3389_fgene_2015_00130 crossref_primary_10_1111_geb_12451 crossref_primary_10_1073_pnas_1216747110 crossref_primary_10_1002_tax_595003 crossref_primary_10_1111_ddi_13260 crossref_primary_10_1111_nph_18099 crossref_primary_10_1073_pnas_0810306106 crossref_primary_10_1890_12_1006_1 crossref_primary_10_1016_j_pecon_2023_07_003 crossref_primary_10_1016_j_envres_2023_117485 crossref_primary_10_1038_s41598_019_44626_0 crossref_primary_10_1007_s10620_022_07467_y crossref_primary_10_1007_s10531_023_02705_9 crossref_primary_10_1016_j_catena_2021_105892 crossref_primary_10_3390_plants12122240 crossref_primary_10_1016_j_ecolind_2022_109032 crossref_primary_10_3390_f12121638 crossref_primary_10_7550_rmb_31481 crossref_primary_10_1002_ece3_7014 crossref_primary_10_3389_fevo_2021_758160 crossref_primary_10_25046_aj080507 crossref_primary_10_1038_s41467_023_40936_0 crossref_primary_10_3390_rs5010127 crossref_primary_10_1111_ele_12624 crossref_primary_10_1098_rspb_2010_0485 crossref_primary_10_1111_1440_1703_12071 crossref_primary_10_1007_s11629_021_7083_x crossref_primary_10_1111_j_1558_5646_2009_00856_x crossref_primary_10_3417_2018110 crossref_primary_10_1093_nar_gky965 crossref_primary_10_1016_j_tree_2010_12_004 crossref_primary_10_1038_s41467_019_13164_8 crossref_primary_10_1007_s10531_017_1311_2 crossref_primary_10_1111_j_1365_294X_2011_05294_x crossref_primary_10_1111_nph_17822 crossref_primary_10_1111_1758_2229_12485 crossref_primary_10_1016_j_sajb_2009_06_016 crossref_primary_10_1590_1519_6984_262331 crossref_primary_10_1111_jzo_13130 crossref_primary_10_1038_s41467_020_16047_5 crossref_primary_10_1007_s10980_022_01399_8 crossref_primary_10_1111_jvs_12710 crossref_primary_10_1080_0035919X_2016_1274277 crossref_primary_10_1016_j_scitotenv_2023_164782 crossref_primary_10_1007_s10453_021_09701_y crossref_primary_10_1007_s10682_011_9470_1 crossref_primary_10_1016_j_ecolind_2022_109469 crossref_primary_10_1016_j_pld_2024_05_004 crossref_primary_10_1073_pnas_1523683113 crossref_primary_10_1016_j_fecs_2022_100033 crossref_primary_10_1111_jvs_12961 crossref_primary_10_1111_j_1744_7429_2009_00624_x crossref_primary_10_1002_lno_11559 crossref_primary_10_1111_geb_12245 crossref_primary_10_1111_geb_12481 crossref_primary_10_1371_journal_pone_0168033 crossref_primary_10_1111_j_1472_4642_2010_00660_x crossref_primary_10_1002_ece3_9470 crossref_primary_10_1016_j_cca_2020_08_016 crossref_primary_10_1126_science_1215182 crossref_primary_10_1111_nph_16940 crossref_primary_10_1111_jse_12527 crossref_primary_10_1071_SB21037 crossref_primary_10_3389_fevo_2021_680041 crossref_primary_10_1038_s41586_024_07110_y crossref_primary_10_1073_pnas_1921724117 crossref_primary_10_1038_srep40387 crossref_primary_10_1179_1743282012Y_0000000038 crossref_primary_10_7717_peerj_4321 crossref_primary_10_11598_btb_2024_31_2_2023 crossref_primary_10_1111_j_1600_0587_2012_00121_x crossref_primary_10_1002_ecs2_2603 crossref_primary_10_1098_rstb_2008_0075 crossref_primary_10_1007_s00442_020_04615_x crossref_primary_10_1111_brv_12287 crossref_primary_10_1086_650723 crossref_primary_10_1002_fee_2204 crossref_primary_10_3390_f14061166 crossref_primary_10_1186_s12983_022_00455_y crossref_primary_10_3390_biology10020071 crossref_primary_10_1002_ece3_8958 crossref_primary_10_1007_s10531_008_9384_6 crossref_primary_10_1007_s00442_015_3236_3 crossref_primary_10_1111_aec_13293 crossref_primary_10_1111_nph_13490 crossref_primary_10_1093_jpe_rtw001 crossref_primary_10_1093_femsec_fiv033 crossref_primary_10_1016_j_apmt_2022_101560 crossref_primary_10_1093_aob_mcr146 crossref_primary_10_1002_ece3_8961 crossref_primary_10_1016_j_jenvman_2024_121408 crossref_primary_10_1111_geb_13380 crossref_primary_10_1111_jvs_13203 crossref_primary_10_3390_e26080641 crossref_primary_10_1111_jbi_14389 crossref_primary_10_3390_ijms23052448 crossref_primary_10_1371_journal_pone_0075832 crossref_primary_10_3389_fevo_2022_1010067 crossref_primary_10_1016_j_limno_2015_11_001 crossref_primary_10_1038_s41598_022_16580_x crossref_primary_10_1007_s12229_021_09270_2 crossref_primary_10_1093_sysbio_syz076 crossref_primary_10_1111_j_1469_8137_2011_03957_x crossref_primary_10_1016_j_biocon_2019_02_032 crossref_primary_10_1111_jse_12559 crossref_primary_10_1038_s41562_018_0358_8 crossref_primary_10_1111_ecog_06841 crossref_primary_10_1021_acsami_4c20757 crossref_primary_10_3390_f14030642 crossref_primary_10_1016_j_limno_2022_126008 crossref_primary_10_1007_s10531_011_0054_8 crossref_primary_10_1098_rstb_2011_0066 crossref_primary_10_1002_asi_21228 crossref_primary_10_1111_brv_12076 crossref_primary_10_1111_geb_12039 crossref_primary_10_1111_nph_13230 crossref_primary_10_1029_2010JD014568 crossref_primary_10_1590_S2179_975X2014000300010 crossref_primary_10_1126_sciadv_aay0814 crossref_primary_10_1111_jbi_14368 crossref_primary_10_5141_JEFB_2012_022 crossref_primary_10_1186_s40663_015_0045_4 crossref_primary_10_1016_j_jenvman_2022_114786 crossref_primary_10_1111_geb_13366 crossref_primary_10_1111_1365_2435_13950 crossref_primary_10_1016_j_biocon_2018_07_012 crossref_primary_10_1371_journal_pone_0317146 crossref_primary_10_1007_s10571_022_01302_8 crossref_primary_10_5014_ajot_2023_050231 crossref_primary_10_1111_aec_13481 crossref_primary_10_1016_j_revpalbo_2013_05_009 crossref_primary_10_1177_0309133312465303 crossref_primary_10_1371_journal_pbio_1002407 crossref_primary_10_1360_SSV_2022_0324 crossref_primary_10_1590_2175_7860202374089 crossref_primary_10_1111_oik_10763 crossref_primary_10_1038_s43247_021_00326_0 crossref_primary_10_1146_annurev_ecolsys_121415_032330 crossref_primary_10_1111_btp_12254 crossref_primary_10_1111_j_1654_1103_2012_01417_x crossref_primary_10_1111_jbi_14118 crossref_primary_10_1002_ece3_70660 crossref_primary_10_1029_2011GL049066 crossref_primary_10_1007_s00382_021_05918_2 crossref_primary_10_1016_j_ympev_2018_01_015 crossref_primary_10_1111_jbi_14592 crossref_primary_10_1111_boj_12497 crossref_primary_10_1111_jbi_12173 crossref_primary_10_3390_f14030461 crossref_primary_10_1007_s10531_019_01730_x crossref_primary_10_1002_ecm_1615 crossref_primary_10_1111_j_1759_6831_2011_00120_x crossref_primary_10_1155_2022_5318245 crossref_primary_10_2478_foecol_2021_0016 crossref_primary_10_1111_nph_14387 crossref_primary_10_1016_j_scitotenv_2019_135301 crossref_primary_10_1038_ncomms6046 crossref_primary_10_1590_1519_6984_274577 crossref_primary_10_1111_ddi_12815 crossref_primary_10_1007_s10531_010_9946_2 crossref_primary_10_1111_jbi_13013 crossref_primary_10_1371_journal_pone_0158405 crossref_primary_10_1016_j_gloplacha_2023_104073 crossref_primary_10_1016_j_jag_2024_103744 crossref_primary_10_1073_pnas_1306309110 crossref_primary_10_1007_s00334_020_00811_0 crossref_primary_10_1016_j_foreco_2015_04_008 crossref_primary_10_3389_fpls_2024_1418673 crossref_primary_10_1016_j_biocon_2020_108675 crossref_primary_10_1098_rstb_2011_0018 crossref_primary_10_1002_ece3_11230 crossref_primary_10_1073_pnas_0903410106 crossref_primary_10_1126_sciadv_abe2998 crossref_primary_10_1111_jbi_12156 crossref_primary_10_1098_rspb_2008_1005 crossref_primary_10_1111_jbi_13489 crossref_primary_10_1111_pce_12398 crossref_primary_10_1111_jbi_14332 crossref_primary_10_1111_jvs_12569 crossref_primary_10_1038_nature17937 crossref_primary_10_1073_pnas_1302251110 crossref_primary_10_1007_s11284_010_0695_1 crossref_primary_10_1126_sciadv_add8553 crossref_primary_10_3389_fevo_2023_1071375 crossref_primary_10_1111_j_1095_8312_2012_01890_x crossref_primary_10_1371_journal_pone_0030535 crossref_primary_10_1111_j_0906_7590_2008_05333_x crossref_primary_10_5194_bg_8_1255_2011 crossref_primary_10_3390_rs10050739 crossref_primary_10_1007_s42974_021_00042_x crossref_primary_10_1080_17550874_2017_1330367 crossref_primary_10_1080_23766808_2017_1295705 crossref_primary_10_1016_j_catena_2024_107860 crossref_primary_10_1038_s41467_020_15406_6 crossref_primary_10_1111_jvs_12578 crossref_primary_10_1126_science_aax0149 crossref_primary_10_1016_j_foreco_2023_121389 crossref_primary_10_1126_sciadv_aaz0414 crossref_primary_10_1111_brv_13127 crossref_primary_10_1111_j_1466_8238_2011_00728_x crossref_primary_10_1111_j_1472_4642_2010_00654_x crossref_primary_10_1111_ecog_02508 crossref_primary_10_3732_ajb_0900085 crossref_primary_10_1016_j_physbeh_2023_114340 crossref_primary_10_1111_j_1365_2699_2011_02586_x crossref_primary_10_1111_geb_12903 crossref_primary_10_1093_aob_mcac111 crossref_primary_10_1093_jpe_rtx046 crossref_primary_10_1111_evo_14407 crossref_primary_10_1111_j_1600_0587_2008_05755_x crossref_primary_10_1016_j_sajb_2019_01_013 crossref_primary_10_1111_j_1365_2699_2012_02700_x crossref_primary_10_1111_ddi_12973 crossref_primary_10_1111_jse_12063 crossref_primary_10_1007_s10531_022_02364_2 crossref_primary_10_1111_ecog_03825 crossref_primary_10_1590_2179_8087_098917 crossref_primary_10_1007_s10980_016_0450_2 crossref_primary_10_1038_s41562_020_01039_8 crossref_primary_10_15553_c2015v701a2 crossref_primary_10_1098_rspb_2018_0949 crossref_primary_10_1111_jfb_13016 crossref_primary_10_1371_journal_pbio_1001232 crossref_primary_10_1038_s41467_019_13233_y crossref_primary_10_3897_zoologia_34_e11921 crossref_primary_10_1038_s41598_021_98027_3 crossref_primary_10_1073_pnas_1915646117 crossref_primary_10_1016_j_pld_2022_05_002 crossref_primary_10_1111_jbi_12108 crossref_primary_10_1111_1365_2656_13881 crossref_primary_10_1111_jvs_13171 crossref_primary_10_1111_ele_13175 crossref_primary_10_1111_j_1466_8238_2011_00661_x crossref_primary_10_1111_jbi_14527 crossref_primary_10_1016_j_biocon_2020_108914 crossref_primary_10_1002_ece3_3569 crossref_primary_10_1111_j_1600_0587_2008_05165_x crossref_primary_10_1111_jbi_14777 crossref_primary_10_1111_j_1466_8238_2009_00456_x crossref_primary_10_3389_fevo_2019_00377 crossref_primary_10_3732_ajb_1000289 crossref_primary_10_1002_ece3_5508 crossref_primary_10_1111_oik_01753 crossref_primary_10_1007_s10531_024_02883_0 crossref_primary_10_1098_rspb_2013_3246 crossref_primary_10_1016_j_sajb_2016_03_017 crossref_primary_10_1016_j_ecolind_2023_111376 crossref_primary_10_1111_pala_12277 crossref_primary_10_1111_jvs_13184 