Proteostasis failure and cellular senescence in long‐term cultured postmitotic rat neurons
Cellular senescence, a stress‐induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age‐related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neuro...
Saved in:
Published in | Aging cell Vol. 19; no. 1; pp. e13071 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.01.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1474-9718 1474-9726 1474-9726 |
DOI | 10.1111/acel.13071 |
Cover
Loading…
Abstract | Cellular senescence, a stress‐induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age‐related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neurons, which accordingly is a process distinct by definition from senescence. It is nevertheless possible that proteostasis failure and cellular senescence have overlapping molecular mechanisms. Here, we identify postmitotic cellular senescence as an adaptive stress response to proteostasis failure. Primary rat hippocampal neurons in long‐term cultures show molecular changes indicative of both senescence (senescence‐associated β‐galactosidase, p16, and loss of lamin B1) and proteostasis failure relevant to Alzheimer's disease. In addition, we demonstrate that the senescent neurons exhibit resistance to stress. Importantly, treatment of the cultures with an mTOR antagonist, protein synthesis inhibitor, or chemical compound that reduces the amount of protein aggregates relieved the proteotoxic stresses as well as the appearance of senescence markers. Our data propose mechanistic insights into the pathophysiological brain aging by establishing senescence as a primary cell‐autonomous neuroprotective response.
Loss of protein homeostasis (proteostasis) is a hallmark of brain aging, yet the adaptive mechanism that contributes to life‐long neuronal preservation is poorly understood. Long‐term cultures of primary post‐mitotic neurons increase a proteotoxic burden and establish cellular senescence, which is alleviated by prolonged treatment of neurons with rapamycin. Post‐mitotic cell senescence is accompanied by stress resilience, suggesting an intrinsic neuroprotective role of senescence. |
---|---|
AbstractList | Cellular senescence, a stress‐induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age‐related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neurons, which accordingly is a process distinct by definition from senescence. It is nevertheless possible that proteostasis failure and cellular senescence have overlapping molecular mechanisms. Here, we identify postmitotic cellular senescence as an adaptive stress response to proteostasis failure. Primary rat hippocampal neurons in long‐term cultures show molecular changes indicative of both senescence (senescence‐associated β‐galactosidase, p16, and loss of lamin B1) and proteostasis failure relevant to Alzheimer's disease. In addition, we demonstrate that the senescent neurons exhibit resistance to stress. Importantly, treatment of the cultures with an mTOR antagonist, protein synthesis inhibitor, or chemical compound that reduces the amount of protein aggregates relieved the proteotoxic stresses as well as the appearance of senescence markers. Our data propose mechanistic insights into the pathophysiological brain aging by establishing senescence as a primary cell‐autonomous neuroprotective response.
Loss of protein homeostasis (proteostasis) is a hallmark of brain aging, yet the adaptive mechanism that contributes to life‐long neuronal preservation is poorly understood. Long‐term cultures of primary post‐mitotic neurons increase a proteotoxic burden and establish cellular senescence, which is alleviated by prolonged treatment of neurons with rapamycin. Post‐mitotic cell senescence is accompanied by stress resilience, suggesting an intrinsic neuroprotective role of senescence. Cellular senescence, a stress‐induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age‐related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neurons, which accordingly is a process distinct by definition from senescence. It is nevertheless possible that proteostasis failure and cellular senescence have overlapping molecular mechanisms. Here, we identify postmitotic cellular senescence as an adaptive stress response to proteostasis failure. Primary rat hippocampal neurons in long‐term cultures show molecular changes indicative of both senescence (senescence‐associated β‐galactosidase, p16, and loss of lamin B1) and proteostasis failure relevant to Alzheimer's disease. In addition, we demonstrate that the senescent neurons exhibit resistance to stress. Importantly, treatment of the cultures with an mTOR antagonist, protein synthesis inhibitor, or chemical compound that reduces the amount of protein aggregates relieved the proteotoxic stresses as well as the appearance of senescence markers. Our data propose mechanistic insights into the pathophysiological brain aging by establishing senescence as a primary cell‐autonomous neuroprotective response. Cellular senescence, a stress-induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age-related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neurons, which accordingly is a process distinct by definition from senescence. It is nevertheless possible that proteostasis failure and cellular senescence have overlapping molecular mechanisms. Here, we identify postmitotic cellular senescence as an adaptive stress response to proteostasis failure. Primary rat hippocampal neurons in long-term cultures show molecular changes indicative of both senescence (senescence-associated β-galactosidase, p16, and loss of lamin B1) and proteostasis failure relevant to Alzheimer's disease. In addition, we demonstrate that the senescent neurons exhibit resistance to stress. Importantly, treatment of the cultures with an mTOR antagonist, protein synthesis inhibitor, or chemical compound that reduces the amount of protein aggregates relieved the proteotoxic stresses as well as the appearance of senescence markers. Our data propose mechanistic insights into the pathophysiological brain aging by establishing senescence as a primary cell-autonomous neuroprotective response.Cellular senescence, a stress-induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age-related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neurons, which accordingly is a process distinct by definition from senescence. It is nevertheless possible that proteostasis failure and cellular senescence have overlapping molecular mechanisms. Here, we identify postmitotic cellular senescence as an adaptive stress response to proteostasis failure. Primary rat hippocampal neurons in long-term cultures show molecular changes indicative of both senescence (senescence-associated β-galactosidase, p16, and loss of lamin B1) and proteostasis failure relevant to Alzheimer's disease. In addition, we demonstrate that the senescent neurons exhibit resistance to stress. Importantly, treatment of the cultures with an mTOR antagonist, protein synthesis inhibitor, or chemical compound that reduces the amount of protein aggregates relieved the proteotoxic stresses as well as the appearance of senescence markers. Our data propose mechanistic insights into the pathophysiological brain aging by establishing senescence as a primary cell-autonomous neuroprotective response. |
Audience | Academic |
Author | Ishikawa, Shoma Ishikawa, Fuyuki |
AuthorAffiliation | 1 Department of Gene Mechanisms Graduate School of Biostudies Kyoto University Kyoto Japan |
AuthorAffiliation_xml | – name: 1 Department of Gene Mechanisms Graduate School of Biostudies Kyoto University Kyoto Japan |
Author_xml | – sequence: 1 givenname: Shoma orcidid: 0000-0002-8971-0716 surname: Ishikawa fullname: Ishikawa, Shoma organization: Kyoto University – sequence: 2 givenname: Fuyuki orcidid: 0000-0002-5580-2305 surname: Ishikawa fullname: Ishikawa, Fuyuki email: fishikaw@lif.kyoto-u.ac.jp organization: Kyoto University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31762159$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt9uFCEUxompsX_0xgcwJN4Yk12BGQa4MdlsWjXZRC_0zoQwDKw0DKzA1PTOR_AZ-yQybltt0wgXEPidj_MdzjE4CDEYAJ5jtMR1vFHa-CVuEMOPwBFuWbsQjHQHt3vMD8FxzucIYSZQ8wQcNph1BFNxBL5-SrGYmIvKLkOrnJ-SgSoMsIr6yasEswkmaxO0gS5AH8P26uevYtII9eRLxQe4qwKjK7E4DZMqMJgpxZCfgsdW-WyeXa8n4MvZ6ef1-8Xm47sP69VmoTtC8UKo1pJ-ELalVOCWc4t7RlvMsDJIcSsGzBSxhPadbURf7eqBUI40IoZzoZoT8Havu5v60Qw115KUl7vkRpUuZVRO3r0J7pvcxgvZCdYyRKvAq2uBFL9PJhc5ujwXQAUTpyxJLZjoMOesoi_voedxSqHaqxRlDRack7_UVnkjXbCxvqtnUbliiPGOE9JVavkAVedgRqfrJ1tXz-8EvPjX6K3Dm_-sANoDOsWck7FSu6KKi7Nv5yVGcm4ZObeM_NMyNeT1vZAb1QdhvId_1Mwu_0PK1fp0s4_5Da_U0nQ |
CitedBy_id | crossref_primary_10_1155_2021_5586052 crossref_primary_10_3390_ijms23052484 crossref_primary_10_1016_j_jchemneu_2022_102210 crossref_primary_10_1111_bcpt_13812 crossref_primary_10_3389_fphar_2025_1528604 crossref_primary_10_1186_s13024_021_00489_6 crossref_primary_10_1002_advs_202002611 crossref_primary_10_1080_10717544_2022_2094501 crossref_primary_10_3390_ijms252212335 crossref_primary_10_3389_fcell_2023_1276707 crossref_primary_10_1007_s00018_024_05164_9 crossref_primary_10_2174_2666338408666210322113713 crossref_primary_10_1038_s44220_023_00033_z crossref_primary_10_1007_s00439_023_02565_x crossref_primary_10_3390_biomedicines9111635 crossref_primary_10_1016_j_arr_2021_101268 crossref_primary_10_1098_rsob_220171 crossref_primary_10_3389_fnins_2021_747067 crossref_primary_10_3389_fnagi_2025_1555872 crossref_primary_10_3389_fnins_2020_614331 crossref_primary_10_1038_s41598_020_71042_6 crossref_primary_10_1111_acel_13471 crossref_primary_10_1111_ejn_16318 crossref_primary_10_1016_j_arr_2021_101458 crossref_primary_10_1016_j_dnarep_2024_103699 crossref_primary_10_14336_AD_2023_0214 crossref_primary_10_1016_j_mad_2022_111758 crossref_primary_10_1155_2021_6682336 crossref_primary_10_2174_1874609816666230206144212 crossref_primary_10_3233_JAD_220203 crossref_primary_10_1016_j_brainres_2024_149202 crossref_primary_10_1186_s40478_023_01578_x crossref_primary_10_26508_lsa_202101055 crossref_primary_10_1007_s10522_025_10199_x crossref_primary_10_1186_s40035_024_00447_4 crossref_primary_10_3389_fnagi_2021_646924 crossref_primary_10_1016_j_bramec_2025_202485 crossref_primary_10_1016_j_phrs_2023_106841 crossref_primary_10_1186_s13041_022_00947_2 crossref_primary_10_3389_fimmu_2021_692321 crossref_primary_10_1002_2211_5463_13036 |
Cites_doi | 10.18632/aging.102181 10.1074/jbc.M301048200 10.1016/j.bbrc.2010.05.011 10.1038/nprot.2012.099 10.7554/eLife.22978 10.1038/s41586-018-0543-y 10.15252/embr.201745274 10.1038/nm.4001 10.1016/j.cell.2010.01.028 10.1111/j.1474-9726.2012.00870.x 10.1038/nature13193 10.1111/j.1474-9726.2011.00791.x 10.1016/j.bbr.2014.02.005 10.1016/j.devcel.2015.02.002 10.18632/oncotarget.12752 10.1038/nature16932 10.1016/S0896-6273(00)80737-0 10.1101/gad.1971610 10.1038/sj.cdd.4401341 10.1126/science.272.5264.1017 10.1126/science.aaa5612 10.1038/ncomms9997 10.1038/nrn1809 10.1038/nature11861 10.1101/gad.859201 10.1016/j.tcb.2018.03.003 10.15252/embr.201439245 10.1016/0092-8674(94)90131-7 10.12659/MSM.881706 10.1038/srep18722 10.1007/s00335-016-9628-9 10.1016/j.cell.2012.03.017 10.1016/j.tibs.2004.06.006 10.1016/j.tins.2006.08.005 10.1096/fj.09-146456 10.1371/journal.pone.0023367 10.1016/S0896-6273(04)00017-0 10.1038/nature13163 10.1038/nature16187 10.18632/aging.100265 10.1016/j.gde.2014.06.009 10.1016/S1097-2765(04)00256-4 10.1101/gad.519709 10.1074/jbc.M312866200 10.1038/nature21695 |
ContentType | Journal Article |
Copyright | 2019 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. 2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. COPYRIGHT 2019 John Wiley & Sons, Inc. Copyright © 2020 The Anatomical Society and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2019 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. – notice: 2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. – notice: COPYRIGHT 2019 John Wiley & Sons, Inc. – notice: Copyright © 2020 The Anatomical Society and John Wiley & Sons Ltd |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 7X8 5PM |
DOI | 10.1111/acel.13071 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | ISHIKAWA and ISHIKAWA |
EISSN | 1474-9726 |
EndPage | n/a |
ExternalDocumentID | PMC6974705 A707868226 31762159 10_1111_acel_13071 ACEL13071 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science funderid: 15K14449 – fundername: Japan Society for the Promotion of Science grantid: 15K14449 – fundername: ; grantid: 15K14449 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 23M 24P 2WC 31~ 36B 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABDBF ABEML ABJNI ACCFJ ACCMX ACGFO ACGFS ACPRK ACSCC ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFEBI AFKRA AFZJQ AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 E3Z EAD EAP EBD EBS EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ GX1 HCIFZ HF~ HOLLA HZ~ IAO IHE IHR IPNFZ ITC IX1 J0M K.9 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M48 M7P MK4 N04 N05 N9A O9- OBS OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY Q11 ROL RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V WIN WQJ WRC WXI XG1 YFH YUY ~IA ~WT AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PMFND 7QP 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY PQGLB 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c6251-9a4f2bd9f45591488f1b754171ae0a8f9d17a2f25b6f39bacecd2580c02e889a3 |
IEDL.DBID | M48 |
ISSN | 1474-9718 1474-9726 |
IngestDate | Thu Aug 21 18:34:48 EDT 2025 Thu Sep 04 23:56:40 EDT 2025 Wed Aug 13 06:14:15 EDT 2025 Tue Jun 17 21:44:14 EDT 2025 Tue Jun 10 20:10:56 EDT 2025 Thu Apr 03 06:57:25 EDT 2025 Thu Apr 24 22:56:14 EDT 2025 Tue Jul 01 01:49:15 EDT 2025 Wed Jan 22 16:37:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | senescence mTOR postmitotic neurons proteostasis failure |
Language | English |
License | Attribution 2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6251-9a4f2bd9f45591488f1b754171ae0a8f9d17a2f25b6f39bacecd2580c02e889a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5580-2305 0000-0002-8971-0716 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/acel.13071 |
PMID | 31762159 |
PQID | 2357319882 |
PQPubID | 1036381 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6974705 proquest_miscellaneous_2317961887 proquest_journals_2357319882 gale_infotracmisc_A707868226 gale_infotracacademiconefile_A707868226 pubmed_primary_31762159 crossref_citationtrail_10_1111_acel_13071 crossref_primary_10_1111_acel_13071 wiley_primary_10_1111_acel_13071_ACEL13071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | Aging cell |
PublicationTitleAlternate | Aging Cell |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2009; 23 2017; 6 2018; 562 2004; 41 2018; 28 2015; 6 2004; 29 2019; 11 2016; 529 2015; 32 2006; 7 2014; 26 1999; 22 2010; 140 2015; 349 2011; 17 2003; 278 2011; 6 2012; 149 2012; 11 2018; 19 2004; 11 2016; 6 2016; 7 2014; 507 2004; 279 2010; 24 2014; 509 2004; 14 2015; 21 2010; 396 1996; 272 2016; 530 1994; 77 2014; 15 2006; 29 2013; 493 2001; 15 2014; 264 2012; 7 2010; 2 2016; 27 2017; 543 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 28 start-page: 595 issue: 8 year: 2018 end-page: 607 article-title: Cellular senescence in postmitotic cells: beyond growth arrest publication-title: Trends in Cell Biology – volume: 29 start-page: 409 issue: 8 year: 2004 end-page: 417 article-title: E2F target genes: Unraveling the biology publication-title: Trends in Biochemical Sciences – volume: 22 start-page: 789 issue: 4 year: 1999 end-page: 798 article-title: Control of recruitment and transcription‐activating function of CBP determines gene regulation by NMDA receptors and L‐type calcium channels publication-title: Neuron – volume: 21 start-page: 1406 issue: 12 year: 2015 end-page: 1415 article-title: Proteostasis and aging publication-title: Nature Medicine – volume: 149 start-page: 274 issue: 2 year: 2012 end-page: 293 article-title: mTOR signaling in growth control and disease publication-title: Cell – volume: 264 start-page: 82 year: 2014 end-page: 90 article-title: mTOR and autophagy in normal brain aging and caloric restriction ameliorating age‐related cognition deficits publication-title: Behavioral Brain Research – volume: 7 start-page: 1741 issue: 9 year: 2012 end-page: 1754 article-title: Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex publication-title: Nature Protocols – volume: 6 issue: 8 year: 2011 article-title: Autophagy impairment induces premature senescence in primary human fibroblasts publication-title: PLoS ONE – volume: 530 start-page: 184 issue: 7589 year: 2016 end-page: 189 article-title: Naturally occurring p16(Ink4a)‐positive cells shorten healthy lifespan publication-title: Nature – volume: 24 start-page: 2385 issue: 7 year: 2010 end-page: 2395 article-title: Abeta peptides accelerate the senescence of endothelial cells in vitro and in vivo, impairing angiogenesis publication-title: The FASEB Journal – volume: 11 start-page: 6175 issue: 16 year: 2019 end-page: 6198 article-title: Cortical neurons develop a senescence‐like phenotype promoted by dysfunctional autophagy publication-title: Aging (Albany NY) – volume: 279 start-page: 8627 issue: 10 year: 2004 end-page: 8634 article-title: Up‐regulation of Bcl‐2 homology 3 (BH3)‐only proteins by E2F1 mediates apoptosis publication-title: Journal of Biological Chemistry – volume: 14 start-page: 501 issue: 4 year: 2004 end-page: 513 article-title: Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a) publication-title: Molecular Cell – volume: 11 start-page: 49 issue: 1 year: 2004 end-page: 60 article-title: Cell cycle molecules and vertebrate neuron death: E2F at the hub publication-title: Cell Death and Differentiation – volume: 2 start-page: 924 issue: 12 year: 2010 end-page: 935 article-title: DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re‐activation of mTOR is associated with conversion to senescence publication-title: Aging (Albany NY) – volume: 23 start-page: 798 issue: 7 year: 2009 end-page: 803 article-title: Autophagy mediates the mitotic senescence transition publication-title: Genes & Development – volume: 349 start-page: aaa5612 issue: 6255 year: 2015 article-title: The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4 publication-title: Science – volume: 26 start-page: 89 year: 2014 end-page: 95 article-title: Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing publication-title: Current Opinion in Genetics & Development – volume: 7 start-page: 30 issue: 1 year: 2006 end-page: 40 article-title: Neural plasticity in the ageing brain publication-title: Nature Reviews Neuroscience – volume: 27 start-page: 320 issue: 7–8 year: 2016 end-page: 331 article-title: Old cells, new tricks: Chromatin structure in senescence publication-title: Mammalian Genome – volume: 6 start-page: 18722 year: 2016 article-title: Restriction of protein synthesis abolishes senescence features at cellular and organismal levels publication-title: Scientific Reports – volume: 11 start-page: 326 issue: 2 year: 2012 end-page: 335 article-title: Lifelong rapamycin administration ameliorates age‐dependent cognitive deficits by reducing IL‐1beta and enhancing NMDA signaling publication-title: Aging Cell – volume: 11 start-page: 996 issue: 6 year: 2012 end-page: 1004 article-title: Postmitotic neurons develop a p21‐dependent senescence‐like phenotype driven by a DNA damage response publication-title: Aging Cell – volume: 529 start-page: 37 issue: 7584 year: 2016 end-page: 42 article-title: Autophagy maintains stemness by preventing senescence publication-title: Nature – volume: 562 start-page: 578 issue: 7728 year: 2018 end-page: 582 article-title: Clearance of senescent glial cells prevents tau‐dependent pathology and cognitive decline publication-title: Nature – volume: 41 start-page: 549 issue: 4 year: 2004 end-page: 561 article-title: Cell cycle activation linked to neuronal cell death initiated by DNA damage publication-title: Neuron – volume: 272 start-page: 1017 issue: 5264 year: 1996 end-page: 1020 article-title: Increase in single L‐type calcium channels in hippocampal neurons during aging publication-title: Science – volume: 507 start-page: 448 issue: 7493 year: 2014 end-page: 454 article-title: REST and stress resistance in ageing and Alzheimer's disease publication-title: Nature – volume: 24 start-page: 2463 issue: 22 year: 2010 end-page: 2479 article-title: The essence of senescence publication-title: Genes & Development – volume: 77 start-page: 817 issue: 6 year: 1994 end-page: 827 article-title: Hydrogen peroxide mediates amyloid beta protein toxicity publication-title: Cell – volume: 17 start-page: BR91 issue: 4 year: 2011 end-page: BR96 article-title: Mitochondrial dysfunction in long‐term neuronal cultures mimics changes with aging publication-title: Medical Science Monitor – volume: 396 start-page: 866 issue: 4 year: 2010 end-page: 869 article-title: Senescence‐associated beta‐galactosidase activity expression in aging hippocampal neurons publication-title: Biochemical and Biophysical Research Communications – volume: 7 start-page: 81099 issue: 49 year: 2016 end-page: 81109 article-title: Is senescence‐associated beta‐galactosidase a marker of neuronal senescence? publication-title: Oncotarget – volume: 140 start-page: 313 issue: 3 year: 2010 end-page: 326 article-title: Methods in mammalian autophagy research publication-title: Cell – volume: 509 start-page: 439 issue: 7501 year: 2014 end-page: 446 article-title: The role of senescent cells in ageing publication-title: Nature – volume: 6 year: 2017 article-title: Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline publication-title: Elife – volume: 278 start-page: 28026 issue: 30 year: 2003 end-page: 28037 article-title: Central role of the proteasome in senescence and survival of human fibroblasts: Induction of a senescence‐like phenotype upon its inhibition and resistance to stress upon its activation publication-title: Journal of Biological Chemistry – volume: 29 start-page: 587 issue: 10 year: 2006 end-page: 599 article-title: Learning, aging and intrinsic neuronal plasticity publication-title: Trends in Neurosciences – volume: 543 start-page: 443 issue: 7645 year: 2017 end-page: 446 article-title: Cytosolic proteostasis through importing of misfolded proteins into mitochondria publication-title: Nature – volume: 6 start-page: 8997 year: 2015 article-title: EPPS rescues hippocampus‐dependent cognitive deficits in APP/PS1 mice by disaggregation of amyloid‐beta oligomers and plaques publication-title: Nature Communications – volume: 15 start-page: 1139 issue: 11 year: 2014 end-page: 1153 article-title: Senescence and apoptosis: Dueling or complementary cell fates? publication-title: EMBO Reports – volume: 19 issue: 6 year: 2018 article-title: CD36 initiates the secretory phenotype during the establishment of cellular senescence publication-title: EMBO Reports – volume: 15 start-page: 398 issue: 4 year: 2001 end-page: 403 article-title: Putative telomere‐independent mechanisms of replicative aging reflect inadequate growth conditions publication-title: Genes & Development – volume: 493 start-page: 338 issue: 7432 year: 2013 end-page: 345 article-title: mTOR is a key modulator of ageing and age‐related disease publication-title: Nature – volume: 32 start-page: 491 issue: 4 year: 2015 end-page: 501 article-title: Neuronal aggregates: Formation, clearance, and spreading publication-title: Developmental Cell – ident: e_1_2_7_35_1 doi: 10.18632/aging.102181 – ident: e_1_2_7_9_1 doi: 10.1074/jbc.M301048200 – ident: e_1_2_7_15_1 doi: 10.1016/j.bbrc.2010.05.011 – ident: e_1_2_7_3_1 doi: 10.1038/nprot.2012.099 – ident: e_1_2_7_29_1 doi: 10.7554/eLife.22978 – ident: e_1_2_7_7_1 doi: 10.1038/s41586-018-0543-y – ident: e_1_2_7_10_1 doi: 10.15252/embr.201745274 – ident: e_1_2_7_24_1 doi: 10.1038/nm.4001 – ident: e_1_2_7_34_1 doi: 10.1016/j.cell.2010.01.028 – ident: e_1_2_7_21_1 doi: 10.1111/j.1474-9726.2012.00870.x – ident: e_1_2_7_44_1 doi: 10.1038/nature13193 – ident: e_1_2_7_33_1 doi: 10.1111/j.1474-9726.2011.00791.x – ident: e_1_2_7_45_1 doi: 10.1016/j.bbr.2014.02.005 – ident: e_1_2_7_31_1 doi: 10.1016/j.devcel.2015.02.002 – ident: e_1_2_7_37_1 doi: 10.18632/oncotarget.12752 – ident: e_1_2_7_2_1 doi: 10.1038/nature16932 – ident: e_1_2_7_17_1 doi: 10.1016/S0896-6273(00)80737-0 – ident: e_1_2_7_27_1 doi: 10.1101/gad.1971610 – ident: e_1_2_7_16_1 doi: 10.1038/sj.cdd.4401341 – ident: e_1_2_7_43_1 doi: 10.1126/science.272.5264.1017 – ident: e_1_2_7_22_1 doi: 10.1126/science.aaa5612 – ident: e_1_2_7_25_1 doi: 10.1038/ncomms9997 – ident: e_1_2_7_6_1 doi: 10.1038/nrn1809 – ident: e_1_2_7_20_1 doi: 10.1038/nature11861 – ident: e_1_2_7_38_1 doi: 10.1101/gad.859201 – ident: e_1_2_7_41_1 doi: 10.1016/j.tcb.2018.03.003 – ident: e_1_2_7_8_1 doi: 10.15252/embr.201439245 – ident: e_1_2_7_4_1 doi: 10.1016/0092-8674(94)90131-7 – ident: e_1_2_7_12_1 doi: 10.12659/MSM.881706 – ident: e_1_2_7_42_1 doi: 10.1038/srep18722 – ident: e_1_2_7_36_1 doi: 10.1007/s00335-016-9628-9 – ident: e_1_2_7_28_1 doi: 10.1016/j.cell.2012.03.017 – ident: e_1_2_7_5_1 doi: 10.1016/j.tibs.2004.06.006 – ident: e_1_2_7_11_1 doi: 10.1016/j.tins.2006.08.005 – ident: e_1_2_7_13_1 doi: 10.1096/fj.09-146456 – ident: e_1_2_7_23_1 doi: 10.1371/journal.pone.0023367 – ident: e_1_2_7_26_1 doi: 10.1016/S0896-6273(04)00017-0 – ident: e_1_2_7_32_1 doi: 10.1038/nature13163 – ident: e_1_2_7_14_1 doi: 10.1038/nature16187 – ident: e_1_2_7_30_1 doi: 10.18632/aging.100265 – ident: e_1_2_7_39_1 doi: 10.1016/j.gde.2014.06.009 – ident: e_1_2_7_18_1 doi: 10.1016/S1097-2765(04)00256-4 – ident: e_1_2_7_46_1 doi: 10.1101/gad.519709 – ident: e_1_2_7_19_1 doi: 10.1074/jbc.M312866200 – ident: e_1_2_7_40_1 doi: 10.1038/nature21695 |
SSID | ssj0017903 |
Score | 2.4703648 |
Snippet | Cellular senescence, a stress‐induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues.... Cellular senescence, a stress-induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues.... |
SourceID | pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e13071 |
SubjectTerms | Aging Aging - genetics Alzheimer's disease Animals Cell cycle Cells, Cultured Cellular Senescence Cellular stress response Hippocampus Homeostasis Humans Molecular modelling mTOR Neurodegenerative diseases Neurons Neurons - metabolism Neuroprotection Original postmitotic neurons Protein biosynthesis Proteins Proteostasis - physiology proteostasis failure Rats Senescence TOR protein β-Galactosidase |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB5Ki-CLWK_RVlYURCFwskn2An05lJYiKn2w0Ach7C164LinmPahb_0J_kZ_iTObnHhSRPAtsJNNmJ2Zndmd-QbgNbqg3npV5iookVem1LmRvM5bj5upr52tS6od_vhJnJxV78_r8y04WNfC9PgQ44EbaUay16TgxnYbSm5cWFIvYyog36HaWupfwKvT8Q5B6tQXuahklWs0wQM4KeXx_Hl3sh3dNsobu9LtjMlNTzZtRcf34d7gQ7J5v-i7sBXiA7jTd5W8fghfTgl7YYVuX7foWGsWlHnOTPSMTukp7ZR1ZOEcKTVbRLZcxa-_bn6SkWY9Ekfw7AIn-I7qjt9gKCUsAV_G7hGcHR99PjzJhyYKucPQpsi1qVpuvW4rjB0w9lFtYWVdFbIwYWZUq30hDW95bUVbaouccbhMauZmPCilTfkYtuMqhqfArK251z4UyuMEIli6tHFcyiDQ6eB1Bm_XvGzcgDBOjS6WzTrSIL43ie8ZvBppL3pcjb9SvaElaUjZcCZnhpoB_B-CrWrmhFUk0McRGexNKFFJ3HR4vajNoKRdQ0g_aIEwxsjg5ThMb1LiWQyrK6JBORIFmuIMnvQyMP4vDgn0mHQGciIdIwFBd09H4uJbgvAWFMbNkGPvkhz9gwXN_PDoQ3p69j_Ez-Eup5OBdFi0B9uXP67CPrpPl_ZF0pLfe54XAw priority: 102 providerName: Wiley-Blackwell |
Title | Proteostasis failure and cellular senescence in long‐term cultured postmitotic rat neurons |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13071 https://www.ncbi.nlm.nih.gov/pubmed/31762159 https://www.proquest.com/docview/2357319882 https://www.proquest.com/docview/2317961887 https://pubmed.ncbi.nlm.nih.gov/PMC6974705 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qi9IX8dtoe6woiELKZZNssg9SznKliC1H8aAPQtiv6ME11zYt2Df_BP_G_iWd2SRnU4oPvoTATjZhZnY-NrO_AXiHIajVNo_D3OUiTFQsQ5XxNCwtOlObGp3GdHZ4_0DsTZMvR-nRCnT9O1sG1nemdtRPano23_p1ermNC_5TV5WjjJtTV2M6Sr6GHkmQdu8nf_8mZNJ3SI6SLAklGuMWprT_7Do8QF8q0AXKno-6balvuKrbZZQ3w1vvn3YfwcM2sGSjRhMew4qrnsD9ptXk5VP4PiFAhgXGgvWsZqWaUTk6U5VltHVPtaisJrNnaKWzWcXmi-rH1e8_ZLlZA8_hLDvBCY7RBuA7GKoO82iYVf0Mprvjbzt7YdtZITSY70ShVEnJtZVlggkFJkR5GeksTaIsUm6o8lLaKFO85KkWZSw1Msmg7PKhGXKX51LFz2G1WlTuJTCtU26ldVFucQLhNP3JMTzLnMBIhKcBfOh4WZgWdpy6X8yLLv0gERReBAG8XdKeNGAbd1K9J5EUpBM4k1HtQQL8HsKyKkYEYCQw8BEBbPQoceWY_nAn1KJTvILgf9AsYeIRwJvlMD1J1WiVW1wQDaqUiNA-B_Ci0YHl93Y6FEDW044lAeF590eq2U-P6y0otxsixz56PfoHC4rRzvirv3v13695Deuc9g78dtIGrJ6fXbhNDLDO9QDu8WQygLXP44PJ4cBvU9D1kA_8uroGJKsp5A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1faxQxEA9SEX0R_7vaakRBFBZus9ls8niUllOvpQ8t9EEI-bd6cOaK2z741o_Qz-gn6Ux2b70tIvi2kNnsMpmZzEwmvyHkHbig3npZ5jJIkXNTqtzUrMobD5upr5ytSrw7fHAoZif882l12tfm4F2YDh9iSLihZiR7jQqOCekNLTcuLLGZMd4gv83BMUehZvxoOESoVWqMXPCa5wpscI9OioU8f94d7Uc3rfLGtnSzZHLTlU170f4Dcr93Ium0W_WH5FaIj8idrq3kr8fk6xGCL6zA72sXLW3MAkvPqYmeYpoe605piybOoVbTRaTLVfz2-_IKrTTtoDiCp2cwwQ_Qd_gGBTGhCfkytk_Iyf7e8e4s77so5A5imyJXhjfMetVwCB4g-JFNYeuKF3VhwsTIRvmiNqxhlRVNqSxwxsE6yYmbsCClMuVTshVXMTwn1NqKeeVDIT1MIILFUxvH6joI8DpYlZEPa15q10OMY6eLpV6HGsh3nfiekbcD7VkHrPFXqve4JBq1DWZypr80AP-DuFV6imBFApwckZHtESVoiRsPrxdV91raaoT6ARMEQUZG3gzD-CZWnsWwukAakCNRgC3OyLNOBob_hSEBLpPKSD2SjoEAsbvHI3HxPWF4C4zjJsCxj0mO_sECPd3dm6enF_9D_JrcnR0fzPX80-GXl-QewzRByhxtk63znxdhB3ypc_sqacw1nUEaeA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEC5CguJFfDsx0RYFURjYeXVPQy5LzBI1hhxcCSI0_Rpd2MwuTnLwlp-Q3-gvsapndtwJInhb6Jreobq-6qqe6q8AXmII6owrs7j0JY9znclYi7SIK4ebqSusKTK6O_zxmB9O8_enxekG7K3uwrT8EP2BGyEj-GsC-NJVayDX1s-plzFdIN8imjxMvbbGn6dfpv1XBCFDZ-QkF3ks0Ql39KRUyfPn6cGGdN0tr-1L12sm12PZsBlN7sDtLopk43bZ78KGr-_Bjbav5M_78PWE2BcWGPg1s4ZVeka150zXjtE5PRWesoZ8nCVYs1nN5ov626_LK3LTrOXi8I4tcYIzBDz-B0M7YYH6sm4ewHRy8Gn_MO7aKMQWk5skljqvUuNklWP2gNlPWSVGFHkiEu1HuqykS4ROq7QwvMqkQc1YXKhyZEepL0ups4ewWS9q_xiYMUXqpPNJ6XAC7g19trGpEJ5j2JEWEbxe6VLZjmOcWl3M1SrXIL2roPcIXvSyy5ZZ469Sr2hJFMENZ7K6uzWA70PEVWpMbEUcoxwewc5AEmFih8OrRVUdTBtFXD_ogzDLiOB5P0xPUulZ7RcXJIN2xBN0xhE8am2gf18c4hgzyQjEwDp6ASLvHo7Us--BxJtTIjdCjb0JdvQPFajx_sFR-LX9P8LP4ObJ24k6enf84QncSumYIJwc7cDm-Y8Lv4ux1Ll52kHmNwyRG2c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteostasis+failure+and+cellular+senescence+in+long%E2%80%90term+cultured+postmitotic+rat+neurons&rft.jtitle=Aging+cell&rft.au=Ishikawa%2C+Shoma&rft.au=Ishikawa%2C+Fuyuki&rft.date=2020-01-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1474-9718&rft.eissn=1474-9726&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1111%2Facel.13071&rft_id=info%3Apmid%2F31762159&rft.externalDocID=PMC6974705 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon |