ERK Nuclear Translocation Is Dimerization-independent but Controlled by the Rate of Phosphorylation

Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line e...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 285; no. 5; pp. 3092 - 3102
Main Authors Lidke, Diane S., Huang, Fang, Post, Janine N., Rieger, Bernd, Wilsbacher, Julie, Thomas, James L., Pouysségur, Jacques, Jovin, Thomas M., Lenormand, Philippe
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 29.01.2010
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Δ4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Δ4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation.
AbstractList Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing GFP-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real-time fluorescence microscopy and fluorescence correlation spectroscopy (FCS) revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Δ4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, emFRET (energy migration Forster Resonance Energy Transfer) and FCS measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Δ4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation.
Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Delta4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Delta4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation.Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Delta4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Delta4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation.
Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Δ4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Δ4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation.
Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Δ4, the mutant shown consistently to be dimerization-deficient in vitro , accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Δ4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation.
Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-∆4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-∆4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation.
Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Delta4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Delta4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation.
Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Δ4, the mutant shown consistently to be dimerization-deficient in vitro , accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Δ4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation.
Author Pouysségur, Jacques
Wilsbacher, Julie
Thomas, James L.
Jovin, Thomas M.
Post, Janine N.
Huang, Fang
Lenormand, Philippe
Rieger, Bernd
Lidke, Diane S.
Author_xml – sequence: 1
  givenname: Diane S.
  surname: Lidke
  fullname: Lidke, Diane S.
  organization: From the Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
– sequence: 2
  givenname: Fang
  surname: Huang
  fullname: Huang, Fang
  organization: the Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131
– sequence: 3
  givenname: Janine N.
  surname: Post
  fullname: Post, Janine N.
  organization: From the Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
– sequence: 4
  givenname: Bernd
  surname: Rieger
  fullname: Rieger, Bernd
  organization: From the Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
– sequence: 5
  givenname: Julie
  surname: Wilsbacher
  fullname: Wilsbacher, Julie
  organization: the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, and
– sequence: 6
  givenname: James L.
  surname: Thomas
  fullname: Thomas, James L.
  organization: the Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131
– sequence: 7
  givenname: Jacques
  surname: Pouysségur
  fullname: Pouysségur, Jacques
  organization: the Institute of Developmental Biology and Cancer, CNRS UMR6543, Université de Nice, Centre A. Lacassagne, 06189 Nice, France
– sequence: 8
  givenname: Thomas M.
  surname: Jovin
  fullname: Jovin, Thomas M.
  organization: From the Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
– sequence: 9
  givenname: Philippe
  surname: Lenormand
  fullname: Lenormand, Philippe
  email: Philippe.LENORMAND@unice.fr
  organization: the Institute of Developmental Biology and Cancer, CNRS UMR6543, Université de Nice, Centre A. Lacassagne, 06189 Nice, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19920141$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00437622$$DView record in HAL
BookMark eNp9Us9v0zAYtdAQ6wZnbhBxAHFI519J7MukqQw2UX5obBI3y3G-NJ7SuNhpUfnrcZoywaThgy3b7z0_v-87Qged6wCh5wRPCS74yW1ppp8IllOcc1nQR2hCsGApy8j3AzTBmJJU0kwcoqMQbnEcXJIn6JBISTHhZILM-dXH5PPatKB9cu11F1pndG9dl1yG5J1dgre_dvvUdhWsIE5dn5TrPpm5rveubaFKym3SN5Bc6R4SVydfGxdWjfPbdsd8ih7Xug3wbL8eo5v359ezi3T-5cPl7GyempzyPq2YNExiTYqSQcZprimhshaGG1HySlakEoSApFWRCQaiZAaXIpdGaF3HX7JjdDrqrtblEioTjXrdqpW3S-23ymmr_r3pbKMWbqOooIyzIgq8HQWae7SLs7kazmJ-rMgp3ZCIfbN_zLsfawi9WtpgoG11B24dVMF4tJQVg-rr_yJ5LF2WF4P_F3_7v3Pwp1oRkI0A410IHmplbL-LOH7HtopgNXSFil2hhq5QY1dE3sk93p30g4xX-yTsovlpPajSOtPAMmaVqUwxLAfQyxFUa6f0wtugbr5FpwyTQnIs8oiQIwJi2TcWvArGQmegipKmV5WzD1r4DSfk4gs
CitedBy_id crossref_primary_10_1159_000494085
crossref_primary_10_1371_journal_pone_0024100
crossref_primary_10_1021_ja1109979
crossref_primary_10_1016_j_tice_2024_102683
crossref_primary_10_1016_j_pharmthera_2018_02_007
crossref_primary_10_1042_BST20110662
crossref_primary_10_1371_journal_pone_0040077
crossref_primary_10_3390_nu14183812
crossref_primary_10_1016_j_phrs_2012_04_005
crossref_primary_10_1074_jbc_M114_593897
crossref_primary_10_4049_jimmunol_1500951
crossref_primary_10_1126_science_1245622
crossref_primary_10_1016_j_bpj_2017_07_029
crossref_primary_10_1016_j_febslet_2014_06_025
crossref_primary_10_1371_journal_pone_0087281
crossref_primary_10_1371_journal_pone_0019031
crossref_primary_10_1016_j_apsb_2021_12_022
crossref_primary_10_1007_s11030_020_10088_0
crossref_primary_10_1002_syn_22190
crossref_primary_10_1007_s10059_012_0023_4
crossref_primary_10_1016_j_molmet_2016_01_009
crossref_primary_10_1039_c5tx00164a
crossref_primary_10_1002_jcp_29200
crossref_primary_10_3389_fmolb_2022_998475
crossref_primary_10_3390_antiox10081273
crossref_primary_10_1016_j_tibs_2010_06_001
crossref_primary_10_1038_s41598_018_26473_7
crossref_primary_10_1007_s10910_010_9775_2
crossref_primary_10_1088_1478_3975_13_3_036010
crossref_primary_10_1371_journal_pone_0092917
crossref_primary_10_1016_j_celrep_2021_109801
crossref_primary_10_1371_journal_pone_0140924
crossref_primary_10_1016_j_canlet_2024_216633
crossref_primary_10_3389_fonc_2021_701122
crossref_primary_10_1038_nchem_1887
crossref_primary_10_1074_jbc_M113_455345
crossref_primary_10_1016_j_tice_2025_102837
crossref_primary_10_1073_pnas_1614684114
crossref_primary_10_1021_acs_analchem_0c02344
crossref_primary_10_18632_oncotarget_5981
crossref_primary_10_1111_php_12163
crossref_primary_10_3389_fcell_2016_00053
crossref_primary_10_1016_j_bbamcr_2016_04_015
crossref_primary_10_3390_ijms20122885
crossref_primary_10_1155_2012_504906
crossref_primary_10_1039_D1FO01817E
crossref_primary_10_1158_1541_7786_MCR_12_0089
crossref_primary_10_1016_j_bbagrm_2018_11_001
crossref_primary_10_1152_ajpgi_00302_2019
crossref_primary_10_1128_MMBR_00043_14
crossref_primary_10_1016_j_bbrc_2019_11_038
crossref_primary_10_1038_s41423_024_01187_1
crossref_primary_10_1242_jcs_076349
crossref_primary_10_1242_jcs_145045
crossref_primary_10_1016_j_bpj_2013_02_028
crossref_primary_10_1038_cddis_2013_403
crossref_primary_10_1126_scisignal_2002324
crossref_primary_10_1038_s41598_018_27584_x
crossref_primary_10_1007_s00418_015_1338_y
crossref_primary_10_1007_s12035_013_8532_5
crossref_primary_10_1007_s00018_022_04530_9
crossref_primary_10_1038_cddis_2015_19
crossref_primary_10_1038_s41388_020_1206_7
crossref_primary_10_1107_S2052252518013854
crossref_primary_10_1074_jbc_M112_360834
crossref_primary_10_3390_cells8121597
crossref_primary_10_1007_s11538_013_9842_5
crossref_primary_10_1016_j_bbamcr_2010_12_012
crossref_primary_10_3390_cancers14071661
crossref_primary_10_1111_bph_12681
crossref_primary_10_3389_fcvm_2024_1404253
crossref_primary_10_1038_emboj_2011_160
crossref_primary_10_3390_cells9061467
crossref_primary_10_1074_mcp_R119_001790
crossref_primary_10_1074_jbc_M110_134064
crossref_primary_10_1016_j_bbamem_2023_184236
crossref_primary_10_1002_msb_134708
crossref_primary_10_1042_BCJ20210043
crossref_primary_10_1016_j_taap_2011_01_011
crossref_primary_10_1111_febs_13197
Cites_doi 10.1042/bst0311020
10.1038/nsmb.1656
10.1016/S0006-3495(01)76265-0
10.1109/TIP.2005.852458
10.1073/pnas.92.9.3834
10.1083/jcb.148.5.849
10.1042/BJ20041713
10.1016/j.devcel.2004.05.019
10.1093/emboj/18.19.5347
10.1128/MCB.24.23.10145-10150.2004
10.1074/jbc.M513866200
10.1091/mbc.e06-06-0501
10.1016/S0960-9822(07)00485-X
10.1073/pnas.112495999
10.1515/BC.2001.061
10.1126/science.1102506
10.1093/emboj/16.8.1901
10.1016/S1534-5807(01)00035-1
10.1038/35000065
10.1083/jcb.122.5.1079
10.1126/science.286.5443.1374
10.1371/journal.pone.0007541
10.1128/MCB.12.3.915
10.1080/07853890600551037
10.1242/jcs.114.19.3433
10.1128/MCB.00800-07
10.1074/jbc.M106012200
10.1364/AO.20.001382
10.1074/jbc.M310031200
10.1016/j.molcel.2008.08.007
10.1093/emboj/18.3.664
10.4049/jimmunol.166.7.4416
10.1074/jbc.M509344200
10.1126/science.1142204
10.1074/jbc.M703460200
10.1002/bip.1974.360130102
10.1016/S0014-4827(03)00037-5
10.1021/bi061041w
10.1074/jbc.M103352200
10.1074/jbc.M709030200
10.1074/jbc.271.33.20024
10.1080/02699050500284218
10.1074/jbc.M410031200
10.1128/MCB.25.5.1830-1845.2005
10.1242/jcs.03272
10.1242/jcs.02683
10.1016/S0092-8674(00)81189-7
10.1016/j.molcel.2008.07.024
ContentType Journal Article
Copyright 2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
Distributed under a Creative Commons Attribution 4.0 International License
2010 by The American Society for Biochemistry and Molecular Biology, Inc.
Copyright_xml – notice: 2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
1XC
VOOES
5PM
DOI 10.1074/jbc.M109.064972
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


AGRICOLA

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
EndPage 3102
ExternalDocumentID PMC2823437
oai_HAL_hal_00437622v1
19920141
10_1074_jbc_M109_064972
285_5_3092
US201301794086
S0021925820648050
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA118100
– fundername: NIDDK NIH HHS
  grantid: R37 DK034128
– fundername: NCRR NIH HHS
  grantid: S10RR016918
– fundername: NCRR NIH HHS
  grantid: S10 RR19287
– fundername: NCRR NIH HHS
  grantid: S10 RR019287
– fundername: NCRR NIH HHS
  grantid: S10 RR14668
– fundername: NIDDK NIH HHS
  grantid: R01 DK034128
– fundername: NIDDK NIH HHS
  grantid: DK34128
– fundername: NCRR NIH HHS
  grantid: P20 RR11830
– fundername: National Institutes of Health
  grantid: DK34128; S10 RR14668; S10 RR19287; S10 RR016918; P20 RR11830; P30 CA118100
GroupedDBID ---
-DZ
-ET
-~X
0SF
18M
29J
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFFNX
AFOSN
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
N9A
OK1
P-O
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
XFK
XSW
YQT
YSK
YWH
YZZ
ZA5
ZE2
~02
~KM
.55
.GJ
186
3O-
41~
6TJ
AAYJJ
AAYOK
ABFSI
ABPTK
ABTAH
ACSFO
ACYGS
AEQTP
AFDAS
AFMIJ
AI.
E.L
F20
FA8
FBQ
J5H
MVM
NHB
OHT
QZG
UQL
VH1
WHG
X7M
XJT
Y6R
YYP
ZGI
ZY4
-
02
AAWZA
ABFLS
ABUFD
ABZEH
ADACO
ADCOW
AEILP
AIZTS
DL
DZ
ET
FH7
H13
KM
LI
LI0
O0-
X
XHC
.7T
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c624t-d39c390a17b3e5426a2129f8c4c8b4d9d1d811e92d7583e8b3c0b869c8aaf9253
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 13:44:09 EDT 2025
Tue Jun 24 07:02:42 EDT 2025
Fri Jul 11 10:28:31 EDT 2025
Fri Jul 11 02:52:02 EDT 2025
Thu Apr 03 06:53:37 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Tue Jul 01 01:53:28 EDT 2025
Tue Jan 05 15:30:05 EST 2021
Wed Dec 27 19:20:29 EST 2023
Fri Feb 23 02:45:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Enzymes/Kinase
Phosphorylation
Signal Transduction/Protein Kinases/MAP
Cell/Compartmentation
Protein/Nuclear Translocation
Methods/Fluorescence
Nucleus/Nuclear Import
Language English
License This is an open access article under the CC BY license.
http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c624t-d39c390a17b3e5426a2129f8c4c8b4d9d1d811e92d7583e8b3c0b869c8aaf9253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC2823437
Present address: Quantitative Imaging Group, Dept. of Imaging Science and Technology, Delft University of Technology, 2628CJ Delft, The Netherlands.
Supported by a predoctoral fellowship from the Howard Hughes Medical Institute. Present address: Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Rd., Abbott Park, IL 60064.
Present address: Dept. of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131.
Present address: Molecular Cell Biology Faculty of Science and Technology, University of Twente, 7500AE Enschede, The Netherlands.
Supported by the Army Research Office Grant W911NF0510464.