crossref_primary_10_1016_j_agee_2010_11_007 crossref_primary_10_7554_eLife_58397 crossref_primary_10_1111_j_1466_8238_2011_00672_x crossref_primary_10_1126_science_abd6706 crossref_primary_10_1080_21658005_2018_1516277 crossref_primary_10_1086_714308 crossref_primary_10_5194_bg_13_2061_2016 crossref_primary_10_1093_biolinnean_blx160 crossref_primary_10_1038_s41416_022_01998_x crossref_primary_10_1016_j_foreco_2016_07_016 crossref_primary_10_1111_ddi_12523 crossref_primary_10_1111_ele_14009 crossref_primary_10_1371_journal_pone_0056979 crossref_primary_10_1093_femsre_fuab058 crossref_primary_10_1111_j_1461_0248_2009_01358_x crossref_primary_10_24072_pci_ecology_100075 crossref_primary_10_1111_ecog_03876 crossref_primary_10_1111_j_1466_8238_2010_00644_x crossref_primary_10_1111_jbi_14753 crossref_primary_10_1002_ece3_3348 crossref_primary_10_1016_j_isci_2022_105538 crossref_primary_10_1016_j_scitotenv_2020_138021 crossref_primary_10_1038_s41467_020_20767_z crossref_primary_10_1038_s42003_022_03595_3 crossref_primary_10_3389_fgene_2014_00351 crossref_primary_10_1007_s10980_022_01533_6 crossref_primary_10_1086_690022 crossref_primary_10_1007_s11367_016_1236_0 crossref_primary_10_1002_hyp_15153 crossref_primary_10_1016_j_scitotenv_2021_147491 crossref_primary_10_1111_gcb_70035 crossref_primary_10_1371_journal_pone_0303656 crossref_primary_10_1007_s11258_017_0738_6 crossref_primary_10_1111_j_1466_8238_2011_00650_x crossref_primary_10_17129_botsci_383 crossref_primary_10_1016_j_avrs_2023_100097 crossref_primary_10_1186_s12864_018_4683_0 crossref_primary_10_1073_pnas_2116942118 crossref_primary_10_1016_j_scitotenv_2025_178977 crossref_primary_10_1111_2041_210X_14213 crossref_primary_10_1890_09_1843_1 crossref_primary_10_1016_j_clinbiochem_2024_110760 crossref_primary_10_1111_j_1466_8238_2007_00379_x crossref_primary_10_1002_ece3_10786 crossref_primary_10_1086_723212 crossref_primary_10_1371_journal_pone_0182893 crossref_primary_10_1093_botlinnean_boad009 crossref_primary_10_1111_j_1461_0248_2009_01291_x crossref_primary_10_1029_2024JG008246 crossref_primary_10_1111_ecog_02567 crossref_primary_10_1002_ece3_6639 crossref_primary_10_1016_j_tplants_2016_02_003 crossref_primary_10_1371_journal_pone_0203881 crossref_primary_10_1016_j_ympev_2008_05_034 crossref_primary_10_1038_s41559_018_0573_8 crossref_primary_10_1177_09596836211041730 crossref_primary_10_3390_su12197837 crossref_primary_10_1371_journal_pone_0031463 crossref_primary_10_1093_aobpla_plz051 crossref_primary_10_1016_j_gecco_2020_e01279 crossref_primary_10_1007_s00442_021_05091_7 crossref_primary_10_1016_j_pld_2020_03_003 crossref_primary_10_1111_jbi_13624 crossref_primary_10_1111_nph_18680 crossref_primary_10_1111_ddi_13648 crossref_primary_10_1093_biolinnean_blx125 crossref_primary_10_1890_13_1824_1 crossref_primary_10_1111_1365_2745_13275 crossref_primary_10_1111_2041_210X_12299 crossref_primary_10_1080_11263504_2012_685194 crossref_primary_10_1029_2024EF004648 crossref_primary_10_1111_ele_14202 crossref_primary_10_1371_journal_pone_0081739 crossref_primary_10_1002_ppp3_10110 crossref_primary_10_1016_j_ympev_2016_09_015 crossref_primary_10_1111_btp_12735 crossref_primary_10_3389_fpls_2022_1095864 crossref_primary_10_1007_s10531_024_02830_z crossref_primary_10_1111_j_1365_2699_2011_02544_x crossref_primary_10_1002_ece3_71047 crossref_primary_10_1016_j_gca_2017_02_022 crossref_primary_10_1016_j_quascirev_2018_12_029 crossref_primary_10_1111_pce_13985 crossref_primary_10_1111_jbi_13623 crossref_primary_10_1111_ecog_06265 crossref_primary_10_1073_pnas_2026347118 crossref_primary_10_1111_ecog_05174 crossref_primary_10_1371_journal_pone_0163002 crossref_primary_10_1007_s10531_012_0280_8 crossref_primary_10_1111_ele_12277 crossref_primary_10_1111_geb_13823 crossref_primary_10_1640_0002_8444_103_4_193 crossref_primary_10_3389_fevo_2021_679638 crossref_primary_10_1111_ecog_00952 crossref_primary_10_1111_jbi_12515 crossref_primary_10_1111_jbi_13607 crossref_primary_10_3417_2009143 crossref_primary_10_1016_j_foreco_2017_11_017 crossref_primary_10_1038_s41598_022_26171_5 crossref_primary_10_1186_s12870_022_03879_0 crossref_primary_10_1029_2022JG007026 crossref_primary_10_1002_ecs2_4107 crossref_primary_10_1111_evo_13967 crossref_primary_10_1016_j_ecoinf_2014_09_014 crossref_primary_10_1073_pnas_1703985114 crossref_primary_10_1111_geb_12723 crossref_primary_10_1111_njb_02156 crossref_primary_10_1007_s10531_023_02604_z crossref_primary_10_1038_nplants_2016_24 crossref_primary_10_1073_pnas_1308932111 crossref_primary_10_1111_ecog_00981 crossref_primary_10_1111_j_1600_0587_2011_06781_x crossref_primary_10_1039_D0CS00152J crossref_primary_10_1086_703487 crossref_primary_10_1186_s13717_024_00517_5 crossref_primary_10_1016_j_biocon_2025_111098 crossref_primary_10_1016_j_scitotenv_2023_166995 crossref_primary_10_1093_botlinnean_boz061 crossref_primary_10_1016_j_protis_2020_125771 crossref_primary_10_1089_ast_2020_2304 crossref_primary_10_1126_sciadv_aau6253 crossref_primary_10_1371_journal_pone_0255240 crossref_primary_10_1016_j_ecolind_2021_108282 