ERK Nuclear Translocation Is Dimerization-independent but Controlled by the Rate of Phosphorylation
Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line e...
Saved in:
Published in | The Journal of biological chemistry Vol. 285; no. 5; pp. 3092 - 3102 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
29.01.2010
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Δ4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Δ4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation. |
---|---|
AbstractList | Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing GFP-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real-time fluorescence microscopy and fluorescence correlation spectroscopy (FCS) revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Δ4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, emFRET (energy migration Forster Resonance Energy Transfer) and FCS measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Δ4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation. Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Delta4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Delta4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation.Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Delta4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Delta4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation. Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Δ4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Δ4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation. Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Î4, the mutant shown consistently to be dimerization-deficient in vitro , accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Î4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation. Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-∆4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-∆4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation. Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Delta4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Delta4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation. Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Δ4, the mutant shown consistently to be dimerization-deficient in vitro , accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Δ4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation. |
Author | Pouysségur, Jacques Wilsbacher, Julie Thomas, James L. Jovin, Thomas M. Post, Janine N. Huang, Fang Lenormand, Philippe Rieger, Bernd Lidke, Diane S. |
Author_xml | – sequence: 1 givenname: Diane S. surname: Lidke fullname: Lidke, Diane S. organization: From the Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany – sequence: 2 givenname: Fang surname: Huang fullname: Huang, Fang organization: the Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 – sequence: 3 givenname: Janine N. surname: Post fullname: Post, Janine N. organization: From the Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany – sequence: 4 givenname: Bernd surname: Rieger fullname: Rieger, Bernd organization: From the Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany – sequence: 5 givenname: Julie surname: Wilsbacher fullname: Wilsbacher, Julie organization: the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, and – sequence: 6 givenname: James L. surname: Thomas fullname: Thomas, James L. organization: the Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 – sequence: 7 givenname: Jacques surname: Pouysségur fullname: Pouysségur, Jacques organization: the Institute of Developmental Biology and Cancer, CNRS UMR6543, Université de Nice, Centre A. Lacassagne, 06189 Nice, France – sequence: 8 givenname: Thomas M. surname: Jovin fullname: Jovin, Thomas M. organization: From the Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany – sequence: 9 givenname: Philippe surname: Lenormand fullname: Lenormand, Philippe email: Philippe.LENORMAND@unice.fr organization: the Institute of Developmental Biology and Cancer, CNRS UMR6543, Université de Nice, Centre A. Lacassagne, 06189 Nice, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19920141$$D View this record in MEDLINE/PubMed https://hal.science/hal-00437622$$DView record in HAL |
BookMark | eNp9Us9v0zAYtdAQ6wZnbhBxAHFI519J7MukqQw2UX5obBI3y3G-NJ7SuNhpUfnrcZoywaThgy3b7z0_v-87Qged6wCh5wRPCS74yW1ppp8IllOcc1nQR2hCsGApy8j3AzTBmJJU0kwcoqMQbnEcXJIn6JBISTHhZILM-dXH5PPatKB9cu11F1pndG9dl1yG5J1dgre_dvvUdhWsIE5dn5TrPpm5rveubaFKym3SN5Bc6R4SVydfGxdWjfPbdsd8ih7Xug3wbL8eo5v359ezi3T-5cPl7GyempzyPq2YNExiTYqSQcZprimhshaGG1HySlakEoSApFWRCQaiZAaXIpdGaF3HX7JjdDrqrtblEioTjXrdqpW3S-23ymmr_r3pbKMWbqOooIyzIgq8HQWae7SLs7kazmJ-rMgp3ZCIfbN_zLsfawi9WtpgoG11B24dVMF4tJQVg-rr_yJ5LF2WF4P_F3_7v3Pwp1oRkI0A410IHmplbL-LOH7HtopgNXSFil2hhq5QY1dE3sk93p30g4xX-yTsovlpPajSOtPAMmaVqUwxLAfQyxFUa6f0wtugbr5FpwyTQnIs8oiQIwJi2TcWvArGQmegipKmV5WzD1r4DSfk4gs |
CitedBy_id | crossref_primary_10_1159_000494085 crossref_primary_10_1371_journal_pone_0024100 crossref_primary_10_1021_ja1109979 crossref_primary_10_1016_j_tice_2024_102683 crossref_primary_10_1016_j_pharmthera_2018_02_007 crossref_primary_10_1042_BST20110662 crossref_primary_10_1371_journal_pone_0040077 crossref_primary_10_3390_nu14183812 crossref_primary_10_1016_j_phrs_2012_04_005 crossref_primary_10_1074_jbc_M114_593897 crossref_primary_10_4049_jimmunol_1500951 crossref_primary_10_1126_science_1245622 crossref_primary_10_1016_j_bpj_2017_07_029 crossref_primary_10_1016_j_febslet_2014_06_025 crossref_primary_10_1371_journal_pone_0087281 crossref_primary_10_1371_journal_pone_0019031 crossref_primary_10_1016_j_apsb_2021_12_022 crossref_primary_10_1007_s11030_020_10088_0 crossref_primary_10_1002_syn_22190 crossref_primary_10_1007_s10059_012_0023_4 crossref_primary_10_1016_j_molmet_2016_01_009 crossref_primary_10_1039_c5tx00164a crossref_primary_10_1002_jcp_29200 crossref_primary_10_3389_fmolb_2022_998475 crossref_primary_10_3390_antiox10081273 crossref_primary_10_1016_j_tibs_2010_06_001 crossref_primary_10_1038_s41598_018_26473_7 crossref_primary_10_1007_s10910_010_9775_2 crossref_primary_10_1088_1478_3975_13_3_036010 crossref_primary_10_1371_journal_pone_0092917 crossref_primary_10_1016_j_celrep_2021_109801 crossref_primary_10_1371_journal_pone_0140924 crossref_primary_10_1016_j_canlet_2024_216633 crossref_primary_10_3389_fonc_2021_701122 crossref_primary_10_1038_nchem_1887 crossref_primary_10_1074_jbc_M113_455345 crossref_primary_10_1016_j_tice_2025_102837 crossref_primary_10_1073_pnas_1614684114 crossref_primary_10_1021_acs_analchem_0c02344 crossref_primary_10_18632_oncotarget_5981 crossref_primary_10_1111_php_12163 crossref_primary_10_3389_fcell_2016_00053 crossref_primary_10_1016_j_bbamcr_2016_04_015 crossref_primary_10_3390_ijms20122885 crossref_primary_10_1155_2012_504906 crossref_primary_10_1039_D1FO01817E crossref_primary_10_1158_1541_7786_MCR_12_0089 crossref_primary_10_1016_j_bbagrm_2018_11_001 crossref_primary_10_1152_ajpgi_00302_2019 crossref_primary_10_1128_MMBR_00043_14 crossref_primary_10_1016_j_bbrc_2019_11_038 crossref_primary_10_1038_s41423_024_01187_1 crossref_primary_10_1242_jcs_076349 crossref_primary_10_1242_jcs_145045 crossref_primary_10_1016_j_bpj_2013_02_028 crossref_primary_10_1038_cddis_2013_403 crossref_primary_10_1126_scisignal_2002324 crossref_primary_10_1038_s41598_018_27584_x crossref_primary_10_1007_s00418_015_1338_y crossref_primary_10_1007_s12035_013_8532_5 crossref_primary_10_1007_s00018_022_04530_9 crossref_primary_10_1038_cddis_2015_19 crossref_primary_10_1038_s41388_020_1206_7 crossref_primary_10_1107_S2052252518013854 crossref_primary_10_1074_jbc_M112_360834 crossref_primary_10_3390_cells8121597 crossref_primary_10_1007_s11538_013_9842_5 crossref_primary_10_1016_j_bbamcr_2010_12_012 crossref_primary_10_3390_cancers14071661 crossref_primary_10_1111_bph_12681 crossref_primary_10_3389_fcvm_2024_1404253 crossref_primary_10_1038_emboj_2011_160 crossref_primary_10_3390_cells9061467 crossref_primary_10_1074_mcp_R119_001790 crossref_primary_10_1074_jbc_M110_134064 crossref_primary_10_1016_j_bbamem_2023_184236 crossref_primary_10_1002_msb_134708 crossref_primary_10_1042_BCJ20210043 crossref_primary_10_1016_j_taap_2011_01_011 crossref_primary_10_1111_febs_13197 |
Cites_doi | 10.1042/bst0311020 10.1038/nsmb.1656 10.1016/S0006-3495(01)76265-0 10.1109/TIP.2005.852458 10.1073/pnas.92.9.3834 10.1083/jcb.148.5.849 10.1042/BJ20041713 10.1016/j.devcel.2004.05.019 10.1093/emboj/18.19.5347 10.1128/MCB.24.23.10145-10150.2004 10.1074/jbc.M513866200 10.1091/mbc.e06-06-0501 10.1016/S0960-9822(07)00485-X 10.1073/pnas.112495999 10.1515/BC.2001.061 10.1126/science.1102506 10.1093/emboj/16.8.1901 10.1016/S1534-5807(01)00035-1 10.1038/35000065 10.1083/jcb.122.5.1079 10.1126/science.286.5443.1374 10.1371/journal.pone.0007541 10.1128/MCB.12.3.915 10.1080/07853890600551037 10.1242/jcs.114.19.3433 10.1128/MCB.00800-07 10.1074/jbc.M106012200 10.1364/AO.20.001382 10.1074/jbc.M310031200 10.1016/j.molcel.2008.08.007 10.1093/emboj/18.3.664 10.4049/jimmunol.166.7.4416 10.1074/jbc.M509344200 10.1126/science.1142204 10.1074/jbc.M703460200 10.1002/bip.1974.360130102 10.1016/S0014-4827(03)00037-5 10.1021/bi061041w 10.1074/jbc.M103352200 10.1074/jbc.M709030200 10.1074/jbc.271.33.20024 10.1080/02699050500284218 10.1074/jbc.M410031200 10.1128/MCB.25.5.1830-1845.2005 10.1242/jcs.03272 10.1242/jcs.02683 10.1016/S0092-8674(00)81189-7 10.1016/j.molcel.2008.07.024 |
ContentType | Journal Article |
Copyright | 2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. Distributed under a Creative Commons Attribution 4.0 International License 2010 by The American Society for Biochemistry and Molecular Biology, Inc. |
Copyright_xml | – notice: 2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2010 by The American Society for Biochemistry and Molecular Biology, Inc. |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 1XC VOOES 5PM |
DOI | 10.1074/jbc.M109.064972 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
EndPage | 3102 |
ExternalDocumentID | PMC2823437 oai_HAL_hal_00437622v1 19920141 10_1074_jbc_M109_064972 285_5_3092 US201301794086 S0021925820648050 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA118100 – fundername: NIDDK NIH HHS grantid: R37 DK034128 – fundername: NCRR NIH HHS grantid: S10RR016918 – fundername: NCRR NIH HHS grantid: S10 RR19287 – fundername: NCRR NIH HHS grantid: S10 RR019287 – fundername: NCRR NIH HHS grantid: S10 RR14668 – fundername: NIDDK NIH HHS grantid: R01 DK034128 – fundername: NIDDK NIH HHS grantid: DK34128 – fundername: NCRR NIH HHS grantid: P20 RR11830 – fundername: National Institutes of Health grantid: DK34128; S10 RR14668; S10 RR19287; S10 RR016918; P20 RR11830; P30 CA118100 |
GroupedDBID | --- -DZ -ET -~X 0SF 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFFNX AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B N9A OK1 P-O P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT VQA W8F WH7 WOQ XFK XSW YQT YSK YWH YZZ ZA5 ZE2 ~02 ~KM .55 .GJ 186 3O- 41~ 6TJ AAYJJ AAYOK ABFSI ABPTK ABTAH ACSFO ACYGS AEQTP AFDAS AFMIJ AI. E.L F20 FA8 FBQ J5H MVM NHB OHT QZG UQL VH1 WHG X7M XJT Y6R YYP ZGI ZY4 - 02 AAWZA ABFLS ABUFD ABZEH ADACO ADCOW AEILP AIZTS DL DZ ET FH7 H13 KM LI LI0 O0- X XHC .7T 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c624t-d39c390a17b3e5426a2129f8c4c8b4d9d1d811e92d7583e8b3c0b869c8aaf9253 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 13:44:09 EDT 2025 Tue Jun 24 07:02:42 EDT 2025 Fri Jul 11 10:28:31 EDT 2025 Fri Jul 11 02:52:02 EDT 2025 Thu Apr 03 06:53:37 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Tue Jul 01 01:53:28 EDT 2025 Tue Jan 05 15:30:05 EST 2021 Wed Dec 27 19:20:29 EST 2023 Fri Feb 23 02:45:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Enzymes/Kinase Phosphorylation Signal Transduction/Protein Kinases/MAP Cell/Compartmentation Protein/Nuclear Translocation Methods/Fluorescence Nucleus/Nuclear Import |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c624t-d39c390a17b3e5426a2129f8c4c8b4d9d1d811e92d7583e8b3c0b869c8aaf9253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC2823437 Present address: Quantitative Imaging Group, Dept. of Imaging Science and Technology, Delft University of Technology, 2628CJ Delft, The Netherlands. Supported by a predoctoral fellowship from the Howard Hughes Medical Institute. Present address: Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Rd., Abbott Park, IL 60064. Present address: Dept. of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131. Present address: Molecular Cell Biology Faculty of Science and Technology, University of Twente, 7500AE Enschede, The Netherlands. Supported by the Army Research Office Grant W911NF0510464. |
OpenAccessLink | https://hal.science/hal-00437622 |
PMID | 19920141 |
PQID | 46495675 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2823437 hal_primary_oai_HAL_hal_00437622v1 proquest_miscellaneous_734253577 proquest_miscellaneous_46495675 pubmed_primary_19920141 crossref_citationtrail_10_1074_jbc_M109_064972 crossref_primary_10_1074_jbc_M109_064972 highwire_biochem_285_5_3092 fao_agris_US201301794086 elsevier_sciencedirect_doi_10_1074_jbc_M109_064972 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-29 |
PublicationDateYYYYMMDD | 2010-01-29 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2010 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Pagès, Guérin, Grall, Bonino, Smith, Anjuere, Auberger, Pouysségur (bib30) 1999; 286 Haupts, Haupts, Oesterhelt (bib37) 1995; 92 Terry, Shows, Wente (bib15) 2007; 318 Matsubayashi, Fukuda, Nishida (bib16) 2001; 276 Lenormand, Sardet, Pagès, L’Allemain, Brunet, Pouysségur (bib3) 1993; 122 Torii, Kusakabe, Yamamoto, Maekawa, Nishida (bib11) 2004; 7 Ando, Mizuno, Miyawaki (bib40) 2004; 306 Philipova, Whitaker (bib49) 2005; 118 Volmat, Camps, Arkinstall, Pouysségur, Lenormand (bib14) 2001; 114 Whitehurst, Cobb, White (bib45) 2004; 24 Dittrich, Malvezzi-Campeggi, Jahnz, Schwille (bib36) 2001; 382 Schneider, Webb (bib33) 1981; 20 Robinson, Stippec, Goldsmith, White, Cobb (bib44) 1998; 8 Wilsbacher, Juang, Khokhlatchev, Gallagher, Binns, Goldsmith, Cobb (bib21) 2006; 45 Lefloch, Pouysségur, Lenormand (bib38) 2008; 28 Yazicioglu, Goad, Ranganathan, Whitehurst, Goldsmith, Cobb (bib18) 2007; 282 Casar, Pinto, Crespo (bib25) 2008; 31 Formstecher, Ramos, Fauquet, Calderwood, Hsieh, Canton, Nguyen, Barnier, Camonis, Ginsberg, Chneiweiss (bib9) 2001; 1 Chen, Sarnecki, Blenis (bib4) 1992; 12 Elson, Magde (bib34) 1974; 13 Gervais, Dugourd, Muller, Ardidie, Canton, Loviconi, Corvol, Chneiweiss, Monnot (bib10) 2006; 17 Costa, Marchi, Cardarelli, Roy, Beltram, Maffei, Ratto (bib28) 2006; 119 Kosako, Yamaguchi, Aranami, Ushiyama, Kose, Imamoto, Taniguchi, Nishida, Hattori (bib6) 2009; 16 Chuderland, Konson, Seger (bib50) 2008; 31 Fukuda, Gotoh, Nishida (bib8) 1997; 16 Whitehurst, Robinson, Moore, Cobb (bib47) 2004; 279 Adachi, Fukuda, Nishida (bib22) 1999; 18 Tanoue, Adachi, Moriguchi, Nishida (bib43) 2000; 2 Wolf, Rubinfeld, Yoon, Marmor, Hanoch, Seger (bib24) 2001; 276 Ranganathan, Yazicioglu, Cobb (bib20) 2006; 281 Fujioka, Terai, Itoh, Aoki, Nakamura, Kuroda, Nishida, Matsuda (bib39) 2006; 281 Yoon, Seger (bib1) 2006; 24 Whitehurst, Wilsbacher, You, Luby-Phelps, Moore, Cobb (bib17) 2002; 99 Mandl, Slack, Keyse (bib12) 2005; 25 Khokhlatchev, Canagarajah, Wilsbacher, Robinson, Atkinson, Goldsmith, Cobb (bib19) 1998; 93 Furuno, Hirashima, Onizawa, Sagiya, Nakanishi (bib29) 2001; 166 Adachi, Fukuda, Nishida (bib7) 2000; 148 Horgan, Stork (bib27) 2003; 285 Widengren, Rigler (bib35) 1998; 44 Fukuda, Gotoh, Gotoh, Nishida (bib48) 1996; 271 Brunet, Roux, Lenormand, Dowd, Keyse, Pouysségur (bib5) 1999; 18 Gautier, Tramier, Durieux, Coppey, Pansu, Nicolas, Kemnitz, Coppey-Moisan (bib42) 2001; 80 Chuderland, Marmor, Shainskaya, Seger (bib46) 2008; 283 Sur, Ramos (bib13) 2005; 387 Lidke, Nagy, Barisas, Heintzmann, Post, Lidke, Clayton, Arndt-Jovin, Jovin (bib31) 2003; 31 Lidke, Rieger, Lidke, Jovin (bib32) 2005; 14 Cantor, Schimmel (bib41) 1980; Vol. 2 Burack, Shaw (bib23) 2005; 280 Kohno, Pouyssegur (bib2) 2006; 38 Galli, Jahn, Hitt, Hesse, Opitz, Plessmann, Urlaub, Poderoso, Jares-Erijman, Jovin (bib26) 2009; 4 Terry (10.1074/jbc.M109.064972_bib15) 2007; 318 Lenormand (10.1074/jbc.M109.064972_bib3) 1993; 122 Mandl (10.1074/jbc.M109.064972_bib12) 2005; 25 Lidke (10.1074/jbc.M109.064972_bib32) 2005; 14 Sur (10.1074/jbc.M109.064972_bib13) 2005; 387 Gervais (10.1074/jbc.M109.064972_bib10) 2006; 17 Robinson (10.1074/jbc.M109.064972_bib44) 1998; 8 Whitehurst (10.1074/jbc.M109.064972_bib45) 2004; 24 Formstecher (10.1074/jbc.M109.064972_bib9) 2001; 1 Lidke (10.1074/jbc.M109.064972_bib31) 2003; 31 Fukuda (10.1074/jbc.M109.064972_bib8) 1997; 16 Khokhlatchev (10.1074/jbc.M109.064972_bib19) 1998; 93 Fukuda (10.1074/jbc.M109.064972_bib48) 1996; 271 Brunet (10.1074/jbc.M109.064972_bib5) 1999; 18 Pagès (10.1074/jbc.M109.064972_bib30) 1999; 286 Gautier (10.1074/jbc.M109.064972_bib42) 2001; 80 Lefloch (10.1074/jbc.M109.064972_bib38) 2008; 28 Chen (10.1074/jbc.M109.064972_bib4) 1992; 12 Torii (10.1074/jbc.M109.064972_bib11) 2004; 7 Philipova (10.1074/jbc.M109.064972_bib49) 2005; 118 Dittrich (10.1074/jbc.M109.064972_bib36) 2001; 382 Yoon (10.1074/jbc.M109.064972_bib1) 2006; 24 Fujioka (10.1074/jbc.M109.064972_bib39) 2006; 281 Whitehurst (10.1074/jbc.M109.064972_bib17) 2002; 99 Furuno (10.1074/jbc.M109.064972_bib29) 2001; 166 Horgan (10.1074/jbc.M109.064972_bib27) 2003; 285 Costa (10.1074/jbc.M109.064972_bib28) 2006; 119 Chuderland (10.1074/jbc.M109.064972_bib46) 2008; 283 Tanoue (10.1074/jbc.M109.064972_bib43) 2000; 2 Burack (10.1074/jbc.M109.064972_bib23) 2005; 280 Ando (10.1074/jbc.M109.064972_bib40) 2004; 306 Adachi (10.1074/jbc.M109.064972_bib7) 2000; 148 Cantor (10.1074/jbc.M109.064972_bib41) 1980; Vol. 2 Volmat (10.1074/jbc.M109.064972_bib14) 2001; 114 Casar (10.1074/jbc.M109.064972_bib25) 2008; 31 Whitehurst (10.1074/jbc.M109.064972_bib47) 2004; 279 Kosako (10.1074/jbc.M109.064972_bib6) 2009; 16 Ranganathan (10.1074/jbc.M109.064972_bib20) 2006; 281 Chuderland (10.1074/jbc.M109.064972_bib50) 2008; 31 Wolf (10.1074/jbc.M109.064972_bib24) 2001; 276 Haupts (10.1074/jbc.M109.064972_bib37) 1995; 92 Elson (10.1074/jbc.M109.064972_bib34) 1974; 13 Kohno (10.1074/jbc.M109.064972_bib2) 2006; 38 Matsubayashi (10.1074/jbc.M109.064972_bib16) 2001; 276 Yazicioglu (10.1074/jbc.M109.064972_bib18) 2007; 282 Schneider (10.1074/jbc.M109.064972_bib33) 1981; 20 Widengren (10.1074/jbc.M109.064972_bib35) 1998; 44 Wilsbacher (10.1074/jbc.M109.064972_bib21) 2006; 45 Adachi (10.1074/jbc.M109.064972_bib22) 1999; 18 Galli (10.1074/jbc.M109.064972_bib26) 2009; 4 |
References_xml | – volume: 118 start-page: 5767 year: 2005 end-page: 5776 ident: bib49 publication-title: J. Cell Sci. – volume: 114 start-page: 3433 year: 2001 end-page: 3443 ident: bib14 publication-title: J. Cell Sci. – volume: 4 start-page: e7541 year: 2009 ident: bib26 publication-title: PLoS ONE – volume: 92 start-page: 3834 year: 1995 end-page: 3838 ident: bib37 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 281 start-page: 15645 year: 2006 end-page: 15652 ident: bib20 publication-title: J. Biol. Chem. – volume: 306 start-page: 1370 year: 2004 end-page: 1373 ident: bib40 publication-title: Science – volume: 122 start-page: 1079 year: 1993 end-page: 1088 ident: bib3 publication-title: J. Cell Biol. – volume: 2 start-page: 110 year: 2000 end-page: 116 ident: bib43 publication-title: Nat. Cell Biol. – volume: 119 start-page: 4952 year: 2006 end-page: 4963 ident: bib28 publication-title: J. Cell Sci. – volume: 31 start-page: 1020 year: 2003 end-page: 1027 ident: bib31 publication-title: Biochem. Soc. Trans. – volume: 7 start-page: 33 year: 2004 end-page: 44 ident: bib11 publication-title: Dev. Cell – volume: 276 start-page: 41755 year: 2001 end-page: 41760 ident: bib16 publication-title: J. Biol. Chem. – volume: 20 start-page: 1382 year: 1981 end-page: 1388 ident: bib33 publication-title: Appl. Optics – volume: 28 start-page: 511 year: 2008 end-page: 527 ident: bib38 publication-title: Mol. Cell. Biol. – volume: 276 start-page: 24490 year: 2001 end-page: 24497 ident: bib24 publication-title: J. Biol. Chem. – volume: 387 start-page: 315 year: 2005 end-page: 324 ident: bib13 publication-title: Biochem. J. – volume: 148 start-page: 849 year: 2000 end-page: 856 ident: bib7 publication-title: J. Cell Biol. – volume: 279 start-page: 12840 year: 2004 end-page: 12847 ident: bib47 publication-title: J. Biol. Chem. – volume: 25 start-page: 1830 year: 2005 end-page: 1845 ident: bib12 publication-title: Mol. Cell. Biol. – volume: 8 start-page: 1141 year: 1998 end-page: 1150 ident: bib44 publication-title: Curr. Biol. – volume: 282 start-page: 28759 year: 2007 end-page: 28767 ident: bib18 publication-title: J. Biol. Chem. – volume: 16 start-page: 1901 year: 1997 end-page: 1908 ident: bib8 publication-title: EMBO J. – volume: 93 start-page: 605 year: 1998 end-page: 615 ident: bib19 publication-title: Cell – volume: 38 start-page: 200 year: 2006 end-page: 211 ident: bib2 publication-title: Ann. Med. – volume: 285 start-page: 208 year: 2003 end-page: 220 ident: bib27 publication-title: Exp. Cell Res. – volume: 382 start-page: 491 year: 2001 end-page: 494 ident: bib36 publication-title: Biol. Chem. – volume: 80 start-page: 3000 year: 2001 end-page: 3008 ident: bib42 publication-title: Biophys. J. – volume: 45 start-page: 13175 year: 2006 end-page: 13182 ident: bib21 publication-title: Biochemistry – volume: 280 start-page: 3832 year: 2005 end-page: 3837 ident: bib23 publication-title: J. Biol. Chem. – volume: 286 start-page: 1374 year: 1999 end-page: 1377 ident: bib30 publication-title: Science – volume: 24 start-page: 21 year: 2006 end-page: 44 ident: bib1 publication-title: Growth Factors – volume: 13 start-page: 1 year: 1974 end-page: 27 ident: bib34 publication-title: Biopolymers – volume: 283 start-page: 11176 year: 2008 end-page: 11188 ident: bib46 publication-title: J. Biol. Chem. – volume: 281 start-page: 8917 year: 2006 end-page: 8926 ident: bib39 publication-title: J. Biol. Chem. – volume: 1 start-page: 239 year: 2001 end-page: 250 ident: bib9 publication-title: Dev. Cell – volume: 18 start-page: 664 year: 1999 end-page: 674 ident: bib5 publication-title: EMBO J. – volume: 16 start-page: 1026 year: 2009 end-page: 1035 ident: bib6 publication-title: Nat. Struct. Mol. Biol. – volume: 18 start-page: 5347 year: 1999 end-page: 5358 ident: bib22 publication-title: EMBO J. – volume: 14 start-page: 1237 year: 2005 end-page: 1245 ident: bib32 publication-title: IEEE Trans. Image Process – volume: 166 start-page: 4416 year: 2001 end-page: 4421 ident: bib29 publication-title: J. Immunol. – volume: 12 start-page: 915 year: 1992 end-page: 927 ident: bib4 publication-title: Mol. Cell. Biol. – volume: 318 start-page: 1412 year: 2007 end-page: 1416 ident: bib15 publication-title: Science – volume: 99 start-page: 7496 year: 2002 end-page: 7501 ident: bib17 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 31 start-page: 850 year: 2008 end-page: 861 ident: bib50 publication-title: Mol. Cell – volume: 271 start-page: 20024 year: 1996 end-page: 20028 ident: bib48 publication-title: J. Biol. Chem. – volume: 44 start-page: 857 year: 1998 end-page: 879 ident: bib35 publication-title: Cell. Mol. Biol. – volume: 17 start-page: 3940 year: 2006 end-page: 3951 ident: bib10 publication-title: Mol. Biol. Cell – volume: 31 start-page: 708 year: 2008 end-page: 721 ident: bib25 publication-title: Mol. Cell – volume: 24 start-page: 10145 year: 2004 end-page: 10150 ident: bib45 publication-title: Mol. Cell. Biol. – volume: Vol. 2 start-page: 560 year: 1980 end-page: 585 ident: bib41 publication-title: Biophysical Chemistry Part 2: Techniques for the Study of Biological Structure and Function – volume: 31 start-page: 1020 year: 2003 ident: 10.1074/jbc.M109.064972_bib31 publication-title: Biochem. Soc. Trans. doi: 10.1042/bst0311020 – volume: 16 start-page: 1026 year: 2009 ident: 10.1074/jbc.M109.064972_bib6 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1656 – volume: 80 start-page: 3000 year: 2001 ident: 10.1074/jbc.M109.064972_bib42 publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)76265-0 – volume: 14 start-page: 1237 year: 2005 ident: 10.1074/jbc.M109.064972_bib32 publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2005.852458 – volume: 92 start-page: 3834 year: 1995 ident: 10.1074/jbc.M109.064972_bib37 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.92.9.3834 – volume: 148 start-page: 849 year: 2000 ident: 10.1074/jbc.M109.064972_bib7 publication-title: J. Cell Biol. doi: 10.1083/jcb.148.5.849 – volume: 387 start-page: 315 year: 2005 ident: 10.1074/jbc.M109.064972_bib13 publication-title: Biochem. J. doi: 10.1042/BJ20041713 – volume: 7 start-page: 33 year: 2004 ident: 10.1074/jbc.M109.064972_bib11 publication-title: Dev. Cell doi: 10.1016/j.devcel.2004.05.019 – volume: 18 start-page: 5347 year: 1999 ident: 10.1074/jbc.M109.064972_bib22 publication-title: EMBO J. doi: 10.1093/emboj/18.19.5347 – volume: 24 start-page: 10145 year: 2004 ident: 10.1074/jbc.M109.064972_bib45 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.23.10145-10150.2004 – volume: 281 start-page: 15645 year: 2006 ident: 10.1074/jbc.M109.064972_bib20 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M513866200 – volume: Vol. 2 start-page: 560 year: 1980 ident: 10.1074/jbc.M109.064972_bib41 – volume: 17 start-page: 3940 year: 2006 ident: 10.1074/jbc.M109.064972_bib10 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-06-0501 – volume: 8 start-page: 1141 year: 1998 ident: 10.1074/jbc.M109.064972_bib44 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(07)00485-X – volume: 99 start-page: 7496 year: 2002 ident: 10.1074/jbc.M109.064972_bib17 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.112495999 – volume: 382 start-page: 491 year: 2001 ident: 10.1074/jbc.M109.064972_bib36 publication-title: Biol. Chem. doi: 10.1515/BC.2001.061 – volume: 306 start-page: 1370 year: 2004 ident: 10.1074/jbc.M109.064972_bib40 publication-title: Science doi: 10.1126/science.1102506 – volume: 16 start-page: 1901 year: 1997 ident: 10.1074/jbc.M109.064972_bib8 publication-title: EMBO J. doi: 10.1093/emboj/16.8.1901 – volume: 1 start-page: 239 year: 2001 ident: 10.1074/jbc.M109.064972_bib9 publication-title: Dev. Cell doi: 10.1016/S1534-5807(01)00035-1 – volume: 2 start-page: 110 year: 2000 ident: 10.1074/jbc.M109.064972_bib43 publication-title: Nat. Cell Biol. doi: 10.1038/35000065 – volume: 122 start-page: 1079 year: 1993 ident: 10.1074/jbc.M109.064972_bib3 publication-title: J. Cell Biol. doi: 10.1083/jcb.122.5.1079 – volume: 286 start-page: 1374 year: 1999 ident: 10.1074/jbc.M109.064972_bib30 publication-title: Science doi: 10.1126/science.286.5443.1374 – volume: 4 start-page: e7541 year: 2009 ident: 10.1074/jbc.M109.064972_bib26 publication-title: PLoS ONE doi: 10.1371/journal.pone.0007541 – volume: 12 start-page: 915 year: 1992 ident: 10.1074/jbc.M109.064972_bib4 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.12.3.915 – volume: 38 start-page: 200 year: 2006 ident: 10.1074/jbc.M109.064972_bib2 publication-title: Ann. Med. doi: 10.1080/07853890600551037 – volume: 114 start-page: 3433 year: 2001 ident: 10.1074/jbc.M109.064972_bib14 publication-title: J. Cell Sci. doi: 10.1242/jcs.114.19.3433 – volume: 28 start-page: 511 year: 2008 ident: 10.1074/jbc.M109.064972_bib38 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00800-07 – volume: 276 start-page: 41755 year: 2001 ident: 10.1074/jbc.M109.064972_bib16 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M106012200 – volume: 20 start-page: 1382 year: 1981 ident: 10.1074/jbc.M109.064972_bib33 publication-title: Appl. Optics doi: 10.1364/AO.20.001382 – volume: 279 start-page: 12840 year: 2004 ident: 10.1074/jbc.M109.064972_bib47 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M310031200 – volume: 31 start-page: 850 year: 2008 ident: 10.1074/jbc.M109.064972_bib50 publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.08.007 – volume: 18 start-page: 664 year: 1999 ident: 10.1074/jbc.M109.064972_bib5 publication-title: EMBO J. doi: 10.1093/emboj/18.3.664 – volume: 166 start-page: 4416 year: 2001 ident: 10.1074/jbc.M109.064972_bib29 publication-title: J. Immunol. doi: 10.4049/jimmunol.166.7.4416 – volume: 281 start-page: 8917 year: 2006 ident: 10.1074/jbc.M109.064972_bib39 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M509344200 – volume: 318 start-page: 1412 year: 2007 ident: 10.1074/jbc.M109.064972_bib15 publication-title: Science doi: 10.1126/science.1142204 – volume: 282 start-page: 28759 year: 2007 ident: 10.1074/jbc.M109.064972_bib18 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M703460200 – volume: 13 start-page: 1 year: 1974 ident: 10.1074/jbc.M109.064972_bib34 publication-title: Biopolymers doi: 10.1002/bip.1974.360130102 – volume: 285 start-page: 208 year: 2003 ident: 10.1074/jbc.M109.064972_bib27 publication-title: Exp. Cell Res. doi: 10.1016/S0014-4827(03)00037-5 – volume: 44 start-page: 857 year: 1998 ident: 10.1074/jbc.M109.064972_bib35 publication-title: Cell. Mol. Biol. – volume: 45 start-page: 13175 year: 2006 ident: 10.1074/jbc.M109.064972_bib21 publication-title: Biochemistry doi: 10.1021/bi061041w – volume: 276 start-page: 24490 year: 2001 ident: 10.1074/jbc.M109.064972_bib24 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M103352200 – volume: 283 start-page: 11176 year: 2008 ident: 10.1074/jbc.M109.064972_bib46 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M709030200 – volume: 271 start-page: 20024 year: 1996 ident: 10.1074/jbc.M109.064972_bib48 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.33.20024 – volume: 24 start-page: 21 year: 2006 ident: 10.1074/jbc.M109.064972_bib1 publication-title: Growth Factors doi: 10.1080/02699050500284218 – volume: 280 start-page: 3832 year: 2005 ident: 10.1074/jbc.M109.064972_bib23 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M410031200 – volume: 25 start-page: 1830 year: 2005 ident: 10.1074/jbc.M109.064972_bib12 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.5.1830-1845.2005 – volume: 119 start-page: 4952 year: 2006 ident: 10.1074/jbc.M109.064972_bib28 publication-title: J. Cell Sci. doi: 10.1242/jcs.03272 – volume: 118 start-page: 5767 year: 2005 ident: 10.1074/jbc.M109.064972_bib49 publication-title: J. Cell Sci. doi: 10.1242/jcs.02683 – volume: 93 start-page: 605 year: 1998 ident: 10.1074/jbc.M109.064972_bib19 publication-title: Cell doi: 10.1016/S0092-8674(00)81189-7 – volume: 31 start-page: 708 year: 2008 ident: 10.1074/jbc.M109.064972_bib25 publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.07.024 |
SSID | ssj0000491 |
Score | 2.2998035 |
Snippet | Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular... Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular... |
SourceID | pubmedcentral hal proquest pubmed crossref highwire fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3092 |
SubjectTerms | Active Transport, Cell Nucleus Animals Biochemistry, Molecular Biology Cell Nucleus - metabolism Cell/Compartmentation Cytoplasm - metabolism Dimerization DNA, Complementary - metabolism Enzymes/Kinase Extracellular Signal-Regulated MAP Kinases - metabolism Green Fluorescent Proteins - metabolism Humans Life Sciences Mechanisms of Signal Transduction Methods/Fluorescence Mice Mice, Knockout Microscopy, Confocal - methods Microscopy, Fluorescence - methods Models, Biological Nucleus/Nuclear Import Phosphorylation Protein/Nuclear Translocation Signal Transduction/Protein Kinases/MAP |
Title | ERK Nuclear Translocation Is Dimerization-independent but Controlled by the Rate of Phosphorylation |
URI | https://dx.doi.org/10.1074/jbc.M109.064972 http://www.jbc.org/content/285/5/3092.abstract https://www.ncbi.nlm.nih.gov/pubmed/19920141 https://www.proquest.com/docview/46495675 https://www.proquest.com/docview/734253577 https://hal.science/hal-00437622 https://pubmed.ncbi.nlm.nih.gov/PMC2823437 |
Volume | 285 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68QAvCDZgYXxYCCGkKaVxvpzHamzqNjZBt0p7sxInoUUlmdoUqfwJ_NXcxU7SVo00eImqNHFd3893Z_vud4S8T2IWwRzipud70nTiODVDL5VmnGAoI4t9m2O-8-WVNxg557fubafzZyVqaVFEXfl7a17J_0gV7oFcMUv2HyRbNwo34DPIF64gYbjeS8YnwwtY7kus_KBYytEylQI9m4Myw8MYlWVpTupqt8VRtCgw0Q8j1Kfa_wSsDEMVMPB1nM_vxvlsOW1k9qOB1IoDq_ibFMNIVTauju-ZxCrq5zPALzm67jbw0RvUp6G2maiXdebJeZih03tVPz3EI321n5DMsnh1i6KMdDP1PkaVMmCZAVMc7ZXaZapUj8aXu6JE7Z4qj6cNMjigbKuyB-8HlX0ku5cW0o56TuCzxq5VZ_kb5q4OQiyP331HQAMCGxCqgR3ygMGSA6thXHxrmOdhJaWqL-q_UtFE-c6njR60eTg7aZjDdYwBtzUZ9baFzWZ87orDc_OEPNaCpn0Fu6ekk2R7ZL-fhUX-c0k_0DJ2uDyU2SMPjysA7BMJqKQalXQNlfRsTttQSQGVtEEljZYUUEkRlTRP6QYqn5HR6cnN8cDUpTxM6TGnMGM7kHbQCy0_shMXvMIQXKYg5dKRPHLiILZibllJAMrB5XbCI1v2Iu4FkodhCsNtPye7WZ4lB4S64NC7PRbIxE2R2yiQ8B6PPO6H0GCaGqRbDb-Qmucey61MRYvADfKxfuFOUby0P8oqeQrtoSrPUwAm2186AMmL8DtYbTG6ZhgrgGawxz2DvAM41L-KVO-D_heB90rSMY-xX5ZBDiu0CJjZOKMFTB7hCpwoBnlbAUiAoPG4D-Z1vpgLx8PND981CG15wrfBYtuu7xvkhUJcMwBBwDAG3CD-GhbX-rr-TTYZl_T0jDMb-v7y_sN6SB41auMV2S1mi-Q1-PpF9KachH8Bcar8lw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ERK+Nuclear+Translocation+Is+Dimerization-independent+but+Controlled+by+the+Rate+of+Phosphorylation&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Lidke%2C+Diane+S.&rft.au=Huang%2C+Fang&rft.au=Post%2C+Janine+N.&rft.au=Rieger%2C+Bernd&rft.date=2010-01-29&rft.issn=0021-9258&rft.volume=285&rft.issue=5&rft.spage=3092&rft.epage=3102&rft_id=info:doi/10.1074%2Fjbc.M109.064972&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_jbc_M109_064972 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |