Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum
Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, a...
Saved in:
Published in | Stem cell research & therapy Vol. 7; no. 1; p. 84 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
13.06.2016
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic potential.
The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group. Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally, reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors (ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after initiation of the cardiac differentiation.
The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44, CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the transduction of seven reprogramming factors, with the highest expression in the epicardial ADSCs, as compared with the other ADSC subtypes and fibroblasts.
Human epicardial ADSCs revealed a higher cardiomyogenic potential as compared with the pericardial and omental ADSC subtypes as well as the fibroblast counterparts. Epicardial ADSCs may thus serve as the valuable subject for further studies on more effective methods of adult stem cell differentiation toward cardiomyocytes. |
---|---|
AbstractList | Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic potential. The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group. Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally, reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors (ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after initiation of the cardiac differentiation. The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44, CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the transduction of seven reprogramming factors, with the highest expression in the epicardial ADSCs, as compared with the other ADSC subtypes and fibroblasts. Human epicardial ADSCs revealed a higher cardiomyogenic potential as compared with the pericardial and omental ADSC subtypes as well as the fibroblast counterparts. Epicardial ADSCs may thus serve as the valuable subject for further studies on more effective methods of adult stem cell differentiation toward cardiomyocytes. Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic potential. The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group. Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally, reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors (ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after initiation of the cardiac differentiation. The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44, CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the transduction of seven reprogramming factors, with the highest expression in the epicardial ADSCs, as compared with the other ADSC subtypes and fibroblasts. Human epicardial ADSCs revealed a higher cardiomyogenic potential as compared with the pericardial and omental ADSC subtypes as well as the fibroblast counterparts. Epicardial ADSCs may thus serve as the valuable subject for further studies on more effective methods of adult stem cell differentiation toward cardiomyocytes. Background Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic potential. Methods The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group. Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally, reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors (ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after initiation of the cardiac differentiation. Results The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44, CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the transduction of seven reprogramming factors, with the highest expression in the epicardial ADSCs, as compared with the other ADSC subtypes and fibroblasts. Conclusions Human epicardial ADSCs revealed a higher cardiomyogenic potential as compared with the pericardial and omental ADSC subtypes as well as the fibroblast counterparts. Epicardial ADSCs may thus serve as the valuable subject for further studies on more effective methods of adult stem cell differentiation toward cardiomyocytes. Background Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic potential. Methods The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group. Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally, reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors (ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after initiation of the cardiac differentiation. Results The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44, CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the transduction of seven reprogramming factors, with the highest expression in the epicardial ADSCs, as compared with the other ADSC subtypes and fibroblasts. Conclusions Human epicardial ADSCs revealed a higher cardiomyogenic potential as compared with the pericardial and omental ADSC subtypes as well as the fibroblast counterparts. Epicardial ADSCs may thus serve as the valuable subject for further studies on more effective methods of adult stem cell differentiation toward cardiomyocytes. Keywords: Adipose-derived stem cells, Mesenchymal stem cells, Reprogramming, Cardiogenesis, Adipose tissue, Epicardium, Pericardium, Cardiomyocytes, Fibroblasts, Alkaline phosphatase |
ArticleNumber | 84 |
Audience | Academic |
Author | Patlolla, Bhagat Zhuge, Yan Wystrychowski, Wojciech Beygui, Ramin E. Neofytou, Evgenios Robbins, Robert C. |
Author_xml | – sequence: 1 givenname: Wojciech surname: Wystrychowski fullname: Wystrychowski, Wojciech – sequence: 2 givenname: Bhagat surname: Patlolla fullname: Patlolla, Bhagat – sequence: 3 givenname: Yan surname: Zhuge fullname: Zhuge, Yan – sequence: 4 givenname: Evgenios surname: Neofytou fullname: Neofytou, Evgenios – sequence: 5 givenname: Robert C. surname: Robbins fullname: Robbins, Robert C. – sequence: 6 givenname: Ramin E. surname: Beygui fullname: Beygui, Ramin E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27296220$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kl9r1TAchoNM3Jz7AN5IQBAGdiZpmrY3whhTBxPBP9chJ_n1nIwmOTbptN_edGcbp6LNRZvmeZ-G9H2ODnzwgNBLSs4obcS7SEvW1AWhoiAlL4vpCTqidVUXoqLsYO_5EJ3EeEPyVZaECP4MHbKatYIxcoR-fR77ZLchgdcTVt5grQZjg5vCGrzV-G4pWdXj0OHN6JTHyuRAhMLAYG_B4JjAYQ19H3E3BIdha-8ko3uLt5l5nMz64LJudC_Q0071EU7u78fox4fL7xefiusvH68uzq8LLViVCs5VJ0hZtSUFvqprgE6rVhvBmVlVmjAuQInWGN6ptuFKV2UpVm2rdc5VipTH6P3Oux1XDozOHx9UL7eDdWqYZFBWLle83ch1uJW8JTVrqix4fS8Yws8RYpI3YRx83rOkDSFNLUi1R61VD9L6LmSZdjZqec5F09QtZTN19g8qDwPO6vx7O5vfLwKni0BmEvxOazXGKK--fV2yb_bYDag-bWLox2SDj0vw1f6RPJ7FQykyUO8APYQYB-iktknNnrxd20tK5NxAuWugzA2UcwPllJP0r-SD_P-ZPzKb3mw |
CitedBy_id | crossref_primary_10_1007_s12015_020_10097_4 crossref_primary_10_1089_scd_2018_0232 crossref_primary_10_3390_pharmaceutics14112338 crossref_primary_10_1016_j_trsl_2022_10_004 crossref_primary_10_1016_j_addr_2020_04_003 crossref_primary_10_18632_aging_102491 crossref_primary_10_1016_j_addr_2017_09_005 crossref_primary_10_1186_s13287_019_1460_1 crossref_primary_10_3390_ani12162049 crossref_primary_10_3390_ijms25073901 crossref_primary_10_1038_s41598_019_47224_2 crossref_primary_10_1089_scd_2021_0297 crossref_primary_10_1038_s42003_021_02677_y crossref_primary_10_3390_ani13081352 crossref_primary_10_1016_j_molimm_2017_03_020 crossref_primary_10_1139_cjpp_2023_0282 crossref_primary_10_1002_biof_1717 crossref_primary_10_3390_cells9020504 crossref_primary_10_1371_journal_pone_0187118 crossref_primary_10_1016_j_bbadis_2024_167223 crossref_primary_10_1155_2020_2830565 crossref_primary_10_3390_ijms21249598 crossref_primary_10_3389_fcvm_2021_709079 crossref_primary_10_1002_cbf_3610 crossref_primary_10_33988_auvfd_682682 crossref_primary_10_1111_jcmm_14456 crossref_primary_10_1186_s40035_021_00238_1 crossref_primary_10_1089_scd_2016_0334 crossref_primary_10_1093_burnst_tkac028 crossref_primary_10_1186_s13287_021_02509_0 crossref_primary_10_1063_5_0038101 crossref_primary_10_1016_j_bioactmat_2023_03_023 crossref_primary_10_1089_ten_teb_2023_0049 crossref_primary_10_3390_ijms25073583 crossref_primary_10_1089_jop_2023_0154 crossref_primary_10_1186_s40824_023_00419_1 |
Cites_doi | 10.1038/sj.cr.7310116 10.1038/nature07060 10.1016/j.stem.2011.10.002 10.1161/CIR.0000000000000152 10.1161/01.CIR.0000151812.86142.45 10.1510/icvts.2007.157875 10.1186/1471-2407-14-90 10.1210/jc.2009-0571 10.1016/j.ydbio.2006.03.033 10.1016/j.scr.2007.06.001 10.1038/ncpcardio0319 10.1159/000474568 10.1001/jama.2012.25321 10.1172/JCI5298 10.1089/scd.2010.0519 10.1242/dev.124.12.2387 10.3390/jdb2020117 10.1161/ATVBAHA.109.191643 10.1016/j.ahj.2008.11.011 10.1016/j.carpath.2004.08.005 10.2337/dc10-0904 10.1016/j.scr.2014.06.005 10.1161/01.CIR.92.3.334 10.1016/S0140-6736(05)67861-0 10.1038/nature11044 10.1186/1477-5751-11-3 10.1016/j.ydbio.2004.08.008 10.1359/jbmr.1999.14.7.1115 10.1371/journal.pone.0115963 10.1016/0378-1119(94)00893-W 10.1016/S0002-9440(10)62041-X 10.1080/07853890500422982 10.1080/14653240600855905 10.1007/978-1-60327-169-1_7 10.1038/ncb1542 10.1186/s12860-014-0042-4 10.1128/MCB.14.11.7517 10.1161/CIRCULATIONAHA.111.047480 10.1016/j.cell.2010.07.002 10.3324/haematol.13699 10.1038/nature02446 10.1161/JAHA.113.000253 10.1002/stem.1285 10.1007/s00018-007-6522-3 10.1186/scrt481 10.1172/JCI45529 10.1038/nature11682 10.1016/j.ydbio.2006.03.036 10.1002/emmm.201201737 10.1016/0735-1097(93)90407-R 10.1016/S0140-6736(12)60195-0 10.1161/CIRCRESAHA.112.300567 10.1101/gad.11.8.1048 10.1016/j.jacc.2007.07.054 10.1126/science.1164680 10.1016/j.bbrc.2006.01.181 10.3109/14653249.2012.677822 10.1096/fj.06-6769com 10.1177/153537020422900706 10.1016/j.mad.2007.12.002 10.1073/pnas.1408233111 10.1038/nature06969 10.1172/JCI23769 10.1016/S0140-6736(11)61590-0 10.1096/fj.08-126946 10.1016/j.stemcr.2013.07.005 10.1073/pnas.1214608110 10.1016/j.ijcard.2007.11.068 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2016 BioMed Central Ltd. Copyright BioMed Central 2016 The Author(s). 2016 |
Copyright_xml | – notice: COPYRIGHT 2016 BioMed Central Ltd. – notice: Copyright BioMed Central 2016 – notice: The Author(s). 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 5PM |
DOI | 10.1186/s13287-016-0343-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1757-6512 |
ExternalDocumentID | PMC4907285 4105961111 A468879125 27296220 10_1186_s13287_016_0343_y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: KOLUMB Fellowship Program – fundername: ; grantid: 12POST12050363; 14GRNT18970018 |
GroupedDBID | --- 0R~ 4.4 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFS ACIHN ACJQM ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK E3Z EBD EBLON EBS EJD EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR IHW INH INR ISR ITC KQ8 LK8 M1P M7P M~E O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SBL SOJ SV3 TUS UKHRP -56 -5G -BR 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 5PM |
ID | FETCH-LOGICAL-c625t-44af6035931e4b77eefca9cd642db5c0246ea69dd4fa984ac5336b99ccaf65a03 |
IEDL.DBID | 7X7 |
ISSN | 1757-6512 |
IngestDate | Thu Aug 21 14:05:23 EDT 2025 Fri Jul 25 11:54:46 EDT 2025 Tue Jun 17 22:05:06 EDT 2025 Tue Jun 10 21:05:15 EDT 2025 Fri Jun 27 05:47:24 EDT 2025 Thu May 22 21:24:15 EDT 2025 Thu Jan 02 22:23:17 EST 2025 Thu Apr 24 22:57:21 EDT 2025 Tue Jul 01 00:43:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Alkaline phosphatase Adipose tissue Reprogramming Epicardium Fibroblasts Cardiomyocytes Adipose-derived stem cells Cardiogenesis Mesenchymal stem cells Pericardium |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c625t-44af6035931e4b77eefca9cd642db5c0246ea69dd4fa984ac5336b99ccaf65a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/1800876055?pq-origsite=%requestingapplication% |
PMID | 27296220 |
PQID | 1800876055 |
PQPubID | 2040189 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4907285 proquest_journals_1800876055 gale_infotracmisc_A468879125 gale_infotracacademiconefile_A468879125 gale_incontextgauss_ISR_A468879125 gale_healthsolutions_A468879125 pubmed_primary_27296220 crossref_citationtrail_10_1186_s13287_016_0343_y crossref_primary_10_1186_s13287_016_0343_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-13 |
PublicationDateYYYYMMDD | 2016-06-13 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Stem cell research & therapy |
PublicationTitleAlternate | Stem Cell Res Ther |
PublicationYear | 2016 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | P Antonitsis (343_CR36) 2007; 6 LW van Laake (343_CR12) 2007; 1 Y Yamada (343_CR31) 2006; 342 HS Ip (343_CR53) 1994; 14 WC Lee (343_CR58) 2009; 133 G Iacobellis (343_CR26) 2010; 33 WY Huang (343_CR52) 1995; 155 WKZW Safwani (343_CR60) 2012; 11 CW Chen (343_CR49) 2013; 31 Z Chen (343_CR47) 2014; 14 HS Sacks (343_CR30) 2009; 94 Z Liu (343_CR32) 2010; 2010 MA Haniffa (343_CR63) 2009; 94 G Iacobellis (343_CR25) 2005; 2 EM Zeisberg (343_CR54) 2005; 115 B Zhou (343_CR70) 2011; 121 JJ Chong (343_CR42) 2011; 9 L Qian (343_CR62) 2012; 485 NS Asli (343_CR27) 2014; 2 S Makino (343_CR33) 1999; 103 O Caspi (343_CR10) 2007; 50 EM Winter (343_CR29) 2007; 64 BP Kruithof (343_CR55) 2006; 295 V Schejbal (343_CR66) 1989; 43 BC Knollmann (343_CR22) 2013; 112 P Hematti (343_CR64) 2012; 14 J Schlueter (343_CR56) 2006; 295 B Zhou (343_CR57) 2008; 454 S Lee (343_CR43) 2014; 15 N Naftali-Shani (343_CR69) 2013; 2 MC Hofmann (343_CR48) 1993; 23 B Balana (343_CR59) 2006; 16 D Corradi (343_CR65) 2004; 13 343_CR34 M Mollova (343_CR8) 2013; 110 C Grepin (343_CR40) 1997; 124 GV Silva (343_CR19) 2005; 111 WT Pu (343_CR38) 2004; 275 D Mozaffarian (343_CR1) 2015; 131 OS Beane (343_CR46) 2014; 9 M Corselli (343_CR51) 2010; 30 O Bergmann (343_CR5) 2009; 324 SR Ali (343_CR7) 2014; 111 TD Miller (343_CR3) 1995; 92 CL Cai (343_CR28) 2008; 454 J Nussbaum (343_CR13) 2007; 21 WD Rosamond (343_CR2) 2012; 125 SE Senyo (343_CR6) 2013; 493 G D'Ippolito (343_CR45) 1999; 14 K Malliaras (343_CR9) 2013; 5 JD Fu (343_CR24) 2013; 1 RR Makkar (343_CR17) 2012; 379 M Ieda (343_CR41) 2010; 142 R Bolli (343_CR18) 2011; 378 S Janssens (343_CR15) 2006; 367 JJ Chong (343_CR23) 2014; 13 X Wang (343_CR68) 2014; 5 MA Laflamme (343_CR11) 2005; 167 W Xu (343_CR61) 2004; 229 CE Murry (343_CR21) 2004; 428 K Yoshida (343_CR4) 1993; 22 CT Kuo (343_CR39) 1997; 11 M Dominici (343_CR37) 2006; 8 Q Qian (343_CR35) 2012; 21 T Dill (343_CR16) 2009; 157 JM Hare (343_CR14) 2012; 308 KH Grinnemo (343_CR20) 2006; 38 A Stolzing (343_CR44) 2008; 129 S Baglioni (343_CR67) 2009; 23 A Dellavalle (343_CR50) 2007; 9 21476855 - Stem Cells Dev. 2012 Jan;21(1):67-75 22136928 - Cell Stem Cell. 2011 Dec 2;9(6):527-40 23569106 - Circ Res. 2013 Mar 15;112(6):969-76; discussion 976 9136932 - Genes Dev. 1997 Apr 15;11(8):1048-60 23222518 - Nature. 2013 Jan 17;493(7432):433-6 19567523 - J Clin Endocrinol Metab. 2009 Sep;94(9):3611-5 18568026 - Nature. 2008 Jul 3;454(7200):109-13 10404011 - J Bone Miner Res. 1999 Jul;14(7):1115-22 9199365 - Development. 1997 Jun;124(12):2387-95 23255322 - EMBO Mol Med. 2013 Feb;5(2):191-209 22420957 - Circulation. 2012 Apr 17;125(15):1848-57 25541697 - PLoS One. 2014 Dec 26;9(12):e115963 16127147 - Am J Pathol. 2005 Sep;167(3):663-71 19109217 - Haematologica. 2009 Feb;94(2):258-63 22088800 - Lancet. 2011 Nov 26;378(9806):1847-57 16923606 - Cytotherapy. 2006;8(4):315-7 7935467 - Mol Cell Biol. 1994 Nov;14(11):7517-26 20691899 - Cell. 2010 Aug 6;142(3):375-86 25520374 - Circulation. 2015 Jan 27;131(4):e29-322 24528676 - BMC Cancer. 2014 Feb 14;14:90 17980256 - J Am Coll Cardiol. 2007 Nov 6;50(19):1884-93 15642764 - Circulation. 2005 Jan 18;111(2):150-6 15229356 - Exp Biol Med (Maywood). 2004 Jul;229(7):623-31 18201779 - Int J Cardiol. 2009 Apr 17;133(3):399-401 23302686 - Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1446-51 10074487 - J Clin Invest. 1999 Mar;103(5):697-705 18241911 - Mech Ageing Dev. 2008 Mar;129(3):163-73 24319660 - Stem Cell Reports. 2013 Aug 22;1(3):235-47 20805269 - Diabetes Care. 2010 Sep;33(9):e127; author reply e128 19342590 - Science. 2009 Apr 3;324(5923):98-102 23117550 - JAMA. 2012 Dec 12;308(22):2369-79 8409073 - J Am Coll Cardiol. 1993 Oct;22(4):984-97 19584303 - FASEB J. 2009 Oct;23(10):3494-505 17160070 - Cell Res. 2006 Dec;16(12):949-60 2813303 - Pneumologie. 1989 Sep;43(9):490-9 20453168 - Arterioscler Thromb Vasc Biol. 2010 Jun;30(6):1104-9 16488397 - Biochem Biophys Res Commun. 2006 Apr 7;342(2):662-70 22336189 - Lancet. 2012 Mar 10;379(9819):895-904 25420887 - BMC Cell Biol. 2014 Nov 25;15:42 7634446 - Circulation. 1995 Aug 1;92 (3):334-41 16753139 - Dev Biol. 2006 Jul 15;295(2):507-22 23165704 - Stem Cells. 2013 Feb;31(2):305-16 7721094 - Gene. 1995 Apr 3;155(2):219-23 16581700 - Ann Med. 2006;38(2):144-53 19383383 - Stem Cell Res. 2007 Oct;1(1):9-24 8386657 - Eur Urol. 1993;23(1):38-44; discussion 45 16413875 - Lancet. 2006 Jan 14;367(9505):113-21 21505261 - J Clin Invest. 2011 May;121(5):1894-904 22522929 - Nature. 2012 May 31;485(7400):593-8 17293855 - Nat Cell Biol. 2007 Mar;9(3):255-67 19249426 - Am Heart J. 2009 Mar;157(3):541-7 24080908 - J Am Heart Assoc. 2013 Sep 30;2(5):e000253 22221649 - J Negat Results Biomed. 2012 Jan 06;11:3 25087896 - Stem Cell Res. 2014 Nov;13(3 Pt B):654-65 24876275 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8850-5 16677627 - Dev Biol. 2006 Jul 15;295(2):546-58 16186852 - Nat Clin Pract Cardiovasc Med. 2005 Oct;2(10 ):536-43 15034593 - Nature. 2004 Apr 8;428(6983):664-8 15556777 - Cardiovasc Pathol. 2004 Nov-Dec;13(6):313-6 22458957 - Cytotherapy. 2012 May;14(5):516-21 25084810 - Stem Cell Res Ther. 2014 Aug 01;5(4):92 15464586 - Dev Biol. 2004 Nov 1;275(1):235-44 17670726 - Interact Cardiovasc Thorac Surg. 2007 Oct;6(5):593-7 17284483 - FASEB J. 2007 May;21(7):1345-57 18480752 - Nature. 2008 Jul 3;454(7200):104-8 20414349 - J Biomed Biotechnol. 2010;2010:104296 15902305 - J Clin Invest. 2005 Jun;115(6):1522-31 17380310 - Cell Mol Life Sci. 2007 Mar;64(6):692-703 |
References_xml | – volume: 16 start-page: 949 issue: 12 year: 2006 ident: 343_CR59 publication-title: Cell Res doi: 10.1038/sj.cr.7310116 – volume: 454 start-page: 109 issue: 7200 year: 2008 ident: 343_CR57 publication-title: Nature doi: 10.1038/nature07060 – volume: 9 start-page: 527 issue: 6 year: 2011 ident: 343_CR42 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.10.002 – volume: 131 start-page: e29 issue: 4 year: 2015 ident: 343_CR1 publication-title: Circulation doi: 10.1161/CIR.0000000000000152 – volume: 111 start-page: 150 issue: 2 year: 2005 ident: 343_CR19 publication-title: Circulation doi: 10.1161/01.CIR.0000151812.86142.45 – volume: 6 start-page: 593 issue: 5 year: 2007 ident: 343_CR36 publication-title: Interact Cardiovasc Thorac Surg doi: 10.1510/icvts.2007.157875 – volume: 14 start-page: 90 year: 2014 ident: 343_CR47 publication-title: BMC Cancer doi: 10.1186/1471-2407-14-90 – volume: 94 start-page: 3611 issue: 9 year: 2009 ident: 343_CR30 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2009-0571 – volume: 295 start-page: 507 issue: 2 year: 2006 ident: 343_CR55 publication-title: Dev Biol doi: 10.1016/j.ydbio.2006.03.033 – volume: 1 start-page: 9 issue: 1 year: 2007 ident: 343_CR12 publication-title: Stem Cell Res doi: 10.1016/j.scr.2007.06.001 – volume: 2 start-page: 536 issue: 10 year: 2005 ident: 343_CR25 publication-title: Nat Clin Pract Cardiovasc Med doi: 10.1038/ncpcardio0319 – volume: 23 start-page: 38 issue: 1 year: 1993 ident: 343_CR48 publication-title: Eur Urol doi: 10.1159/000474568 – volume: 308 start-page: 2369 issue: 22 year: 2012 ident: 343_CR14 publication-title: JAMA doi: 10.1001/jama.2012.25321 – volume: 103 start-page: 697 issue: 5 year: 1999 ident: 343_CR33 publication-title: J Clin Invest doi: 10.1172/JCI5298 – volume: 21 start-page: 67 issue: 1 year: 2012 ident: 343_CR35 publication-title: Stem Cells Dev doi: 10.1089/scd.2010.0519 – volume: 124 start-page: 2387 issue: 12 year: 1997 ident: 343_CR40 publication-title: Development doi: 10.1242/dev.124.12.2387 – volume: 2 start-page: 117 issue: 2 year: 2014 ident: 343_CR27 publication-title: J Dev Biol doi: 10.3390/jdb2020117 – volume: 30 start-page: 1104 issue: 6 year: 2010 ident: 343_CR51 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.109.191643 – volume: 157 start-page: 541 issue: 3 year: 2009 ident: 343_CR16 publication-title: Am Heart J doi: 10.1016/j.ahj.2008.11.011 – volume: 13 start-page: 313 issue: 6 year: 2004 ident: 343_CR65 publication-title: Cardiovasc Pathol doi: 10.1016/j.carpath.2004.08.005 – volume: 33 issue: 9 year: 2010 ident: 343_CR26 publication-title: Diabetes Care doi: 10.2337/dc10-0904 – volume: 13 start-page: 654 issue: 3 Pt B year: 2014 ident: 343_CR23 publication-title: Stem Cell Res doi: 10.1016/j.scr.2014.06.005 – volume: 92 start-page: 334 issue: 3 year: 1995 ident: 343_CR3 publication-title: Circulation doi: 10.1161/01.CIR.92.3.334 – volume: 367 start-page: 113 issue: 9505 year: 2006 ident: 343_CR15 publication-title: Lancet doi: 10.1016/S0140-6736(05)67861-0 – volume: 485 start-page: 593 issue: 7400 year: 2012 ident: 343_CR62 publication-title: Nature doi: 10.1038/nature11044 – volume: 11 start-page: 3 year: 2012 ident: 343_CR60 publication-title: J Negat Results Biomed doi: 10.1186/1477-5751-11-3 – volume: 275 start-page: 235 issue: 1 year: 2004 ident: 343_CR38 publication-title: Dev Biol doi: 10.1016/j.ydbio.2004.08.008 – volume: 2010 start-page: 104296 year: 2010 ident: 343_CR32 publication-title: J Biomed Biotechnol – volume: 14 start-page: 1115 issue: 7 year: 1999 ident: 343_CR45 publication-title: J Bone Miner Res doi: 10.1359/jbmr.1999.14.7.1115 – volume: 9 issue: 12 year: 2014 ident: 343_CR46 publication-title: PLoS One doi: 10.1371/journal.pone.0115963 – volume: 155 start-page: 219 issue: 2 year: 1995 ident: 343_CR52 publication-title: Gene doi: 10.1016/0378-1119(94)00893-W – volume: 167 start-page: 663 issue: 3 year: 2005 ident: 343_CR11 publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)62041-X – volume: 38 start-page: 144 issue: 2 year: 2006 ident: 343_CR20 publication-title: Ann Med doi: 10.1080/07853890500422982 – volume: 8 start-page: 315 issue: 4 year: 2006 ident: 343_CR37 publication-title: Cytotherapy doi: 10.1080/14653240600855905 – ident: 343_CR34 doi: 10.1007/978-1-60327-169-1_7 – volume: 9 start-page: 255 issue: 3 year: 2007 ident: 343_CR50 publication-title: Nat Cell Biol doi: 10.1038/ncb1542 – volume: 15 start-page: 42 year: 2014 ident: 343_CR43 publication-title: BMC Cell Biol doi: 10.1186/s12860-014-0042-4 – volume: 14 start-page: 7517 issue: 11 year: 1994 ident: 343_CR53 publication-title: Mol Cell Biol doi: 10.1128/MCB.14.11.7517 – volume: 125 start-page: 1848 issue: 15 year: 2012 ident: 343_CR2 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.047480 – volume: 142 start-page: 375 issue: 3 year: 2010 ident: 343_CR41 publication-title: Cell doi: 10.1016/j.cell.2010.07.002 – volume: 94 start-page: 258 issue: 2 year: 2009 ident: 343_CR63 publication-title: Haematologica doi: 10.3324/haematol.13699 – volume: 428 start-page: 664 issue: 6983 year: 2004 ident: 343_CR21 publication-title: Nature doi: 10.1038/nature02446 – volume: 2 issue: 5 year: 2013 ident: 343_CR69 publication-title: J Am Heart Assoc doi: 10.1161/JAHA.113.000253 – volume: 31 start-page: 305 issue: 2 year: 2013 ident: 343_CR49 publication-title: Stem Cells doi: 10.1002/stem.1285 – volume: 64 start-page: 692 issue: 6 year: 2007 ident: 343_CR29 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-007-6522-3 – volume: 5 start-page: 92 issue: 4 year: 2014 ident: 343_CR68 publication-title: Stem Cell Res Ther doi: 10.1186/scrt481 – volume: 121 start-page: 1894 issue: 5 year: 2011 ident: 343_CR70 publication-title: J Clin Invest doi: 10.1172/JCI45529 – volume: 493 start-page: 433 issue: 7432 year: 2013 ident: 343_CR6 publication-title: Nature doi: 10.1038/nature11682 – volume: 295 start-page: 546 issue: 2 year: 2006 ident: 343_CR56 publication-title: Dev Biol doi: 10.1016/j.ydbio.2006.03.036 – volume: 5 start-page: 191 issue: 2 year: 2013 ident: 343_CR9 publication-title: EMBO Mol Med doi: 10.1002/emmm.201201737 – volume: 22 start-page: 984 issue: 4 year: 1993 ident: 343_CR4 publication-title: J Am Coll Cardiol doi: 10.1016/0735-1097(93)90407-R – volume: 379 start-page: 895 issue: 9819 year: 2012 ident: 343_CR17 publication-title: Lancet doi: 10.1016/S0140-6736(12)60195-0 – volume: 112 start-page: 969 issue: 6 year: 2013 ident: 343_CR22 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.112.300567 – volume: 11 start-page: 1048 issue: 8 year: 1997 ident: 343_CR39 publication-title: Genes Dev doi: 10.1101/gad.11.8.1048 – volume: 50 start-page: 1884 issue: 19 year: 2007 ident: 343_CR10 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2007.07.054 – volume: 324 start-page: 98 issue: 5923 year: 2009 ident: 343_CR5 publication-title: Science doi: 10.1126/science.1164680 – volume: 342 start-page: 662 issue: 2 year: 2006 ident: 343_CR31 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2006.01.181 – volume: 14 start-page: 516 issue: 5 year: 2012 ident: 343_CR64 publication-title: Cytotherapy doi: 10.3109/14653249.2012.677822 – volume: 21 start-page: 1345 issue: 7 year: 2007 ident: 343_CR13 publication-title: FASEB J doi: 10.1096/fj.06-6769com – volume: 229 start-page: 623 issue: 7 year: 2004 ident: 343_CR61 publication-title: Exp Biol Med doi: 10.1177/153537020422900706 – volume: 129 start-page: 163 issue: 3 year: 2008 ident: 343_CR44 publication-title: Mech Ageing Dev doi: 10.1016/j.mad.2007.12.002 – volume: 111 start-page: 8850 issue: 24 year: 2014 ident: 343_CR7 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1408233111 – volume: 43 start-page: 490 issue: 9 year: 1989 ident: 343_CR66 publication-title: Pneumologie – volume: 454 start-page: 104 issue: 7200 year: 2008 ident: 343_CR28 publication-title: Nature doi: 10.1038/nature06969 – volume: 115 start-page: 1522 issue: 6 year: 2005 ident: 343_CR54 publication-title: J Clin Invest doi: 10.1172/JCI23769 – volume: 378 start-page: 1847 issue: 9806 year: 2011 ident: 343_CR18 publication-title: Lancet doi: 10.1016/S0140-6736(11)61590-0 – volume: 23 start-page: 3494 issue: 10 year: 2009 ident: 343_CR67 publication-title: FASEB J doi: 10.1096/fj.08-126946 – volume: 1 start-page: 235 issue: 3 year: 2013 ident: 343_CR24 publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2013.07.005 – volume: 110 start-page: 1446 issue: 4 year: 2013 ident: 343_CR8 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1214608110 – volume: 133 start-page: 399 issue: 3 year: 2009 ident: 343_CR58 publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2007.11.068 – reference: 17980256 - J Am Coll Cardiol. 2007 Nov 6;50(19):1884-93 – reference: 22522929 - Nature. 2012 May 31;485(7400):593-8 – reference: 24876275 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8850-5 – reference: 15902305 - J Clin Invest. 2005 Jun;115(6):1522-31 – reference: 10404011 - J Bone Miner Res. 1999 Jul;14(7):1115-22 – reference: 15034593 - Nature. 2004 Apr 8;428(6983):664-8 – reference: 19109217 - Haematologica. 2009 Feb;94(2):258-63 – reference: 2813303 - Pneumologie. 1989 Sep;43(9):490-9 – reference: 21505261 - J Clin Invest. 2011 May;121(5):1894-904 – reference: 23222518 - Nature. 2013 Jan 17;493(7432):433-6 – reference: 19584303 - FASEB J. 2009 Oct;23(10):3494-505 – reference: 8409073 - J Am Coll Cardiol. 1993 Oct;22(4):984-97 – reference: 23569106 - Circ Res. 2013 Mar 15;112(6):969-76; discussion 976 – reference: 23302686 - Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1446-51 – reference: 19249426 - Am Heart J. 2009 Mar;157(3):541-7 – reference: 23165704 - Stem Cells. 2013 Feb;31(2):305-16 – reference: 17160070 - Cell Res. 2006 Dec;16(12):949-60 – reference: 16923606 - Cytotherapy. 2006;8(4):315-7 – reference: 7634446 - Circulation. 1995 Aug 1;92 (3):334-41 – reference: 22458957 - Cytotherapy. 2012 May;14(5):516-21 – reference: 24528676 - BMC Cancer. 2014 Feb 14;14:90 – reference: 15642764 - Circulation. 2005 Jan 18;111(2):150-6 – reference: 25520374 - Circulation. 2015 Jan 27;131(4):e29-322 – reference: 9136932 - Genes Dev. 1997 Apr 15;11(8):1048-60 – reference: 17380310 - Cell Mol Life Sci. 2007 Mar;64(6):692-703 – reference: 16581700 - Ann Med. 2006;38(2):144-53 – reference: 20805269 - Diabetes Care. 2010 Sep;33(9):e127; author reply e128 – reference: 20691899 - Cell. 2010 Aug 6;142(3):375-86 – reference: 21476855 - Stem Cells Dev. 2012 Jan;21(1):67-75 – reference: 16127147 - Am J Pathol. 2005 Sep;167(3):663-71 – reference: 22420957 - Circulation. 2012 Apr 17;125(15):1848-57 – reference: 25541697 - PLoS One. 2014 Dec 26;9(12):e115963 – reference: 17670726 - Interact Cardiovasc Thorac Surg. 2007 Oct;6(5):593-7 – reference: 18480752 - Nature. 2008 Jul 3;454(7200):104-8 – reference: 24319660 - Stem Cell Reports. 2013 Aug 22;1(3):235-47 – reference: 8386657 - Eur Urol. 1993;23(1):38-44; discussion 45 – reference: 16488397 - Biochem Biophys Res Commun. 2006 Apr 7;342(2):662-70 – reference: 18241911 - Mech Ageing Dev. 2008 Mar;129(3):163-73 – reference: 25084810 - Stem Cell Res Ther. 2014 Aug 01;5(4):92 – reference: 7935467 - Mol Cell Biol. 1994 Nov;14(11):7517-26 – reference: 20414349 - J Biomed Biotechnol. 2010;2010:104296 – reference: 19567523 - J Clin Endocrinol Metab. 2009 Sep;94(9):3611-5 – reference: 22221649 - J Negat Results Biomed. 2012 Jan 06;11:3 – reference: 17284483 - FASEB J. 2007 May;21(7):1345-57 – reference: 25087896 - Stem Cell Res. 2014 Nov;13(3 Pt B):654-65 – reference: 18568026 - Nature. 2008 Jul 3;454(7200):109-13 – reference: 9199365 - Development. 1997 Jun;124(12):2387-95 – reference: 25420887 - BMC Cell Biol. 2014 Nov 25;15:42 – reference: 15464586 - Dev Biol. 2004 Nov 1;275(1):235-44 – reference: 24080908 - J Am Heart Assoc. 2013 Sep 30;2(5):e000253 – reference: 17293855 - Nat Cell Biol. 2007 Mar;9(3):255-67 – reference: 23117550 - JAMA. 2012 Dec 12;308(22):2369-79 – reference: 16677627 - Dev Biol. 2006 Jul 15;295(2):546-58 – reference: 16186852 - Nat Clin Pract Cardiovasc Med. 2005 Oct;2(10 ):536-43 – reference: 19342590 - Science. 2009 Apr 3;324(5923):98-102 – reference: 16753139 - Dev Biol. 2006 Jul 15;295(2):507-22 – reference: 16413875 - Lancet. 2006 Jan 14;367(9505):113-21 – reference: 23255322 - EMBO Mol Med. 2013 Feb;5(2):191-209 – reference: 22136928 - Cell Stem Cell. 2011 Dec 2;9(6):527-40 – reference: 15229356 - Exp Biol Med (Maywood). 2004 Jul;229(7):623-31 – reference: 7721094 - Gene. 1995 Apr 3;155(2):219-23 – reference: 20453168 - Arterioscler Thromb Vasc Biol. 2010 Jun;30(6):1104-9 – reference: 22336189 - Lancet. 2012 Mar 10;379(9819):895-904 – reference: 18201779 - Int J Cardiol. 2009 Apr 17;133(3):399-401 – reference: 15556777 - Cardiovasc Pathol. 2004 Nov-Dec;13(6):313-6 – reference: 10074487 - J Clin Invest. 1999 Mar;103(5):697-705 – reference: 22088800 - Lancet. 2011 Nov 26;378(9806):1847-57 – reference: 19383383 - Stem Cell Res. 2007 Oct;1(1):9-24 |
SSID | ssj0000330064 |
Score | 2.3027892 |
Snippet | Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI... Background Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 84 |
SubjectTerms | Actinin - genetics Actinin - metabolism Adipocytes - cytology Adipocytes - drug effects Adipocytes - metabolism Adult Aged Alkaline Phosphatase - genetics Alkaline Phosphatase - metabolism Antigens, CD - genetics Antigens, CD - metabolism Azacitidine - pharmacology Biomarkers - metabolism Cell differentiation Cell Transdifferentiation DNA Methylation - drug effects Female Fibroblasts - cytology Fibroblasts - drug effects Fibroblasts - metabolism GATA4 Transcription Factor - genetics GATA4 Transcription Factor - metabolism Gene Expression Growth Heart cells Heart Transplantation Humans Male Middle Aged Myocytes, Cardiac - cytology Myocytes, Cardiac - drug effects Myocytes, Cardiac - metabolism Nanog Homeobox Protein - genetics Nanog Homeobox Protein - metabolism Octamer Transcription Factor-3 - genetics Octamer Transcription Factor-3 - metabolism Omentum - cytology Omentum - drug effects Omentum - metabolism Osteocytes - cytology Osteocytes - drug effects Osteocytes - metabolism Pericardium - cytology Pericardium - drug effects Pericardium - metabolism Primary Cell Culture Stem cell research Stem cells Stem Cells - cytology Stem Cells - drug effects Stem Cells - metabolism Transcription Factors - pharmacology Troponin T - genetics Troponin T - metabolism |
Title | Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27296220 https://www.proquest.com/docview/1800876055 https://pubmed.ncbi.nlm.nih.gov/PMC4907285 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96h-CL-G31XIMIghiu26Zp-iR3cscpeMjqweJLSJNUF27baneV_vfOpNl69eFeFpZMu-3OZL4y8xtCXlmnXeasY2YuCgb2WDJps5QJbeMUYlwXp9g7_OlcnF3wj8tsGRJuXSir3OlEr6htYzBHfjiXHj0tzrJ37U-GU6PwdDWM0LhJ9hG6DKU6X-ZjjiWGYB1MbjjMnEtx2EHwJbHWEsLolKesn5ij_5XyFas0rZi8YoJO75I7wXekRwOz75Ebrr5Pbg3TJPsH5I9vpm0b9IJ7qmtLjS82XfcNSMnKUL8EO_qSNhX1w_motnBB55gFQfztLEVYZ4rJ_I5i4wl17crfZLt-S1t_thO-4O0RvGGzXT8kF6cnX9-fsTBXgRmIdjaMc10JhO5L546Xee5cZXRhLIQitswMWG3htCis5ZUuJNcGXEJRFgUwuxKZjtNHZK9uaveEUJOkeW5KiCm543PpykIYa2NZAnFZlVVE4t3fq0wAHcfZF5fKBx9SqIEjCgvNkCOqj8ib8ZJ2QNy4jvgF8kwNTaPjblVHXID2LMB7i8hLT4FYFzUW03zX265TH74sJkSvA1HVwOMZHXoT4CURHmtCeTChhM1opss74VFBGXTqn-hG5PEgR-ObJRDciCSJI5JPJGwkQPjv6Uq9-uFhwHkR54nMnl7_k8_I7cSLO8JNHpC9za-tew5-1Kac-c0yI_vHJ-efFzOfjYDPxfG3v2pSIwg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaIXxJtAoRYCISGiJrHjJAeEKqDapY8DtNLejGM7dKVuEsguVf4Uv5EZJ1kaDr31GHnixPZ4HvbMN4S8MlbZ2Brr61BkPujj1E9NzHyhTMDAx7UBw9zho2MxOeVfZvFsg_wZcmEwrHKQiU5Qm0rjGflumDr0tCCOP9Q_fawahberQwmNji0ObHsBLlvzfvoJ1vd1FO1_Pvk48fuqAr4GW3_pc64KgcB1LLQ8TxJrC60ybcAQN3msQWcJq0RmDC9UlnKlwSASeZbBUAsRq4BBvzfITVC8ATp7ySxZn-kEjKGK7y9Pw1TsNuDspRjbCW4748xvR-rvfyVwSQuOIzQvqbz9u-ROb6vSvY657pENW94nt7rqle0DcuGSd-sKre6WqtJQ7YJbF20FXDnX1DWBBDmnVUFdMUCqDLzQWN8A4_-2hiKMNMXLg4Ziogu19dx1slq8o7W7S-ofsHsEi1iuFg_J6bXM-COyWValfUKojliS6Bx8WG55mNo8E9qYIM2BOC_ywiPBML1S9yDnWGvjXDpnJxWyWxGJgW24IrL1yNv1K3WH8HEV8Q6umeySVNfSQe5xAdI6A2vRIy8dBWJrlBi880OtmkZOv30dEb3piYoKfk-rPhcCBolwXCPK7RElbH49bh6YR_bCp5H_topHHnd8tB5ZBM6UiKLAI8mIw9YECDc-binnZw52nGdBEqXx06s_uUNuT06ODuXh9PjgGdmKHOsj1OU22Vz-WtnnYMMt8xdu41Dy_bp36l-PhV2Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multipotency+and+cardiomyogenic+potential+of+human+adipose-derived+stem+cells+from+epicardium%2C+pericardium%2C+and+omentum&rft.jtitle=Stem+cell+research+%26+therapy&rft.au=Wystrychowski%2C+Wojciech&rft.au=Patlolla%2C+Bhagat&rft.au=Zhuge%2C+Yan&rft.au=Neofytou%2C+Evgenios&rft.date=2016-06-13&rft.pub=BioMed+Central+Ltd&rft.issn=1757-6512&rft.eissn=1757-6512&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1186%2Fs13287-016-0343-y&rft.externalDocID=A468879125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-6512&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-6512&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-6512&client=summon |