Mitochondrial Heteroplasmy and the Evolution of Insecticide Resistance: Non-Mendelian Inheritance in Action
Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarc...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 16; pp. 5980 - 5985 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
22.04.2008
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Qₒ site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of ≈180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites. |
---|---|
AbstractList | Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Qo site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of [almost equal to]180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites. Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this “bottlenecking” effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest ( Tetranychus urticae ) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b , a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q o site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of ≈180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites. Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Qₒ site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of ≈180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites. Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q(o) site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of approximately 180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites.Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q(o) site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of approximately 180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites. Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q sub(o) site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of approximately 180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites. Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q(o) site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of approximately 180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites. Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this “bottlenecking” effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest ( Tetranychus urticae ) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b , a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q o site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of ≈180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites. bifenazate Tetranychus urticae cytochrome b mtDNA Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q... site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of 180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Van Leeuwen, Thomas Van Nieuwenhuyse, Pieter Nauen, Ralf Van Pottelberge, Steven Denholm, Ian Vanholme, Bartel Tirry, Luc |
Author_xml | – sequence: 1 givenname: Thomas surname: Van Leeuwen fullname: Van Leeuwen, Thomas – sequence: 2 givenname: Bartel surname: Vanholme fullname: Vanholme, Bartel – sequence: 3 givenname: Steven surname: Van Pottelberge fullname: Van Pottelberge, Steven – sequence: 4 givenname: Pieter surname: Van Nieuwenhuyse fullname: Van Nieuwenhuyse, Pieter – sequence: 5 givenname: Ralf surname: Nauen fullname: Nauen, Ralf – sequence: 6 givenname: Luc surname: Tirry fullname: Tirry, Luc – sequence: 7 givenname: Ian surname: Denholm fullname: Denholm, Ian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18408150$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkkFv1DAQhS1URLeFMycg4oC4pB07thNzQKqqQiu1ICE4W15nwnrJ2kvsVPTf47BLF3poJUs-zPeePfPmgOz54JGQ5xSOKNTV8dqbeAQNMMY4BfGIzCgoWkquYI_MAFhdNpzxfXIQ4xIAlGjgCdmnDYeGCpiRH1cuBbsIvh2c6YtzTDiEdW_i6qYwvi3SAouz69CPyQVfhK648BFtcta1WHzB6GIy3uK74lPw5RX6FntnfKYWOLg_pcL54sRO8qfkcWf6iM-29yH59uHs6-l5efn548XpyWVpJROp5LSxaBVjLYI0dg7KVsZKJbgBBlVbK8mwpbZuG2hth5yafKhQ8wZ5a2x1SN5vfNfjfIWtRZ8G0-v14FZmuNHBOP1_xbuF_h6uNauYknWdDd5sDYbwc8SY9MpFi31vPIYxaqko41yJB0Fe5ySkZA-CDBpeg6QZfH0HXIZx8HlcmaE5YyUm6OW_Dd529jfWDBxvADuEGAfsdgjoaXH0tDh6tzhZIe4obI5vSi1PyPX36N5uvzIVdq8ITaUWqgHdjX2f8FfK6Kv70Uy82BDLmMJwizDBJa2ZqH4Ds0Dqrg |
CitedBy_id | crossref_primary_10_1002_ps_5073 crossref_primary_10_1016_j_jspr_2016_12_004 crossref_primary_10_1002_ps_1705 crossref_primary_10_1007_s00436_015_4627_4 crossref_primary_10_1007_s10709_011_9576_y crossref_primary_10_1016_j_jspr_2015_10_001 crossref_primary_10_1534_genetics_118_301803 crossref_primary_10_1016_j_pestbp_2022_105235 crossref_primary_10_1002_ps_3335 crossref_primary_10_1111_j_1744_7917_2010_01388_x crossref_primary_10_3390_insects11080511 crossref_primary_10_1021_acs_jafc_4c07628 crossref_primary_10_1016_j_pestbp_2014_12_011 crossref_primary_10_3390_ijms19020614 crossref_primary_10_1038_srep17090 crossref_primary_10_1093_jhered_esaa037 crossref_primary_10_1016_j_pestbp_2014_12_009 crossref_primary_10_1584_jpestics_W11_34 crossref_primary_10_1371_journal_pone_0268385 crossref_primary_10_1007_s10340_020_01213_x crossref_primary_10_1038_s41437_024_00722_0 crossref_primary_10_1016_j_pestbp_2018_07_008 crossref_primary_10_1007_s10493_022_00741_8 crossref_primary_10_1146_annurev_ento_010715_023907 crossref_primary_10_3389_fpls_2022_1067695 crossref_primary_10_1002_ps_4677 crossref_primary_10_1080_01647954_2017_1398276 crossref_primary_10_3389_fpls_2022_1054909 crossref_primary_10_1186_1471_2164_11_597 crossref_primary_10_1002_ps_3470 crossref_primary_10_1111_ele_12887 crossref_primary_10_1007_s10493_018_0295_2 crossref_primary_10_1111_j_1365_2583_2009_00900_x crossref_primary_10_7585_kjps_2012_16_1_054 crossref_primary_10_1007_s10493_012_9536_y crossref_primary_10_3390_insects13040341 crossref_primary_10_1371_journal_pone_0180625 crossref_primary_10_1002_ps_6747 crossref_primary_10_3389_fpls_2022_994866 crossref_primary_10_1016_j_ibmb_2012_03_002 crossref_primary_10_1016_j_gene_2013_09_117 crossref_primary_10_1016_j_cropro_2023_106343 crossref_primary_10_7585_kjps_2021_25_3_177 crossref_primary_10_1007_s10682_015_9756_9 crossref_primary_10_1111_j_1365_2583_2010_01040_x crossref_primary_10_1016_j_ibmb_2012_08_002 crossref_primary_10_1016_j_crvi_2013_02_006 crossref_primary_10_1016_j_ttbdis_2015_07_006 crossref_primary_10_1002_ps_6516 crossref_primary_10_1002_ps_6632 crossref_primary_10_1086_694010 crossref_primary_10_1371_journal_pone_0026927 crossref_primary_10_1007_s10493_016_0086_6 crossref_primary_10_1016_j_pestbp_2024_106080 crossref_primary_10_3923_je_2016_110_121 crossref_primary_10_1007_s12600_013_0309_x crossref_primary_10_1007_s10493_014_9816_9 crossref_primary_10_1016_j_pestbp_2025_106367 crossref_primary_10_1186_1471_2164_14_401 crossref_primary_10_1002_ps_5831 crossref_primary_10_1038_s41437_020_0338_4 crossref_primary_10_1002_ps_7336 crossref_primary_10_3897_imafungus_16_138572 crossref_primary_10_1098_rspb_2021_1600 crossref_primary_10_1371_journal_pone_0075121 crossref_primary_10_1016_j_jksus_2023_102910 crossref_primary_10_1093_biolinnean_blaa103 crossref_primary_10_1111_mec_16994 crossref_primary_10_1186_1475_2875_10_318 crossref_primary_10_1186_s12864_017_3709_3 crossref_primary_10_1007_s10493_024_00923_6 crossref_primary_10_1002_ps_5723 crossref_primary_10_1371_journal_pone_0018854 crossref_primary_10_1186_1471_2164_14_417 crossref_primary_10_1371_journal_pone_0110625 crossref_primary_10_1093_zoolinnean_zlz044 crossref_primary_10_1371_journal_pone_0077573 crossref_primary_10_3390_ijms24021715 crossref_primary_10_1002_ps_6136 crossref_primary_10_1002_ps_7344 crossref_primary_10_1038_s41467_017_01002_8 crossref_primary_10_7554_eLife_02365 crossref_primary_10_1002_ps_8440 crossref_primary_10_1002_ps_8561 crossref_primary_10_1303_jjaez_2017_175 crossref_primary_10_1007_s10493_009_9310_y crossref_primary_10_1007_s11434_012_5271_3 crossref_primary_10_1038_srep18920 crossref_primary_10_1007_s13355_019_00638_w crossref_primary_10_2108_zsj_30_570 crossref_primary_10_1126_science_1226994 crossref_primary_10_1093_nargab_lqaa111 crossref_primary_10_1111_1365_2656_12400 crossref_primary_10_1016_j_pestbp_2022_105062 crossref_primary_10_1007_s10340_021_01342_x crossref_primary_10_1002_ps_5628 crossref_primary_10_15298_rusentj_32_4_08 crossref_primary_10_1016_j_ibmb_2016_11_010 crossref_primary_10_1071_IS09036 crossref_primary_10_1038_s41598_018_26420_6 crossref_primary_10_1002_ps_7007 crossref_primary_10_1016_j_pestbp_2015_10_013 crossref_primary_10_1007_s10493_023_00879_z crossref_primary_10_1007_s10493_009_9261_3 crossref_primary_10_1007_s10340_013_0503_0 crossref_primary_10_1111_evo_12339 crossref_primary_10_1007_s10493_014_9779_x crossref_primary_10_3390_insects12121066 crossref_primary_10_1007_s13355_020_00686_7 crossref_primary_10_1002_ps_8065 crossref_primary_10_1007_s10493_021_00668_6 crossref_primary_10_1016_j_jspr_2014_06_010 crossref_primary_10_1111_1744_7917_12957 crossref_primary_10_1016_j_aspen_2013_11_001 crossref_primary_10_1007_s10493_020_00567_2 crossref_primary_10_1007_s00436_019_06591_5 crossref_primary_10_1002_ece3_4916 crossref_primary_10_16970_entoted_1255505 crossref_primary_10_1038_s41598_022_08538_w crossref_primary_10_1111_eva_13542 crossref_primary_10_15446_agron_colomb_v38n1_73271 crossref_primary_10_1016_j_ibmb_2023_103981 crossref_primary_10_1016_j_neuro_2012_01_016 crossref_primary_10_1016_j_ibmb_2023_104039 crossref_primary_10_1111_j_1365_2583_2010_01066_x crossref_primary_10_1016_j_pestbp_2017_04_003 crossref_primary_10_3389_fmicb_2019_00663 crossref_primary_10_1002_ps_6215 crossref_primary_10_1002_ps_5366 crossref_primary_10_1016_j_ibmb_2014_05_004 crossref_primary_10_1098_rspb_2014_1061 crossref_primary_10_1038_s41598_018_38001_8 crossref_primary_10_1002_ps_3758 crossref_primary_10_1371_journal_pone_0011174 crossref_primary_10_1016_j_envpol_2022_120945 crossref_primary_10_1111_jeb_13123 crossref_primary_10_1002_ps_1698 crossref_primary_10_1038_s41598_017_09054_y crossref_primary_10_1371_journal_pone_0073329 crossref_primary_10_1111_j_1365_294X_2011_05422_x crossref_primary_10_1111_1365_2435_12612 crossref_primary_10_1007_s10493_009_9304_9 crossref_primary_10_1111_j_1365_294X_2011_05134_x crossref_primary_10_1371_journal_pone_0139934 crossref_primary_10_1007_s10493_019_00359_3 crossref_primary_10_1016_j_ibmb_2013_03_007 crossref_primary_10_1016_j_ibmb_2014_02_006 crossref_primary_10_1093_molbev_msq345 crossref_primary_10_1007_s10493_019_00398_w crossref_primary_10_1021_acs_jafc_4c06169 crossref_primary_10_1016_j_ibmb_2019_04_011 crossref_primary_10_1002_ece3_6204 crossref_primary_10_1007_s10340_012_0442_1 crossref_primary_10_1016_j_cois_2020_03_006 crossref_primary_10_1139_G10_004 crossref_primary_10_1007_s10493_021_00648_w crossref_primary_10_1094_PDIS_11_18_1978_RE crossref_primary_10_1186_s12864_015_2157_1 crossref_primary_10_1002_ps_3641 crossref_primary_10_1007_s10493_012_9520_6 crossref_primary_10_1094_PDIS_12_17_1987_RE crossref_primary_10_1111_1744_7917_13151 crossref_primary_10_1016_j_pestbp_2021_105000 crossref_primary_10_3109_19401736_2014_953101 crossref_primary_10_1016_j_pestbp_2015_01_004 crossref_primary_10_1016_j_cropro_2014_10_001 crossref_primary_10_1002_ps_6084 crossref_primary_10_1017_S0007485317000025 crossref_primary_10_1016_j_actao_2013_07_005 crossref_primary_10_1016_j_ijbiomac_2018_10_124 crossref_primary_10_2298_PIF1002105P crossref_primary_10_1002_ps_7187 crossref_primary_10_1016_j_ibmb_2022_103761 crossref_primary_10_1021_acs_jafc_4c03076 crossref_primary_10_1016_j_pestbp_2012_05_013 crossref_primary_10_1002_ps_1884 crossref_primary_10_1890_13_2269_1 crossref_primary_10_1016_j_pestbp_2024_105964 crossref_primary_10_1016_j_ibmb_2010_05_008 crossref_primary_10_1093_gbe_evae172 crossref_primary_10_1016_j_pestbp_2020_104677 crossref_primary_10_1007_s10493_018_0251_1 crossref_primary_10_1111_eva_12643 crossref_primary_10_1007_s10340_018_1050_5 crossref_primary_10_1016_j_gene_2015_11_012 crossref_primary_10_2139_ssrn_4884652 crossref_primary_10_1111_imb_12374 crossref_primary_10_1080_17429145_2010_551670 crossref_primary_10_1002_ps_5339 crossref_primary_10_1016_j_actatropica_2018_02_024 crossref_primary_10_1002_ps_5579 crossref_primary_10_1016_j_pestbp_2023_105411 crossref_primary_10_1038_s41598_021_02881_0 crossref_primary_10_1093_jee_toy404 crossref_primary_10_1007_s10493_013_9745_z crossref_primary_10_1002_ps_2191 crossref_primary_10_1111_j_1365_2583_2009_00877_x crossref_primary_10_1371_journal_pone_0283211 crossref_primary_10_3390_insects11120829 crossref_primary_10_1002_ps_6555 crossref_primary_10_1016_j_pestbp_2023_105763 crossref_primary_10_1093_genetics_iyad036 |
Cites_doi | 10.1128/AAC.47.9.2725-2731.2003 10.1007/s10493-004-3940-x 10.1126/science.1078052 10.1007/978-3-662-03458-3_3 10.1016/j.ibmb.2006.08.005 10.1023/A:1005484004167 10.1038/35080556 10.1038/ng1096-146 10.1007/s00294-002-0356-1 10.1146/annurev.en.37.010192.000515 10.1242/dev.00099 10.1046/j.0032-0862.2001.00650.x 10.1242/jcs.01134 10.1007/BF00330961 10.1016/j.molbiopara.2005.05.014 10.1016/0005-2728(96)00051-5 10.1111/j.1432-1033.1994.tb18852.x 10.1016/j.jmb.2004.05.065 10.1093/molbev/msh096 10.1016/S0167-4781(98)00159-6 10.1093/nar/17.18.7325 10.1111/j.1742-4658.2007.05999.x 10.1038/ng1096-123 10.1002/ps.639 10.1002/ps.565 10.1002/ps.1001 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Apr 22, 2008 2008 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Apr 22, 2008 – notice: 2008 by The National Academy of Sciences of the USA |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0802224105 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE - Academic Entomology Abstracts MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 5985 |
ExternalDocumentID | PMC2329677 1468832821 18408150 10_1073_pnas_0802224105 105_16_5980 25461725 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c625t-418cec922de06acb09c3ac6954a0203d7962ed1c7d80dcfe41a41a159b8e4dac3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:42:07 EDT 2025 Fri Jul 11 01:12:45 EDT 2025 Thu Jul 10 19:20:34 EDT 2025 Thu Jul 10 23:15:21 EDT 2025 Mon Jun 30 10:40:10 EDT 2025 Mon Jul 21 05:55:12 EDT 2025 Thu Apr 24 23:04:19 EDT 2025 Tue Jul 01 02:38:56 EDT 2025 Wed Nov 11 00:29:14 EST 2020 Thu May 30 08:52:19 EDT 2019 Thu May 29 08:42:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c625t-418cec922de06acb09c3ac6954a0203d7962ed1c7d80dcfe41a41a159b8e4dac3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Communicated by William S. Bowers, University of Arizona, Tucson, AZ, March 5, 2008 Author contributions: T.V.L. and B.V. designed research; T.V.L., S.V.P., and P.V.N. performed research; T.V.L. and B.V. analyzed data; and T.V.L., R.N., L.T., and I.D. wrote the paper. |
OpenAccessLink | http://doi.org/10.1073/pnas.0802224105 |
PMID | 18408150 |
PQID | 201410951 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_47649662 proquest_journals_201410951 pnas_primary_105_16_5980_fulltext pubmed_primary_18408150 proquest_miscellaneous_69124495 crossref_citationtrail_10_1073_pnas_0802224105 crossref_primary_10_1073_pnas_0802224105 proquest_miscellaneous_20847061 pnas_primary_105_16_5980 jstor_primary_25461725 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2329677 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-04-22 |
PublicationDateYYYYMMDD | 2008-04-22 |
PublicationDate_xml | – month: 04 year: 2008 text: 2008-04-22 day: 22 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Knowles CO (e_1_3_3_6_2) 1997 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 Sambrook J (e_1_3_3_23_2) 2001 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 8200339 - Eur J Biochem. 1994 May 15;222(1):147-54 15792099 - Exp Appl Acarol. 2005;35(3):183-95 15014167 - Mol Biol Evol. 2004 May;21(5):893-902 17046600 - Insect Biochem Mol Biol. 2006 Nov;36(11):869-77 8841183 - Nat Genet. 1996 Oct;14(2):146-51 12639048 - Pest Manag Sci. 2003 Mar;59(3):310-4 8688453 - Biochim Biophys Acta. 1996 Jul 18;1275(1-2):61-9 8841175 - Nat Genet. 1996 Oct;14(2):123-5 15657956 - Pest Manag Sci. 2005 May;61(5):499-507 15312779 - J Mol Biol. 2004 Jul 30;341(1):281-302 12364782 - Science. 2002 Oct 4;298(5591):96-7 2798094 - Nucleic Acids Res. 1989 Sep 25;17(18):7325-31 12612806 - Curr Genet. 2003 Mar;42(6):332-8 16061293 - Mol Biochem Parasitol. 2005 Oct;143(2):173-82 1539942 - Annu Rev Entomol. 1992;37:91-112 9804939 - Biochim Biophys Acta. 1998 Nov 8;1442(2-3):161-9 12936966 - Antimicrob Agents Chemother. 2003 Sep;47(9):2725-31 15138283 - J Cell Sci. 2004 Jun 1;117(Pt 13):2653-62 12233175 - Pest Manag Sci. 2002 Sep;58(9):859-67 10665528 - J Bioenerg Biomembr. 1999 Aug;31(4):391-8 11433357 - Nat Rev Genet. 2001 Jul;2(7):504-15 17824955 - FEBS J. 2007 Sep;274(18):4688-98 12403716 - Development. 2002 Dec;129(23):5461-72 |
References_xml | – ident: e_1_3_3_12_2 doi: 10.1128/AAC.47.9.2725-2731.2003 – ident: e_1_3_3_26_2 doi: 10.1007/s10493-004-3940-x – ident: e_1_3_3_5_2 doi: 10.1126/science.1078052 – start-page: 57 volume-title: Molecular Mechanisms of Resistance to Agrochemicals year: 1997 ident: e_1_3_3_6_2 doi: 10.1007/978-3-662-03458-3_3 – ident: e_1_3_3_7_2 doi: 10.1016/j.ibmb.2006.08.005 – ident: e_1_3_3_17_2 doi: 10.1023/A:1005484004167 – ident: e_1_3_3_20_2 doi: 10.1038/35080556 – ident: e_1_3_3_2_2 doi: 10.1038/ng1096-146 – ident: e_1_3_3_19_2 doi: 10.1007/s00294-002-0356-1 – ident: e_1_3_3_21_2 doi: 10.1146/annurev.en.37.010192.000515 – ident: e_1_3_3_28_2 doi: 10.1242/dev.00099 – ident: e_1_3_3_15_2 doi: 10.1046/j.0032-0862.2001.00650.x – ident: e_1_3_3_1_2 doi: 10.1242/jcs.01134 – ident: e_1_3_3_9_2 doi: 10.1007/BF00330961 – ident: e_1_3_3_25_2 doi: 10.1016/j.molbiopara.2005.05.014 – ident: e_1_3_3_11_2 doi: 10.1016/0005-2728(96)00051-5 – ident: e_1_3_3_10_2 doi: 10.1111/j.1432-1033.1994.tb18852.x – ident: e_1_3_3_8_2 doi: 10.1016/j.jmb.2004.05.065 – ident: e_1_3_3_24_2 doi: 10.1093/molbev/msh096 – ident: e_1_3_3_18_2 doi: 10.1016/S0167-4781(98)00159-6 – ident: e_1_3_3_3_2 doi: 10.1093/nar/17.18.7325 – ident: e_1_3_3_16_2 doi: 10.1111/j.1742-4658.2007.05999.x – ident: e_1_3_3_4_2 doi: 10.1038/ng1096-123 – ident: e_1_3_3_14_2 doi: 10.1002/ps.639 – volume-title: Molecular Cloning: A Laboratory Manual year: 2001 ident: e_1_3_3_23_2 – ident: e_1_3_3_27_2 – ident: e_1_3_3_13_2 doi: 10.1002/ps.565 – ident: e_1_3_3_22_2 doi: 10.1002/ps.1001 – reference: 2798094 - Nucleic Acids Res. 1989 Sep 25;17(18):7325-31 – reference: 15312779 - J Mol Biol. 2004 Jul 30;341(1):281-302 – reference: 17046600 - Insect Biochem Mol Biol. 2006 Nov;36(11):869-77 – reference: 15138283 - J Cell Sci. 2004 Jun 1;117(Pt 13):2653-62 – reference: 12936966 - Antimicrob Agents Chemother. 2003 Sep;47(9):2725-31 – reference: 1539942 - Annu Rev Entomol. 1992;37:91-112 – reference: 9804939 - Biochim Biophys Acta. 1998 Nov 8;1442(2-3):161-9 – reference: 15014167 - Mol Biol Evol. 2004 May;21(5):893-902 – reference: 12403716 - Development. 2002 Dec;129(23):5461-72 – reference: 10665528 - J Bioenerg Biomembr. 1999 Aug;31(4):391-8 – reference: 12612806 - Curr Genet. 2003 Mar;42(6):332-8 – reference: 11433357 - Nat Rev Genet. 2001 Jul;2(7):504-15 – reference: 12639048 - Pest Manag Sci. 2003 Mar;59(3):310-4 – reference: 8841183 - Nat Genet. 1996 Oct;14(2):146-51 – reference: 12233175 - Pest Manag Sci. 2002 Sep;58(9):859-67 – reference: 15657956 - Pest Manag Sci. 2005 May;61(5):499-507 – reference: 16061293 - Mol Biochem Parasitol. 2005 Oct;143(2):173-82 – reference: 8200339 - Eur J Biochem. 1994 May 15;222(1):147-54 – reference: 8841175 - Nat Genet. 1996 Oct;14(2):123-5 – reference: 12364782 - Science. 2002 Oct 4;298(5591):96-7 – reference: 17824955 - FEBS J. 2007 Sep;274(18):4688-98 – reference: 15792099 - Exp Appl Acarol. 2005;35(3):183-95 – reference: 8688453 - Biochim Biophys Acta. 1996 Jul 18;1275(1-2):61-9 |
SSID | ssj0009580 |
Score | 2.3895686 |
Snippet | Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5980 |
SubjectTerms | Amino Acid Sequence Animals Araneae Arthropoda Base Sequence Biological Sciences Carbamates - pharmacology Cells Cytochrome cytochrome b Cytochromes Cytochromes b - genetics cytoplasmic inheritance DNA, Mitochondrial - genetics Embryology Embryonic growth stage evolution Evolution, Molecular Female Female animals Genes Genes, Mitochondrial Genetic mutation Genome, Mitochondrial Genomes Germ cells Haplotypes Hydrazines - pharmacology insecticide resistance Insecticide Resistance - genetics Insecticides Insecticides - pharmacology Male Mites Mitochondria Mitochondrial DNA Mitochondrial genes Molecular Sequence Data Mutation Pest control Resistance to control Tetranychidae - drug effects Tetranychidae - genetics Tetranychus urticae |
Title | Mitochondrial Heteroplasmy and the Evolution of Insecticide Resistance: Non-Mendelian Inheritance in Action |
URI | https://www.jstor.org/stable/25461725 http://www.pnas.org/content/105/16/5980.abstract https://www.ncbi.nlm.nih.gov/pubmed/18408150 https://www.proquest.com/docview/201410951 https://www.proquest.com/docview/20847061 https://www.proquest.com/docview/47649662 https://www.proquest.com/docview/69124495 https://pubmed.ncbi.nlm.nih.gov/PMC2329677 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWCsjA8j8TA0paSJnQ_eJgSakFr1YUN7ixzHUauNZCLp0PhL-XO4ix0nqVppIFVVWl-sJPfL-e58H4S8lwx0-pSDpSo4d1jup06qPOZkKs94zDwZpWgozubB2QX7dskvR6M_vaildZ1O5O-teSX_w1X4D_iKWbL_wFk7KfwBx8Bf-AYOw_e9eDyD1xHEV5E1rTeWGNlS3oA6_OPOBkaqW3MFujZEhfJNrjJsllKh6gg8R6fAvCycGXrDG6_HqsCswGYQ_SE696Gvxi7ssle1QQbz1qt42uWoGMFRnTgni3nX8fg7tgpWav1Li7xejJIeREetMpshtbrun7Yo61qX5VImRu22y2VDgvmqmXe5vtMdIxcrG4Dc-jYi3Kbx-u5OMJqdiOks64nSIho0HCdgusmoleEu74O1L5J5rFtFmeUdfvKtSwfIOux3XIhq0uQfe6yddFCke2PxtCGNzWZ-6Cc4QdJN8IA89MCA8Vo_ki0HHenkKHN_bdGp0P-4cQUDfUmHzGIdXiDaZhNthvb2dKXzJ-SxMXLoqUbsPhmp4inZb9FAj02t8w_PyNUAwrQPYQoQpoAsaiFMy5z2IEw7CH-iAwDTHoDhmGoAPycXX7-cfz5zTP8PR4JVXjtsGkklY8_LlBsImbqx9IUMYs4E7p9nYRx4KpvKMIvcTOaKTQV8QD9PI8UyIf0DsleUhTokNM4iwaVImRsK5goWgXxKI6x_5-fTLFdjMmmfciJNcXzs0XKd7ODrmBzbE250XZjdpAcN2ywdtqAAuwEGDhvS7nyeTIMEATsm73YNJbmJChuTo5b_iRFKVeI1gdtgNo3JWzsKKwZuA4pClWskAY0U1PjdFCyE9ysIvN0UQYx2QQy38ELjrbvSiIGVweEOwgESLQHWsx-OFKtlU9cejLs4CMOX93-0R-RRJzZekb3651q9BiOhTt8079tfAJYXBg |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+heteroplasmy+and+the+evolution+of+insecticide+resistance%3A+Non-Mendelian+inheritance+in+action&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Van+Leeuwen%2C+Thomas&rft.au=Vanholme%2C+Bartel&rft.au=Van+Pottelberge%2C+Steven&rft.au=Van+Nieuwenhuyse%2C+Pieter&rft.date=2008-04-22&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=16&rft.spage=5980&rft.epage=5985&rft_id=info:doi/10.1073%2Fpnas.0802224105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_0802224105 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F16.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F16.cover.gif |