Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis

Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells (MSCs) can partially restore the ovarian structure and function damaged by chemotherapy. miR-21 is a microRNA that can regulate cell apoptosis. This st...

Full description

Saved in:
Bibliographic Details
Published inStem cell research & therapy Vol. 8; no. 1; pp. 187 - 13
Main Authors Fu, Xiafei, He, Yuanli, Wang, Xuefeng, Peng, Dongxian, Chen, Xiaoying, Li, Xinran, Wang, Qing
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 14.08.2017
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells (MSCs) can partially restore the ovarian structure and function damaged by chemotherapy. miR-21 is a microRNA that can regulate cell apoptosis. This study discusses the repair effect and mechanism of MSCs overexpressing miR-21 on chemotherapy-induced POF. Rat MSCs and granulosa cells (GCs) were isolated in vitro. MSCs were transfected with miR-21 lentiviral vector (LV-miR-21) to obtain MSCs stably expressing miR-21 (miR-21-MSCs). The microenvironment of an ovary receiving chemotherapy was mimicked by adding phosphamide mustard (PM) into the cellular culture medium. The apoptosis rate and the mRNA and protein expression of target genes PTEN and PDCD4 were detected in MSCs. Apoptosis was induced by adding PM into the culture medium for GCs, which were cocultured with miR-21-MSCs. The apoptosis rate and the mRNA and protein expression of PTEN and PDCD4 were detected. The chemotherapy-induced POF model was built into rats by intraperitoneal cyclophosphamide injection. miR-21-MSCs were transplanted into the bilateral ovary. The rats were sacrificed at 15, 30, 45, and 60 days after the last injection. The ovarian weights, follicle count, estrous cycle, and sex hormone levels (estradiol (E2) and follicle-stimulating hormone (FSH)) were detected. Apoptosis of GCs was determined by TUNEL assay. The miR-21 and mRNA and protein expression of PTEN and PDCD4 were determined. The apoptosis decreased in MSCs transfected with miR-21. The mRNA and protein expression of target genes PTEN and PDCD4 was downregulated. GCs cocultured with miR-21-MSCs showed a decreased apoptosis, an upregulation of miR-21, and a downregulation of PTEN and PDCD4. Following the injection of miR-21-MSCs, the ovarian weight and follicle counts increased; E levels increased while FSH levels decreased, with less severe apoptosis of GCs. The miR-21 expression in the ovaries was upregulated, while the mRNA expression and protein expression of PTEN and PDCD4 were downregulated. Overexpression of miR-21 in MSCs promoted efficacy against chemotherapy-induced POF and its improvement of the repair effect was related to the inhibition of GC apoptosis by targeting PTEN and PDCD4.
AbstractList Abstract Background Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells (MSCs) can partially restore the ovarian structure and function damaged by chemotherapy. miR-21 is a microRNA that can regulate cell apoptosis. This study discusses the repair effect and mechanism of MSCs overexpressing miR-21 on chemotherapy-induced POF. Methods Rat MSCs and granulosa cells (GCs) were isolated in vitro. MSCs were transfected with miR-21 lentiviral vector (LV-miR-21) to obtain MSCs stably expressing miR-21 (miR-21-MSCs). The microenvironment of an ovary receiving chemotherapy was mimicked by adding phosphamide mustard (PM) into the cellular culture medium. The apoptosis rate and the mRNA and protein expression of target genes PTEN and PDCD4 were detected in MSCs. Apoptosis was induced by adding PM into the culture medium for GCs, which were cocultured with miR-21-MSCs. The apoptosis rate and the mRNA and protein expression of PTEN and PDCD4 were detected. The chemotherapy-induced POF model was built into rats by intraperitoneal cyclophosphamide injection. miR-21-MSCs were transplanted into the bilateral ovary. The rats were sacrificed at 15, 30, 45, and 60 days after the last injection. The ovarian weights, follicle count, estrous cycle, and sex hormone levels (estradiol (E2) and follicle-stimulating hormone (FSH)) were detected. Apoptosis of GCs was determined by TUNEL assay. The miR-21 and mRNA and protein expression of PTEN and PDCD4 were determined. Results The apoptosis decreased in MSCs transfected with miR-21. The mRNA and protein expression of target genes PTEN and PDCD4 was downregulated. GCs cocultured with miR-21-MSCs showed a decreased apoptosis, an upregulation of miR-21, and a downregulation of PTEN and PDCD4. Following the injection of miR-21-MSCs, the ovarian weight and follicle counts increased; E2 levels increased while FSH levels decreased, with less severe apoptosis of GCs. The miR-21 expression in the ovaries was upregulated, while the mRNA expression and protein expression of PTEN and PDCD4 were downregulated. Conclusions Overexpression of miR-21 in MSCs promoted efficacy against chemotherapy-induced POF and its improvement of the repair effect was related to the inhibition of GC apoptosis by targeting PTEN and PDCD4.
Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells (MSCs) can partially restore the ovarian structure and function damaged by chemotherapy. miR-21 is a microRNA that can regulate cell apoptosis. This study discusses the repair effect and mechanism of MSCs overexpressing miR-21 on chemotherapy-induced POF. Rat MSCs and granulosa cells (GCs) were isolated in vitro. MSCs were transfected with miR-21 lentiviral vector (LV-miR-21) to obtain MSCs stably expressing miR-21 (miR-21-MSCs). The microenvironment of an ovary receiving chemotherapy was mimicked by adding phosphamide mustard (PM) into the cellular culture medium. The apoptosis rate and the mRNA and protein expression of target genes PTEN and PDCD4 were detected in MSCs. Apoptosis was induced by adding PM into the culture medium for GCs, which were cocultured with miR-21-MSCs. The apoptosis rate and the mRNA and protein expression of PTEN and PDCD4 were detected. The chemotherapy-induced POF model was built into rats by intraperitoneal cyclophosphamide injection. miR-21-MSCs were transplanted into the bilateral ovary. The rats were sacrificed at 15, 30, 45, and 60 days after the last injection. The ovarian weights, follicle count, estrous cycle, and sex hormone levels (estradiol (E2) and follicle-stimulating hormone (FSH)) were detected. Apoptosis of GCs was determined by TUNEL assay. The miR-21 and mRNA and protein expression of PTEN and PDCD4 were determined. The apoptosis decreased in MSCs transfected with miR-21. The mRNA and protein expression of target genes PTEN and PDCD4 was downregulated. GCs cocultured with miR-21-MSCs showed a decreased apoptosis, an upregulation of miR-21, and a downregulation of PTEN and PDCD4. Following the injection of miR-21-MSCs, the ovarian weight and follicle counts increased; E levels increased while FSH levels decreased, with less severe apoptosis of GCs. The miR-21 expression in the ovaries was upregulated, while the mRNA expression and protein expression of PTEN and PDCD4 were downregulated. Overexpression of miR-21 in MSCs promoted efficacy against chemotherapy-induced POF and its improvement of the repair effect was related to the inhibition of GC apoptosis by targeting PTEN and PDCD4.
Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells (MSCs) can partially restore the ovarian structure and function damaged by chemotherapy. miR-21 is a microRNA that can regulate cell apoptosis. This study discusses the repair effect and mechanism of MSCs overexpressing miR-21 on chemotherapy-induced POF.BACKGROUNDChemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells (MSCs) can partially restore the ovarian structure and function damaged by chemotherapy. miR-21 is a microRNA that can regulate cell apoptosis. This study discusses the repair effect and mechanism of MSCs overexpressing miR-21 on chemotherapy-induced POF.Rat MSCs and granulosa cells (GCs) were isolated in vitro. MSCs were transfected with miR-21 lentiviral vector (LV-miR-21) to obtain MSCs stably expressing miR-21 (miR-21-MSCs). The microenvironment of an ovary receiving chemotherapy was mimicked by adding phosphamide mustard (PM) into the cellular culture medium. The apoptosis rate and the mRNA and protein expression of target genes PTEN and PDCD4 were detected in MSCs. Apoptosis was induced by adding PM into the culture medium for GCs, which were cocultured with miR-21-MSCs. The apoptosis rate and the mRNA and protein expression of PTEN and PDCD4 were detected. The chemotherapy-induced POF model was built into rats by intraperitoneal cyclophosphamide injection. miR-21-MSCs were transplanted into the bilateral ovary. The rats were sacrificed at 15, 30, 45, and 60 days after the last injection. The ovarian weights, follicle count, estrous cycle, and sex hormone levels (estradiol (E2) and follicle-stimulating hormone (FSH)) were detected. Apoptosis of GCs was determined by TUNEL assay. The miR-21 and mRNA and protein expression of PTEN and PDCD4 were determined.METHODSRat MSCs and granulosa cells (GCs) were isolated in vitro. MSCs were transfected with miR-21 lentiviral vector (LV-miR-21) to obtain MSCs stably expressing miR-21 (miR-21-MSCs). The microenvironment of an ovary receiving chemotherapy was mimicked by adding phosphamide mustard (PM) into the cellular culture medium. The apoptosis rate and the mRNA and protein expression of target genes PTEN and PDCD4 were detected in MSCs. Apoptosis was induced by adding PM into the culture medium for GCs, which were cocultured with miR-21-MSCs. The apoptosis rate and the mRNA and protein expression of PTEN and PDCD4 were detected. The chemotherapy-induced POF model was built into rats by intraperitoneal cyclophosphamide injection. miR-21-MSCs were transplanted into the bilateral ovary. The rats were sacrificed at 15, 30, 45, and 60 days after the last injection. The ovarian weights, follicle count, estrous cycle, and sex hormone levels (estradiol (E2) and follicle-stimulating hormone (FSH)) were detected. Apoptosis of GCs was determined by TUNEL assay. The miR-21 and mRNA and protein expression of PTEN and PDCD4 were determined.The apoptosis decreased in MSCs transfected with miR-21. The mRNA and protein expression of target genes PTEN and PDCD4 was downregulated. GCs cocultured with miR-21-MSCs showed a decreased apoptosis, an upregulation of miR-21, and a downregulation of PTEN and PDCD4. Following the injection of miR-21-MSCs, the ovarian weight and follicle counts increased; E2 levels increased while FSH levels decreased, with less severe apoptosis of GCs. The miR-21 expression in the ovaries was upregulated, while the mRNA expression and protein expression of PTEN and PDCD4 were downregulated.RESULTSThe apoptosis decreased in MSCs transfected with miR-21. The mRNA and protein expression of target genes PTEN and PDCD4 was downregulated. GCs cocultured with miR-21-MSCs showed a decreased apoptosis, an upregulation of miR-21, and a downregulation of PTEN and PDCD4. Following the injection of miR-21-MSCs, the ovarian weight and follicle counts increased; E2 levels increased while FSH levels decreased, with less severe apoptosis of GCs. The miR-21 expression in the ovaries was upregulated, while the mRNA expression and protein expression of PTEN and PDCD4 were downregulated.Overexpression of miR-21 in MSCs promoted efficacy against chemotherapy-induced POF and its improvement of the repair effect was related to the inhibition of GC apoptosis by targeting PTEN and PDCD4.CONCLUSIONSOverexpression of miR-21 in MSCs promoted efficacy against chemotherapy-induced POF and its improvement of the repair effect was related to the inhibition of GC apoptosis by targeting PTEN and PDCD4.
Background Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells (MSCs) can partially restore the ovarian structure and function damaged by chemotherapy. miR-21 is a microRNA that can regulate cell apoptosis. This study discusses the repair effect and mechanism of MSCs overexpressing miR-21 on chemotherapy-induced POF. Methods Rat MSCs and granulosa cells (GCs) were isolated in vitro. MSCs were transfected with miR-21 lentiviral vector (LV-miR-21) to obtain MSCs stably expressing miR-21 (miR-21-MSCs). The microenvironment of an ovary receiving chemotherapy was mimicked by adding phosphamide mustard (PM) into the cellular culture medium. The apoptosis rate and the mRNA and protein expression of target genes PTEN and PDCD4 were detected in MSCs. Apoptosis was induced by adding PM into the culture medium for GCs, which were cocultured with miR-21-MSCs. The apoptosis rate and the mRNA and protein expression of PTEN and PDCD4 were detected. The chemotherapy-induced POF model was built into rats by intraperitoneal cyclophosphamide injection. miR-21-MSCs were transplanted into the bilateral ovary. The rats were sacrificed at 15, 30, 45, and 60 days after the last injection. The ovarian weights, follicle count, estrous cycle, and sex hormone levels (estradiol (E2) and follicle-stimulating hormone (FSH)) were detected. Apoptosis of GCs was determined by TUNEL assay. The miR-21 and mRNA and protein expression of PTEN and PDCD4 were determined. Results The apoptosis decreased in MSCs transfected with miR-21. The mRNA and protein expression of target genes PTEN and PDCD4 was downregulated. GCs cocultured with miR-21-MSCs showed a decreased apoptosis, an upregulation of miR-21, and a downregulation of PTEN and PDCD4. Following the injection of miR-21-MSCs, the ovarian weight and follicle counts increased; E2 levels increased while FSH levels decreased, with less severe apoptosis of GCs. The miR-21 expression in the ovaries was upregulated, while the mRNA expression and protein expression of PTEN and PDCD4 were downregulated. Conclusions Overexpression of miR-21 in MSCs promoted efficacy against chemotherapy-induced POF and its improvement of the repair effect was related to the inhibition of GC apoptosis by targeting PTEN and PDCD4.
ArticleNumber 187
Audience Academic
Author Wang, Xuefeng
Li, Xinran
Chen, Xiaoying
He, Yuanli
Peng, Dongxian
Fu, Xiafei
Wang, Qing
Author_xml – sequence: 1
  givenname: Xiafei
  orcidid: 0000-0002-0344-7620
  surname: Fu
  fullname: Fu, Xiafei
– sequence: 2
  givenname: Yuanli
  surname: He
  fullname: He, Yuanli
– sequence: 3
  givenname: Xuefeng
  surname: Wang
  fullname: Wang, Xuefeng
– sequence: 4
  givenname: Dongxian
  surname: Peng
  fullname: Peng, Dongxian
– sequence: 5
  givenname: Xiaoying
  surname: Chen
  fullname: Chen, Xiaoying
– sequence: 6
  givenname: Xinran
  surname: Li
  fullname: Li, Xinran
– sequence: 7
  givenname: Qing
  surname: Wang
  fullname: Wang, Qing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28807003$$D View this record in MEDLINE/PubMed
BookMark eNp9k1FP1jAUhhejEUR-gDemiYnRi-G6bt12Y0IAlYQIQbxuuvZ0K9na2XafwJ_zr9nxIfIR45alW_u8b3fe9LxInhprIEle4WwP45p-8JjkdZVmOD60wOnNk2QbV2WV0hLnTx-8byW73l9m8SIki-jzZCuv66yK39vJr9MVOLiaHHivrUFWoVGfpzlG2iAfYEQChsEjPU7OrsAju-JO82XNzSLMDhA3EqnZiLDoo8rx4NFPHXokehht6MHx6TrVRs4C5L2B5CPvALXXKHDXQdCmQ2eHB4fFreHZxdFXFGz063WrA-ocN_NgPb_9H8QnOwXrtX-ZPFN88LB7N-4k3z8dXRx8SU9OPx8f7J-kguZlWHLAhFNcNFUhVEML0lR5VpRE1C2AkkBkRalUXEKmKlFQIQWtMpoLiDFRRXaS47WvtPySTU6P3F0zyzW7nbCuY9wFLQZgsslbzmnWVEoUouUtkYJQKKEWSjYljl4f117T3I4gBZjg-LBhurlidM86u2JlWVJC6mjw7s7A2R8z-MBG7ZdcuAE7e4abvMFZEwuI6JtH6KWdnYlRRYrQvC5I1vylOh4L0EbZuK9YTNl-TC6v84KQSO39g4q3hFGLeDqVjvMbgvcbgsgEuAodn71nx9_ON9m3D9ge-BB6b4d5OVV-E3z9ML372P6c6QjgNSCc9d6BukdwxpbWYevWYbF12NI67CZqqkcaoQNf9o4l6uE_yt_zdh5v
CitedBy_id crossref_primary_10_3389_fcell_2023_1090997
crossref_primary_10_1021_cbe_4c00122
crossref_primary_10_1155_2019_9071720
crossref_primary_10_2174_1574888X18666230517123256
crossref_primary_10_1155_2020_3582648
crossref_primary_10_1016_j_reprotox_2022_03_012
crossref_primary_10_1016_j_mce_2020_110875
crossref_primary_10_3390_cells11142253
crossref_primary_10_1186_s40659_023_00441_6
crossref_primary_10_1016_j_ygeno_2024_110856
crossref_primary_10_1080_10495398_2022_2095642
crossref_primary_10_1186_s13048_024_01534_w
crossref_primary_10_1093_humupd_dmz039
crossref_primary_10_1016_j_ncrna_2025_03_001
crossref_primary_10_3389_fcell_2021_649005
crossref_primary_10_1038_s41374_019_0273_2
crossref_primary_10_3389_fimmu_2022_997808
crossref_primary_10_3390_genes16020133
crossref_primary_10_2147_DDDT_S321010
crossref_primary_10_3389_fbioe_2022_850303
crossref_primary_10_1186_s13287_021_02529_w
crossref_primary_10_1186_s13287_019_1136_x
crossref_primary_10_3390_ijms242316593
crossref_primary_10_1007_s00109_021_02055_5
crossref_primary_10_1186_s13287_018_1008_9
crossref_primary_10_3390_biom14020242
crossref_primary_10_1186_s13287_024_03704_5
crossref_primary_10_1016_j_trim_2024_102051
crossref_primary_10_3390_cells11233713
crossref_primary_10_1016_j_heliyon_2023_e23271
crossref_primary_10_1016_j_fertnstert_2024_03_010
crossref_primary_10_1093_biolre_ioac085
crossref_primary_10_1016_j_envpol_2022_119115
crossref_primary_10_1155_2022_9228456
crossref_primary_10_1016_j_reth_2023_11_007
crossref_primary_10_3390_ijms23158276
crossref_primary_10_3389_fmed_2023_1194865
crossref_primary_10_1007_s43032_020_00305_4
crossref_primary_10_1016_j_theriogenology_2024_01_029
crossref_primary_10_1186_s12929_024_01085_8
crossref_primary_10_1002_cbin_11165
crossref_primary_10_1038_s41434_019_0101_8
crossref_primary_10_4252_wjsc_v16_i1_1
crossref_primary_10_1016_j_biopha_2019_109710
crossref_primary_10_1002_mrd_23404
crossref_primary_10_3389_fphar_2022_828627
crossref_primary_10_1016_j_omtn_2019_03_008
crossref_primary_10_1155_2022_7530102
crossref_primary_10_1186_s12958_022_00892_8
crossref_primary_10_3390_ijms26020576
crossref_primary_10_1089_ten_teb_2020_0205
crossref_primary_10_1016_j_biopha_2023_115284
crossref_primary_10_1186_s13287_021_02212_0
crossref_primary_10_1016_j_ando_2023_03_013
crossref_primary_10_3892_mmr_2018_9440
crossref_primary_10_5713_ajas_19_0707
crossref_primary_10_1016_j_anireprosci_2020_106645
crossref_primary_10_1186_s13287_023_03333_4
crossref_primary_10_1016_j_biopha_2023_115319
crossref_primary_10_1016_j_cbi_2022_110176
crossref_primary_10_1016_j_mtbio_2025_101469
crossref_primary_10_1111_boc_202300123
crossref_primary_10_3389_fcell_2021_749822
crossref_primary_10_3390_biology10060464
crossref_primary_10_1093_biolre_ioz077
crossref_primary_10_1016_j_biopha_2018_03_056
crossref_primary_10_1186_s40001_023_01231_2
crossref_primary_10_1016_j_ijbiomac_2023_127415
crossref_primary_10_1016_j_ymthe_2020_02_003
crossref_primary_10_3892_ijmm_2023_5297
crossref_primary_10_1007_s12035_024_04490_0
crossref_primary_10_1186_s13287_020_01988_x
crossref_primary_10_1016_j_freeradbiomed_2024_05_048
crossref_primary_10_1186_s11658_025_00701_1
crossref_primary_10_1186_s13287_019_1442_3
crossref_primary_10_1016_j_ijbiomac_2024_134195
crossref_primary_10_1007_s10495_023_01833_5
crossref_primary_10_3389_fnmol_2018_00070
crossref_primary_10_1007_s00404_023_06922_z
crossref_primary_10_1007_s00404_023_07062_0
crossref_primary_10_1155_2021_1781532
crossref_primary_10_1186_s12929_021_00749_z
crossref_primary_10_1016_j_yexcr_2023_113574
crossref_primary_10_1080_21655979_2022_2062104
crossref_primary_10_7717_peerj_16517
crossref_primary_10_1007_s43032_023_01300_1
crossref_primary_10_1016_j_theriogenology_2023_01_018
crossref_primary_10_1007_s10735_024_10256_8
crossref_primary_10_1016_j_ygcen_2022_114015
crossref_primary_10_1186_s13287_019_1315_9
crossref_primary_10_1016_j_bioactmat_2020_12_008
crossref_primary_10_1007_s12015_024_10681_y
crossref_primary_10_3390_ijms241814215
crossref_primary_10_1016_j_biopha_2018_12_123
crossref_primary_10_1186_s13048_020_00671_2
crossref_primary_10_1515_biol_2022_0997
crossref_primary_10_1093_hropen_hoad040
crossref_primary_10_1177_1533033819892263
crossref_primary_10_3390_cells9102253
crossref_primary_10_2174_1574888X17666220511142930
crossref_primary_10_1097_MD_0000000000030013
crossref_primary_10_1016_j_envpol_2023_122730
crossref_primary_10_3390_ani14060884
crossref_primary_10_1016_j_arcmed_2021_01_008
crossref_primary_10_2174_1871530323666230627121700
crossref_primary_10_1186_s13287_023_03374_9
crossref_primary_10_1016_j_bpobgyn_2025_102603
crossref_primary_10_1155_2021_8293699
crossref_primary_10_3389_fphys_2022_998424
crossref_primary_10_1038_s41598_019_45642_w
crossref_primary_10_1186_s13287_023_03551_w
crossref_primary_10_3390_cells10071613
crossref_primary_10_4252_wjsc_v12_i4_277
crossref_primary_10_1016_j_biomaterials_2022_121739
crossref_primary_10_1186_s13287_022_03056_y
crossref_primary_10_1016_j_prp_2023_154795
crossref_primary_10_1155_sci_7674219
crossref_primary_10_1016_j_gendis_2019_09_013
crossref_primary_10_3390_ijms20205223
crossref_primary_10_3389_fcell_2021_718192
crossref_primary_10_1155_2020_8861557
crossref_primary_10_3390_biology12010108
crossref_primary_10_1002_mrd_23457
crossref_primary_10_1186_s13287_018_0964_4
crossref_primary_10_1016_j_cyto_2023_156294
crossref_primary_10_2174_1574888X14666190314123006
crossref_primary_10_14336_AD_2021_1209
crossref_primary_10_4236_jbm_2024_127025
crossref_primary_10_1080_21655979_2022_2070584
crossref_primary_10_1186_s12958_022_00992_5
crossref_primary_10_1093_humupd_dmae020
crossref_primary_10_1186_s13048_024_01353_z
crossref_primary_10_1016_j_biopha_2021_112050
crossref_primary_10_1016_j_rbmo_2024_103815
crossref_primary_10_1007_s10142_022_00931_y
crossref_primary_10_1016_j_ecoenv_2019_110160
crossref_primary_10_1159_000510943
crossref_primary_10_1155_2022_5413504
Cites_doi 10.3109/13697137.2015.1020484
10.1007/978-1-4614-0332-6_4
10.1095/biolreprod.109.081448
10.1016/j.reprotox.2004.06.002
10.1038/82797
10.3109/09513590.2010.520374
10.1038/sj.onc.1210083
10.1016/j.yjmcc.2008.05.004
10.1016/S0140-6736(05)66879-1
10.1126/science.284.5411.143
10.1080/14653240802035926
10.1038/ni.1828
10.1016/j.jocn.2015.07.029
10.4238/2015.August.3.4
10.1038/modpathol.2010.135
10.2165/00002018-200528050-00004
10.1007/s11033-014-3820-3
10.1016/j.humpath.2014.09.006
10.1177/1933719115576727
10.1016/0041-008X(91)90310-B
10.7150/ijbs.7.762
10.1210/me.2008-0095
10.1158/1078-0432.CCR-07-1598
10.1093/humupd/dmu019
10.4049/jimmunol.177.11.8095
10.1186/s13287-016-0341-0
10.1016/j.mehy.2009.06.023
10.1016/j.jor.2016.10.010
10.1126/science.276.5309.71
10.1016/j.ygyno.2014.01.034
10.1016/j.ogc.2014.10.004
ContentType Journal Article
Copyright COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
The Author(s). 2017
Copyright_xml – notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
– notice: The Author(s). 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13287-017-0641-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1757-6512
EndPage 13
ExternalDocumentID oai_doaj_org_article_d92baa6097fc4cbab3dc36e5e8cfd951
PMC5556338
A511282433
28807003
10_1186_s13287_017_0641_z
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2013B021800145
– fundername: ;
  grantid: 81300462
GroupedDBID ---
0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFS
ACIHN
ACJQM
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
E3Z
EBD
EBLON
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
ISR
ITC
KQ8
LK8
M1P
M7P
M~E
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SBL
SOJ
SV3
TUS
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7XB
8FK
AHSBF
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c625t-65113a614974cf96439720453c8beefde3d766dfade0f7c46cdc67062ce0036f3
IEDL.DBID 7X7
ISSN 1757-6512
IngestDate Wed Aug 27 01:08:22 EDT 2025
Thu Aug 21 14:13:34 EDT 2025
Fri Jul 11 01:04:42 EDT 2025
Fri Jul 25 11:58:34 EDT 2025
Tue Jun 17 22:04:58 EDT 2025
Tue Jun 10 21:03:42 EDT 2025
Fri Jun 27 05:32:42 EDT 2025
Thu May 22 21:24:05 EDT 2025
Mon Jul 21 06:02:39 EDT 2025
Tue Jul 01 00:43:18 EDT 2025
Thu Apr 24 22:53:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords PDCD4
PTEN
Bone marrow derived mesenchymal stem cells
miR-21
Chemotherapy-induced premature ovarian failure
Apoptosis
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c625t-65113a614974cf96439720453c8beefde3d766dfade0f7c46cdc67062ce0036f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0344-7620
OpenAccessLink https://www.proquest.com/docview/1936284309?pq-origsite=%requestingapplication%
PMID 28807003
PQID 1936284309
PQPubID 2040189
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_d92baa6097fc4cbab3dc36e5e8cfd951
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5556338
proquest_miscellaneous_1929109670
proquest_journals_1936284309
gale_infotracmisc_A511282433
gale_infotracacademiconefile_A511282433
gale_incontextgauss_ISR_A511282433
gale_healthsolutions_A511282433
pubmed_primary_28807003
crossref_primary_10_1186_s13287_017_0641_z
crossref_citationtrail_10_1186_s13287_017_0641_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-14
PublicationDateYYYYMMDD 2017-08-14
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-14
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Stem cell research & therapy
PublicationTitleAlternate Stem Cell Res Ther
PublicationYear 2017
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References DR Plowchalk (641_CR13) 1991; 107
H Haider (641_CR20) 2008; 45
K Sriraman (641_CR32) 2015; 22
DJ Prockop (641_CR19) 1997; 276
E Kovanci (641_CR2) 2015; 42
JR Molina (641_CR18) 2005; 28
SC Janga (641_CR8) 2011; 722
FJ Sheedy (641_CR29) 2010; 11
S Wen (641_CR21) 2015; 14
AE Eltorai (641_CR6) 2016; 14
C Lv (641_CR23) 2016; 27
ML Si (641_CR22) 2007; 26
H Roness (641_CR17) 2014; 20
A Singh (641_CR5) 2016; 7
CL Benetti-Pinto (641_CR1) 2011; 27
HY Fan (641_CR25) 2008; 22
SA Rao (641_CR28) 2010; 23
PJ Devine (641_CR14) 2004; 19
JK Chan (641_CR9) 2014; 132
L Arbibe (641_CR30) 2000; 1
Y Nie (641_CR24) 2011; 7
H Kuang (641_CR27) 2009; 73
A Hilliard (641_CR31) 2006; 177
SS Faubion (641_CR3) 2015; 18
X Fu (641_CR7) 2008; 10
C Shang (641_CR10) 2015; 42
MF Pittenger (641_CR15) 1999; 284
A Vats (641_CR4) 2005; 366
G Pennelli (641_CR11) 2015; 46
MZ Carletti (641_CR12) 2010; 83
L Cox (641_CR16) 2014; 6
NN Danial (641_CR26) 2007; 13
27821993 - J Orthop. 2016 Oct 25;14 (1):1-3
9082988 - Science. 1997 Apr 4;276(5309):71-4
16099296 - Lancet. 2005 Aug 13-19;366(9485):592-602
21698002 - Int J Biol Sci. 2011;7(6):762-8
21214499 - Gynecol Endocrinol. 2011 Sep;27(9):645-9
27259550 - Stem Cell Res Ther. 2016 Jun 04;7(1):82
24591848 - Int J Womens Health. 2014 Feb 20;6:235-43
20357270 - Biol Reprod. 2010 Aug 1;83(2):286-95
25316501 - Hum Pathol. 2015 Jan;46(1):50-7
19733443 - Med Hypotheses. 2009 Dec;73(6):961-2
21915782 - Adv Exp Med Biol. 2011;722:59-74
11101877 - Nat Immunol. 2000 Dec;1(6):533-40
17114484 - J Immunol. 2006 Dec 1;177(11):8095-102
18561945 - J Mol Cell Cardiol. 2008 Oct;45(4):554-66
24472409 - Gynecol Oncol. 2014 Mar;132(3):739-44
2000634 - Toxicol Appl Pharmacol. 1991 Mar 1;107(3):472-81
15853442 - Drug Saf. 2005;28(5):401-16
20711171 - Mod Pathol. 2010 Oct;23(10):1404-17
25845383 - Climacteric. 2015;18(4):483-91
25394756 - Mol Biol Rep. 2015 Mar;42(3):721-7
25681846 - Obstet Gynecol Clin North Am. 2015 Mar;42(1):153-61
26810470 - J Clin Neurosci. 2016 May;27:154-60
25779995 - Reprod Sci. 2015 Jul;22(7):884-903
15336714 - Reprod Toxicol. 2004 Nov;19(1):71-7
18094405 - Clin Cancer Res. 2007 Dec 15;13(24):7254-63
10102814 - Science. 1999 Apr 2;284(5411):143-7
18606860 - Mol Endocrinol. 2008 Sep;22(9):2128-40
26345812 - Genet Mol Res. 2015 Aug 03;14 (3):8810-8
18574768 - Cytotherapy. 2008;10(4):353-63
17072344 - Oncogene. 2007 Apr 26;26(19):2799-803
24833728 - Hum Reprod Update. 2014 Sep-Oct;20(5):759-74
19946272 - Nat Immunol. 2010 Feb;11(2):141-7
References_xml – volume: 18
  start-page: 483
  year: 2015
  ident: 641_CR3
  publication-title: Climacteric
  doi: 10.3109/13697137.2015.1020484
– volume: 722
  start-page: 59
  year: 2011
  ident: 641_CR8
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-1-4614-0332-6_4
– volume: 83
  start-page: 286
  year: 2010
  ident: 641_CR12
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod.109.081448
– volume: 19
  start-page: 71
  year: 2004
  ident: 641_CR14
  publication-title: Reprod Toxicol
  doi: 10.1016/j.reprotox.2004.06.002
– volume: 1
  start-page: 533
  year: 2000
  ident: 641_CR30
  publication-title: Nat Immunol
  doi: 10.1038/82797
– volume: 27
  start-page: 645
  year: 2011
  ident: 641_CR1
  publication-title: Gynecol Endocrinol
  doi: 10.3109/09513590.2010.520374
– volume: 26
  start-page: 2799
  year: 2007
  ident: 641_CR22
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210083
– volume: 45
  start-page: 554
  year: 2008
  ident: 641_CR20
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2008.05.004
– volume: 366
  start-page: 592
  year: 2005
  ident: 641_CR4
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)66879-1
– volume: 284
  start-page: 143
  year: 1999
  ident: 641_CR15
  publication-title: Science
  doi: 10.1126/science.284.5411.143
– volume: 10
  start-page: 353
  year: 2008
  ident: 641_CR7
  publication-title: Cytotherapy
  doi: 10.1080/14653240802035926
– volume: 11
  start-page: 141
  year: 2010
  ident: 641_CR29
  publication-title: Nat Immunol
  doi: 10.1038/ni.1828
– volume: 27
  start-page: 154
  year: 2016
  ident: 641_CR23
  publication-title: J Clin Neurosci
  doi: 10.1016/j.jocn.2015.07.029
– volume: 14
  start-page: 8810
  year: 2015
  ident: 641_CR21
  publication-title: Genet Mol Res.
  doi: 10.4238/2015.August.3.4
– volume: 23
  start-page: 1404
  year: 2010
  ident: 641_CR28
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.2010.135
– volume: 28
  start-page: 401
  year: 2005
  ident: 641_CR18
  publication-title: Drug Saf
  doi: 10.2165/00002018-200528050-00004
– volume: 42
  start-page: 721
  year: 2015
  ident: 641_CR10
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-014-3820-3
– volume: 6
  start-page: 235
  year: 2014
  ident: 641_CR16
  publication-title: Int J Womens Health
– volume: 46
  start-page: 50
  year: 2015
  ident: 641_CR11
  publication-title: Hum Pathol
  doi: 10.1016/j.humpath.2014.09.006
– volume: 22
  start-page: 884
  year: 2015
  ident: 641_CR32
  publication-title: Reprod Sci
  doi: 10.1177/1933719115576727
– volume: 107
  start-page: 472
  year: 1991
  ident: 641_CR13
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/0041-008X(91)90310-B
– volume: 7
  start-page: 762
  year: 2011
  ident: 641_CR24
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.7.762
– volume: 22
  start-page: 2128
  year: 2008
  ident: 641_CR25
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2008-0095
– volume: 13
  start-page: 7254
  year: 2007
  ident: 641_CR26
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-1598
– volume: 20
  start-page: 759
  year: 2014
  ident: 641_CR17
  publication-title: Hum Reprod Update
  doi: 10.1093/humupd/dmu019
– volume: 177
  start-page: 8095
  year: 2006
  ident: 641_CR31
  publication-title: Immunol
  doi: 10.4049/jimmunol.177.11.8095
– volume: 7
  start-page: 82
  year: 2016
  ident: 641_CR5
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-016-0341-0
– volume: 73
  start-page: 961
  year: 2009
  ident: 641_CR27
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2009.06.023
– volume: 14
  start-page: 1
  year: 2016
  ident: 641_CR6
  publication-title: J Orthop
  doi: 10.1016/j.jor.2016.10.010
– volume: 276
  start-page: 71
  year: 1997
  ident: 641_CR19
  publication-title: Science
  doi: 10.1126/science.276.5309.71
– volume: 132
  start-page: 739
  year: 2014
  ident: 641_CR9
  publication-title: Gynecol Oncol
  doi: 10.1016/j.ygyno.2014.01.034
– volume: 42
  start-page: 153
  year: 2015
  ident: 641_CR2
  publication-title: Obstet Gynecol Clin North Am
  doi: 10.1016/j.ogc.2014.10.004
– reference: 18574768 - Cytotherapy. 2008;10(4):353-63
– reference: 19946272 - Nat Immunol. 2010 Feb;11(2):141-7
– reference: 26810470 - J Clin Neurosci. 2016 May;27:154-60
– reference: 21698002 - Int J Biol Sci. 2011;7(6):762-8
– reference: 15853442 - Drug Saf. 2005;28(5):401-16
– reference: 25845383 - Climacteric. 2015;18(4):483-91
– reference: 21214499 - Gynecol Endocrinol. 2011 Sep;27(9):645-9
– reference: 20711171 - Mod Pathol. 2010 Oct;23(10):1404-17
– reference: 25779995 - Reprod Sci. 2015 Jul;22(7):884-903
– reference: 17072344 - Oncogene. 2007 Apr 26;26(19):2799-803
– reference: 17114484 - J Immunol. 2006 Dec 1;177(11):8095-102
– reference: 25681846 - Obstet Gynecol Clin North Am. 2015 Mar;42(1):153-61
– reference: 10102814 - Science. 1999 Apr 2;284(5411):143-7
– reference: 24833728 - Hum Reprod Update. 2014 Sep-Oct;20(5):759-74
– reference: 18094405 - Clin Cancer Res. 2007 Dec 15;13(24):7254-63
– reference: 15336714 - Reprod Toxicol. 2004 Nov;19(1):71-7
– reference: 27821993 - J Orthop. 2016 Oct 25;14 (1):1-3
– reference: 24591848 - Int J Womens Health. 2014 Feb 20;6:235-43
– reference: 26345812 - Genet Mol Res. 2015 Aug 03;14 (3):8810-8
– reference: 2000634 - Toxicol Appl Pharmacol. 1991 Mar 1;107(3):472-81
– reference: 20357270 - Biol Reprod. 2010 Aug 1;83(2):286-95
– reference: 18606860 - Mol Endocrinol. 2008 Sep;22(9):2128-40
– reference: 16099296 - Lancet. 2005 Aug 13-19;366(9485):592-602
– reference: 24472409 - Gynecol Oncol. 2014 Mar;132(3):739-44
– reference: 11101877 - Nat Immunol. 2000 Dec;1(6):533-40
– reference: 18561945 - J Mol Cell Cardiol. 2008 Oct;45(4):554-66
– reference: 27259550 - Stem Cell Res Ther. 2016 Jun 04;7(1):82
– reference: 9082988 - Science. 1997 Apr 4;276(5309):71-4
– reference: 21915782 - Adv Exp Med Biol. 2011;722:59-74
– reference: 25394756 - Mol Biol Rep. 2015 Mar;42(3):721-7
– reference: 19733443 - Med Hypotheses. 2009 Dec;73(6):961-2
– reference: 25316501 - Hum Pathol. 2015 Jan;46(1):50-7
SSID ssj0000330064
Score 2.5078113
Snippet Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells (MSCs) can...
Background Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells...
Abstract Background Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 187
SubjectTerms 17β-Estradiol
Animals
Antineoplastic Agents - adverse effects
Apoptosis
Apoptosis Regulatory Proteins - metabolism
Bone marrow
Bone marrow derived mesenchymal stem cells
Care and treatment
Cell culture
Cells, Cultured
Chemotherapy
Chemotherapy-induced premature ovarian failure
Cyclophosphamide
Development and progression
Estrus cycle
Female
Follicle-stimulating hormone
Gene expression
Genetic aspects
Genetic Vectors - metabolism
Gonadal Steroid Hormones - metabolism
Granulosa cells
Granulosa Cells - metabolism
Granulosa Cells - pathology
Health aspects
Injection
Laboratory animals
Lentivirus - metabolism
Medical research
Mesenchymal stem cells
Mesenchymal Stromal Cells - metabolism
Mesenchyme
MicroRNA
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miR-21
miRNA
Organ Size
Ovarian cancer
Ovarian diseases
Ovaries
Ovary - pathology
Patient outcomes
PDCD4
PTEN
PTEN Phosphohydrolase - metabolism
PTEN protein
R&D
Rats, Wistar
Reproductive status
Research & development
RNA, Messenger - genetics
RNA, Messenger - metabolism
Rodents
Stem cell transplantation
Stem cells
Stem Cells - metabolism
Structure-function relationships
Transfection
Transplantation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF6kIPgi3k2tuoogCKE5yWaz-1h7oQrWUlvo27LXNtCTFHOOePrn_GvObNJwgqAvvmZnl2Rmdi6bmW8JeZdbLcBR-9RklU2ZC1kqHJ7EmVwaVurAY4f3lyN-eMY-n5fna1d9YU1YDw_cM27bydxozTNZBcus0aZwtuC-9MIGJ2PzdA4-by2ZijYY0nRwtsNvzJng2x2kXQKrLLHai83Sm4kjinj9f1rlNbc0LZlc80EHD8j9IXikO_1LPyR3fPOI3O2vk1w9Jr--gl76n0Npa0PbQOf1SZrPaN1QBGymeEzf0ToeJPiOtj8gU9Y4hiCyy--e6sZRdHUoLpwF-tFRPKulINz50K21SiGRB5Vw4wJOz8EuUbOifWU5-EN6vLe7x-KCx6f7R3TRwnqXtakX9AL84_Kq7XR8H6qv2-tF29XdE3J2sH-6e5gOFzSkFtKmRcohWis0OHhISmyQMbhBePvCCuN9cL5wFecuaOezUFnGrbO8ynhuPeLghOIp2Wjaxj8nVBpROsmdLBjENExrF6wrhbTSekgxfUKyW2kpO6CX4yUaVypmMYKrXsAKBKxQwOomIR_GKdc9dMffiD-iCoyEiLodH4AuqkEX1b90MSGvUYFU38I62g61g1GtyFlRJORtpEDkjQZLey70suvUp28nE6L3A1Fo4RutHjolgFMI1jWh3JpQgmmw0-FbTVaDaeoUROwcYpIikwl5Mw7jTCy3a3y7RJocwkgJskrIs17xR87kYPErEF9CqsmWmLBuOtLUlxG4vEQ0ukJs_g9evyD38riZRTpjW2QDNop_CfHhwryKpuA3uzhnQg
  priority: 102
  providerName: Directory of Open Access Journals
Title Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis
URI https://www.ncbi.nlm.nih.gov/pubmed/28807003
https://www.proquest.com/docview/1936284309
https://www.proquest.com/docview/1929109670
https://pubmed.ncbi.nlm.nih.gov/PMC5556338
https://doaj.org/article/d92baa6097fc4cbab3dc36e5e8cfd951
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgExIviDuBUQxCQkKKlubiJE9o3ToNJEpVNmnixXJ86SKtSVlaRPfn-Guc47hhEdJe-lAfW4nP_eT4MyHvQykycNTaL4JU-rEygZ8prMQVYV7EiTDMnvD-OmEnZ_GX8-TcFdwa11a5tYnWUKtaYo18HwINBqY0CvJPy58-3hqFX1fdFRp3yS5Cl6FUp-dpV2MJIFkHl-s-Zg4ztt9A8pVhryX2fMVD_7rnjixq__-2-YZz6jdO3vBExw_JAxdC0oOW54_IHV09JvfaSyU3T8ifbyCd-rdrcK1obeiinPnhkJYVRdhmisX6hpa2nKAbWv-CfFngGELJrq80FZWi6PCQaTgLpKShWLGlwOKFO7O18SGdB8FQ3QJKLMA60WJD2_5y8Ip0enR4FNsFp6fjCV3VsN5FWZQrOgcvub6sG2Gfh4plvVzVTdk8JWfH49PDE99d0-BLSJ5WPoOYLRLg5iE1kSa3IQ6C3EcyK7Q2SkcqZUwZoXRgUhkzqSRLAxZKjWg4JnpGdqq60i8IzYssUTlTeRRDZBMLoYxUSZbLXGpINLVHgi23uHQY5niVxiW3uUzGeMtgDgzmyGB-7ZGP3ZRlC-BxG_EIRaAjROxt-0d9NedOlbnKw0IIFuSpkbEsRBEpGTGd6EwaBQGrR96gAPH2IGtnQfgBxrZZGEeRR95ZCsTfqLDBZy7WTcM_f5_1iD44IlPDO0rhzkvATiFkV49yr0cJBkL2h7eSzJ2Bavg_dfLI224YZ2LTXaXrNdKEEEzmwCuPPG8Fv9uZEOx-CuzzSNpTid7W9Ueq8sLClyeISRdlL29_rFfkfmjVNPOH8R7ZARXQryH-WxUDq-QDsjsaT6azga2iwO9s9OMv4VFgbg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGEIIXxH8CgxkEQkKKlsapkzwgNNZNLdvKNDqpb8axnS7SmpSlBboPxVfgq3HnpGER0t72Wp-t1Pfnd2ef7wh54ysZAVAbN_FC5QY69dxI40lc4sdJ0JUpty-8D4e8fxJ8HnfHa-T36i0MplWubKI11LpQeEa-BY4GB1PKvPjj7LuLXaPwdnXVQqMSi32z_AkhW_lh0AP-vvX9vd3RTt-tuwq4Cnz9ucvBxWASUAk8aZXGFpGxJjtTUWJMqg3TIec6ldp4aagCrrTiocd9ZbB4S8pg3RvkJgCvh8FeOA6bMx2PMYT4-vK0E_GtEoK9CHM7Mccs6LgXLfizXQL-x4JLYNhO1LyEfHv3yN3aZaXblYzdJ2smf0BuVU0slw_Jny-gDeZXnVCb0yKl0-zY9Ts0yymWiaZ4OVDSzB5fmJIWPyA-lziGpWsX54bKXFMEWBQSnAVSWVI8IaYgUtP6jdjSzXINgqibBbScgjWkyZJW-eyAwvSot9ML7IJHo90hnRew3mmWZHM6AVRenBWltN9D5ayYzYsyKx-Rk2th4GOynhe5eUponERdHXMdswA8qUBKnSrdjWIVKwOBrXGIt-KWUHXNdGzdcSZs7BRxUTFYAIMFMlhcOOR9M2VWFQy5ivgTikBDiLW-7Q_F-UTUpkPo2E-k5F4cpipQiUyYVoybrolUqsFBdsgmCpCoHs42Fktsoy8d-QFjDnltKbDeR44JRRO5KEsx-HrcInpXE6UF_Ecl6_cZsFNYIqxFudGiBIOk2sMrSRa1QSzFP_V1yKtmGGdikl9uigXS-OC8xsArhzypBL_ZGR9wJgT2OSRsqURr69ojeXZqy6V3sQYei55d_Vmb5HZ_dHggDgbD_efkjm9VNnI7wQZZB3UwL8D3nCcvrcJT8u26Lcxfsx6ZiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overexpression+of+miR-21+in+stem+cells+improves+ovarian+structure+and+function+in+rats+with+chemotherapy-induced+ovarian+damage+by+targeting+PDCD4+and+PTEN+to+inhibit+granulosa+cell+apoptosis&rft.jtitle=Stem+cell+research+%26+therapy&rft.au=Fu%2C+Xiafei&rft.au=He%2C+Yuanli&rft.au=Wang%2C+Xuefeng&rft.au=Peng%2C+Dongxian&rft.date=2017-08-14&rft.pub=BioMed+Central+Ltd&rft.issn=1757-6512&rft.eissn=1757-6512&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs13287-017-0641-z&rft.externalDocID=A511282433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-6512&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-6512&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-6512&client=summon