crossref_primary_10_1016_j_biocon_2021_109238 crossref_primary_10_1007_s10018_016_0147_4 crossref_primary_10_1016_j_envres_2025_121039 crossref_primary_10_1111_j_1466_8238_2009_00508_x crossref_primary_10_1038_s41598_019_55621_w crossref_primary_10_1016_j_rse_2023_113591 crossref_primary_10_3417_2008034 crossref_primary_10_1038_s41467_023_42671_y crossref_primary_10_1007_s00442_020_04805_7 crossref_primary_10_14202_vetworld_2023_1193_1200 crossref_primary_10_4236_ajps_2013_412A1006 crossref_primary_10_1007_s11284_016_1358_7 crossref_primary_10_1016_j_pld_2023_01_009 crossref_primary_10_1111_geb_13877 crossref_primary_10_1080_11956860_2021_2007644 crossref_primary_10_1111_1365_2656_13461 crossref_primary_10_1016_j_ecoinf_2014_08_006 crossref_primary_10_1038_s41467_019_09842_2 crossref_primary_10_3390_fire4030059 crossref_primary_10_1038_s41467_023_36216_6 crossref_primary_10_1111_geb_12536 crossref_primary_10_1016_j_scitotenv_2021_145482 crossref_primary_10_1111_geb_12776 crossref_primary_10_3389_fevo_2021_679439 crossref_primary_10_1111_ddi_13226 crossref_primary_10_1016_j_chnaes_2016_05_006 crossref_primary_10_1038_s41467_021_27379_1 crossref_primary_10_3389_fevo_2023_1137111 crossref_primary_10_1080_17429145_2023_2242697 crossref_primary_10_1111_jbi_13801 crossref_primary_10_1111_ecog_06298 crossref_primary_10_1016_j_gecco_2023_e02403 crossref_primary_10_1038_srep09396 crossref_primary_10_1016_j_ecoinf_2016_02_006 crossref_primary_10_1111_geb_13855 crossref_primary_10_1038_s41467_020_17688_2 crossref_primary_10_1038_s41467_018_05610_w crossref_primary_10_1016_j_flora_2020_151690 crossref_primary_10_1111_jbi_12949 crossref_primary_10_3390_f14020193 crossref_primary_10_1111_ppl_13654 crossref_primary_10_1016_j_scitotenv_2023_163287 crossref_primary_10_3390_f13091453 crossref_primary_10_1111_1365_2435_13584 crossref_primary_10_1038_s42003_024_06076_x crossref_primary_10_3897_phytokeys_58_5643 crossref_primary_10_1002_tax_605004 crossref_primary_10_1111_geb_13846 crossref_primary_10_1086_667895 crossref_primary_10_1016_j_chnaes_2018_09_008 crossref_primary_10_1111_cobi_13311 crossref_primary_10_1111_ele_12217 crossref_primary_10_3389_ffgc_2024_1252077 crossref_primary_10_1111_ele_12693 crossref_primary_10_1111_j_1365_2699_2008_01901_x crossref_primary_10_1016_j_gecco_2018_e00404 crossref_primary_10_1086_680850 crossref_primary_10_1186_s13717_021_00326_0 crossref_primary_10_1007_s11258_022_01274_1 crossref_primary_10_1002_ecs2_1497 crossref_primary_10_3389_fevo_2019_00165 crossref_primary_10_1002_ecs2_1237 crossref_primary_10_1088_1757_899X_1204_1_012007 crossref_primary_10_1111_geb_12107 crossref_primary_10_1016_j_jenvman_2016_05_040 crossref_primary_10_1016_j_ecolind_2022_109366 crossref_primary_10_1111_geb_12345 crossref_primary_10_1111_geb_12588 crossref_primary_10_1007_s10531_018_1664_1 crossref_primary_10_1016_j_jhydrol_2011_12_030 crossref_primary_10_1063_5_0029899 crossref_primary_10_1098_rspb_2010_1897 crossref_primary_10_1111_jvs_12862 crossref_primary_10_1016_j_isprsjprs_2021_03_012 crossref_primary_10_1016_j_ecolind_2023_110876 crossref_primary_10_1016_j_crneur_2022_100055 crossref_primary_10_1038_nature09329 crossref_primary_10_1111_geb_12337 crossref_primary_10_1111_geb_13668 crossref_primary_10_1111_jbi_12911 crossref_primary_10_1371_journal_pone_0254539 crossref_primary_10_1080_01621459_2021_2013241 crossref_primary_10_1002_ajb2_1593 crossref_primary_10_1093_aobpla_plw049 crossref_primary_10_3390_d15010018 crossref_primary_10_1016_j_rse_2021_112760 crossref_primary_10_1016_j_jaridenv_2012_06_008 crossref_primary_10_1038_s41437_022_00588_0 crossref_primary_10_1007_s00035_021_00261_y crossref_primary_10_1016_j_scitotenv_2022_155853 crossref_primary_10_3389_fpls_2024_1301395 crossref_primary_10_1890_ES13_00049_1 crossref_primary_10_1016_j_sajb_2024_08_054 crossref_primary_10_1111_jzs_12520 crossref_primary_10_1111_j_1600_0587_2009_05811_x crossref_primary_10_1016_j_chnaes_2019_05_003 crossref_primary_10_1111_j_1600_0587_2011_07430_x crossref_primary_10_1071_FP10084 crossref_primary_10_1111_geb_13411 crossref_primary_10_3389_fpls_2023_1106617 crossref_primary_10_1016_j_ecolind_2025_113246 crossref_primary_10_3390_ijms222112019 crossref_primary_10_1007_s11258_011_9986_z crossref_primary_10_3390_insects14050476 crossref_primary_10_1007_s00442_008_1244_2 crossref_primary_10_1890_09_1434_1 crossref_primary_10_1186_1471_2148_12_50 crossref_primary_10_1007_s11252_017_0728_4 crossref_primary_10_1111_j_1466_8238_2008_00431_x crossref_primary_10_1590_0001_3765202220211019 crossref_primary_10_1016_j_envsoft_2020_104799 crossref_primary_10_1111_nph_14606 crossref_primary_10_1111_jvs_12652 crossref_primary_10_1073_pnas_1014456108 crossref_primary_10_1111_ecog_02192 crossref_primary_10_1186_s13717_024_00563_z crossref_primary_10_1016_j_actao_2021_103717 crossref_primary_10_1016_j_gecco_2020_e00995 crossref_primary_10_1111_geb_13236 crossref_primary_10_3390_insects13111054 crossref_primary_10_1002_eap_1749 crossref_primary_10_1016_j_gecco_2023_e02375 crossref_primary_10_1093_botlinnean_box100 crossref_primary_10_1111_oik_06785 crossref_primary_10_3897_VCS_2021_59384 crossref_primary_10_1007_s10531_018_1620_0 crossref_primary_10_1111_j_1752_4598_2010_00119_x crossref_primary_10_1016_j_gca_2016_03_018 crossref_primary_10_1111_j_1365_2699_2011_02644_x crossref_primary_10_1111_jbi_14070 crossref_primary_10_1002_ecs2_3864 crossref_primary_10_1890_15_1759_1 crossref_primary_10_3390_f13030376 crossref_primary_10_1111_geb_13470 crossref_primary_10_1007_s12011_023_03886_8 crossref_primary_10_1038_s41559_018_0787_9 crossref_primary_10_3389_phrs_2021_1604061 crossref_primary_10_1002_eap_1971 crossref_primary_10_1111_jse_12428 crossref_primary_10_1073_pnas_2319989121 crossref_primary_10_1371_journal_pone_0196130 crossref_primary_10_1073_pnas_2120662119 crossref_primary_10_1038_s41561_018_0236_z crossref_primary_10_1177_1940082918780427 crossref_primary_10_3417_2008011 crossref_primary_10_1007_s00606_014_1180_z crossref_primary_10_1016_j_flora_2016_10_001 crossref_primary_10_1038_s41565_024_01667_5 crossref_primary_10_1098_rspb_2010_0120 crossref_primary_10_1111_jvs_12837 crossref_primary_10_1371_journal_pone_0123250 crossref_primary_10_3390_plants12203546 crossref_primary_10_1111_ddi_12090 crossref_primary_10_1016_j_scitotenv_2020_143280 crossref_primary_10_1038_s41396_018_0303_x crossref_primary_10_1111_j_1365_2699_2009_02102_x crossref_primary_10_1515_ntrev_2024_0068 crossref_primary_10_1093_conphys_cov012 crossref_primary_10_1016_j_jaridenv_2020_104237 crossref_primary_10_1016_j_scitotenv_2019_01_211 crossref_primary_10_1111_1365_2745_13846 crossref_primary_10_1111_1365_2745_12510 crossref_primary_10_1016_j_catena_2024_108446 crossref_primary_10_13102_sociobiology_v71i2_10503 crossref_primary_10_1111_j_1466_8238_2010_00628_x crossref_primary_10_1111_geb_12365 crossref_primary_10_1111_geb_13455 crossref_primary_10_1111_j_1600_0587_2008_05507_x crossref_primary_10_1111_geb_12119 crossref_primary_10_1016_j_prp_2023_154436 crossref_primary_10_1111_geb_13687 crossref_primary_10_1002_ecy_2548 crossref_primary_10_1093_ve_vead079 crossref_primary_10_1071_BT18118 crossref_primary_10_1016_j_biocon_2014_08_007 crossref_primary_10_1016_j_agrformet_2011_06_019 crossref_primary_10_1126_sciadv_ade4954 crossref_primary_10_1007_s10666_012_9341_3 crossref_primary_10_1134_S106741362103005X crossref_primary_10_1111_geb_12596 crossref_primary_10_1038_s41597_023_02446_y crossref_primary_10_1111_ele_12738 crossref_primary_10_1002_ece3_7180 crossref_primary_10_1073_pnas_1411601111 crossref_primary_10_3390_d13120685 crossref_primary_10_1111_jse_12457 crossref_primary_10_1111_jse_12456 crossref_primary_10_1111_ecog_04762 crossref_primary_10_1111_geb_12181 crossref_primary_10_1111_mec_15190 crossref_primary_10_1146_annurev_marine_010419_010706 crossref_primary_10_3389_fevo_2022_837738 crossref_primary_10_1134_S1067413622020096 crossref_primary_10_1666_0094_8373_2008_034_0169_IDALG_2_0_CO_2 crossref_primary_10_1111_jbi_14030 crossref_primary_10_52711_0974_360X_2023_00176 crossref_primary_10_1111_geb_13037 crossref_primary_10_21425_fob_18_131129 crossref_primary_10_1111_geb_13033 crossref_primary_10_3389_fevo_2021_750703 crossref_primary_10_1177_1940082918817956 crossref_primary_10_1108_MHRJ_11_2021_0078 crossref_primary_10_1371_journal_pone_0085306 crossref_primary_10_1016_j_heliyon_2024_e27975 crossref_primary_10_1111_j_1600_0587_2012_07364_x crossref_primary_10_1007_s11258_017_0759_1 crossref_primary_10_1093_biolinnean_blaa141 crossref_primary_10_1002_eco_1853 crossref_primary_10_3390_rs14235919 crossref_primary_10_1098_rspb_2022_1904 crossref_primary_10_1038_srep21988 crossref_primary_10_1111_j_1600_0587_2010_06434_x crossref_primary_10_1016_j_flora_2020_151607 crossref_primary_10_2179_0008_7475_85_1_93 crossref_primary_10_1111_1365_2435_12722 crossref_primary_10_1111_geb_13261 crossref_primary_10_1016_j_inoche_2023_111912 crossref_primary_10_1111_gcb_17066 crossref_primary_10_1002_ecs2_2945 crossref_primary_10_1007_s13127_022_00549_9 crossref_primary_10_1111_nph_14695 crossref_primary_10_1111_ecog_03698 crossref_primary_10_1111_j_1759_6831_2012_00240_x crossref_primary_10_5194_bg_10_4137_2013 crossref_primary_10_1038_ncomms13736 crossref_primary_10_1111_boj_12117 crossref_primary_10_1890_11_1927_1 crossref_primary_10_1007_s10265_021_01264_w crossref_primary_10_1111_j_1600_0587_2012_07340_x crossref_primary_10_1016_j_biocon_2023_110002 crossref_primary_10_1111_jbi_14499 crossref_primary_10_1111_nph_14697 crossref_primary_10_1016_j_compag_2022_106925 crossref_primary_10_56178_eh_v39i1_1476 crossref_primary_10_1016_j_jas_2020_105168 crossref_primary_10_1016_j_ecocom_2015_02_007 crossref_primary_10_1111_nph_16621 crossref_primary_10_1093_sysbio_syr006 crossref_primary_10_1016_j_scitotenv_2024_175195 crossref_primary_10_1002_ece3_11563 crossref_primary_10_1111_btp_13232 crossref_primary_10_1007_s10682_017_9899_y crossref_primary_10_1007_s12061_024_09634_2 crossref_primary_10_1111_een_12924 crossref_primary_10_1016_j_jchemneu_2022_102071 crossref_primary_10_1111_geb_13001 crossref_primary_10_1002_14_0195_1 crossref_primary_10_1111_geb_12151 crossref_primary_10_1111_jbi_14480 crossref_primary_10_1111_gcb_12822 crossref_primary_10_1093_botlinnean_boaa034 crossref_primary_10_1111_icad_12715 crossref_primary_10_1111_ecog_04564 crossref_primary_10_1111_j_1365_2699_2011_02602_x crossref_primary_10_1016_j_foreco_2011_08_046 crossref_primary_10_1126_science_aax4851 crossref_primary_10_1016_j_jenvman_2022_116414 crossref_primary_10_1111_jbi_12290 crossref_primary_10_1111_ele_12903 crossref_primary_10_1144_SP549_2023_174 crossref_primary_10_1111_geb_13077 crossref_primary_10_1038_s41598_017_17860_7 crossref_primary_10_1111_j_1472_4669_2009_00193_x crossref_primary_10_1639_0007_2745_121_4_480 crossref_primary_10_1371_journal_pone_0126918 crossref_primary_10_5194_bg_12_2585_2015 crossref_primary_10_1002_ecs2_70085 crossref_primary_10_1111_j_1600_0587_2010_06854_x crossref_primary_10_23818_limn_42_21 crossref_primary_10_1126_science_1229881 crossref_primary_10_1111_jbi_13131 crossref_primary_10_1111_nph_15341 crossref_primary_10_1111_j_1365_2486_2009_02085_x crossref_primary_10_17129_botsci_2211 crossref_primary_10_1111_nph_19940 crossref_primary_10_1111_eea_13401 crossref_primary_10_1111_j_1365_2699_2010_02375_x crossref_primary_10_1111_aje_13122 crossref_primary_10_1111_j_1365_2699_2008_01886_x crossref_primary_10_1111_jbi_14454 crossref_primary_10_1098_rspb_2015_0418 crossref_primary_10_1111_j_1472_4642_2008_00500_x crossref_primary_10_1111_geb_13055 crossref_primary_10_1111_geb_13297 crossref_primary_10_1111_j_1756_1051_2013_00164_x crossref_primary_10_1007_s11442_019_1646_6 crossref_primary_10_1371_journal_pone_0027027 crossref_primary_10_1093_aobpla_plac031 crossref_primary_10_1017_ehs_2020_55 crossref_primary_10_1002_ece3_11366 crossref_primary_10_3897_rio_8_e87143 crossref_primary_10_7717_peerj_12010 crossref_primary_10_1111_jvs_12451 crossref_primary_10_7717_peerj_12011 crossref_primary_10_1111_1365_2745_13671 crossref_primary_10_1016_j_coal_2009_07_007 crossref_primary_10_1016_j_ecolind_2023_110247 crossref_primary_10_1111_geb_13043 crossref_primary_10_1111_j_1365_294X_2012_05602_x |
Cites_doi | 10.1126/science.235.4785.167 10.1073/pnas.0601928103 10.1038/35002501 10.1046/j.1365-2699.2001.00563.x 10.1046/j.1365-2486.1999.00009.x 10.2307/3668744 10.1111/j.1461-0248.2004.00678.x 10.1126/science.201.4357.679 10.2307/2399084 10.2307/2845026 10.1086/282070 10.1016/j.tree.2004.09.011 10.1023/A:1008956529695 10.1017/S1464793103006171 10.1046/j.1461-0248.2003.00527.x 10.1890/04-1910 10.1111/j.1600-0587.2000.tb00265.x 10.1016/j.tree.2003.10.013 10.2307/1939924 10.1126/science.1072779 10.1073/pnas.97.16.9115 10.2307/3544109 10.2307/2389513 10.1017/CBO9780511542039 10.1017/CBO9780511623387 10.1111/j.2005.0906-7590.04203.x 10.1086/285144 10.1046/j.1461-0248.2003.00554.x 10.1890/03-8006 10.3112/erdkunde.1996.04.03 10.1086/368223 10.1111/j.1365-2699.2005.01272.x 10.2307/3545569 10.1046/j.1365-2699.2001.00524.x 10.1073/pnas.101093498 10.1086/383097 10.1038/385252a0 10.1111/j.1461-0248.2004.00671.x 10.1126/science.1072380 10.1073/pnas.071034898 10.1038/35025052 |
ContentType | Journal Article |
Copyright | Copyright 2007 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Apr 3, 2007 2007 by The National Academy of Sciences of the USA 2007 |
Copyright_xml | – notice: Copyright 2007 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Apr 3, 2007 – notice: 2007 by The National Academy of Sciences of the USA 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7ST 7U6 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0608361104 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic CrossRef Ecology Abstracts MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Geography |
EISSN | 1091-6490 |
EndPage | 5930 |
ExternalDocumentID | PMC1851593 1252874421 17379667 10_1073_pnas_0608361104 104_14_5925 25427303 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | South Africa |
GeographicLocations_xml | – name: South Africa |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7ST 7U6 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c625t-7fc7c2af4e6068e56b00d4554aca79890919d33264ba1eaf33c3e3cde96951d63 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:18:04 EDT 2025 Thu Jul 10 22:25:48 EDT 2025 Fri Jul 11 05:59:32 EDT 2025 Thu Jul 10 23:50:16 EDT 2025 Mon Jun 30 08:37:39 EDT 2025 Wed Feb 19 01:41:35 EST 2025 Thu Apr 24 23:00:30 EDT 2025 Tue Jul 01 02:38:37 EDT 2025 Thu May 30 08:49:43 EDT 2019 Wed Nov 11 00:29:40 EST 2020 Thu May 29 08:42:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c625t-7fc7c2af4e6068e56b00d4554aca79890919d33264ba1eaf33c3e3cde96951d63 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: H.K. and W.J. designed research; H.K. and W.J. performed research; H.K. and W.J. analyzed data; and H.K. and W.J. wrote the paper. Edited by F. Stuart Chapin III, University of Alaska, Fairbanks, AK, and approved January 25, 2007 |
OpenAccessLink | http://doi.org/10.1073/pnas.0608361104 |
PMID | 17379667 |