OpenAccessLink https://hal.science/hal-00437622
PMID 19920141
PQID 46495675
PQPubID 24069
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2823437
hal_primary_oai_HAL_hal_00437622v1
proquest_miscellaneous_734253577
proquest_miscellaneous_46495675
pubmed_primary_19920141
crossref_citationtrail_10_1074_jbc_M109_064972
crossref_primary_10_1074_jbc_M109_064972
highwire_biochem_285_5_3092
fao_agris_US201301794086
elsevier_sciencedirect_doi_10_1074_jbc_M109_064972
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-01-29
PublicationDateYYYYMMDD 2010-01-29
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2010
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Pagès, Guérin, Grall, Bonino, Smith, Anjuere, Auberger, Pouysségur (bib30) 1999; 286
Haupts, Haupts, Oesterhelt (bib37) 1995; 92
Terry, Shows, Wente (bib15) 2007; 318
Matsubayashi, Fukuda, Nishida (bib16) 2001; 276
Lenormand, Sardet, Pagès, L’Allemain, Brunet, Pouysségur (bib3) 1993; 122
Torii, Kusakabe, Yamamoto, Maekawa, Nishida (bib11) 2004; 7
Ando, Mizuno, Miyawaki (bib40) 2004; 306
Philipova, Whitaker (bib49) 2005; 118
Volmat, Camps, Arkinstall, Pouysségur, Lenormand (bib14) 2001; 114
Whitehurst, Cobb, White (bib45) 2004; 24
Dittrich, Malvezzi-Campeggi, Jahnz, Schwille (bib36) 2001; 382
Schneider, Webb (bib33) 1981; 20
Robinson, Stippec, Goldsmith, White, Cobb (bib44) 1998; 8
Wilsbacher, Juang, Khokhlatchev, Gallagher, Binns, Goldsmith, Cobb (bib21) 2006; 45
Lefloch, Pouysségur, Lenormand (bib38) 2008; 28
Yazicioglu, Goad, Ranganathan, Whitehurst, Goldsmith, Cobb (bib18) 2007; 282
Casar, Pinto, Crespo (bib25) 2008; 31
Formstecher, Ramos, Fauquet, Calderwood, Hsieh, Canton, Nguyen, Barnier, Camonis, Ginsberg, Chneiweiss (bib9) 2001; 1
Chen, Sarnecki, Blenis (bib4) 1992; 12
Elson, Magde (bib34) 1974; 13
Gervais, Dugourd, Muller, Ardidie, Canton, Loviconi, Corvol, Chneiweiss, Monnot (bib10) 2006; 17
Costa, Marchi, Cardarelli, Roy, Beltram, Maffei, Ratto (bib28) 2006; 119
Kosako, Yamaguchi, Aranami, Ushiyama, Kose, Imamoto, Taniguchi, Nishida, Hattori (bib6) 2009; 16
Chuderland, Konson, Seger (bib50) 2008; 31
Fukuda, Gotoh, Nishida (bib8) 1997; 16
Whitehurst, Robinson, Moore, Cobb (bib47) 2004; 279
Adachi, Fukuda, Nishida (bib22) 1999; 18
Tanoue, Adachi, Moriguchi, Nishida (bib43) 2000; 2
Wolf, Rubinfeld, Yoon, Marmor, Hanoch, Seger (bib24) 2001; 276
Ranganathan, Yazicioglu, Cobb (bib20) 2006; 281
Fujioka, Terai, Itoh, Aoki, Nakamura, Kuroda, Nishida, Matsuda (bib39) 2006; 281
Yoon, Seger (bib1) 2006; 24
Whitehurst, Wilsbacher, You, Luby-Phelps, Moore, Cobb (bib17) 2002; 99
Mandl, Slack, Keyse (bib12) 2005; 25
Khokhlatchev, Canagarajah, Wilsbacher, Robinson, Atkinson, Goldsmith, Cobb (bib19) 1998; 93
Furuno, Hirashima, Onizawa, Sagiya, Nakanishi (bib29) 2001; 166
Adachi, Fukuda, Nishida (bib7) 2000; 148
Horgan, Stork (bib27) 2003; 285
Widengren, Rigler (bib35) 1998; 44
Fukuda, Gotoh, Gotoh, Nishida (bib48) 1996; 271
Brunet, Roux, Lenormand, Dowd, Keyse, Pouysségur (bib5) 1999; 18
Gautier, Tramier, Durieux, Coppey, Pansu, Nicolas, Kemnitz, Coppey-Moisan (bib42) 2001; 80
Chuderland, Marmor, Shainskaya, Seger (bib46) 2008; 283
Sur, Ramos (bib13) 2005; 387
Lidke, Nagy, Barisas, Heintzmann, Post, Lidke, Clayton, Arndt-Jovin, Jovin (bib31) 2003; 31
Lidke, Rieger, Lidke, Jovin (bib32) 2005; 14
Cantor, Schimmel (bib41) 1980; Vol. 2
Burack, Shaw (bib23) 2005; 280
Kohno, Pouyssegur (bib2) 2006; 38
Galli, Jahn, Hitt, Hesse, Opitz, Plessmann, Urlaub, Poderoso, Jares-Erijman, Jovin (bib26) 2009; 4
Terry (10.1074/jbc.M109.064972_bib15) 2007; 318
Lenormand (10.1074/jbc.M109.064972_bib3) 1993; 122
Mandl (10.1074/jbc.M109.064972_bib12) 2005; 25
Lidke (10.1074/jbc.M109.064972_bib32) 2005; 14
Sur (10.1074/jbc.M109.064972_bib13) 2005; 387
Gervais (10.1074/jbc.M109.064972_bib10) 2006; 17
Robinson (10.1074/jbc.M109.064972_bib44) 1998; 8
Whitehurst (10.1074/jbc.M109.064972_bib45) 2004; 24
Formstecher (10.1074/jbc.M109.064972_bib9) 2001; 1
Lidke (10.1074/jbc.M109.064972_bib31) 2003; 31
Fukuda (10.1074/jbc.M109.064972_bib8) 1997; 16
Khokhlatchev (10.1074/jbc.M109.064972_bib19) 1998; 93
Fukuda (10.1074/jbc.M109.064972_bib48) 1996; 271
Brunet (10.1074/jbc.M109.064972_bib5) 1999; 18
Pagès (10.1074/jbc.M109.064972_bib30) 1999; 286
Gautier (10.1074/jbc.M109.064972_bib42) 2001; 80
Lefloch (10.1074/jbc.M109.064972_bib38) 2008; 28
Chen (10.1074/jbc.M109.064972_bib4) 1992; 12
Torii (10.1074/jbc.M109.064972_bib11) 2004; 7
Philipova (10.1074/jbc.M109.064972_bib49) 2005; 118
Dittrich (10.1074/jbc.M109.064972_bib36) 2001; 382
Yoon (10.1074/jbc.M109.064972_bib1) 2006; 24
Fujioka (10.1074/jbc.M109.064972_bib39) 2006; 281
Whitehurst (10.1074/jbc.M109.064972_bib17) 2002; 99
Furuno (10.1074/jbc.M109.064972_bib29) 2001; 166
Horgan (10.1074/jbc.M109.064972_bib27) 2003; 285
Costa (10.1074/jbc.M109.064972_bib28) 2006; 119
Chuderland (10.1074/jbc.M109.064972_bib46) 2008; 283
Tanoue (10.1074/jbc.M109.064972_bib43) 2000; 2
Burack (10.1074/jbc.M109.064972_bib23) 2005; 280
Ando (10.1074/jbc.M109.064972_bib40) 2004; 306
Adachi (10.1074/jbc.M109.064972_bib7) 2000; 148
Cantor (10.1074/jbc.M109.064972_bib41) 1980; Vol. 2
Volmat (10.1074/jbc.M109.064972_bib14) 2001; 114
Casar (10.1074/jbc.M109.064972_bib25) 2008; 31
Whitehurst (10.1074/jbc.M109.064972_bib47) 2004; 279
Kosako (10.1074/jbc.M109.064972_bib6) 2009; 16
Ranganathan (10.1074/jbc.M109.064972_bib20) 2006; 281
Chuderland (10.1074/jbc.M109.064972_bib50) 2008; 31
Wolf (10.1074/jbc.M109.064972_bib24) 2001; 276
Haupts (10.1074/jbc.M109.064972_bib37) 1995; 92
Elson (10.1074/jbc.M109.064972_bib34) 1974; 13
Kohno (10.1074/jbc.M109.064972_bib2) 2006; 38
Matsubayashi (10.1074/jbc.M109.064972_bib16) 2001; 276
Yazicioglu (10.1074/jbc.M109.064972_bib18) 2007; 282
Schneider (10.1074/jbc.M109.064972_bib33) 1981; 20
Widengren (10.1074/jbc.M109.064972_bib35) 1998; 44
Wilsbacher (10.1074/jbc.M109.064972_bib21) 2006; 45
Adachi (10.1074/jbc.M109.064972_bib22) 1999; 18
Galli (10.1074/jbc.M109.064972_bib26) 2009; 4
References_xml – volume: 118
  start-page: 5767
  year: 2005
  end-page: 5776
  ident: bib49
  publication-title: J. Cell Sci.
– volume: 114
  start-page: 3433
  year: 2001
  end-page: 3443
  ident: bib14
  publication-title: J. Cell Sci.
– volume: 4
  start-page: e7541
  year: 2009
  ident: bib26
  publication-title: PLoS ONE
– volume: 92
  start-page: 3834
  year: 1995
  end-page: 3838
  ident: bib37
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 281
  start-page: 15645
  year: 2006
  end-page: 15652
  ident: bib20
  publication-title: J. Biol. Chem.
– volume: 306
  start-page: 1370
  year: 2004
  end-page: 1373
  ident: bib40
  publication-title: Science
– volume: 122
  start-page: 1079
  year: 1993
  end-page: 1088
  ident: bib3
  publication-title: J. Cell Biol.
– volume: 2
  start-page: 110
  year: 2000
  end-page: 116
  ident: bib43
  publication-title: Nat. Cell Biol.
– volume: 119
  start-page: 4952
  year: 2006
  end-page: 4963
  ident: bib28
  publication-title: J. Cell Sci.
– volume: 31
  start-page: 1020
  year: 2003
  end-page: 1027
  ident: bib31
  publication-title: Biochem. Soc. Trans.
– volume: 7
  start-page: 33
  year: 2004
  end-page: 44
  ident: bib11
  publication-title: Dev. Cell
– volume: 276
  start-page: 41755
  year: 2001
  end-page: 41760
  ident: bib16
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 1382
  year: 1981
  end-page: 1388
  ident: bib33
  publication-title: Appl. Optics
– volume: 28
  start-page: 511
  year: 2008
  end-page: 527
  ident: bib38
  publication-title: Mol. Cell. Biol.
– volume: 276
  start-page: 24490
  year: 2001
  end-page: 24497
  ident: bib24
  publication-title: J. Biol. Chem.
– volume: 387
  start-page: 315
  year: 2005
  end-page: 324
  ident: bib13
  publication-title: Biochem. J.
– volume: 148
  start-page: 849
  year: 2000
  end-page: 856
  ident: bib7
  publication-title: J. Cell Biol.
– volume: 279
  start-page: 12840
  year: 2004
  end-page: 12847
  ident: bib47
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 1830
  year: 2005
  end-page: 1845
  ident: bib12
  publication-title: Mol. Cell. Biol.
– volume: 8
  start-page: 1141
  year: 1998
  end-page: 1150
  ident: bib44
  publication-title: Curr. Biol.
– volume: 282
  start-page: 28759
  year: 2007
  end-page: 28767
  ident: bib18
  publication-title: J. Biol. Chem.
– volume: 16
  start-page: 1901
  year: 1997
  end-page: 1908
  ident: bib8
  publication-title: EMBO J.
– volume: 93
  start-page: 605
  year: 1998
  end-page: 615
  ident: bib19
  publication-title: Cell
– volume: 38
  start-page: 200
  year: 2006
  end-page: 211
  ident: bib2
  publication-title: Ann. Med.
– volume: 285
  start-page: 208
  year: 2003
  end-page: 220
  ident: bib27
  publication-title: Exp. Cell Res.
– volume: 382
  start-page: 491
  year: 2001
  end-page: 494
  ident: bib36
  publication-title: Biol. Chem.
– volume: 80
  start-page: 3000
  year: 2001
  end-page: 3008
  ident: bib42
  publication-title: Biophys. J.
– volume: 45
  start-page: 13175
  year: 2006
  end-page: 13182
  ident: bib21
  publication-title: Biochemistry
– volume: 280
  start-page: 3832
  year: 2005
  end-page: 3837
  ident: bib23
  publication-title: J. Biol. Chem.
– volume: 286
  start-page: 1374
  year: 1999
  end-page: 1377
  ident: bib30
  publication-title: Science
– volume: 24
  start-page: 21
  year: 2006
  end-page: 44
  ident: bib1
  publication-title: Growth Factors
– volume: 13
  start-page: 1
  year: 1974
  end-page: 27
  ident: bib34
  publication-title: Biopolymers
– volume: 283
  start-page: 11176
  year: 2008
  end-page: 11188
  ident: bib46
  publication-title: J. Biol. Chem.
– volume: 281
  start-page: 8917
  year: 2006
  end-page: 8926
  ident: bib39
  publication-title: J. Biol. Chem.
– volume: 1
  start-page: 239
  year: 2001
  end-page: 250
  ident: bib9
  publication-title: Dev. Cell
– volume: 18
  start-page: 664
  year: 1999
  end-page: 674
  ident: bib5
  publication-title: EMBO J.
– volume: 16
  start-page: 1026
  year: 2009
  end-page: 1035
  ident: bib6
  publication-title: Nat. Struct. Mol. Biol.
– volume: 18
  start-page: 5347
  year: 1999
  end-page: 5358
  ident: bib22
  publication-title: EMBO J.
– volume: 14
  start-page: 1237
  year: 2005
  end-page: 1245
  ident: bib32
  publication-title: IEEE Trans. Image Process
– volume: 166
  start-page: 4416
  year: 2001
  end-page: 4421
  ident: bib29
  publication-title: J. Immunol.
– volume: 12
  start-page: 915
  year: 1992
  end-page: 927
  ident: bib4
  publication-title: Mol. Cell. Biol.
– volume: 318
  start-page: 1412
  year: 2007
  end-page: 1416
  ident: bib15
  publication-title: Science
– volume: 99
  start-page: 7496
  year: 2002
  end-page: 7501
  ident: bib17
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 31
  start-page: 850
  year: 2008
  end-page: 861
  ident: bib50
  publication-title: Mol. Cell
– volume: 271
  start-page: 20024
  year: 1996
  end-page: 20028
  ident: bib48
  publication-title: J. Biol. Chem.
– volume: 44
  start-page: 857
  year: 1998
  end-page: 879
  ident: bib35
  publication-title: Cell. Mol. Biol.
– volume: 17
  start-page: 3940
  year: 2006
  end-page: 3951
  ident: bib10
  publication-title: Mol. Biol. Cell
– volume: 31
  start-page: 708
  year: 2008
  end-page: 721
  ident: bib25
  publication-title: Mol. Cell
– volume: 24
  start-page: 10145
  year: 2004
  end-page: 10150
  ident: bib45
  publication-title: Mol. Cell. Biol.
– volume: Vol. 2
  start-page: 560
  year: 1980
  end-page: 585
  ident: bib41
  publication-title: Biophysical Chemistry Part 2: Techniques for the Study of Biological Structure and Function
– volume: 31
  start-page: 1020
  year: 2003
  ident: 10.1074/jbc.M109.064972_bib31
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/bst0311020
– volume: 16
  start-page: 1026
  year: 2009
  ident: 10.1074/jbc.M109.064972_bib6
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1656
– volume: 80
  start-page: 3000
  year: 2001
  ident: 10.1074/jbc.M109.064972_bib42
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76265-0
– volume: 14
  start-page: 1237
  year: 2005
  ident: 10.1074/jbc.M109.064972_bib32
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2005.852458
– volume: 92
  start-page: 3834
  year: 1995
  ident: 10.1074/jbc.M109.064972_bib37
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.92.9.3834
– volume: 148
  start-page: 849
  year: 2000
  ident: 10.1074/jbc.M109.064972_bib7
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.148.5.849
– volume: 387
  start-page: 315
  year: 2005
  ident: 10.1074/jbc.M109.064972_bib13
  publication-title: Biochem. J.
