Mitochondrial Heteroplasmy and the Evolution of Insecticide Resistance: Non-Mendelian Inheritance in Action

Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarc...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 16; pp. 5980 - 5985
Main Authors Van Leeuwen, Thomas, Vanholme, Bartel, Van Pottelberge, Steven, Van Nieuwenhuyse, Pieter, Nauen, Ralf, Tirry, Luc, Denholm, Ian
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 22.04.2008
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Qₒ site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of ≈180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites.
AbstractList Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Qo site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of [almost equal to]180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites.
Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this “bottlenecking” effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest ( Tetranychus urticae ) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b , a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q o site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of ≈180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites.
Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Qₒ site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of ≈180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites.
Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q(o) site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of approximately 180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites.Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q(o) site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of approximately 180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites.
Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q sub(o) site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of approximately 180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites.
Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q(o) site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of approximately 180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites.
Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this “bottlenecking” effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest ( Tetranychus urticae ) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b , a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q o site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of ≈180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites. bifenazate Tetranychus urticae cytochrome b mtDNA
Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA between germ cells during embryogenesis. However, empirical studies of this "bottlenecking" effect are rare because of the apparent scarcity of heteroplasmic individuals possessing more than one mtDNA haplotype. Here, we report an example of insecticide resistance in an arthropod pest (Tetranychus urticae) being controlled by mtDNA and on its inheritance in a heteroplasmic mite strain. Resistance to the insecticide bifenazate is highly correlated with remarkable mutations in cytochrome b, a mitochondrially encoded protein in the respiratory pathway. Four sites in the Q... site that are absolutely conserved across fungi, protozoa, plants, and animals are mutated in resistant mite strains. Despite the unusual nature of these mutations, resistant mites showed no fitness costs in the absence of insecticide. Partially resistant strains, consisting of heteroplasmic individuals, transmit their resistant and susceptible haplotypes to progeny in highly variable ratios consistent with a sampling bottleneck of 180 copies. Insecticide selection on heteroplasmic individuals favors those carrying resistant haplotypes at a frequency of 60% or more. This combination of factors enables very rapid evolution and accounts for mutations being fixed in most field-collected resistant strains. The results provide a rare insight into non-Mendelian mechanisms of mitochondrial inheritance and evolution, relevant to anticipating and understanding the development of other mitochondrially encoded adaptations in arthropods. They also provide strong evidence of cytochrome b being the target site for bifenazate in spider mites. (ProQuest: ... denotes formulae/symbols omitted.)
Author Van Leeuwen, Thomas
Van Nieuwenhuyse, Pieter
Nauen, Ralf
Van Pottelberge, Steven
Denholm, Ian
Vanholme, Bartel
Tirry, Luc
Author_xml – sequence: 1
  givenname: Thomas
  surname: Van Leeuwen
  fullname: Van Leeuwen, Thomas
– sequence: 2
  givenname: Bartel
  surname: Vanholme
  fullname: Vanholme, Bartel
– sequence: 3
  givenname: Steven
  surname: Van Pottelberge
  fullname: Van Pottelberge, Steven
– sequence: 4
  givenname: Pieter
  surname: Van Nieuwenhuyse
  fullname: Van Nieuwenhuyse, Pieter
– sequence: 5
  givenname: Ralf
  surname: Nauen
  fullname: Nauen, Ralf
– sequence: 6
  givenname: Luc
  surname: Tirry
  fullname: Tirry, Luc
– sequence: 7
  givenname: Ian
  surname: Denholm
  fullname: Denholm, Ian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18408150$$D View this record in MEDLINE/PubMed
BookMark eNqFkkFv1DAQhS1URLeFMycg4oC4pB07thNzQKqqQiu1ICE4W15nwnrJ2kvsVPTf47BLF3poJUs-zPeePfPmgOz54JGQ5xSOKNTV8dqbeAQNMMY4BfGIzCgoWkquYI_MAFhdNpzxfXIQ4xIAlGjgCdmnDYeGCpiRH1cuBbsIvh2c6YtzTDiEdW_i6qYwvi3SAouz69CPyQVfhK648BFtcta1WHzB6GIy3uK74lPw5RX6FntnfKYWOLg_pcL54sRO8qfkcWf6iM-29yH59uHs6-l5efn548XpyWVpJROp5LSxaBVjLYI0dg7KVsZKJbgBBlVbK8mwpbZuG2hth5yafKhQ8wZ5a2x1SN5vfNfjfIWtRZ8G0-v14FZmuNHBOP1_xbuF_h6uNauYknWdDd5sDYbwc8SY9MpFi31vPIYxaqko41yJB0Fe5ySkZA-CDBpeg6QZfH0HXIZx8HlcmaE5YyUm6OW_Dd529jfWDBxvADuEGAfsdgjoaXH0tDh6tzhZIe4obI5vSi1PyPX36N5uvzIVdq8ITaUWqgHdjX2f8FfK6Kv70Uy82BDLmMJwizDBJa2ZqH4Ds0Dqrg
CitedBy_id crossref_primary_10_1002_ps_5073
crossref_primary_10_1016_j_jspr_2016_12_004
crossref_primary_10_1002_ps_1705
crossref_primary_10_1007_s00436_015_4627_4
crossref_primary_10_1007_s10709_011_9576_y
crossref_primary_10_1016_j_jspr_2015_10_001
crossref_primary_10_1534_genetics_118_301803
crossref_primary_10_1016_j_pestbp_2022_105235
crossref_primary_10_1002_ps_3335
crossref_primary_10_1111_j_1744_7917_2010_01388_x
crossref_primary_10_3390_insects11080511
crossref_primary_10_1021_acs_jafc_4c07628
crossref_primary_10_1016_j_pestbp_2014_12_011
crossref_primary_10_3390_ijms19020614
crossref_primary_10_1038_srep17090
crossref_primary_10_1093_jhered_esaa037
crossref_primary_10_1016_j_pestbp_2014_12_009
crossref_primary_10_1584_jpestics_W11_34
crossref_primary_10_1371_journal_pone_0268385
crossref_primary_10_1007_s10340_020_01213_x
crossref_primary_10_1038_s41437_024_00722_0
crossref_primary_10_1016_j_pestbp_2018_07_008
crossref_primary_10_1007_s10493_022_00741_8
crossref_primary_10_1146_annurev_ento_010715_023907
crossref_primary_10_3389_fpls_2022_1067695
crossref_primary_10_1002_ps_4677
crossref_primary_10_1080_01647954_2017_1398276
crossref_primary_10_3389_fpls_2022_1054909
crossref_primary_10_1186_1471_2164_11_597
crossref_primary_10_1002_ps_3470
crossref_primary_10_1111_ele_12887
crossref_primary_10_1007_s10493_018_0295_2
crossref_primary_10_1111_j_1365_2583_2009_00900_x
crossref_primary_10_7585_kjps_2012_16_1_054
crossref_primary_10_1007_s10493_012_9536_y
crossref_primary_10_3390_insects13040341
crossref_primary_10_1371_journal_pone_0180625
crossref_primary_10_1002_ps_6747
crossref_primary_10_3389_fpls_2022_994866
crossref_primary_10_1016_j_ibmb_2012_03_002
crossref_primary_10_1016_j_gene_2013_09_117
crossref_primary_10_1016_j_cropro_2023_106343
crossref_primary_10_7585_kjps_2021_25_3_177
crossref_primary_10_1007_s10682_015_9756_9
crossref_primary_10_1111_j_1365_2583_2010_01040_x
crossref_primary_10_1016_j_ibmb_2012_08_002
crossref_primary_10_1016_j_crvi_2013_02_006
crossref_primary_10_1016_j_ttbdis_2015_07_006
crossref_primary_10_1002_ps_6516
crossref_primary_10_1002_ps_6632
crossref_primary_10_1086_694010
crossref_primary_10_1371_journal_pone_0026927
crossref_primary_10_1007_s10493_016_0086_6
crossref_primary_10_1016_j_pestbp_2024_106080
crossref_primary_10_3923_je_2016_110_121
crossref_primary_10_1007_s12600_013_0309_x
crossref_primary_10_1007_s10493_014_9816_9
crossref_primary_10_1016_j_pestbp_2025_106367
crossref_primary_10_1186_1471_2164_14_401
crossref_primary_10_1002_ps_5831
crossref_primary_10_1038_s41437_020_0338_4
crossref_primary_10_1002_ps_7336
crossref_primary_10_3897_imafungus_16_138572
crossref_primary_10_1098_rspb_2021_1600
crossref_primary_10_1371_journal_pone_0075121
crossref_primary_10_1016_j_jksus_2023_102910
crossref_primary_10_1093_biolinnean_blaa103
crossref_primary_10_1111_mec_16994
crossref_primary_10_1186_1475_2875_10_318
crossref_primary_10_1186_s12864_017_3709_3
crossref_primary_10_1007_s10493_024_00923_6
crossref_primary_10_1002_ps_5723
crossref_primary_10_1371_journal_pone_0018854
crossref_primary_10_1186_1471_2164_14_417
crossref_primary_10_1371_journal_pone_0110625
crossref_primary_10_1093_zoolinnean_zlz044
crossref_primary_10_1371_journal_pone_0077573
crossref_primary_10_3390_ijms24021715
crossref_primary_10_1002_ps_6136
crossref_primary_10_1002_ps_7344
crossref_primary_10_1038_s41467_017_01002_8
crossref_primary_10_7554_eLife_02365
crossref_primary_10_1002_ps_8440
crossref_primary_10_1002_ps_8561
crossref_primary_10_1303_jjaez_2017_175
crossref_primary_10_1007_s10493_009_9310_y
crossref_primary_10_1007_s11434_012_5271_3
crossref_primary_10_1038_srep18920
crossref_primary_10_1007_s13355_019_00638_w
crossref_primary_10_2108_zsj_30_570
crossref_primary_10_1126_science_1226994
crossref_primary_10_1093_nargab_lqaa111
crossref_primary_10_1111_1365_2656_12400
crossref_primary_10_1016_j_pestbp_2022_105062
crossref_primary_10_1007_s10340_021_01342_x
crossref_primary_10_1002_ps_5628
crossref_primary_10_15298_rusentj_32_4_08
crossref_primary_10_1016_j_ibmb_2016_11_010
crossref_primary_10_1071_IS09036
crossref_primary_10_1038_s41598_018_26420_6
crossref_primary_10_1002_ps_7007
crossref_primary_10_1016_j_pestbp_2015_10_013
crossref_primary_10_1007_s10493_023_00879_z
crossref_primary_10_1007_s10493_009_9261_3
crossref_primary_10_1007_s10340_013_0503_0
crossref_primary_10_1111_evo_12339
crossref_primary_10_1007_s10493_014_9779_x
crossref_primary_10_3390_insects12121066
crossref_primary_10_1007_s13355_020_00686_7
crossref_primary_10_1002_ps_8065
crossref_primary_10_1007_s10493_021_00668_6
crossref_primary_10_1016_j_jspr_2014_06_010
crossref_primary_10_1111_1744_7917_12957
crossref_primary_10_1016_j_aspen_2013_11_001
crossref_primary_10_1007_s10493_020_00567_2
crossref_primary_10_1007_s00436_019_06591_5
crossref_primary_10_1002_ece3_4916
crossref_primary_10_16970_entoted_1255505
crossref_primary_10_1038_s41598_022_08538_w
crossref_primary_10_1111_eva_13542
crossref_primary_10_15446_agron_colomb_v38n1_73271
crossref_primary_10_1016_j_ibmb_2023_103981
crossref_primary_10_1016_j_neuro_2012_01_016
crossref_primary_10_1016_j_ibmb_2023_104039
crossref_primary_10_1111_j_1365_2583_2010_01066_x
crossref_primary_10_1016_j_pestbp_2017_04_003
crossref_primary_10_3389_fmicb_2019_00663
crossref_primary_10_1002_ps_6215
crossref_primary_10_1002_ps_5366
crossref_primary_10_1016_j_ibmb_2014_05_004
crossref_primary_10_1098_rspb_2014_1061
crossref_primary_10_1038_s41598_018_38001_8
crossref_primary_10_1002_ps_3758
crossref_primary_10_1371_journal_pone_0011174
crossref_primary_10_1016_j_envpol_2022_120945
crossref_primary_10_1111_jeb_13123
crossref_primary_10_1002_ps_1698
crossref_primary_10_1038_s41598_017_09054_y
crossref_primary_10_1371_journal_pone_0073329
crossref_primary_10_1111_j_1365_294X_2011_05422_x
crossref_primary_10_1111_1365_2435_12612
crossref_primary_10_1007_s10493_009_9304_9
crossref_primary_10_1111_j_1365_294X_2011_05134_x
crossref_primary_10_1371_journal_pone_0139934
crossref_primary_10_1007_s10493_019_00359_3
crossref_primary_10_1016_j_ibmb_2013_03_007
crossref_primary_10_1016_j_ibmb_2014_02_006
crossref_primary_10_1093_molbev_msq345
crossref_primary_10_1007_s10493_019_00398_w
crossref_primary_10_1021_acs_jafc_4c06169
crossref_primary_10_1016_j_ibmb_2019_04_011
crossref_primary_10_1002_ece3_6204
crossref_primary_10_1007_s10340_012_0442_1
crossref_primary_10_1016_j_cois_2020_03_006
crossref_primary_10_1139_G10_004
crossref_primary_10_1007_s10493_021_00648_w
crossref_primary_10_1094_PDIS_11_18_1978_RE
crossref_primary_10_1186_s12864_015_2157_1
crossref_primary_10_1002_ps_3641
crossref_primary_10_1007_s10493_012_9520_6
crossref_primary_10_1094_PDIS_12_17_1987_RE
crossref_primary_10_1111_1744_7917_13151
crossref_primary_10_1016_j_pestbp_2021_105000
crossref_primary_10_3109_19401736_2014_953101
crossref_primary_10_1016_j_pestbp_2015_01_004
crossref_primary_10_1016_j_cropro_2014_10_001
crossref_primary_10_1002_ps_6084
crossref_primary_10_1017_S0007485317000025
crossref_primary_10_1016_j_actao_2013_07_005
crossref_primary_10_1016_j_ijbiomac_2018_10_124
crossref_primary_10_2298_PIF1002105P
crossref_primary_10_1002_ps_7187
crossref_primary_10_1016_j_ibmb_2022_103761
crossref_primary_10_1021_acs_jafc_4c03076
crossref_primary_10_1016_j_pestbp_2012_05_013
crossref_primary_10_1002_ps_1884
crossref_primary_10_1890_13_2269_1
crossref_primary_10_1016_j_pestbp_2024_105964
crossref_primary_10_1016_j_ibmb_2010_05_008
crossref_primary_10_1093_gbe_evae172
crossref_primary_10_1016_j_pestbp_2020_104677
crossref_primary_10_1007_s10493_018_0251_1
crossref_primary_10_1111_eva_12643
crossref_primary_10_1007_s10340_018_1050_5
crossref_primary_10_1016_j_gene_2015_11_012
crossref_primary_10_2139_ssrn_4884652
crossref_primary_10_1111_imb_12374
crossref_primary_10_1080_17429145_2010_551670
crossref_primary_10_1002_ps_5339
crossref_primary_10_1016_j_actatropica_2018_02_024
crossref_primary_10_1002_ps_5579
crossref_primary_10_1016_j_pestbp_2023_105411
crossref_primary_10_1038_s41598_021_02881_0
crossref_primary_10_1093_jee_toy404
crossref_primary_10_1007_s10493_013_9745_z
crossref_primary_10_1002_ps_2191
crossref_primary_10_1111_j_1365_2583_2009_00877_x
crossref_primary_10_1371_journal_pone_0283211
crossref_primary_10_3390_insects11120829
crossref_primary_10_1002_ps_6555
crossref_primary_10_1016_j_pestbp_2023_105763
crossref_primary_10_1093_genetics_iyad036
Cites_doi 10.1128/AAC.47.9.2725-2731.2003
10.1007/s10493-004-3940-x
10.1126/science.1078052
10.1007/978-3-662-03458-3_3
10.1016/j.ibmb.2006.08.005
10.1023/A:1005484004167
10.1038/35080556
10.1038/ng1096-146
10.1007/s00294-002-0356-1
10.1146/annurev.en.37.010192.000515
10.1242/dev.00099
10.1046/j.0032-0862.2001.00650.x
10.1242/jcs.01134
10.1007/BF00330961
10.1016/j.molbiopara.2005.05.014
10.1016/0005-2728(96)00051-5
10.1111/j.1432-1033.1994.tb18852.x
10.1016/j.jmb.2004.05.065
10.1093/molbev/msh096
10.1016/S0167-4781(98)00159-6
10.1093/nar/17.18.7325
10.1111/j.1742-4658.2007.05999.x
10.1038/ng1096-123
10.1002/ps.639
10.1002/ps.565
10.1002/ps.1001
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Apr 22, 2008
2008 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Apr 22, 2008
– notice: 2008 by The National Academy of Sciences of the USA
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0802224105
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
CrossRef

MEDLINE - Academic
Entomology Abstracts

MEDLINE

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 5985
ExternalDocumentID PMC2329677
1468832821
18408150
10_1073_pnas_0802224105
105_16_5980
25461725
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c625t-418cec922de06acb09c3ac6954a0203d7962ed1c7d80dcfe41a41a159b8e4dac3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:42:07 EDT 2025
Fri Jul 11 01:12:45 EDT 2025
Thu Jul 10 19:20:34 EDT 2025
Thu Jul 10 23:15:21 EDT 2025
Mon Jun 30 10:40:10 EDT 2025
Mon Jul 21 05:55:12 EDT 2025
Thu Apr 24 23:04:19 EDT 2025
Tue Jul 01 02:38:56 EDT 2025
Wed Nov 11 00:29:14 EST 2020
Thu May 30 08:52:19 EDT 2019
Thu May 29 08:42:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c625t-418cec922de06acb09c3ac6954a0203d7962ed1c7d80dcfe41a41a159b8e4dac3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Communicated by William S. Bowers, University of Arizona, Tucson, AZ, March 5, 2008
Author contributions: T.V.L. and B.V. designed research; T.V.L., S.V.P., and P.V.N. performed research; T.V.L. and B.V. analyzed data; and T.V.L., R.N., L.T., and I.D. wrote the paper.
OpenAccessLink http://doi.org/10.1073/pnas.0802224105
PMID 18408150
PQID 201410951
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_47649662
proquest_journals_201410951
pnas_primary_105_16_5980_fulltext
pubmed_primary_18408150
proquest_miscellaneous_69124495
crossref_citationtrail_10_1073_pnas_0802224105
crossref_primary_10_1073_pnas_0802224105
proquest_miscellaneous_20847061
pnas_primary_105_16_5980
jstor_primary_25461725
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2329677
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-04-22
PublicationDateYYYYMMDD 2008-04-22
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-22
  day: 22
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Knowles CO (e_1_3_3_6_2) 1997
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
Sambrook J (e_1_3_3_23_2) 2001
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
8200339 - Eur J Biochem. 1994 May 15;222(1):147-54
15792099 - Exp Appl Acarol. 2005;35(3):183-95
15014167 - Mol Biol Evol. 2004 May;21(5):893-902
17046600 - Insect Biochem Mol Biol. 2006 Nov;36(11):869-77
8841183 - Nat Genet. 1996 Oct;14(2):146-51
12639048 - Pest Manag Sci. 2003 Mar;59(3):310-4
8688453 - Biochim Biophys Acta. 1996 Jul 18;1275(1-2):61-9
8841175 - Nat Genet. 1996 Oct;14(2):123-5
15657956 - Pest Manag Sci. 2005 May;61(5):499-507
15312779 - J Mol Biol. 2004 Jul 30;341(1):281-302
12364782 - Science. 2002 Oct 4;298(5591):96-7
2798094 - Nucleic Acids Res. 1989 Sep 25;17(18):7325-31
12612806 - Curr Genet. 2003 Mar;42(6):332-8
16061293 - Mol Biochem Parasitol. 2005 Oct;143(2):173-82
1539942 - Annu Rev Entomol. 1992;37:91-112
9804939 - Biochim Biophys Acta. 1998 Nov 8;1442(2-3):161-9
12936966 - Antimicrob Agents Chemother. 2003 Sep;47(9):2725-31
15138283 - J Cell Sci. 2004 Jun 1;117(Pt 13):2653-62
12233175 - Pest Manag Sci. 2002 Sep;58(9):859-67
10665528 - J Bioenerg Biomembr. 1999 Aug;31(4):391-8
11433357 - Nat Rev Genet. 2001 Jul;2(7):504-15
17824955 - FEBS J. 2007 Sep;274(18):4688-98
12403716 - Development. 2002 Dec;129(23):5461-72
References_xml – ident: e_1_3_3_12_2
  doi: 10.1128/AAC.47.9.2725-2731.2003
– ident: e_1_3_3_26_2
  doi: 10.1007/s10493-004-3940-x
– ident: e_1_3_3_5_2
  doi: 10.1126/science.1078052
– start-page: 57
  volume-title: Molecular Mechanisms of Resistance to Agrochemicals
  year: 1997
  ident: e_1_3_3_6_2
  doi: 10.1007/978-3-662-03458-3_3
– ident: e_1_3_3_7_2
  doi: 10.1016/j.ibmb.2006.08.005
– ident: e_1_3_3_17_2
  doi: 10.1023/A:1005484004167
– ident: e_1_3_3_20_2
  doi: 10.1038/35080556
– ident: e_1_3_3_2_2
  doi: 10.1038/ng1096-146
– ident: e_1_3_3_19_2
  doi: 10.1007/s00294-002-0356-1
– ident: e_1_3_3_21_2
  doi: 10.1146/annurev.en.37.010192.000515
– ident: e_1_3_3_28_2
  doi: 10.1242/dev.00099
– ident: e_1_3_3_15_2
  doi: 10.1046/j.0032-0862.2001.00650.x
– ident: e_1_3_3_1_2
  doi: 10.1242/jcs.01134
– ident: e_1_3_3_9_2
  doi: 10.1007/BF00330961
– ident: e_1_3_3_25_2
  doi: 10.1016/j.molbiopara.2005.05.014
– ident: e_1_3_3_11_2
  doi: 10.1016/0005-2728(96)00051-5
– ident: e_1_3_3_10_2
  doi: 10.1111/j.1432-1033.1994.tb18852.x
– ident: e_1_3_3_8_2
  doi: 10.1016/j.jmb.2004.05.065
– ident: e_1_3_3_24_2
  doi: 10.1093/molbev/msh096
– ident: e_1_3_3_18_2
  doi: 10.1016/S0167-4781(98)00159-6
– ident: e_1_3_3_3_2
  doi: 10.1093/nar/17.18.7325
– ident: e_1_3_3_16_2
  doi: 10.1111/j.1742-4658.2007.05999.x
– ident: e_1_3_3_4_2
  doi: 10.1038/ng1096-123
– ident: e_1_3_3_14_2
  doi: 10.1002/ps.639
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 2001
  ident: e_1_3_3_23_2
– ident: e_1_3_3_27_2
– ident: e_1_3_3_13_2
  doi: 10.1002/ps.565
– ident: e_1_3_3_22_2
  doi: 10.1002/ps.1001
– reference: 2798094 - Nucleic Acids Res. 1989 Sep 25;17(18):7325-31
– reference: 15312779 - J Mol Biol. 2004 Jul 30;341(1):281-302
– reference: 17046600 - Insect Biochem Mol Biol. 2006 Nov;36(11):869-77
– reference: 15138283 - J Cell Sci. 2004 Jun 1;117(Pt 13):2653-62
– reference: 12936966 - Antimicrob Agents Chemother. 2003 Sep;47(9):2725-31
– reference: 1539942 - Annu Rev Entomol. 1992;37:91-112
– reference: 9804939 - Biochim Biophys Acta. 1998 Nov 8;1442(2-3):161-9
– reference: 15014167 - Mol Biol Evol. 2004 May;21(5):893-902
– reference: 12403716 - Development. 2002 Dec;129(23):5461-72
– reference: 10665528 - J Bioenerg Biomembr. 1999 Aug;31(4):391-8
– reference: 12612806 - Curr Genet. 2003 Mar;42(6):332-8
– reference: 11433357 - Nat Rev Genet. 2001 Jul;2(7):504-15
– reference: 12639048 - Pest Manag Sci. 2003 Mar;59(3):310-4
– reference: 8841183 - Nat Genet. 1996 Oct;14(2):146-51
– reference: 12233175 - Pest Manag Sci. 2002 Sep;58(9):859-67
– reference: 15657956 - Pest Manag Sci. 2005 May;61(5):499-507
– reference: 16061293 - Mol Biochem Parasitol. 2005 Oct;143(2):173-82
– reference: 8200339 - Eur J Biochem. 1994 May 15;222(1):147-54
– reference: 8841175 - Nat Genet. 1996 Oct;14(2):123-5
– reference: 12364782 - Science. 2002 Oct 4;298(5591):96-7
– reference: 17824955 - FEBS J. 2007 Sep;274(18):4688-98
– reference: 15792099 - Exp Appl Acarol. 2005;35(3):183-95
– reference: 8688453 - Biochim Biophys Acta. 1996 Jul 18;1275(1-2):61-9
SSID ssj0009580
Score 2.3895686
Snippet Genes encoded by mitochondrial DNA (mtDNA) exist in large numbers per cell but can be selected very rapidly as a result of unequal partitioning of mtDNA...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5980
SubjectTerms Amino Acid Sequence
Animals
Araneae
Arthropoda
Base Sequence
Biological Sciences
Carbamates - pharmacology
Cells
Cytochrome
cytochrome b
Cytochromes
Cytochromes b - genetics
cytoplasmic inheritance
DNA, Mitochondrial - genetics
Embryology
Embryonic growth stage
evolution
Evolution, Molecular
Female
Female animals
Genes
Genes, Mitochondrial
Genetic mutation
Genome, Mitochondrial
Genomes
Germ cells
Haplotypes
Hydrazines - pharmacology
insecticide resistance
Insecticide Resistance - genetics
Insecticides
Insecticides - pharmacology
Male
Mites
Mitochondria
Mitochondrial DNA
Mitochondrial genes
Molecular Sequence Data
Mutation
Pest control
Resistance to control
Tetranychidae - drug effects
Tetranychidae - genetics
Tetranychus urticae
Title Mitochondrial Heteroplasmy and the Evolution of Insecticide Resistance: Non-Mendelian Inheritance in Action
URI https://www.jstor.org/stable/25461725
http://www.pnas.org/content/105/16/5980.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18408150
https://www.proquest.com/docview/201410951
https://www.proquest.com/docview/20847061
https://www.proquest.com/docview/47649662
https://www.proquest.com/docview/69124495
https://pubmed.ncbi.nlm.nih.gov/PMC2329677
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWCsjA8j8TA0paSJnQ_eJgSakFr1YUN7ixzHUauNZCLp0PhL-XO4ix0nqVppIFVVWl-sJPfL-e58H4S8lwx0-pSDpSo4d1jup06qPOZkKs94zDwZpWgozubB2QX7dskvR6M_vaildZ1O5O-teSX_w1X4D_iKWbL_wFk7KfwBx8Bf-AYOw_e9eDyD1xHEV5E1rTeWGNlS3oA6_OPOBkaqW3MFujZEhfJNrjJsllKh6gg8R6fAvCycGXrDG6_HqsCswGYQ_SE696Gvxi7ssle1QQbz1qt42uWoGMFRnTgni3nX8fg7tgpWav1Li7xejJIeREetMpshtbrun7Yo61qX5VImRu22y2VDgvmqmXe5vtMdIxcrG4Dc-jYi3Kbx-u5OMJqdiOks64nSIho0HCdgusmoleEu74O1L5J5rFtFmeUdfvKtSwfIOux3XIhq0uQfe6yddFCke2PxtCGNzWZ-6Cc4QdJN8IA89MCA8Vo_ki0HHenkKHN_bdGp0P-4cQUDfUmHzGIdXiDaZhNthvb2dKXzJ-SxMXLoqUbsPhmp4inZb9FAj02t8w_PyNUAwrQPYQoQpoAsaiFMy5z2IEw7CH-iAwDTHoDhmGoAPycXX7-cfz5zTP8PR4JVXjtsGkklY8_LlBsImbqx9IUMYs4E7p9nYRx4KpvKMIvcTOaKTQV8QD9PI8UyIf0DsleUhTokNM4iwaVImRsK5goWgXxKI6x_5-fTLFdjMmmfciJNcXzs0XKd7ODrmBzbE250XZjdpAcN2ywdtqAAuwEGDhvS7nyeTIMEATsm73YNJbmJChuTo5b_iRFKVeI1gdtgNo3JWzsKKwZuA4pClWskAY0U1PjdFCyE9ysIvN0UQYx2QQy38ELjrbvSiIGVweEOwgESLQHWsx-OFKtlU9cejLs4CMOX93-0R-RRJzZekb3651q9BiOhTt8079tfAJYXBg
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+heteroplasmy+and+the+evolution+of+insecticide+resistance%3A+Non-Mendelian+inheritance+in+action&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Van+Leeuwen%2C+Thomas&rft.au=Vanholme%2C+Bartel&rft.au=Van+Pottelberge%2C+Steven&rft.au=Van+Nieuwenhuyse%2C+Pieter&rft.date=2008-04-22&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=16&rft.spage=5980&rft.epage=5985&rft_id=info:doi/10.1073%2Fpnas.0802224105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_0802224105
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F16.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F16.cover.gif