PQID | 201435004 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_0608361104 pnas_primary_104_14_5925 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1851593 proquest_miscellaneous_47426961 proquest_journals_201435004 pnas_primary_104_14_5925_fulltext proquest_miscellaneous_70351836 crossref_primary_10_1073_pnas_0608361104 pubmed_primary_17379667 proquest_miscellaneous_19660446 jstor_primary_25427303 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-04-03 |
PublicationDateYYYYMMDD | 2007-04-03 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-03 day: 03 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2007 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 Davis SD (e_1_3_4_18_2) 1994 Davis SD (e_1_3_4_20_2) 1997 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 Linder HP (e_1_3_4_15_2) 1998 e_1_3_4_30_2 e_1_3_4_51_2 Mutke J (e_1_3_4_49_2) 2000 Good R (e_1_3_4_43_2) 1974 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_53_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 (e_1_3_4_56_2) 2005 Barthlott W (e_1_3_4_21_2) 1999; 162 Davis SD (e_1_3_4_19_2) 1995 e_1_3_4_2_2 Barthlott W (e_1_3_4_17_2) 2005; 92 von Humboldt A (e_1_3_4_47_2) e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_45_2 e_1_3_4_24_2 e_1_3_4_28_2 Mutke J (e_1_3_4_11_2) 2005; 55 Mutke J (e_1_3_4_48_2) 2002 Kier G (e_1_3_4_22_2) 2006 e_1_3_4_52_2 Lomolino MV (e_1_3_4_8_2) 2004 e_1_3_4_12_2 e_1_3_4_33_2 Whittaker RJ (e_1_3_4_50_2) 1998 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_39_2 Wright DH (e_1_3_4_26_2) 1993 11296292 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4534-9 12202828 - Science. 2002 Aug 30;297(5586):1545-8 16701236 - Trends Ecol Evol. 2004 Feb;19(2):101-8 16801546 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10334-9 16701326 - Trends Ecol Evol. 2004 Dec;19(12):639-44 10706275 - Nature. 2000 Feb 24;403(6772):853-8 17778629 - Science. 1987 Jan 9;235(4785):167-71 12776882 - Am Nat. 2003 Apr;161(4):523-36 11001054 - Nature. 2000 Sep 14;407(6801):180-2 10922067 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9115-20 14700393 - Biol Rev Camb Philos Soc. 2003 Nov;78(4):597-638 17750221 - Science. 1978 Aug 25;201(4357):679-86 15122494 - Am Nat. 2004 May;163(5):773-9; discussion 780-5 12202829 - Science. 2002 Aug 30;297(5586):1548-51 11344293 - Proc Natl Acad Sci U S A. 2001 May 8;98(10):5452-7 |
References_xml | – ident: e_1_3_4_32_2 doi: 10.1126/science.235.4785.167 – volume-title: The Geography of the Flowering Plants year: 1974 ident: e_1_3_4_43_2 – ident: e_1_3_4_42_2 doi: 10.1073/pnas.0601928103 – ident: e_1_3_4_13_2 doi: 10.1038/35002501 – ident: e_1_3_4_52_2 doi: 10.1046/j.1365-2699.2001.00563.x – volume-title: Centres of Plant Diversity: A Guide and Strategy for Their Conservation year: 1997 ident: e_1_3_4_20_2 – volume-title: Kosmos: Entwurf einer physischen Weltbeschreibung ident: e_1_3_4_47_2 – ident: e_1_3_4_51_2 doi: 10.1046/j.1365-2486.1999.00009.x – ident: e_1_3_4_16_2 doi: 10.2307/3668744 – ident: e_1_3_4_34_2 doi: 10.1111/j.1461-0248.2004.00678.x – ident: e_1_3_4_1_2 doi: 10.1126/science.201.4357.679 – ident: e_1_3_4_41_2 doi: 10.2307/2399084 – ident: e_1_3_4_30_2 doi: 10.2307/2845026 – ident: e_1_3_4_9_2 doi: 10.1086/282070 – ident: e_1_3_4_29_2 doi: 10.1016/j.tree.2004.09.011 – ident: e_1_3_4_23_2 doi: 10.1023/A:1008956529695 – ident: e_1_3_4_44_2 doi: 10.1017/S1464793103006171 – ident: e_1_3_4_38_2 doi: 10.1046/j.1461-0248.2003.00527.x – start-page: 293 volume-title: Frontiers of Biogeography: New Directions in the Geography of Nature year: 2004 ident: e_1_3_4_8_2 – volume: 92 start-page: 61 year: 2005 ident: e_1_3_4_17_2 publication-title: Nova Acta Leopoldina – ident: e_1_3_4_28_2 doi: 10.1890/04-1910 – ident: e_1_3_4_55_2 doi: 10.1111/j.1600-0587.2000.tb00265.x – ident: e_1_3_4_53_2 doi: 10.1016/j.tree.2003.10.013 – ident: e_1_3_4_54_2 doi: 10.2307/1939924 – ident: e_1_3_4_7_2 doi: 10.1126/science.1072779 – ident: e_1_3_4_33_2 doi: 10.1073/pnas.97.16.9115 – ident: e_1_3_4_2_2 doi: 10.2307/3544109 – ident: e_1_3_4_10_2 doi: 10.2307/2389513 – ident: e_1_3_4_57_2 doi: 10.1017/CBO9780511542039 – volume-title: R: A Language and Environment for Statistical Computing year: 2005 ident: e_1_3_4_56_2 – ident: e_1_3_4_36_2 doi: 10.1017/CBO9780511623387 – volume: 162 start-page: 103 year: 1999 ident: e_1_3_4_21_2 publication-title: Acta Botanica Fennica – ident: e_1_3_4_25_2 doi: 10.1111/j.2005.0906-7590.04203.x – ident: e_1_3_4_12_2 doi: 10.1086/285144 – start-page: 66 volume-title: Species Diversity in Ecological Communities: Historical and Geographical Perspectives year: 1993 ident: e_1_3_4_26_2 – ident: e_1_3_4_6_2 doi: 10.1046/j.1461-0248.2003.00554.x – start-page: 435 volume-title: Results of Worldwide Ecological Studies year: 2000 ident: e_1_3_4_49_2 – ident: e_1_3_4_4_2 doi: 10.1890/03-8006 – ident: e_1_3_4_14_2 doi: 10.3112/erdkunde.1996.04.03 – volume-title: Centres of Plant Diversity: A Guide and Strategy for Their Conservation year: 1994 ident: e_1_3_4_18_2 – ident: e_1_3_4_27_2 doi: 10.1086/368223 – volume-title: Räumliche Muster Biologischer Vielfalt: Die Gefäßpflanzenflora Amerikas im Globalen Kontext year: 2002 ident: e_1_3_4_48_2 – ident: e_1_3_4_46_2 doi: 10.1111/j.1365-2699.2005.01272.x – ident: e_1_3_4_3_2 doi: 10.2307/3545569 – ident: e_1_3_4_24_2 doi: 10.1046/j.1365-2699.2001.00524.x – ident: e_1_3_4_45_2 doi: 10.1073/pnas.101093498 – volume: 55 start-page: 521 year: 2005 ident: e_1_3_4_11_2 publication-title: Biologiske Skrifter – ident: e_1_3_4_35_2 doi: 10.1086/383097 – ident: e_1_3_4_39_2 doi: 10.1038/385252a0 – start-page: 409 volume-title: Taxonomy and Ecology of African Plants, Their Conservation and Sustainable Use year: 2006 ident: e_1_3_4_22_2 – ident: e_1_3_4_5_2 doi: 10.1111/j.1461-0248.2004.00671.x – ident: e_1_3_4_37_2 doi: 10.1126/science.1072380 – volume-title: Island Biogeography: Ecology, Evolution, and Conservation year: 1998 ident: e_1_3_4_50_2 – volume-title: Centres of Plant Diversity: A Guide and Strategy for Their Conservation year: 1995 ident: e_1_3_4_19_2 – ident: e_1_3_4_31_2 doi: 10.1073/pnas.071034898 – ident: e_1_3_4_40_2 doi: 10.1038/35025052 – start-page: 67 volume-title: Chorology, Taxonomy and Ecology of the Floras of Africa and Madagascar year: 1998 ident: e_1_3_4_15_2 – reference: 12202829 - Science. 2002 Aug 30;297(5586):1548-51 – reference: 17750221 - Science. 1978 Aug 25;201(4357):679-86 – reference: 11344293 - Proc Natl Acad Sci U S A. 2001 May 8;98(10):5452-7 – reference: 16801546 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10334-9 – reference: 11296292 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4534-9 – reference: 15122494 - Am Nat. 2004 May;163(5):773-9; discussion 780-5 – reference: 10922067 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9115-20 – reference: 11001054 - Nature. 2000 Sep 14;407(6801):180-2 – reference: 16701236 - Trends Ecol Evol. 2004 Feb;19(2):101-8 – reference: 16701326 - Trends Ecol Evol. 2004 Dec;19(12):639-44 – reference: 17778629 - Science. 1987 Jan 9;235(4785):167-71 – reference: 14700393 - Biol Rev Camb Philos Soc. 2003 Nov;78(4):597-638 – reference: 12776882 - Am Nat. 2003 Apr;161(4):523-36 – reference: 10706275 - Nature. 2000 Feb 24;403(6772):853-8 – reference: 12202828 - Science. 2002 Aug 30;297(5586):1545-8 |
SSID | ssj0009580 |
Score | 2.4910731 |
Snippet | Plants, with an estimated 300,000 species, provide crucial primary production and ecosystem structure. To date, our quantitative understanding of diversity... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5925 |
SubjectTerms | Autocorrelation Biodiversity Biological Sciences Climate Computer Simulation Cycadopsida - classification Cycadopsida - genetics Datasets Ecosystem Ecosystem structure Environmental accounting Environmental conservation Environmental effects environmental factors Environmental impact Environmental modeling Evapotranspiration Flora Geographic regions Geography habitats Heterogeneity Historical analysis latitude Magnoliopsida - classification Magnoliopsida - genetics Modeling Models, Biological Models, Theoretical phytogeography Plant diversity Plant ecology Plants Primary production Spatial models Species Species diversity Species richness Species Specificity Taxonomy topography Vascular plants |
Title | Global Patterns and Determinants of Vascular Plant Diversity |
URI | https://www.jstor.org/stable/25427303 http://www.pnas.org/content/104/14/5925.abstract https://www.ncbi.nlm.nih.gov/pubmed/17379667 https://www.proquest.com/docview/201435004 https://www.proquest.com/docview/19660446 https://www.proquest.com/docview/47426961 https://www.proquest.com/docview/70351836 https://pubmed.ncbi.nlm.nih.gov/PMC1851593 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCWqDUlMcicSiKHGLv2mtLXKoKFBU1yqEVvVnr9bogBSeqkwP8emafdkKDoBcrssfeeGc8j92ZbxB6p7wKkKQ85GxchhRsbJhDnBFWMc04mN8yr9TSwMU0nVzR8-vkejD42ctaWq_Kkfh1Z13JfbgK54Cvqkr2PzjrHwon4DfwF47AYTj-E48NYL_CRlXLegZtudrKb_Gppss5nBpWLg-j75XOvBVrXc7A1C0SnnYlJ1YPtMNwOJt2DYy_gJHVqnyymN90yb7nUreKHX7VG_IbqwtMJ6WQLvniL4P11WoMpo6aYuiRNJoUHJEwpaYXqFe1ptWwkyna05xJbgqgrRVOcrNd84eGB5Wk2hI3vB2NUwWtHdmH9vi9_KEZHjHCIJpjnanzCYizizNwVMCVIw_QwxgijFjr9D5ec2aql-ybOVQoRj5sja1gZ-1AG76NSW9VmLlAf1f8sp2G2_NrLvfRYxuQ4FMjXQdoIJsn6MDNPj6xuOTvn6KPRtywEzcM4ob74oYXNXbihrW4YS9uz9DV50-XZ5PQNt8IBYTEq5DVgomY11RCiJvJJAX9XFFwPrngLM9yYC98xuD805JHkteECCKJqGSegtNepeQQ7TWLRh4hLKIKvNiUMJqDz8QyziGK56q3ABiPUsgAjdy0FcIi06sGKfNCZ0gwUqgpLLopD9CJv2FpQFl2kx5qPni6OKHgsY9JgI40aXc_hTC4UGIYoLe7LhW1TckK0LFjaGE1QlvECiwzGatR3_iroK7VHhxv5GLdFpFCw6U03U1BmaouT6PdFEzt_sP7Bei5EaDun1pBDBDbEC1PoMDkN680379pUHn7Oby4953H6FGnQF6ivdXtWr4Ch31Vvtaf1m_nfejz |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+patterns+and+determinants+of+vascular+plant+diversity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kreft%2C+Holger&rft.au=Jetz%2C+Walter&rft.date=2007-04-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=104&rft.issue=14&rft.spage=5925&rft.epage=5930&rft_id=info:doi/10.1073%2Fpnas.0608361104&rft_id=info%3Apmid%2F17379667&rft.externalDocID=PMC1851593 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F14.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F14.cover.gif |