Proteostasis failure and cellular senescence in long‐term cultured postmitotic rat neurons

Cellular senescence, a stress‐induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age‐related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neuro...

Full description

Saved in:
Bibliographic Details
Published inAging cell Vol. 19; no. 1; pp. e13071 - n/a
Main Authors Ishikawa, Shoma, Ishikawa, Fuyuki
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.01.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1474-9718
1474-9726
1474-9726
DOI10.1111/acel.13071

Cover

Loading…
Abstract Cellular senescence, a stress‐induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age‐related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neurons, which accordingly is a process distinct by definition from senescence. It is nevertheless possible that proteostasis failure and cellular senescence have overlapping molecular mechanisms. Here, we identify postmitotic cellular senescence as an adaptive stress response to proteostasis failure. Primary rat hippocampal neurons in long‐term cultures show molecular changes indicative of both senescence (senescence‐associated β‐galactosidase, p16, and loss of lamin B1) and proteostasis failure relevant to Alzheimer's disease. In addition, we demonstrate that the senescent neurons exhibit resistance to stress. Importantly, treatment of the cultures with an mTOR antagonist, protein synthesis inhibitor, or chemical compound that reduces the amount of protein aggregates relieved the proteotoxic stresses as well as the appearance of senescence markers. Our data propose mechanistic insights into the pathophysiological brain aging by establishing senescence as a primary cell‐autonomous neuroprotective response. Loss of protein homeostasis (proteostasis) is a hallmark of brain aging, yet the adaptive mechanism that contributes to life‐long neuronal preservation is poorly understood. Long‐term cultures of primary post‐mitotic neurons increase a proteotoxic burden and establish cellular senescence, which is alleviated by prolonged treatment of neurons with rapamycin. Post‐mitotic cell senescence is accompanied by stress resilience, suggesting an intrinsic neuroprotective role of senescence.
AbstractList Cellular senescence, a stress‐induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age‐related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neurons, which accordingly is a process distinct by definition from senescence. It is nevertheless possible that proteostasis failure and cellular senescence have overlapping molecular mechanisms. Here, we identify postmitotic cellular senescence as an adaptive stress response to proteostasis failure. Primary rat hippocampal neurons in long‐term cultures show molecular changes indicative of both senescence (senescence‐associated β‐galactosidase, p16, and loss of lamin B1) and proteostasis failure relevant to Alzheimer's disease. In addition, we demonstrate that the senescent neurons exhibit resistance to stress. Importantly, treatment of the cultures with an mTOR antagonist, protein synthesis inhibitor, or chemical compound that reduces the amount of protein aggregates relieved the proteotoxic stresses as well as the appearance of senescence markers. Our data propose mechanistic insights into the pathophysiological brain aging by establishing senescence as a primary cell‐autonomous neuroprotective response. Loss of protein homeostasis (proteostasis) is a hallmark of brain aging, yet the adaptive mechanism that contributes to life‐long neuronal preservation is poorly understood. Long‐term cultures of primary post‐mitotic neurons increase a proteotoxic burden and establish cellular senescence, which is alleviated by prolonged treatment of neurons with rapamycin. Post‐mitotic cell senescence is accompanied by stress resilience, suggesting an intrinsic neuroprotective role of senescence.
Cellular senescence, a stress‐induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age‐related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neurons, which accordingly is a process distinct by definition from senescence. It is nevertheless possible that proteostasis failure and cellular senescence have overlapping molecular mechanisms. Here, we identify postmitotic cellular senescence as an adaptive stress response to proteostasis failure. Primary rat hippocampal neurons in long‐term cultures show molecular changes indicative of both senescence (senescence‐associated β‐galactosidase, p16, and loss of lamin B1) and proteostasis failure relevant to Alzheimer's disease. In addition, we demonstrate that the senescent neurons exhibit resistance to stress. Importantly, treatment of the cultures with an mTOR antagonist, protein synthesis inhibitor, or chemical compound that reduces the amount of protein aggregates relieved the proteotoxic stresses as well as the appearance of senescence markers. Our data propose mechanistic insights into the pathophysiological brain aging by establishing senescence as a primary cell‐autonomous neuroprotective response.
Cellular senescence, a stress-induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age-related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neurons, which accordingly is a process distinct by definition from senescence. It is nevertheless possible that proteostasis failure and cellular senescence have overlapping molecular mechanisms. Here, we identify postmitotic cellular senescence as an adaptive stress response to proteostasis failure. Primary rat hippocampal neurons in long-term cultures show molecular changes indicative of both senescence (senescence-associated β-galactosidase, p16, and loss of lamin B1) and proteostasis failure relevant to Alzheimer's disease. In addition, we demonstrate that the senescent neurons exhibit resistance to stress. Importantly, treatment of the cultures with an mTOR antagonist, protein synthesis inhibitor, or chemical compound that reduces the amount of protein aggregates relieved the proteotoxic stresses as well as the appearance of senescence markers. Our data propose mechanistic insights into the pathophysiological brain aging by establishing senescence as a primary cell-autonomous neuroprotective response.Cellular senescence, a stress-induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age-related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neurons, which accordingly is a process distinct by definition from senescence. It is nevertheless possible that proteostasis failure and cellular senescence have overlapping molecular mechanisms. Here, we identify postmitotic cellular senescence as an adaptive stress response to proteostasis failure. Primary rat hippocampal neurons in long-term cultures show molecular changes indicative of both senescence (senescence-associated β-galactosidase, p16, and loss of lamin B1) and proteostasis failure relevant to Alzheimer's disease. In addition, we demonstrate that the senescent neurons exhibit resistance to stress. Importantly, treatment of the cultures with an mTOR antagonist, protein synthesis inhibitor, or chemical compound that reduces the amount of protein aggregates relieved the proteotoxic stresses as well as the appearance of senescence markers. Our data propose mechanistic insights into the pathophysiological brain aging by establishing senescence as a primary cell-autonomous neuroprotective response.
Audience Academic
Author Ishikawa, Shoma
Ishikawa, Fuyuki
AuthorAffiliation 1 Department of Gene Mechanisms Graduate School of Biostudies Kyoto University Kyoto Japan
AuthorAffiliation_xml – name: 1 Department of Gene Mechanisms Graduate School of Biostudies Kyoto University Kyoto Japan
Author_xml – sequence: 1
  givenname: Shoma
  orcidid: 0000-0002-8971-0716
  surname: Ishikawa
  fullname: Ishikawa, Shoma
  organization: Kyoto University
– sequence: 2
  givenname: Fuyuki
  orcidid: 0000-0002-5580-2305
  surname: Ishikawa
  fullname: Ishikawa, Fuyuki
  email: fishikaw@lif.kyoto-u.ac.jp
  organization: Kyoto University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31762159$$D View this record in MEDLINE/PubMed
BookMark eNp9kt9uFCEUxompsX_0xgcwJN4Yk12BGQa4MdlsWjXZRC_0zoQwDKw0DKzA1PTOR_AZ-yQybltt0wgXEPidj_MdzjE4CDEYAJ5jtMR1vFHa-CVuEMOPwBFuWbsQjHQHt3vMD8FxzucIYSZQ8wQcNph1BFNxBL5-SrGYmIvKLkOrnJ-SgSoMsIr6yasEswkmaxO0gS5AH8P26uevYtII9eRLxQe4qwKjK7E4DZMqMJgpxZCfgsdW-WyeXa8n4MvZ6ef1-8Xm47sP69VmoTtC8UKo1pJ-ELalVOCWc4t7RlvMsDJIcSsGzBSxhPadbURf7eqBUI40IoZzoZoT8Havu5v60Qw115KUl7vkRpUuZVRO3r0J7pvcxgvZCdYyRKvAq2uBFL9PJhc5ujwXQAUTpyxJLZjoMOesoi_voedxSqHaqxRlDRack7_UVnkjXbCxvqtnUbliiPGOE9JVavkAVedgRqfrJ1tXz-8EvPjX6K3Dm_-sANoDOsWck7FSu6KKi7Nv5yVGcm4ZObeM_NMyNeT1vZAb1QdhvId_1Mwu_0PK1fp0s4_5Da_U0nQ
CitedBy_id crossref_primary_10_1155_2021_5586052
crossref_primary_10_3390_ijms23052484
crossref_primary_10_1016_j_jchemneu_2022_102210
crossref_primary_10_1111_bcpt_13812
crossref_primary_10_3389_fphar_2025_1528604
crossref_primary_10_1186_s13024_021_00489_6
crossref_primary_10_1002_advs_202002611
crossref_primary_10_1080_10717544_2022_2094501
crossref_primary_10_3390_ijms252212335
crossref_primary_10_3389_fcell_2023_1276707
crossref_primary_10_1007_s00018_024_05164_9
crossref_primary_10_2174_2666338408666210322113713
crossref_primary_10_1038_s44220_023_00033_z
crossref_primary_10_1007_s00439_023_02565_x
crossref_primary_10_3390_biomedicines9111635
crossref_primary_10_1016_j_arr_2021_101268
crossref_primary_10_1098_rsob_220171
crossref_primary_10_3389_fnins_2021_747067
crossref_primary_10_3389_fnagi_2025_1555872
crossref_primary_10_3389_fnins_2020_614331
crossref_primary_10_1038_s41598_020_71042_6
crossref_primary_10_1111_acel_13471
crossref_primary_10_1111_ejn_16318
crossref_primary_10_1016_j_arr_2021_101458
crossref_primary_10_1016_j_dnarep_2024_103699
crossref_primary_10_14336_AD_2023_0214
crossref_primary_10_1016_j_mad_2022_111758
crossref_primary_10_1155_2021_6682336
crossref_primary_10_2174_1874609816666230206144212
crossref_primary_10_3233_JAD_220203
crossref_primary_10_1016_j_brainres_2024_149202
crossref_primary_10_1186_s40478_023_01578_x
crossref_primary_10_26508_lsa_202101055
crossref_primary_10_1007_s10522_025_10199_x
crossref_primary_10_1186_s40035_024_00447_4
crossref_primary_10_3389_fnagi_2021_646924
crossref_primary_10_1016_j_bramec_2025_202485
crossref_primary_10_1016_j_phrs_2023_106841
crossref_primary_10_1186_s13041_022_00947_2
crossref_primary_10_3389_fimmu_2021_692321
crossref_primary_10_1002_2211_5463_13036
Cites_doi 10.18632/aging.102181
10.1074/jbc.M301048200
10.1016/j.bbrc.2010.05.011
10.1038/nprot.2012.099
10.7554/eLife.22978
10.1038/s41586-018-0543-y
10.15252/embr.201745274
10.1038/nm.4001
10.1016/j.cell.2010.01.028
10.1111/j.1474-9726.2012.00870.x
10.1038/nature13193
10.1111/j.1474-9726.2011.00791.x
10.1016/j.bbr.2014.02.005
10.1016/j.devcel.2015.02.002
10.18632/oncotarget.12752
10.1038/nature16932
10.1016/S0896-6273(00)80737-0
10.1101/gad.1971610
10.1038/sj.cdd.4401341
10.1126/science.272.5264.1017
10.1126/science.aaa5612
10.1038/ncomms9997
10.1038/nrn1809
10.1038/nature11861
10.1101/gad.859201
10.1016/j.tcb.2018.03.003
10.15252/embr.201439245
10.1016/0092-8674(94)90131-7
10.12659/MSM.881706
10.1038/srep18722
10.1007/s00335-016-9628-9
10.1016/j.cell.2012.03.017
10.1016/j.tibs.2004.06.006
10.1016/j.tins.2006.08.005
10.1096/fj.09-146456
10.1371/journal.pone.0023367
10.1016/S0896-6273(04)00017-0
10.1038/nature13163
10.1038/nature16187
10.18632/aging.100265
10.1016/j.gde.2014.06.009
10.1016/S1097-2765(04)00256-4
10.1101/gad.519709
10.1074/jbc.M312866200
10.1038/nature21695
ContentType Journal Article
Copyright 2019 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd.
2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
COPYRIGHT 2019 John Wiley & Sons, Inc.
Copyright © 2020 The Anatomical Society and John Wiley & Sons Ltd
Copyright_xml – notice: 2019 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd.
– notice: 2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
– notice: COPYRIGHT 2019 John Wiley & Sons, Inc.
– notice: Copyright © 2020 The Anatomical Society and John Wiley & Sons Ltd
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7X8
5PM
DOI 10.1111/acel.13071
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
Calcium & Calcified Tissue Abstracts
MEDLINE


CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate ISHIKAWA and ISHIKAWA
EISSN 1474-9726
EndPage n/a
ExternalDocumentID PMC6974705
A707868226
31762159
10_1111_acel_13071
ACEL13071
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  funderid: 15K14449
– fundername: Japan Society for the Promotion of Science
  grantid: 15K14449
– fundername: ;
  grantid: 15K14449
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
23M
24P
2WC
31~
36B
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAHHS
AAZKR
ABCQN
ABDBF
ABEML
ABJNI
ACCFJ
ACCMX
ACGFO
ACGFS
ACPRK
ACSCC
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFBPY
AFEBI
AFKRA
AFZJQ
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
E3Z
EAD
EAP
EBD
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HF~
HOLLA
HZ~
IAO
IHE
IHR
IPNFZ
ITC
IX1
J0M
K.9
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M48
M7P
MK4
N04
N05
N9A
O9-
OBS
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PIMPY
Q11
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
WIN
WQJ
WRC
WXI
XG1
YFH
YUY
~IA
~WT
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QP
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
PQGLB
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c6251-9a4f2bd9f45591488f1b754171ae0a8f9d17a2f25b6f39bacecd2580c02e889a3
IEDL.DBID M48
ISSN 1474-9718
1474-9726
IngestDate Thu Aug 21 18:34:48 EDT 2025
Thu Sep 04 23:56:40 EDT 2025
Wed Aug 13 06:14:15 EDT 2025
Tue Jun 17 21:44:14 EDT 2025
Tue Jun 10 20:10:56 EDT 2025
Thu Apr 03 06:57:25 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Tue Jul 01 01:49:15 EDT 2025
Wed Jan 22 16:37:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords senescence
mTOR
postmitotic neurons
proteostasis failure
Language English
License Attribution
2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6251-9a4f2bd9f45591488f1b754171ae0a8f9d17a2f25b6f39bacecd2580c02e889a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5580-2305
0000-0002-8971-0716
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/acel.13071
PMID 31762159
PQID 2357319882
PQPubID 1036381
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6974705
proquest_miscellaneous_2317961887
proquest_journals_2357319882
gale_infotracmisc_A707868226
gale_infotracacademiconefile_A707868226
pubmed_primary_31762159
crossref_citationtrail_10_1111_acel_13071
crossref_primary_10_1111_acel_13071
wiley_primary_10_1111_acel_13071_ACEL13071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle Aging cell
PublicationTitleAlternate Aging Cell
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2009; 23
2017; 6
2018; 562
2004; 41
2018; 28
2015; 6
2004; 29
2019; 11
2016; 529
2015; 32
2006; 7
2014; 26
1999; 22
2010; 140
2015; 349
2011; 17
2003; 278
2011; 6
2012; 149
2012; 11
2018; 19
2004; 11
2016; 6
2016; 7
2014; 507
2004; 279
2010; 24
2014; 509
2004; 14
2015; 21
2010; 396
1996; 272
2016; 530
1994; 77
2014; 15
2006; 29
2013; 493
2001; 15
2014; 264
2012; 7
2010; 2
2016; 27
2017; 543
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 28
  start-page: 595
  issue: 8
  year: 2018
  end-page: 607
  article-title: Cellular senescence in postmitotic cells: beyond growth arrest
  publication-title: Trends in Cell Biology
– volume: 29
  start-page: 409
  issue: 8
  year: 2004
  end-page: 417
  article-title: E2F target genes: Unraveling the biology
  publication-title: Trends in Biochemical Sciences
– volume: 22
  start-page: 789
  issue: 4
  year: 1999
  end-page: 798
  article-title: Control of recruitment and transcription‐activating function of CBP determines gene regulation by NMDA receptors and L‐type calcium channels
  publication-title: Neuron
– volume: 21
  start-page: 1406
  issue: 12
  year: 2015
  end-page: 1415
  article-title: Proteostasis and aging
  publication-title: Nature Medicine
– volume: 149
  start-page: 274
  issue: 2
  year: 2012
  end-page: 293
  article-title: mTOR signaling in growth control and disease
  publication-title: Cell
– volume: 264
  start-page: 82
  year: 2014
  end-page: 90
  article-title: mTOR and autophagy in normal brain aging and caloric restriction ameliorating age‐related cognition deficits
  publication-title: Behavioral Brain Research
– volume: 7
  start-page: 1741
  issue: 9
  year: 2012
  end-page: 1754
  article-title: Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex
  publication-title: Nature Protocols
– volume: 6
  issue: 8
  year: 2011
  article-title: Autophagy impairment induces premature senescence in primary human fibroblasts
  publication-title: PLoS ONE
– volume: 530
  start-page: 184
  issue: 7589
  year: 2016
  end-page: 189
  article-title: Naturally occurring p16(Ink4a)‐positive cells shorten healthy lifespan
  publication-title: Nature
– volume: 24
  start-page: 2385
  issue: 7
  year: 2010
  end-page: 2395
  article-title: Abeta peptides accelerate the senescence of endothelial cells in vitro and in vivo, impairing angiogenesis
  publication-title: The FASEB Journal
– volume: 11
  start-page: 6175
  issue: 16
  year: 2019
  end-page: 6198
  article-title: Cortical neurons develop a senescence‐like phenotype promoted by dysfunctional autophagy
  publication-title: Aging (Albany NY)
– volume: 279
  start-page: 8627
  issue: 10
  year: 2004
  end-page: 8634
  article-title: Up‐regulation of Bcl‐2 homology 3 (BH3)‐only proteins by E2F1 mediates apoptosis
  publication-title: Journal of Biological Chemistry
– volume: 14
  start-page: 501
  issue: 4
  year: 2004
  end-page: 513
  article-title: Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a)
  publication-title: Molecular Cell
– volume: 11
  start-page: 49
  issue: 1
  year: 2004
  end-page: 60
  article-title: Cell cycle molecules and vertebrate neuron death: E2F at the hub
  publication-title: Cell Death and Differentiation
– volume: 2
  start-page: 924
  issue: 12
  year: 2010
  end-page: 935
  article-title: DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re‐activation of mTOR is associated with conversion to senescence
  publication-title: Aging (Albany NY)
– volume: 23
  start-page: 798
  issue: 7
  year: 2009
  end-page: 803
  article-title: Autophagy mediates the mitotic senescence transition
  publication-title: Genes & Development
– volume: 349
  start-page: aaa5612
  issue: 6255
  year: 2015
  article-title: The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4
  publication-title: Science
– volume: 26
  start-page: 89
  year: 2014
  end-page: 95
  article-title: Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing
  publication-title: Current Opinion in Genetics & Development
– volume: 7
  start-page: 30
  issue: 1
  year: 2006
  end-page: 40
  article-title: Neural plasticity in the ageing brain
  publication-title: Nature Reviews Neuroscience
– volume: 27
  start-page: 320
  issue: 7–8
  year: 2016
  end-page: 331
  article-title: Old cells, new tricks: Chromatin structure in senescence
  publication-title: Mammalian Genome
– volume: 6
  start-page: 18722
  year: 2016
  article-title: Restriction of protein synthesis abolishes senescence features at cellular and organismal levels
  publication-title: Scientific Reports
– volume: 11
  start-page: 326
  issue: 2
  year: 2012
  end-page: 335
  article-title: Lifelong rapamycin administration ameliorates age‐dependent cognitive deficits by reducing IL‐1beta and enhancing NMDA signaling
  publication-title: Aging Cell
– volume: 11
  start-page: 996
  issue: 6
  year: 2012
  end-page: 1004
  article-title: Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response
  publication-title: Aging Cell
– volume: 529
  start-page: 37
  issue: 7584
  year: 2016
  end-page: 42
  article-title: Autophagy maintains stemness by preventing senescence
  publication-title: Nature
– volume: 562
  start-page: 578
  issue: 7728
  year: 2018
  end-page: 582
  article-title: Clearance of senescent glial cells prevents tau‐dependent pathology and cognitive decline
  publication-title: Nature
– volume: 41
  start-page: 549
  issue: 4
  year: 2004
  end-page: 561
  article-title: Cell cycle activation linked to neuronal cell death initiated by DNA damage
  publication-title: Neuron
– volume: 272
  start-page: 1017
  issue: 5264
  year: 1996
  end-page: 1020
  article-title: Increase in single L‐type calcium channels in hippocampal neurons during aging
  publication-title: Science
– volume: 507
  start-page: 448
  issue: 7493
  year: 2014
  end-page: 454
  article-title: REST and stress resistance in ageing and Alzheimer's disease
  publication-title: Nature
– volume: 24
  start-page: 2463
  issue: 22
  year: 2010
  end-page: 2479
  article-title: The essence of senescence
  publication-title: Genes & Development
– volume: 77
  start-page: 817
  issue: 6
  year: 1994
  end-page: 827
  article-title: Hydrogen peroxide mediates amyloid beta protein toxicity
  publication-title: Cell
– volume: 17
  start-page: BR91
  issue: 4
  year: 2011
  end-page: BR96
  article-title: Mitochondrial dysfunction in long‐term neuronal cultures mimics changes with aging
  publication-title: Medical Science Monitor
– volume: 396
  start-page: 866
  issue: 4
  year: 2010
  end-page: 869
  article-title: Senescence‐associated beta‐galactosidase activity expression in aging hippocampal neurons
  publication-title: Biochemical and Biophysical Research Communications
– volume: 7
  start-page: 81099
  issue: 49
  year: 2016
  end-page: 81109
  article-title: Is senescence‐associated beta‐galactosidase a marker of neuronal senescence?
  publication-title: Oncotarget
– volume: 140
  start-page: 313
  issue: 3
  year: 2010
  end-page: 326
  article-title: Methods in mammalian autophagy research
  publication-title: Cell
– volume: 509
  start-page: 439
  issue: 7501
  year: 2014
  end-page: 446
  article-title: The role of senescent cells in ageing
  publication-title: Nature
– volume: 6
  year: 2017
  article-title: Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline
  publication-title: Elife
– volume: 278
  start-page: 28026
  issue: 30
  year: 2003
  end-page: 28037
  article-title: Central role of the proteasome in senescence and survival of human fibroblasts: Induction of a senescence‐like phenotype upon its inhibition and resistance to stress upon its activation
  publication-title: Journal of Biological Chemistry
– volume: 29
  start-page: 587
  issue: 10
  year: 2006
  end-page: 599
  article-title: Learning, aging and intrinsic neuronal plasticity
  publication-title: Trends in Neurosciences
– volume: 543
  start-page: 443
  issue: 7645
  year: 2017
  end-page: 446
  article-title: Cytosolic proteostasis through importing of misfolded proteins into mitochondria
  publication-title: Nature
– volume: 6
  start-page: 8997
  year: 2015
  article-title: EPPS rescues hippocampus‐dependent cognitive deficits in APP/PS1 mice by disaggregation of amyloid‐beta oligomers and plaques
  publication-title: Nature Communications
– volume: 15
  start-page: 1139
  issue: 11
  year: 2014
  end-page: 1153
  article-title: Senescence and apoptosis: Dueling or complementary cell fates?
  publication-title: EMBO Reports
– volume: 19
  issue: 6
  year: 2018
  article-title: CD36 initiates the secretory phenotype during the establishment of cellular senescence
  publication-title: EMBO Reports
– volume: 15
  start-page: 398
  issue: 4
  year: 2001
  end-page: 403
  article-title: Putative telomere‐independent mechanisms of replicative aging reflect inadequate growth conditions
  publication-title: Genes & Development
– volume: 493
  start-page: 338
  issue: 7432
  year: 2013
  end-page: 345
  article-title: mTOR is a key modulator of ageing and age‐related disease
  publication-title: Nature
– volume: 32
  start-page: 491
  issue: 4
  year: 2015
  end-page: 501
  article-title: Neuronal aggregates: Formation, clearance, and spreading
  publication-title: Developmental Cell
– ident: e_1_2_7_35_1
  doi: 10.18632/aging.102181
– ident: e_1_2_7_9_1
  doi: 10.1074/jbc.M301048200
– ident: e_1_2_7_15_1
  doi: 10.1016/j.bbrc.2010.05.011
– ident: e_1_2_7_3_1
  doi: 10.1038/nprot.2012.099
– ident: e_1_2_7_29_1
  doi: 10.7554/eLife.22978
– ident: e_1_2_7_7_1
  doi: 10.1038/s41586-018-0543-y
– ident: e_1_2_7_10_1
  doi: 10.15252/embr.201745274
– ident: e_1_2_7_24_1
  doi: 10.1038/nm.4001
– ident: e_1_2_7_34_1
  doi: 10.1016/j.cell.2010.01.028
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1474-9726.2012.00870.x
– ident: e_1_2_7_44_1
  doi: 10.1038/nature13193
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1474-9726.2011.00791.x
– ident: e_1_2_7_45_1
  doi: 10.1016/j.bbr.2014.02.005
– ident: e_1_2_7_31_1
  doi: 10.1016/j.devcel.2015.02.002
– ident: e_1_2_7_37_1
  doi: 10.18632/oncotarget.12752
– ident: e_1_2_7_2_1
  doi: 10.1038/nature16932
– ident: e_1_2_7_17_1
  doi: 10.1016/S0896-6273(00)80737-0
– ident: e_1_2_7_27_1
  doi: 10.1101/gad.1971610
– ident: e_1_2_7_16_1
  doi: 10.1038/sj.cdd.4401341
– ident: e_1_2_7_43_1
  doi: 10.1126/science.272.5264.1017
– ident: e_1_2_7_22_1
  doi: 10.1126/science.aaa5612
– ident: e_1_2_7_25_1
  doi: 10.1038/ncomms9997
– ident: e_1_2_7_6_1
  doi: 10.1038/nrn1809
– ident: e_1_2_7_20_1
  doi: 10.1038/nature11861
– ident: e_1_2_7_38_1
  doi: 10.1101/gad.859201
– ident: e_1_2_7_41_1
  doi: 10.1016/j.tcb.2018.03.003
– ident: e_1_2_7_8_1
  doi: 10.15252/embr.201439245
– ident: e_1_2_7_4_1
  doi: 10.1016/0092-8674(94)90131-7
– ident: e_1_2_7_12_1
  doi: 10.12659/MSM.881706
– ident: e_1_2_7_42_1
  doi: 10.1038/srep18722
– ident: e_1_2_7_36_1
  doi: 10.1007/s00335-016-9628-9
– ident: e_1_2_7_28_1
  doi: 10.1016/j.cell.2012.03.017
– ident: e_1_2_7_5_1
  doi: 10.1016/j.tibs.2004.06.006
– ident: e_1_2_7_11_1
  doi: 10.1016/j.tins.2006.08.005
– ident: e_1_2_7_13_1
  doi: 10.1096/fj.09-146456
– ident: e_1_2_7_23_1
  doi: 10.1371/journal.pone.0023367
– ident: e_1_2_7_26_1
  doi: 10.1016/S0896-6273(04)00017-0
– ident: e_1_2_7_32_1
  doi: 10.1038/nature13163
– ident: e_1_2_7_14_1
  doi: 10.1038/nature16187
– ident: e_1_2_7_30_1
  doi: 10.18632/aging.100265
– ident: e_1_2_7_39_1
  doi: 10.1016/j.gde.2014.06.009
– ident: e_1_2_7_18_1
  doi: 10.1016/S1097-2765(04)00256-4
– ident: e_1_2_7_46_1
  doi: 10.1101/gad.519709
– ident: e_1_2_7_19_1
  doi: 10.1074/jbc.M312866200
– ident: e_1_2_7_40_1
  doi: 10.1038/nature21695
SSID ssj0017903
Score 2.4703648
Snippet Cellular senescence, a stress‐induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues....
Cellular senescence, a stress-induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues....
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e13071
SubjectTerms Aging
Aging - genetics
Alzheimer's disease
Animals
Cell cycle
Cells, Cultured
Cellular Senescence
Cellular stress response
Hippocampus
Homeostasis
Humans
Molecular modelling
mTOR
Neurodegenerative diseases
Neurons
Neurons - metabolism
Neuroprotection
Original
postmitotic neurons
Protein biosynthesis
Proteins
Proteostasis - physiology
proteostasis failure
Rats
Senescence
TOR protein
β-Galactosidase
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB5Ki-CLWK_RVlYURCFwskn2An05lJYiKn2w0Ach7C164LinmPahb_0J_kZ_iTObnHhSRPAtsJNNmJ2Zndmd-QbgNbqg3npV5iookVem1LmRvM5bj5upr52tS6od_vhJnJxV78_r8y04WNfC9PgQ44EbaUay16TgxnYbSm5cWFIvYyog36HaWupfwKvT8Q5B6tQXuahklWs0wQM4KeXx_Hl3sh3dNsobu9LtjMlNTzZtRcf34d7gQ7J5v-i7sBXiA7jTd5W8fghfTgl7YYVuX7foWGsWlHnOTPSMTukp7ZR1ZOEcKTVbRLZcxa-_bn6SkWY9Ekfw7AIn-I7qjt9gKCUsAV_G7hGcHR99PjzJhyYKucPQpsi1qVpuvW4rjB0w9lFtYWVdFbIwYWZUq30hDW95bUVbaouccbhMauZmPCilTfkYtuMqhqfArK251z4UyuMEIli6tHFcyiDQ6eB1Bm_XvGzcgDBOjS6WzTrSIL43ie8ZvBppL3pcjb9SvaElaUjZcCZnhpoB_B-CrWrmhFUk0McRGexNKFFJ3HR4vajNoKRdQ0g_aIEwxsjg5ThMb1LiWQyrK6JBORIFmuIMnvQyMP4vDgn0mHQGciIdIwFBd09H4uJbgvAWFMbNkGPvkhz9gwXN_PDoQ3p69j_Ez-Eup5OBdFi0B9uXP67CPrpPl_ZF0pLfe54XAw
  priority: 102
  providerName: Wiley-Blackwell
Title Proteostasis failure and cellular senescence in long‐term cultured postmitotic rat neurons
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13071
https://www.ncbi.nlm.nih.gov/pubmed/31762159
https://www.proquest.com/docview/2357319882
https://www.proquest.com/docview/2317961887
https://pubmed.ncbi.nlm.nih.gov/PMC6974705
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qi9IX8dtoe6woiELKZZNssg9SznKliC1H8aAPQtiv6ME11zYt2Df_BP_G_iWd2SRnU4oPvoTATjZhZnY-NrO_AXiHIajVNo_D3OUiTFQsQ5XxNCwtOlObGp3GdHZ4_0DsTZMvR-nRCnT9O1sG1nemdtRPano23_p1ermNC_5TV5WjjJtTV2M6Sr6GHkmQdu8nf_8mZNJ3SI6SLAklGuMWprT_7Do8QF8q0AXKno-6balvuKrbZZQ3w1vvn3YfwcM2sGSjRhMew4qrnsD9ptXk5VP4PiFAhgXGgvWsZqWaUTk6U5VltHVPtaisJrNnaKWzWcXmi-rH1e8_ZLlZA8_hLDvBCY7RBuA7GKoO82iYVf0Mprvjbzt7YdtZITSY70ShVEnJtZVlggkFJkR5GeksTaIsUm6o8lLaKFO85KkWZSw1Msmg7PKhGXKX51LFz2G1WlTuJTCtU26ldVFucQLhNP3JMTzLnMBIhKcBfOh4WZgWdpy6X8yLLv0gERReBAG8XdKeNGAbd1K9J5EUpBM4k1HtQQL8HsKyKkYEYCQw8BEBbPQoceWY_nAn1KJTvILgf9AsYeIRwJvlMD1J1WiVW1wQDaqUiNA-B_Ci0YHl93Y6FEDW044lAeF590eq2U-P6y0otxsixz56PfoHC4rRzvirv3v13695Deuc9g78dtIGrJ6fXbhNDLDO9QDu8WQygLXP44PJ4cBvU9D1kA_8uroGJKsp5A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1faxQxEA9SEX0R_7vaakRBFBZus9ls8niUllOvpQ8t9EEI-bd6cOaK2z741o_Qz-gn6Ux2b70tIvi2kNnsMpmZzEwmvyHkHbig3npZ5jJIkXNTqtzUrMobD5upr5ytSrw7fHAoZif882l12tfm4F2YDh9iSLihZiR7jQqOCekNLTcuLLGZMd4gv83BMUehZvxoOESoVWqMXPCa5wpscI9OioU8f94d7Uc3rfLGtnSzZHLTlU170f4Dcr93Ium0W_WH5FaIj8idrq3kr8fk6xGCL6zA72sXLW3MAkvPqYmeYpoe605piybOoVbTRaTLVfz2-_IKrTTtoDiCp2cwwQ_Qd_gGBTGhCfkytk_Iyf7e8e4s77so5A5imyJXhjfMetVwCB4g-JFNYeuKF3VhwsTIRvmiNqxhlRVNqSxwxsE6yYmbsCClMuVTshVXMTwn1NqKeeVDIT1MIILFUxvH6joI8DpYlZEPa15q10OMY6eLpV6HGsh3nfiekbcD7VkHrPFXqve4JBq1DWZypr80AP-DuFV6imBFApwckZHtESVoiRsPrxdV91raaoT6ARMEQUZG3gzD-CZWnsWwukAakCNRgC3OyLNOBob_hSEBLpPKSD2SjoEAsbvHI3HxPWF4C4zjJsCxj0mO_sECPd3dm6enF_9D_JrcnR0fzPX80-GXl-QewzRByhxtk63znxdhB3ypc_sqacw1nUEaeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEC5CguJFfDsx0RYFURjYeXVPQy5LzBI1hhxcCSI0_Rpd2MwuTnLwlp-Q3-gvsapndtwJInhb6Jreobq-6qqe6q8AXmII6owrs7j0JY9znclYi7SIK4ebqSusKTK6O_zxmB9O8_enxekG7K3uwrT8EP2BGyEj-GsC-NJVayDX1s-plzFdIN8imjxMvbbGn6dfpv1XBCFDZ-QkF3ks0Ql39KRUyfPn6cGGdN0tr-1L12sm12PZsBlN7sDtLopk43bZ78KGr-_Bjbav5M_78PWE2BcWGPg1s4ZVeka150zXjtE5PRWesoZ8nCVYs1nN5ov626_LK3LTrOXi8I4tcYIzBDz-B0M7YYH6sm4ewHRy8Gn_MO7aKMQWk5skljqvUuNklWP2gNlPWSVGFHkiEu1HuqykS4ROq7QwvMqkQc1YXKhyZEepL0ups4ewWS9q_xiYMUXqpPNJ6XAC7g19trGpEJ5j2JEWEbxe6VLZjmOcWl3M1SrXIL2roPcIXvSyy5ZZ469Sr2hJFMENZ7K6uzWA70PEVWpMbEUcoxwewc5AEmFih8OrRVUdTBtFXD_ogzDLiOB5P0xPUulZ7RcXJIN2xBN0xhE8am2gf18c4hgzyQjEwDp6ASLvHo7Us--BxJtTIjdCjb0JdvQPFajx_sFR-LX9P8LP4ObJ24k6enf84QncSumYIJwc7cDm-Y8Lv4ux1Ll52kHmNwyRG2c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteostasis+failure+and+cellular+senescence+in+long%E2%80%90term+cultured+postmitotic+rat+neurons&rft.jtitle=Aging+cell&rft.au=Ishikawa%2C+Shoma&rft.au=Ishikawa%2C+Fuyuki&rft.date=2020-01-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1474-9718&rft.eissn=1474-9726&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1111%2Facel.13071&rft_id=info%3Apmid%2F31762159&rft.externalDocID=PMC6974705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon