Abiotic stress modifies the synthesis of alpha‐tocopherol and beta‐carotene in phytoplankton species

We performed laboratory experiments to investi‐gate whether the synthesis of the antioxidants α‐tocopherol (vitamin E) and β‐carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Pror...

Full description

Saved in:
Bibliographic Details
Published inJournal of phycology Vol. 50; no. 4; pp. 753 - 759
Main Authors Häubner, Norbert, Sylvander, Peter, Vuori, Kristiina, Snoeijs, Pauline, Wood, M
Format Journal Article
LanguageEnglish
Published United States Blackwell Pub 01.08.2014
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We performed laboratory experiments to investi‐gate whether the synthesis of the antioxidants α‐tocopherol (vitamin E) and β‐carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe‐ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K‐0591, both good producers of this compound, α‐tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fᵥ/Fₘ). On the other hand, β‐carotene accumulation was positively affected by higher Fᵥ/Fₘ in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K‐0591 and R. salina SCCAP K‐0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α‐tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β‐carotene performs immediate photo‐oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short‐term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α‐tocopherol and β‐carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo‐synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large‐scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.
AbstractList We performed laboratory experiments to investi‐gate whether the synthesis of the antioxidants α‐tocopherol (vitamin E) and β‐carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe‐ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K‐0591, both good producers of this compound, α‐tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fᵥ/Fₘ). On the other hand, β‐carotene accumulation was positively affected by higher Fᵥ/Fₘin N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K‐0591 and R. salina SCCAP K‐0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α‐tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β‐carotene performs immediate photo‐oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short‐term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α‐tocopherol and β‐carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo‐synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large‐scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.
We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants -tocopherol (vitamin E) and -carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe-ratures, photon flux densities and salinities for 48h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P.tricornutumKAC 37 and D.tertiolectaSCCAP K-0591, both good producers of this compound, -tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (F-v/F-m). On the other hand, -carotene accumulation was positively affected by higher F-v/F-m in N.spumigena KAC 7, P.tricornutum KAC 37, D.tertiolecta SCCAP K-0591 and R.salina SCCAP K-0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While -tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, -carotene performs immediate photo-oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short-term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since -tocopherol and -carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo-synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large-scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.
We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants alpha -tocopherol (vitamin E) and beta -carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena,Phaeodactylum tricornutum,Skeletonema costatum,Dunaliella tertiolecta,Prorocentrum cordatum, and Rhodomonas salinawere incubated at different tempe-ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutumKAC 37 and D. tertiolectaSCCAP K-0591, both good producers of this compound, alpha -tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv/Fm). On the other hand, beta -carotene accumulation was positively affected by higher Fv/Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K-0591 and R. salina SCCAP K-0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While alpha -tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, beta -carotene performs immediate photo-oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short-term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since alpha -tocopherol and beta -carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo-synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large-scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.
We performed laboratory experiments to investi‐gate whether the synthesis of the antioxidants α‐tocopherol (vitamin E) and β‐carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe‐ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K‐0591, both good producers of this compound, α‐tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fᵥ/Fₘ). On the other hand, β‐carotene accumulation was positively affected by higher Fᵥ/Fₘ in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K‐0591 and R. salina SCCAP K‐0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α‐tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β‐carotene performs immediate photo‐oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short‐term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α‐tocopherol and β‐carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo‐synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large‐scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.
We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants [alpha]-tocopherol (vitamin E) and [beta]-carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena,Phaeodactylum tricornutum,Skeletonema costatum,Dunaliella tertiolecta,Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe-ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K-0591, both good producers of this compound, [alpha]-tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv/Fm). On the other hand, [beta]-carotene accumulation was positively affected by higher Fv/Fm in N. spumigenaKAC 7, P. tricornutumKAC 37, D. tertiolectaSCCAP K-0591 and R. salinaSCCAP K-0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While [alpha]-tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, [beta]-carotene performs immediate photo-oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short-term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since [alpha]-tocopherol and [beta]-carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo-synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large-scale environmental changes, such as climate change, may have serious consequences for aquatic food webs. [PUBLICATION ABSTRACT]
We performed laboratory experiments to investi‐gate whether the synthesis of the antioxidants α‐tocopherol (vitamin E) and β‐carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe‐ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K‐0591, both good producers of this compound, α‐tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv/Fm). On the other hand, β‐carotene accumulation was positively affected by higher Fv/Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K‐0591 and R. salina SCCAP K‐0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α‐tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β‐carotene performs immediate photo‐oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short‐term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α‐tocopherol and β‐carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo‐synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large‐scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.
We performed laboratory experiments to investi‐gate whether the synthesis of the antioxidants α‐tocopherol (vitamin E) and β‐carotene in phytoplankton depends on changes in abiotic factors. Cultures of N odularia spumigena , P haeodactylum tricornutum , S keletonema costatum , D unaliella tertiolecta , P rorocentrum cordatum , and R hodomonas salina were incubated at different tempe‐ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P . tricornutum   KAC 37 and D . tertiolecta   SCCAP K‐0591, both good producers of this compound, α‐tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (F v /F m ). On the other hand, β‐carotene accumulation was positively affected by higher F v /F m in N . spumigena KAC 7, P . tricornutum KAC 37, D . tertiolecta SCCAP K‐0591 and R . salina SCCAP K‐0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α‐tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β‐carotene performs immediate photo‐oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short‐term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α‐tocopherol and β‐carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo‐synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large‐scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.
We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants α-tocopherol (vitamin E) and β-carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe-ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K-0591, both good producers of this compound, α-tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv /Fm ). On the other hand, β-carotene accumulation was positively affected by higher Fv /Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K-0591 and R. salina SCCAP K-0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α-tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β-carotene performs immediate photo-oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short-term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α-tocopherol and β-carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo-synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large-scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants α-tocopherol (vitamin E) and β-carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe-ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K-0591, both good producers of this compound, α-tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv /Fm ). On the other hand, β-carotene accumulation was positively affected by higher Fv /Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K-0591 and R. salina SCCAP K-0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α-tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β-carotene performs immediate photo-oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short-term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α-tocopherol and β-carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo-synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large-scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.
Author Sylvander, Peter
Vuori, Kristiina
Snoeijs, Pauline
Wood, M
Häubner, Norbert
Author_xml – sequence: 1
  fullname: Häubner, Norbert
– sequence: 2
  fullname: Sylvander, Peter
– sequence: 3
  fullname: Vuori, Kristiina
– sequence: 4
  fullname: Snoeijs, Pauline
– sequence: 5
  fullname: Wood, M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26988459$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-107435$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-232018$$DView record from Swedish Publication Index
BookMark eNqN0k1u1DAUB3ALFdFpYcEFwFI3IJHWH7GdLEctDFQVIKBUrCzHY3fcZuJgOyqz4wickZPgdNpZVIKSLCxFv_di-_13wFbnOwPAU4z2cX4OLvrVPia4rh6ACWakLqoKiy0wQYiQgvKSb4OdGC8QQoIz_AhsE15XVcnqCVhMG-eT0zCmYGKESz931pkI08LAuOryEl2E3kLV9gv1--ev5LXvFyb4FqpuDhuTxq9aBZ9MZ6DrYL9YJd-3qrtMvoOxNzo3fAweWtVG8-Rm3QWnb15_OXxbnHyYvTucnhSaE1YVHFlDNaWqEXnj2GqmmhJRjGtkamTLklZNU5sRkMpiy0mj8ZwYITStNbJ0F7xa941Xph8a2Qe3VGElvXLyyH2dSh_O5TBIQgnC1f_xOEiMRElZ5i_WvA_--2BikksXtWnzYY0fosRClHkAJef302yYQGPfeynjCFMhrjewd4de-CF0-UazYlnld_z3sxs1NEsz35zqdu4ZvFwDHXyMwdgNwUiOmZI5U_I6U9ke3LHaJZWc71JQrv1XxZVrzervreXxx2-3FcW6wsVkfmwqVLiUXFDB5Nn7mSyPjzA-m32S4zU8X3urvFTnwUV5-jkPlOWMk5z6mv4B_b72sw
CitedBy_id crossref_primary_10_1016_j_ecolind_2017_07_058
crossref_primary_10_1016_j_mimet_2018_07_023
crossref_primary_10_1016_j_marenvres_2023_106249
crossref_primary_10_3390_md19120700
crossref_primary_10_1007_s43630_024_00584_9
crossref_primary_10_31861_biosystems2019_02_148
crossref_primary_10_1007_s13131_019_1389_3
crossref_primary_10_1016_j_jff_2020_103919
crossref_primary_10_3390_foods12030654
crossref_primary_10_1016_j_envres_2020_110592
crossref_primary_10_1016_j_jembe_2015_02_012
crossref_primary_10_1016_j_jembe_2020_151400
crossref_primary_10_1111_gbi_12570
crossref_primary_10_1139_cjb_2018_0047
crossref_primary_10_1016_j_gene_2015_10_051
crossref_primary_10_1016_j_cbpc_2016_07_001
crossref_primary_10_1111_eff_12666
crossref_primary_10_1134_S1063074016050060
crossref_primary_10_1111_are_13715
crossref_primary_10_1016_j_jembe_2018_03_004
crossref_primary_10_1016_j_jembe_2023_151926
crossref_primary_10_1111_1462_2920_13545
crossref_primary_10_3390_microorganisms10112150
crossref_primary_10_1007_s00253_019_10157_x
Cites_doi 10.3354/ame030275
10.1098/rspb.2008.1791
10.1023/A:1008195710981
10.1023/A:1008075903578
10.1016/S0031-9422(03)00048-7
10.1078/0176-1617-01068
10.1146/annurev.arplant.56.032604.144301
10.4319/lo.2011.56.3.1155
10.2174/1381612043384655
10.1093/jexbot/51.345.659
10.1126/science.1078002
10.1023/A:1008011201437
10.1139/m62-029
10.1007/s10811-005-5767-1
10.1021/bi0492096
10.1111/j.1461-0248.2008.01258.x
10.1007/s10811-008-9349-x
10.1104/pp.106.082040
10.1579/0044-7447(2007)36[168:MSIBSA]2.0.CO;2
10.1023/A:1022942705496
10.1016/S1389-0344(03)00040-6
10.1007/BF00041459
10.1007/s10499-008-9211-9
10.3109/10408417309108746
10.1021/jf901070g
10.1016/S0176-1617(00)80189-3
10.1016/j.aquaculture.2013.11.031
10.1046/j.1444-2906.2001.00323.x
10.1016/j.seares.2013.04.015
10.1007/BF02505618
10.1146/annurev.physiol.68.040104.110001
ContentType Journal Article
Copyright 2014 Phycological Society of America
2014 Phycological Society of America.
Copyright_xml – notice: 2014 Phycological Society of America
– notice: 2014 Phycological Society of America.
DBID FBQ
BSCLL
AAYXX
CITATION
NPM
7TN
F1W
H95
L.G
M7N
7S9
L.6
7X8
ADTPV
AOWAS
DG7
DF2
DOI 10.1111/jpy.12198
DatabaseName AGRIS
Istex
CrossRef
PubMed
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Stockholms universitet
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional


Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1529-8817
Editor Wood, M.
Editor_xml – sequence: 5
  givenname: M.
  surname: Wood
  fullname: Wood, M.
EndPage 759
ExternalDocumentID oai_DiVA_org_uu_232018
oai_DiVA_org_su_107435
3389816231
26988459
10_1111_jpy_12198
JPY12198
ark_67375_WNG_4JD11WGR_5
US201500020229
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EU Strukturstöd FiV Dnr
  funderid: 231‐0692‐04
– fundername: Formas
  funderid: 21.9/2003‐1033; 21.0/2004‐0313
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EDH
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NHB
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SUPJJ
TN5
TUS
TWZ
UB1
UKR
UPT
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XJT
XOL
YBU
YQT
YR2
ZCG
ZZTAW
~02
~IA
~KM
~WT
AEUQT
AFPWT
BSCLL
WRC
AAYXX
ADXHL
AEYWJ
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7TN
F1W
H95
L.G
M7N
7S9
L.6
7X8
ADTPV
AOWAS
DG7
DF2
ID FETCH-LOGICAL-c6258-60fe3c33ab73641fc5ab4031190e90f4438bb9e33ab28f1f62bc1d2e77c39c0f3
IEDL.DBID DR2
ISSN 0022-3646
1529-8817
IngestDate Thu Aug 21 06:55:06 EDT 2025
Thu Aug 21 06:30:43 EDT 2025
Tue Aug 05 11:37:27 EDT 2025
Fri Jul 11 18:38:34 EDT 2025
Thu Jul 10 18:39:06 EDT 2025
Fri Jul 25 02:58:49 EDT 2025
Mon Jul 21 06:04:12 EDT 2025
Thu Apr 24 23:12:19 EDT 2025
Tue Jul 01 04:23:24 EDT 2025
Wed Jan 22 16:42:05 EST 2025
Wed Oct 30 09:48:25 EDT 2024
Thu Apr 03 09:42:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords antioxidant
environmental stress
photosynthesis
vitamin E
microalgae
carotenoid
oxidative stress
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 Phycological Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6258-60fe3c33ab73641fc5ab4031190e90f4438bb9e33ab28f1f62bc1d2e77c39c0f3
Notes http://dx.doi.org/10.1111/jpy.12198
Table S1. Summary of the six phytoplankton species used in the experiments, showing phylogeny, strains and culture salinity. SSCAP = Scandinavian Culture Collection of Algae & Protozoa, University of Copenhagen, Denmark; KAC = Kalmar Algae collection, Linnaeus University, Kalmar, Sweden. Table S2. Summary of analytical procedures for the quantification of tocopherols in phytoplankton cells on Whatman™ GF/F glass fiber filters frozen at −80°C. This method was adapted after Häubner (). Table S3. Summary of analytical procedures for the quantification of fat-soluble pigments (chlorophylls and carotenoids) in phytoplankton cells on Whatman™ GF/F glass fiber filters frozen at −80°C. This method was adapted after Wright and Jeffrey (). Table S4. Initial PSII efficiency, biomass, and concentrations of α-tocopherol and β-carotene of the six phytoplankton species at t = 0 of the two experiments, expressed as mean ± standard deviation (N = 3). Table S5. Results of two-way factorial ANOVA analyses with experiment (Exp1 and Exp2) and species (all species except for R. salina, which was used only in Exp1) as predictor variables and PSII efficiency (Fv/Fm), biomass (mg C · L−1) and concentrations of α-tocopherol and β-carotene as response variables. Table S6. Results of two-way factorial ANOVA analyses for Exp1 (data in Fig. ) with temperature (5°C, 15°C and 25°C) and light (photon flux density 50 and 240 μmol photons · m−2 · s−1) as predictor variables and PSII efficiency (Fv/Fm), growth rate (mg C · L−1 · d−1), and concentrations of α-tocopherol and β-carotene as response variables. Table S7. Results of two-way factorial ANOVA analyses for Exp2 (data in Fig. ) with temperature (5°C, 15°C and 25°C) and salinity (−50% and +50%) as predictor variables and PSII efficiency (Fv/Fm), growth rate (mg C · L−1 · d−1) and concentrations of α-tocopherol and β-carotene as response variables.
ArticleID:JPY12198
istex:7F19696DD35F5B344AF054E6412A718182A058ED
ark:/67375/WNG-4JD11WGR-5
EU Strukturstöd FiV Dnr - No. 231-0692-04
Formas - No. 21.9/2003-1033; No. 21.0/2004-0313
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26988459
PQID 1550131316
PQPubID 1006384
PageCount 7
ParticipantIDs swepub_primary_oai_DiVA_org_uu_232018
swepub_primary_oai_DiVA_org_su_107435
proquest_miscellaneous_1774529466
proquest_miscellaneous_1663570074
proquest_miscellaneous_1560137735
proquest_journals_1550131316
pubmed_primary_26988459
crossref_primary_10_1111_jpy_12198
crossref_citationtrail_10_1111_jpy_12198
wiley_primary_10_1111_jpy_12198_JPY12198
istex_primary_ark_67375_WNG_4JD11WGR_5
fao_agris_US201500020229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Marcos
PublicationTitle Journal of phycology
PublicationTitleAlternate J. Phycol
PublicationYear 2014
Publisher Blackwell Pub
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Pub
– name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Jahnke, L. S. & White, A. L. 2003. Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga Dunaliella tertiolecta. J. Plant Physiol. 160:1193-202.
Abe, K., Nishimura, N. & Hirano, M. 1999. Simultaneous production of β-carotene, vitamin E and vitamin C by the aerial microalga Trentepohlia aurea. J. Appl. Phycol. 11:331-6.
Maxwell, L. & Johnson, G. N. 2000. Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51:659-68.
Mazur-Marzec, H., Żeglińska, L. & Pliński, M. 2005. The effect of salinity on the growth, toxin production, and morphology of Nodularia spumigena isolated from the Gulf of Gdánsk, southern Baltic Sea. J. Appl. Phycol. 17:171-9.
Brown, M. R., Mular, M., Miller, I., Farmer, C. & Trenerry, C. 1999. The vitamin content of microalgae used in aquaculture. J. Appl. Phycol. 11:247-55.
Monaghan, P., Metcalfe, N. B. & Torres, R. 2009. Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol. Lett. 12:75-92.
DellaPenna, D. & Pogson, B. J. 2006. Vitamin synthesis in plants: tocopherols and carotenoids. Ann. Rev. Plant Biol. 57:711-38.
Dauta, A., Devaux, J., Piquemal, F. & Boumnich, L. 1990. Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia 207:221-6.
Mallick, N. & Mohn, F. H. 2000. Reactive oxygen species: response of algal cells. J. Plant Physiol. 157:183-93.
Matsuno, T. 2001. Aquatic animal carotenoids. Fisheries Sci. 67:771-83.
Barros, M. P., Pedersén, M., Colepicolo, P. & Snoeijs, P. 2003. Self-shading protects phytoplankton communities against H2O2-induced oxidative stress. Aquat. Microb. Ecol. 30:275-82.
Halliwell, B. & Gutteridge, J. 2007. Free Radicals in Biology and Medicine, 4th ed. Oxford University Press, Oxford, 888 pp.
Nie, X. P., Zie, J., Häubner, N., Tallmark, B. & Snoeijs, P. 2011. Why Baltic herring and sprat are weak conduits for astaxanthin from zooplankton to piscivorous fish. Limnol. Oceanogr. 56:1155-67.
Carballo-Cárdenas, E. C., Tuan, P. H., Janssen, M. & Wijffels, R. 2003. Vitamin E (α-tocopherol) production by the marine microalgae Dunaliella tertiolecta and Tetraselmis suecica in batch cultivation. Biomol. Eng. 20:139-47.
Häubner, N. 2010. Dynamics of astaxanthin, tocopherol (vitamin E) and thiamine (vitamin B1) in the Baltic Sea ecosystem: bottom-up effects in an aquatic food web. Doctoral Thesis, Uppsala University. Acta Universitatis Upsaliensis 762:1-47.
Dowling, D. & Simmons, L. 2009. Reactive oxygen species as universal constraints in life-history evolution. Proc. R. Soc. B Biol. Sci. 276:1737-45.
Pinto, E., Van Nieuwerburgh, L., Barros, M. P., Pedersén, M., Colepicolo, P. & Snoeijs, P. 2003. Density-dependent patterns of thiamine and pigment production in the diatom Nitzschia microcephala. Phytochemistry 63:155-63.
Ogbonna, J. C., Tomiyama, S. & Tanaka, H. 1998. Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J. Appl. Phycol. 10:67-74.
Vismara, R., Vestri, S., Kusmic, C., Barsanti, L. & Gualtieri, P. 2003. Natural vitamin E enrichment of Artemia salina fed freshwater and marine microalgae. J. Appl. Phycol. 15:75-80.
Demmig-Adams, B. & Adams, W. 2002. Antioxidants in photosynthesis and human nutrition. Science 298:2149-53.
Guillard, R. & Ryther, J. 1962. Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt, and Detonula Confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-39.
Frank, H. & Brudvig, G. 2004. Redox functions of carotenoids in photosynthesis. Biochemistry 43:8607-15.
Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141:391-6.
Durmaz, Y., Donato, M., Monteiro, M., Gouveia, L., Nunes, M., Pereira, T., Gokpinar, S. & Bandarra, N. 2009. Effect of temperature on alpha-tocopherol, fatty acid profile, and pigments of Diacronema vlkianum (Haptophyceae). Aquacult. Int. 17:391-9.
Healey, F. P. 1973. Inorganic nutrient uptake and deficiency in algae. Crit. Rev. Microbiol. 3:69-113.
Snoeijs, P. & Häubner, N. 2014. Astaxanthin dynamics in Baltic Sea mesozooplankton communities. J. Sea Res. 85:131-43.
Fujita, T., Ogbonna, J. C., Tanake, H. & Aoyagi, H. 2009. Effects of reactive oxygen species on α-tocopherol production in mitochondria and chloroplasts of Euglena gracilis. J. Appl. Phycol. 21:185-91.
Lesser, M. P. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu. Rev. Physiol. 68:253-78.
Plaza, M., Herrero, M., Cifuentes, A. & Ibanez, E. 2009. Innovative natural functional ingredients from microalgae. Agric Food Chem 57:7159-70.
Vuori, K. & Nikinmaa, M. 2007. M74 syndrome in Baltic salmon and the possible role of oxidative stresses in its development: present knowledge and perspectives for future studies. Ambio 36:168-72.
Staub, R. 1961. Ernährungsphysiologisch-autökologische Untersuchungen an der plancktonische Blaualge Oscillatoria rubescens DC. Schweiz. Zeitschrift Hydrobiol. 23:82-198.
Gao, J., Koshio, S. & Ishikawa, M. 2014. Interactive effects of vitamin C and E supplementation on growth performance, fatty acid composition and reduction of oxidative stress in juvenile Japanese flounder Paralichthys olivaceus fed dietary oxidized fish oil. Aquaculture 422:84-90.
Vertuani, S., Angusti, A. & Manfredini, S. 2004. The antioxidants and pro-antioxidants network: an overview. Curr. Pharm. Design 10:1677-94.
2004; 43
1990; 207
2009; 21
2000; 157
2012
2006; 57
1962; 8
2002; 298
2010; 762
2009; 276
2000; 51
1997
2007
2003; 15
2011; 56
2014; 85
2001; 67
2003; 30
2007; 36
2009; 12
2004; 10
2009; 57
2006; 68
2006; 141
1999; 11
2003; 160
1961; 23
2005; 17
1998; 10
2003; 63
2003; 20
2014; 422
1973; 3
2009; 17
Halliwell B. (e_1_2_4_15_1) 2007
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
Wright S. W. (e_1_2_4_35_1) 1997
Häubner N. (e_1_2_4_16_1) 2010; 762
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_14_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_19_1
Snoeijs P. (e_1_2_4_30_1) 2012
References_xml – reference: DellaPenna, D. & Pogson, B. J. 2006. Vitamin synthesis in plants: tocopherols and carotenoids. Ann. Rev. Plant Biol. 57:711-38.
– reference: Healey, F. P. 1973. Inorganic nutrient uptake and deficiency in algae. Crit. Rev. Microbiol. 3:69-113.
– reference: Mazur-Marzec, H., Żeglińska, L. & Pliński, M. 2005. The effect of salinity on the growth, toxin production, and morphology of Nodularia spumigena isolated from the Gulf of Gdánsk, southern Baltic Sea. J. Appl. Phycol. 17:171-9.
– reference: Abe, K., Nishimura, N. & Hirano, M. 1999. Simultaneous production of β-carotene, vitamin E and vitamin C by the aerial microalga Trentepohlia aurea. J. Appl. Phycol. 11:331-6.
– reference: Demmig-Adams, B. & Adams, W. 2002. Antioxidants in photosynthesis and human nutrition. Science 298:2149-53.
– reference: Vuori, K. & Nikinmaa, M. 2007. M74 syndrome in Baltic salmon and the possible role of oxidative stresses in its development: present knowledge and perspectives for future studies. Ambio 36:168-72.
– reference: Dauta, A., Devaux, J., Piquemal, F. & Boumnich, L. 1990. Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia 207:221-6.
– reference: Halliwell, B. & Gutteridge, J. 2007. Free Radicals in Biology and Medicine, 4th ed. Oxford University Press, Oxford, 888 pp.
– reference: Vismara, R., Vestri, S., Kusmic, C., Barsanti, L. & Gualtieri, P. 2003. Natural vitamin E enrichment of Artemia salina fed freshwater and marine microalgae. J. Appl. Phycol. 15:75-80.
– reference: Maxwell, L. & Johnson, G. N. 2000. Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51:659-68.
– reference: Gao, J., Koshio, S. & Ishikawa, M. 2014. Interactive effects of vitamin C and E supplementation on growth performance, fatty acid composition and reduction of oxidative stress in juvenile Japanese flounder Paralichthys olivaceus fed dietary oxidized fish oil. Aquaculture 422:84-90.
– reference: Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141:391-6.
– reference: Dowling, D. & Simmons, L. 2009. Reactive oxygen species as universal constraints in life-history evolution. Proc. R. Soc. B Biol. Sci. 276:1737-45.
– reference: Durmaz, Y., Donato, M., Monteiro, M., Gouveia, L., Nunes, M., Pereira, T., Gokpinar, S. & Bandarra, N. 2009. Effect of temperature on alpha-tocopherol, fatty acid profile, and pigments of Diacronema vlkianum (Haptophyceae). Aquacult. Int. 17:391-9.
– reference: Jahnke, L. S. & White, A. L. 2003. Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga Dunaliella tertiolecta. J. Plant Physiol. 160:1193-202.
– reference: Lesser, M. P. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu. Rev. Physiol. 68:253-78.
– reference: Barros, M. P., Pedersén, M., Colepicolo, P. & Snoeijs, P. 2003. Self-shading protects phytoplankton communities against H2O2-induced oxidative stress. Aquat. Microb. Ecol. 30:275-82.
– reference: Frank, H. & Brudvig, G. 2004. Redox functions of carotenoids in photosynthesis. Biochemistry 43:8607-15.
– reference: Staub, R. 1961. Ernährungsphysiologisch-autökologische Untersuchungen an der plancktonische Blaualge Oscillatoria rubescens DC. Schweiz. Zeitschrift Hydrobiol. 23:82-198.
– reference: Carballo-Cárdenas, E. C., Tuan, P. H., Janssen, M. & Wijffels, R. 2003. Vitamin E (α-tocopherol) production by the marine microalgae Dunaliella tertiolecta and Tetraselmis suecica in batch cultivation. Biomol. Eng. 20:139-47.
– reference: Fujita, T., Ogbonna, J. C., Tanake, H. & Aoyagi, H. 2009. Effects of reactive oxygen species on α-tocopherol production in mitochondria and chloroplasts of Euglena gracilis. J. Appl. Phycol. 21:185-91.
– reference: Guillard, R. & Ryther, J. 1962. Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt, and Detonula Confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-39.
– reference: Brown, M. R., Mular, M., Miller, I., Farmer, C. & Trenerry, C. 1999. The vitamin content of microalgae used in aquaculture. J. Appl. Phycol. 11:247-55.
– reference: Pinto, E., Van Nieuwerburgh, L., Barros, M. P., Pedersén, M., Colepicolo, P. & Snoeijs, P. 2003. Density-dependent patterns of thiamine and pigment production in the diatom Nitzschia microcephala. Phytochemistry 63:155-63.
– reference: Häubner, N. 2010. Dynamics of astaxanthin, tocopherol (vitamin E) and thiamine (vitamin B1) in the Baltic Sea ecosystem: bottom-up effects in an aquatic food web. Doctoral Thesis, Uppsala University. Acta Universitatis Upsaliensis 762:1-47.
– reference: Plaza, M., Herrero, M., Cifuentes, A. & Ibanez, E. 2009. Innovative natural functional ingredients from microalgae. Agric Food Chem 57:7159-70.
– reference: Snoeijs, P. & Häubner, N. 2014. Astaxanthin dynamics in Baltic Sea mesozooplankton communities. J. Sea Res. 85:131-43.
– reference: Vertuani, S., Angusti, A. & Manfredini, S. 2004. The antioxidants and pro-antioxidants network: an overview. Curr. Pharm. Design 10:1677-94.
– reference: Nie, X. P., Zie, J., Häubner, N., Tallmark, B. & Snoeijs, P. 2011. Why Baltic herring and sprat are weak conduits for astaxanthin from zooplankton to piscivorous fish. Limnol. Oceanogr. 56:1155-67.
– reference: Matsuno, T. 2001. Aquatic animal carotenoids. Fisheries Sci. 67:771-83.
– reference: Ogbonna, J. C., Tomiyama, S. & Tanaka, H. 1998. Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J. Appl. Phycol. 10:67-74.
– reference: Mallick, N. & Mohn, F. H. 2000. Reactive oxygen species: response of algal cells. J. Plant Physiol. 157:183-93.
– reference: Monaghan, P., Metcalfe, N. B. & Torres, R. 2009. Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol. Lett. 12:75-92.
– volume: 11
  start-page: 331
  year: 1999
  end-page: 6
  article-title: Simultaneous production of β‐carotene, vitamin E and vitamin C by the aerial microalga
  publication-title: J. Appl. Phycol.
– volume: 422
  start-page: 84
  year: 2014
  end-page: 90
  article-title: Interactive effects of vitamin C and E supplementation on growth performance, fatty acid composition and reduction of oxidative stress in juvenile Japanese flounder Paralichthys olivaceus fed dietary oxidized fish oil
  publication-title: Aquaculture
– volume: 63
  start-page: 155
  year: 2003
  end-page: 63
  article-title: Density‐dependent patterns of thiamine and pigment production in the diatom
  publication-title: Phytochemistry
– volume: 3
  start-page: 69
  year: 1973
  end-page: 113
  article-title: Inorganic nutrient uptake and deficiency in algae
  publication-title: Crit. Rev. Microbiol.
– volume: 17
  start-page: 171
  year: 2005
  end-page: 9
  article-title: The effect of salinity on the growth, toxin production, and morphology of isolated from the Gulf of Gdánsk, southern Baltic Sea
  publication-title: J. Appl. Phycol.
– volume: 12
  start-page: 75
  year: 2009
  end-page: 92
  article-title: Oxidative stress as a mediator of life history trade‐offs: mechanisms, measurements and interpretation
  publication-title: Ecol. Lett.
– volume: 298
  start-page: 2149
  year: 2002
  end-page: 53
  article-title: Antioxidants in photosynthesis and human nutrition
  publication-title: Science
– volume: 21
  start-page: 185
  year: 2009
  end-page: 91
  article-title: Effects of reactive oxygen species on α‐tocopherol production in mitochondria and chloroplasts of
  publication-title: J. Appl. Phycol.
– start-page: 888
  year: 2007
– volume: 20
  start-page: 139
  year: 2003
  end-page: 47
  article-title: Vitamin E (α‐tocopherol) production by the marine microalgae and in batch cultivation
  publication-title: Biomol. Eng.
– volume: 30
  start-page: 275
  year: 2003
  end-page: 82
  article-title: Self‐shading protects phytoplankton communities against H O ‐induced oxidative stress
  publication-title: Aquat. Microb. Ecol.
– volume: 207
  start-page: 221
  year: 1990
  end-page: 6
  article-title: Growth rate of four freshwater algae in relation to light and temperature
  publication-title: Hydrobiologia
– volume: 10
  start-page: 67
  year: 1998
  end-page: 74
  article-title: Heterotrophic cultivation of Z for efficient production of α‐tocopherol
  publication-title: J. Appl. Phycol.
– volume: 23
  start-page: 82
  year: 1961
  end-page: 198
  article-title: Ernährungsphysiologisch‐autökologische Untersuchungen an der plancktonische Blaualge DC
  publication-title: Schweiz. Zeitschrift Hydrobiol.
– volume: 17
  start-page: 391
  year: 2009
  end-page: 9
  article-title: Effect of temperature on alpha‐tocopherol, fatty acid profile, and pigments of (Haptophyceae)
  publication-title: Aquacult. Int.
– volume: 85
  start-page: 131
  year: 2014
  end-page: 43
  article-title: Astaxanthin dynamics in Baltic Sea mesozooplankton communities
  publication-title: J. Sea Res.
– volume: 11
  start-page: 247
  year: 1999
  end-page: 55
  article-title: The vitamin content of microalgae used in aquaculture
  publication-title: J. Appl. Phycol.
– start-page: 72
  year: 2012
  end-page: 88
– volume: 36
  start-page: 168
  year: 2007
  end-page: 72
  article-title: M74 syndrome in Baltic salmon and the possible role of oxidative stresses in its development: present knowledge and perspectives for future studies
  publication-title: Ambio
– volume: 43
  start-page: 8607
  year: 2004
  end-page: 15
  article-title: Redox functions of carotenoids in photosynthesis
  publication-title: Biochemistry
– volume: 15
  start-page: 75
  year: 2003
  end-page: 80
  article-title: Natural vitamin E enrichment of Artemia salina fed freshwater and marine microalgae
  publication-title: J. Appl. Phycol.
– volume: 160
  start-page: 1193
  year: 2003
  end-page: 202
  article-title: Long‐term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga
  publication-title: J. Plant Physiol.
– start-page: 327
  year: 1997
  end-page: 41
– volume: 57
  start-page: 711
  year: 2006
  end-page: 38
  article-title: Vitamin synthesis in plants: tocopherols and carotenoids
  publication-title: Ann. Rev. Plant Biol.
– volume: 56
  start-page: 1155
  year: 2011
  end-page: 67
  article-title: Why Baltic herring and sprat are weak conduits for astaxanthin from zooplankton to piscivorous fish
  publication-title: Limnol. Oceanogr.
– volume: 67
  start-page: 771
  year: 2001
  end-page: 83
  article-title: Aquatic animal carotenoids
  publication-title: Fisheries Sci.
– volume: 141
  start-page: 391
  year: 2006
  end-page: 6
  article-title: Production and scavenging of reactive oxygen species in chloroplasts and their functions
  publication-title: Plant Physiol.
– volume: 157
  start-page: 183
  year: 2000
  end-page: 93
  article-title: Reactive oxygen species: response of algal cells
  publication-title: J. Plant Physiol.
– volume: 8
  start-page: 229
  year: 1962
  end-page: 39
  article-title: Studies of marine planktonic diatoms. 1. Hustedt, and (Cleve) Gran
  publication-title: Can. J. Microbiol.
– volume: 68
  start-page: 253
  year: 2006
  end-page: 78
  article-title: Oxidative stress in marine environments: biochemistry and physiological ecology
  publication-title: Annu. Rev. Physiol.
– volume: 57
  start-page: 7159
  year: 2009
  end-page: 70
  article-title: Innovative natural functional ingredients from microalgae
  publication-title: Agric Food Chem
– volume: 762
  start-page: 1
  year: 2010
  end-page: 47
  article-title: Dynamics of astaxanthin, tocopherol (vitamin E) and thiamine (vitamin B ) in the Baltic Sea ecosystem: bottom‐up effects in an aquatic food web
  publication-title: Acta Universitatis Upsaliensis
– volume: 10
  start-page: 1677
  year: 2004
  end-page: 94
  article-title: The antioxidants and pro‐antioxidants network: an overview
  publication-title: Curr. Pharm. Design
– volume: 276
  start-page: 1737
  year: 2009
  end-page: 45
  article-title: Reactive oxygen species as universal constraints in life‐history evolution
  publication-title: Proc. R. Soc. B Biol. Sci.
– volume: 51
  start-page: 659
  year: 2000
  end-page: 68
  article-title: Chlorophyll fluorescence ‐ a practical guide
  publication-title: J. Exp. Bot.
– ident: e_1_2_4_3_1
  doi: 10.3354/ame030275
– ident: e_1_2_4_9_1
  doi: 10.1098/rspb.2008.1791
– ident: e_1_2_4_1_1
  doi: 10.1023/A:1008195710981
– ident: e_1_2_4_4_1
  doi: 10.1023/A:1008075903578
– ident: e_1_2_4_27_1
  doi: 10.1016/S0031-9422(03)00048-7
– ident: e_1_2_4_18_1
  doi: 10.1078/0176-1617-01068
– ident: e_1_2_4_7_1
  doi: 10.1146/annurev.arplant.56.032604.144301
– ident: e_1_2_4_25_1
  doi: 10.4319/lo.2011.56.3.1155
– volume: 762
  start-page: 1
  year: 2010
  ident: e_1_2_4_16_1
  article-title: Dynamics of astaxanthin, tocopherol (vitamin E) and thiamine (vitamin B1) in the Baltic Sea ecosystem: bottom‐up effects in an aquatic food web
  publication-title: Acta Universitatis Upsaliensis
– ident: e_1_2_4_32_1
  doi: 10.2174/1381612043384655
– start-page: 327
  volume-title: Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods
  year: 1997
  ident: e_1_2_4_35_1
– ident: e_1_2_4_22_1
  doi: 10.1093/jexbot/51.345.659
– ident: e_1_2_4_8_1
  doi: 10.1126/science.1078002
– ident: e_1_2_4_26_1
  doi: 10.1023/A:1008011201437
– ident: e_1_2_4_14_1
  doi: 10.1139/m62-029
– ident: e_1_2_4_23_1
  doi: 10.1007/s10811-005-5767-1
– ident: e_1_2_4_11_1
  doi: 10.1021/bi0492096
– ident: e_1_2_4_24_1
  doi: 10.1111/j.1461-0248.2008.01258.x
– ident: e_1_2_4_12_1
  doi: 10.1007/s10811-008-9349-x
– ident: e_1_2_4_2_1
  doi: 10.1104/pp.106.082040
– ident: e_1_2_4_34_1
  doi: 10.1579/0044-7447(2007)36[168:MSIBSA]2.0.CO;2
– ident: e_1_2_4_33_1
  doi: 10.1023/A:1022942705496
– ident: e_1_2_4_5_1
  doi: 10.1016/S1389-0344(03)00040-6
– ident: e_1_2_4_6_1
  doi: 10.1007/BF00041459
– start-page: 72
  volume-title: Oxidative Stress in Aquatic Ecosystems
  year: 2012
  ident: e_1_2_4_30_1
– ident: e_1_2_4_10_1
  doi: 10.1007/s10499-008-9211-9
– ident: e_1_2_4_17_1
  doi: 10.3109/10408417309108746
– ident: e_1_2_4_28_1
  doi: 10.1021/jf901070g
– ident: e_1_2_4_20_1
  doi: 10.1016/S0176-1617(00)80189-3
– ident: e_1_2_4_13_1
  doi: 10.1016/j.aquaculture.2013.11.031
– ident: e_1_2_4_21_1
  doi: 10.1046/j.1444-2906.2001.00323.x
– ident: e_1_2_4_29_1
  doi: 10.1016/j.seares.2013.04.015
– start-page: 888
  volume-title: Free Radicals in Biology and Medicine
  year: 2007
  ident: e_1_2_4_15_1
– ident: e_1_2_4_31_1
  doi: 10.1007/BF02505618
– ident: e_1_2_4_19_1
  doi: 10.1146/annurev.physiol.68.040104.110001
SSID ssj0007651
Score 2.249017
Snippet We performed laboratory experiments to investi‐gate whether the synthesis of the antioxidants α‐tocopherol (vitamin E) and β‐carotene in phytoplankton depends...
We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants α-tocopherol (vitamin E) and β-carotene in phytoplankton depends...
We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants [alpha]-tocopherol (vitamin E) and [beta]-carotene in...
We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants alpha -tocopherol (vitamin E) and beta -carotene in phytoplankton...
We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants -tocopherol (vitamin E) and -carotene in phytoplankton depends on...
SourceID swepub
proquest
pubmed
crossref
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 753
SubjectTerms abiotic stress
alpha-tocopherol
antioxidant
antioxidants
aquatic ecosystems
aquatic food webs
beta-carotene
carotenoid
climate change
Dunaliella tertiolecta
environmental stress
food intake
laboratory experimentation
lipid peroxidation
microalgae
Nodularia
Nodularia spumigena
oxidative stress
Phaeodactylum tricornutum
photosynthesis
photosystem II
phytoplankton
Prorocentrum
reactive oxygen species
Rhodomonas
salinity
Skeletonema costatum
species diversity
temperature
vitamin E
Title Abiotic stress modifies the synthesis of alpha‐tocopherol and beta‐carotene in phytoplankton species
URI https://api.istex.fr/ark:/67375/WNG-4JD11WGR-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpy.12198
https://www.ncbi.nlm.nih.gov/pubmed/26988459
https://www.proquest.com/docview/1550131316
https://www.proquest.com/docview/1560137735
https://www.proquest.com/docview/1663570074
https://www.proquest.com/docview/1774529466
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-107435
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-232018
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKxYELb2igIIMA9ZIqT2cjTgulrVaiQoWlRUKybK9dVrvEq00isZz4CfxGfgkzzgOKygqhPWQVT6J4PDP-Jhl_JuSJ1IHKdBb5OpDMTwwzvoR51YfUGaafLEyl22zi9RE7HCej0_R0gzzv1sI0_BD9Czf0DBev0cGFLH938sUKqRFyXOiLtVoIiI5_UUdlLA17pnCWsJZVyFXxdFeem4suGWEBoaJyv1wEN3su0fMw1s1D-9fIx64HTfnJbLeu5K76-ge543928Tq52uJTOmwM6gbZ0MVNcvmFBQy5ukU-DeXUQgttlpjQz3YyNZBrU4CRtFwVcCinJbWGujW8P759r6xyzAV2TkUxoVJXeBY3CwKwrum0oDDOlV3MRTEDGEpx5Sfc8DYZ77969_LQb_dq8BVkUAOfBUbHKo6FzEDboVGpkAkEDBhwnQcmSeKBlLlGgWhgQsMiqcJJpLNMxbkKTHyHbBa20FuERjKAJkjThAIwJya5MIpB0A5EEMpcCY_sdKPGVUtkjvtpzHmf0CxW3OnNI4970UXD3nGR0BYMPRdnEFX5-G2E74AQRUdR7pFnzh76i8VyhpVwWcpPjg54MtoLw5ODY556ZLszGN4GgZJj9hfG8GMeedQ3g_viNxlRaFujDHOkj3G6RgZRYYZgb40MwPg0ws0CPHK3Mdj-oSOWDwZJCr152lhw34Lc4nvT90Nul2e8rDlW5-KTrJWraw4wPAhBcTvOev-uWj5688H9uffvovfJFbh50hRZbpPNalnrBwD8KvnQefhPnqtUOA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe2gcRe-M8WGGAQoL1kyl8nkXgpjK2UrUJjZeMBWbZrj6olqdpEojzxEfiMfBLunDYwNCqE-tCqvqTx-Xz-nXv-HSFPpPZUopPA1Z5kbmSYcSWsqy6EzrD8JH4sbbGJwy5r96LOaXy6Qp4vzsLU_BDNhhvODOuvcYLjhvTvs3w8Q26ELF0ll7Citw2ojn6RRyUs9huucBaxOa-QzeNZXHpuNVo1ogCMiur9chHgbNhEzwNZuxLtXSMfF32oE1CGO1Upd9TXP-gd_7eT18nVOUSlrdqmbpAVnd8kl18UACNnt8inlhwU0ELrUyb0c9EfGAi3KSBJOp3l8DYdTGlhqD3G--Pb97JQlrygGFGR96nUJX6L9YIAr2s6yCkMdVmMRyIfAhKlePgTbnib9PZeHb9su_NyDa6CICp1mWd0qMJQyATU7RsVCxmBz4Ax15lnoihMpcw0CgSp8Q0LpPL7gU4SFWbKM-EdspYXud4kNJAeNEGkJhTgOdHPhFEM_LYnPF9mSjhkezFsXM25zLGkxog3Mc14xq3eHPK4ER3XBB4XCW3C2HNxBo6V994FuA2EQDoIMoc8swbRXCwmQ0yGS2J-0t3nUWfX90_2j3jskK2FxfC5H5hyDAD9EF7MIY-aZpjB-LeMyHVRoQyzvI9hvEQGgWGCeG-JDCD5OMB6AQ7ZqC22eeiAZWkaxdCbp7UJNy1IL747eN_ixeSMTyuOCbr4JEvlqooDEvd8UNy2Nd-_q5Z33n6wH-7-u-hDcqV9fHjAD15339wj6_BDUZ1zuUXWykml7wMOLOUDO91_Aqt_WFM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe2gdBe-M8WGGAQoL1kyl8nEU-F0o0C1TQoGxKSZbv2qFqSqk0kyhMfgc_IJ-HOaQNDo0KoD6nqSxqf786_S84_E_JIak8lOglc7UnmRoYZV8K86kLqDNNP4sfSbjbxpscO-lH3JD5ZI0-Xa2FqfojmgRt6ho3X6OCTgfndySdzpEbI0nVyIWJeiibdPvrFHZWw2G-owlnEFrRCtoxneeqZyWjdiAIgKmr3y3l4syETPYtj7UTUuUI-LrtQ15-M9qpS7qmvf7A7_mcfr5LLC4BKW7VFXSNrOr9OLj4rAETOb5BPLTksoIXWa0zo52IwNJBsU8CRdDbP4TAbzmhhqF3E--Pb97JQlrqgGFORD6jUJf6KuwUBWtd0mFMY6LKYjEU-AhxKceknXPAm6XdevHt-4C42a3AVpFCpyzyjQxWGQiagbd-oWMgIIgaMuM48E0VhKmWmUSBIjW9YIJU_CHSSqDBTnglvkY28yPU2oYH0oAnyNKEAzYlBJoxiELU94fkyU8Ihu8tR42rBZI4baox5k9FM5tzqzSEPG9FJTd9xntA2DD0XpxBWef9tgA-BEEYHQeaQJ9YempPFdISlcEnMj3v7POq2ff94_4jHDtlZGgxfRIEZx_TPD-HDHPKgaQb_xZcyItdFhTLMsj6G8QoZhIUJor0VMoDj4wB3C3DIVm2wzU0HLEvTKIbePK4tuGlBcvH28H2LF9NTPqs4lufinayUqyoOONzzQXG71nr_rlrePfxgv9z-d9H75NJhu8Nfv-y9ukM24X-iuuByh2yU00rfBRBYynvW2X8ChZ5XCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abiotic+stress+modifies+the+synthesis+of+alpha%E2%80%90tocopherol+and+beta%E2%80%90carotene+in+phytoplankton+species&rft.jtitle=Journal+of+phycology&rft.au=H%C3%A4ubner%2C+Norbert&rft.au=Sylvander%2C+Peter&rft.au=Vuori%2C+Kristiina&rft.au=Snoeijs%2C+Pauline&rft.date=2014-08-01&rft.issn=0022-3646&rft.eissn=1529-8817&rft.volume=50&rft.issue=4&rft.spage=753&rft.epage=759&rft_id=info:doi/10.1111%2Fjpy.12198&rft.externalDBID=10.1111%252Fjpy.12198&rft.externalDocID=JPY12198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3646&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3646&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3646&client=summon