  doi: 10.1042/BJ20041713
– volume: 7
  start-page: 33
  year: 2004
  ident: 10.1074/jbc.M109.064972_bib11
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2004.05.019
– volume: 18
  start-page: 5347
  year: 1999
  ident: 10.1074/jbc.M109.064972_bib22
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.19.5347
– volume: 24
  start-page: 10145
  year: 2004
  ident: 10.1074/jbc.M109.064972_bib45
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.23.10145-10150.2004
– volume: 281
  start-page: 15645
  year: 2006
  ident: 10.1074/jbc.M109.064972_bib20
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M513866200
– volume: Vol. 2
  start-page: 560
  year: 1980
  ident: 10.1074/jbc.M109.064972_bib41
– volume: 17
  start-page: 3940
  year: 2006
  ident: 10.1074/jbc.M109.064972_bib10
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e06-06-0501
– volume: 8
  start-page: 1141
  year: 1998
  ident: 10.1074/jbc.M109.064972_bib44
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(07)00485-X
– volume: 99
  start-page: 7496
  year: 2002
  ident: 10.1074/jbc.M109.064972_bib17
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.112495999
– volume: 382
  start-page: 491
  year: 2001
  ident: 10.1074/jbc.M109.064972_bib36
  publication-title: Biol. Chem.
  doi: 10.1515/BC.2001.061
– volume: 306
  start-page: 1370
  year: 2004
  ident: 10.1074/jbc.M109.064972_bib40
  publication-title: Science
  doi: 10.1126/science.1102506
– volume: 16
  start-page: 1901
  year: 1997
  ident: 10.1074/jbc.M109.064972_bib8
  publication-title: EMBO J.
  doi: 10.1093/emboj/16.8.1901
– volume: 1
  start-page: 239
  year: 2001
  ident: 10.1074/jbc.M109.064972_bib9
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(01)00035-1
– volume: 2
  start-page: 110
  year: 2000
  ident: 10.1074/jbc.M109.064972_bib43
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35000065
– volume: 122
  start-page: 1079
  year: 1993
  ident: 10.1074/jbc.M109.064972_bib3
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.122.5.1079
– volume: 286
  start-page: 1374
  year: 1999
  ident: 10.1074/jbc.M109.064972_bib30
  publication-title: Science
  doi: 10.1126/science.286.5443.1374
– volume: 4
  start-page: e7541
  year: 2009
  ident: 10.1074/jbc.M109.064972_bib26
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0007541
– volume: 12
  start-page: 915
  year: 1992
  ident: 10.1074/jbc.M109.064972_bib4
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.12.3.915
– volume: 38
  start-page: 200
  year: 2006
  ident: 10.1074/jbc.M109.064972_bib2
  publication-title: Ann. Med.
  doi: 10.1080/07853890600551037
– volume: 114
  start-page: 3433
  year: 2001
  ident: 10.1074/jbc.M109.064972_bib14
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.114.19.3433
– volume: 28
  start-page: 511
  year: 2008
  ident: 10.1074/jbc.M109.064972_bib38
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00800-07
– volume: 276
  start-page: 41755
  year: 2001
  ident: 10.1074/jbc.M109.064972_bib16
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M106012200
– volume: 20
  start-page: 1382
  year: 1981
  ident: 10.1074/jbc.M109.064972_bib33
  publication-title: Appl. Optics
  doi: 10.1364/AO.20.001382
– volume: 279
  start-page: 12840
  year: 2004
  ident: 10.1074/jbc.M109.064972_bib47
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M310031200
– volume: 31
  start-page: 850
  year: 2008
  ident: 10.1074/jbc.M109.064972_bib50
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.08.007
– volume: 18
  start-page: 664
  year: 1999
  ident: 10.1074/jbc.M109.064972_bib5
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.3.664
– volume: 166
  start-page: 4416
  year: 2001
  ident: 10.1074/jbc.M109.064972_bib29
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.166.7.4416
– volume: 281
  start-page: 8917
  year: 2006
  ident: 10.1074/jbc.M109.064972_bib39
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M509344200
– volume: 318
  start-page: 1412
  year: 2007
  ident: 10.1074/jbc.M109.064972_bib15
  publication-title: Science
  doi: 10.1126/science.1142204
– volume: 282
  start-page: 28759
  year: 2007
  ident: 10.1074/jbc.M109.064972_bib18
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M703460200
– volume: 13
  start-page: 1
  year: 1974
  ident: 10.1074/jbc.M109.064972_bib34
  publication-title: Biopolymers
  doi: 10.1002/bip.1974.360130102
– volume: 285
  start-page: 208
  year: 2003
  ident: 10.1074/jbc.M109.064972_bib27
  publication-title: Exp. Cell Res.
  doi: 10.1016/S0014-4827(03)00037-5
– volume: 44
  start-page: 857
  year: 1998
  ident: 10.1074/jbc.M109.064972_bib35
  publication-title: Cell. Mol. Biol.
– volume: 45
  start-page: 13175
  year: 2006
  ident: 10.1074/jbc.M109.064972_bib21
  publication-title: Biochemistry
  doi: 10.1021/bi061041w
– volume: 276
  start-page: 24490
  year: 2001
  ident: 10.1074/jbc.M109.064972_bib24
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M103352200
– volume: 283
  start-page: 11176
  year: 2008
  ident: 10.1074/jbc.M109.064972_bib46
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M709030200
– volume: 271
  start-page: 20024
  year: 1996
  ident: 10.1074/jbc.M109.064972_bib48
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.33.20024
– volume: 24
  start-page: 21
  year: 2006
  ident: 10.1074/jbc.M109.064972_bib1
  publication-title: Growth Factors
  doi: 10.1080/02699050500284218
– volume: 280
  start-page: 3832
  year: 2005
  ident: 10.1074/jbc.M109.064972_bib23
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M410031200
– volume: 25
  start-page: 1830
  year: 2005
  ident: 10.1074/jbc.M109.064972_bib12
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.5.1830-1845.2005
– volume: 119
  start-page: 4952
  year: 2006
  ident: 10.1074/jbc.M109.064972_bib28
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.03272
– volume: 118
  start-page: 5767
  year: 2005
  ident: 10.1074/jbc.M109.064972_bib49
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02683
– volume: 93
  start-page: 605
  year: 1998
  ident: 10.1074/jbc.M109.064972_bib19
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81189-7
– volume: 31
  start-page: 708
  year: 2008
  ident: 10.1074/jbc.M109.064972_bib25
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.07.024
SSID ssj0000491
Score 2.2998035
Snippet Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular...
Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
highwire
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3092
SubjectTerms Active Transport, Cell Nucleus
Animals
Biochemistry, Molecular Biology
Cell Nucleus - metabolism
Cell/Compartmentation
Cytoplasm - metabolism
Dimerization
DNA, Complementary - metabolism
Enzymes/Kinase
Extracellular Signal-Regulated MAP Kinases - metabolism
Green Fluorescent Proteins - metabolism
Humans
Life Sciences
Mechanisms of Signal Transduction
Methods/Fluorescence
Mice
Mice, Knockout
Microscopy, Confocal - methods
Microscopy, Fluorescence - methods
Models, Biological
Nucleus/Nuclear Import
Phosphorylation
Protein/Nuclear Translocation
Signal Transduction/Protein Kinases/MAP
Title ERK Nuclear Translocation Is Dimerization-independent but Controlled by the Rate of Phosphorylation
URI https://dx.doi.org/10.1074/jbc.M109.064972
http://www.jbc.org/content/285/5/3092.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19920141
https://www.proquest.com/docview/46495675
https://www.proquest.com/docview/734253577
https://hal.science/hal-00437622
https://pubmed.ncbi.nlm.nih.gov/PMC2823437
Volume 285
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68QAvCDZgYXxYCCGkKaVxvpzHamzqNjZBt0p7sxInoUUlmdoUqfwJ_NXcxU7SVo00eImqNHFd3893Z_vud4S8T2IWwRzipud70nTiODVDL5VmnGAoI4t9m2O-8-WVNxg557fubafzZyVqaVFEXfl7a17J_0gV7oFcMUv2HyRbNwo34DPIF64gYbjeS8YnwwtY7kus_KBYytEylQI9m4Myw8MYlWVpTupqt8VRtCgw0Q8j1Kfa_wSsDEMVMPB1nM_vxvlsOW1k9qOB1IoDq_ibFMNIVTauju-ZxCrq5zPALzm67jbw0RvUp6G2maiXdebJeZih03tVPz3EI321n5DMsnh1i6KMdDP1PkaVMmCZAVMc7ZXaZapUj8aXu6JE7Z4qj6cNMjigbKuyB-8HlX0ku5cW0o56TuCzxq5VZ_kb5q4OQiyP331HQAMCGxCqgR3ygMGSA6thXHxrmOdhJaWqL-q_UtFE-c6njR60eTg7aZjDdYwBtzUZ9baFzWZ87orDc_OEPNaCpn0Fu6ekk2R7ZL-fhUX-c0k_0DJ2uDyU2SMPjysA7BMJqKQalXQNlfRsTttQSQGVtEEljZYUUEkRlTRP6QYqn5HR6cnN8cDUpTxM6TGnMGM7kHbQCy0_shMXvMIQXKYg5dKRPHLiILZibllJAMrB5XbCI1v2Iu4FkodhCsNtPye7WZ4lB4S64NC7PRbIxE2R2yiQ8B6PPO6H0GCaGqRbDb-Qmucey61MRYvADfKxfuFOUby0P8oqeQrtoSrPUwAm2186AMmL8DtYbTG6ZhgrgGawxz2DvAM41L-KVO-D_heB90rSMY-xX5ZBDiu0CJjZOKMFTB7hCpwoBnlbAUiAoPG4D-Z1vpgLx8PND981CG15wrfBYtuu7xvkhUJcMwBBwDAG3CD-GhbX-rr-TTYZl_T0jDMb-v7y_sN6SB41auMV2S1mi-Q1-PpF9KachH8Bcar8lw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ERK+Nuclear+Translocation+Is+Dimerization-independent+but+Controlled+by+the+Rate+of+Phosphorylation&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Lidke%2C+Diane+S.&rft.au=Huang%2C+Fang&rft.au=Post%2C+Janine+N.&rft.au=Rieger%2C+Bernd&rft.date=2010-01-29&rft.issn=0021-9258&rft.volume=285&rft.issue=5&rft.spage=3092&rft.epage=3102&rft_id=info:doi/10.1074%2Fjbc.M109.064972&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_jbc_M109_064972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon