Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site
Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through c...
Saved in:
Published in | Cell Vol. 162; no. 5; pp. 1090 - 1100 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.08.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.
[Display omitted]
[Display omitted]
•Self-assembling nanoparticles present the conserved gp350 receptor-binding domain•The nanoparticles elicit more potent neutralizing antibodies than soluble gp350•These neutralizing antibodies predominantly target the CR2-binding site on gp350•The nanoparticles elicit potent neutralizing antibodies in mice and non-human primates
Structurally designed EBV vaccine candidates based on self-assembling nanoparticles elicit potent and durable virus-neutralizing antibodies that target the receptor-binding site on the viral envelope protein gp350, a site of vulnerability, serving as a template to develop an EBV vaccine and providing a basis for immunofocusing through rational vaccine design. |
---|---|
AbstractList | Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses. Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses. • Self-assembling nanoparticles present the conserved gp350 receptor-binding domain • The nanoparticles elicit more potent neutralizing antibodies than soluble gp350 • These neutralizing antibodies predominantly target the CR2-binding site on gp350 • The nanoparticles elicit potent neutralizing antibodies in mice and non-human primates Structurally designed EBV vaccine candidates based on self-assembling nanoparticles elicit potent and durable virus-neutralizing antibodies that target the receptor-binding site on the viral envelope protein gp350, a site of vulnerability, serving as a template to develop an EBV vaccine and providing a basis for immunofocusing through rational vaccine design. Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses. [Display omitted] [Display omitted] •Self-assembling nanoparticles present the conserved gp350 receptor-binding domain•The nanoparticles elicit more potent neutralizing antibodies than soluble gp350•These neutralizing antibodies predominantly target the CR2-binding site on gp350•The nanoparticles elicit potent neutralizing antibodies in mice and non-human primates Structurally designed EBV vaccine candidates based on self-assembling nanoparticles elicit potent and durable virus-neutralizing antibodies that target the receptor-binding site on the viral envelope protein gp350, a site of vulnerability, serving as a template to develop an EBV vaccine and providing a basis for immunofocusing through rational vaccine design. Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.[Display omitted] |
Author | Kanekiyo, Masaru Nabel, Gary J. Rao, Srinivas S. Joyce, M. Gordon McDermott, Adrian B. Yamamoto, Takuya Narpala, Sandeep Bu, Wei Mascola, John R. Meng, Geng Cohen, Jeffrey I. Baxa, Ulrich Whittle, James R.R. Graham, Barney S. Rossmann, Michael G. Koup, Richard A. Todd, John-Paul |
Author_xml | – sequence: 1 givenname: Masaru surname: Kanekiyo fullname: Kanekiyo, Masaru organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 2 givenname: Wei surname: Bu fullname: Bu, Wei organization: Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 3 givenname: M. Gordon surname: Joyce fullname: Joyce, M. Gordon organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 4 givenname: Geng surname: Meng fullname: Meng, Geng organization: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA – sequence: 5 givenname: James R.R. surname: Whittle fullname: Whittle, James R.R. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 6 givenname: Ulrich surname: Baxa fullname: Baxa, Ulrich organization: Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA – sequence: 7 givenname: Takuya surname: Yamamoto fullname: Yamamoto, Takuya organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 8 givenname: Sandeep surname: Narpala fullname: Narpala, Sandeep organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 9 givenname: John-Paul surname: Todd fullname: Todd, John-Paul organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 10 givenname: Srinivas S. surname: Rao fullname: Rao, Srinivas S. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 11 givenname: Adrian B. surname: McDermott fullname: McDermott, Adrian B. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 12 givenname: Richard A. surname: Koup fullname: Koup, Richard A. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 13 givenname: Michael G. surname: Rossmann fullname: Rossmann, Michael G. organization: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA – sequence: 14 givenname: John R. surname: Mascola fullname: Mascola, John R. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 15 givenname: Barney S. surname: Graham fullname: Graham, Barney S. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 16 givenname: Jeffrey I. surname: Cohen fullname: Cohen, Jeffrey I. email: jcohen@niaid.nih.gov organization: Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 17 givenname: Gary J. surname: Nabel fullname: Nabel, Gary J. email: gary.nabel@sanofi.com organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26279189$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1rFDEUxYNU7Lb6D_gg8-jLjDeZTD5ABFvrBxSEuvY1ZLJ3tllmkzXJFvrfO-PWoj7Up0Du7xzuPeeEHIUYkJCXFBoKVLzZNA7HsWFAuwZkA7x9QhYUtKw5leyILAA0q5WQ_Jic5LwBANV13TNyzASTmiq9IMsrW3wMdqw-YPbrUMWhsqG62OWCPtRnNqXq2qd9rq6tcz5gtbRpjcWHdVVusLpCh7sSU33mw2r-_OYLPidPBztmfHH_npLvHy-W55_ry6-fvpy_v6ydYLzUbtAcuFU9t7IDtFp0DlFa6GSvrevEQBmIvm21k70auFN0BbKVwg1cqWlwSt4dfHf7fosrh6EkO5pd8lub7ky03vw9Cf7GrOOt4bKTXLPJ4PW9QYo_9piL2fo8h2oDxn02bIqMsVYw8V-USlBKS87lhL76c62HfX6nPgHsALgUc044PCAUzFyt2ZjZ2szVGpBmqnYSqX9Ezpdf5U2n-fFx6duDFKcybj0mk53H4HDlE7piVtE_Jv8JNrO-8Q |
CitedBy_id | crossref_primary_10_3390_vaccines9111290 crossref_primary_10_7554_eLife_57659 crossref_primary_10_1038_nbt_4052 crossref_primary_10_1016_j_cossms_2021_100964 crossref_primary_10_3389_fimmu_2022_942897 crossref_primary_10_3390_biom11081072 crossref_primary_10_3390_v13071296 crossref_primary_10_1016_j_nantod_2025_102648 crossref_primary_10_1021_acs_bioconjchem_2c00030 crossref_primary_10_1021_acs_nanolett_0c04687 crossref_primary_10_1038_s41467_023_39770_1 crossref_primary_10_7774_cevr_2025_14_e7 crossref_primary_10_1038_s41467_023_37417_9 crossref_primary_10_1089_ten_teb_2023_0117 crossref_primary_10_1038_nbt_3994 crossref_primary_10_1016_j_celrep_2023_112266 crossref_primary_10_3390_vaccines8040593 crossref_primary_10_1371_journal_ppat_1010573 crossref_primary_10_1093_clinchem_hvaa027 crossref_primary_10_1126_sciadv_aaz6225 crossref_primary_10_1016_j_jmgm_2022_108196 crossref_primary_10_1038_s41541_023_00619_9 crossref_primary_10_1080_14756366_2023_2219868 crossref_primary_10_1101_cshperspect_a029413 crossref_primary_10_1016_j_jtauto_2019_100017 crossref_primary_10_1021_acs_molpharmaceut_2c01080 crossref_primary_10_1371_journal_ppat_1005549 crossref_primary_10_1002_adhm_201901203 crossref_primary_10_3390_vaccines12050546 crossref_primary_10_1016_j_cclet_2022_108098 crossref_primary_10_1021_acsbiomaterials_9b01255 crossref_primary_10_1016_j_jconrel_2022_12_022 crossref_primary_10_1146_annurev_pathmechdis_012418_013023 crossref_primary_10_1038_s41565_020_0737_y crossref_primary_10_1042_EBC20160018 crossref_primary_10_3390_cells11172757 crossref_primary_10_1186_s12917_024_04159_9 crossref_primary_10_1038_s12276_022_00859_0 crossref_primary_10_1002_wnan_1681 crossref_primary_10_1126_sciimmunol_aba6466 crossref_primary_10_1021_acsinfecdis_7b00192 crossref_primary_10_1586_14760584_2016_1129905 crossref_primary_10_1016_j_ddmod_2020_01_001 crossref_primary_10_3389_fimmu_2024_1445209 crossref_primary_10_1038_ncomms10618 crossref_primary_10_1128_mSphere_00901_20 crossref_primary_10_1016_j_ijbiomac_2022_10_126 crossref_primary_10_1093_glycob_cwae092 crossref_primary_10_1073_pnas_2106433118 crossref_primary_10_1002_adfm_202315509 crossref_primary_10_1021_acs_bioconjchem_6b00370 crossref_primary_10_1007_s40588_019_00127_2 crossref_primary_10_1016_j_biomaterials_2024_122946 crossref_primary_10_1007_s40506_024_00271_4 crossref_primary_10_2147_IJN_S499938 crossref_primary_10_1038_s41541_024_00954_5 crossref_primary_10_1007_s12275_022_1608_z crossref_primary_10_2217_nnm_2016_0146 crossref_primary_10_1016_j_pt_2023_06_011 crossref_primary_10_1007_s00705_024_06095_3 crossref_primary_10_1128_CVI_00674_15 crossref_primary_10_1021_acs_biochem_2c00241 crossref_primary_10_3390_nano11061467 crossref_primary_10_1021_acsnano_0c08379 crossref_primary_10_1038_s41392_020_00376_4 crossref_primary_10_1097_COH_0000000000000549 crossref_primary_10_1186_s12879_019_4578_y crossref_primary_10_3389_fmicb_2024_1348276 crossref_primary_10_1371_journal_ppat_1011514 crossref_primary_10_53365_nrfhh_186350 crossref_primary_10_1128_jvi_00336_22 crossref_primary_10_1016_j_coi_2019_03_003 crossref_primary_10_3390_microorganisms9112191 crossref_primary_10_1017_S1431927618006712 crossref_primary_10_1016_j_ijbiomac_2024_130820 crossref_primary_10_1021_acscentsci_0c01405 crossref_primary_10_3390_v14112372 crossref_primary_10_1021_acsnano_6b07343 crossref_primary_10_1038_s41467_024_44869_0 crossref_primary_10_1038_s41590_018_0305_x crossref_primary_10_1016_j_bej_2022_108580 crossref_primary_10_1002_adtp_202300360 crossref_primary_10_1007_s11427_024_2766_0 crossref_primary_10_33483_jfpau_1033286 crossref_primary_10_1002_adfm_202008352 crossref_primary_10_1128_mbio_01868_23 crossref_primary_10_1128_mBio_00230_21 crossref_primary_10_1016_j_virol_2019_07_026 crossref_primary_10_1158_1055_9965_EPI_24_0576 crossref_primary_10_1038_s41541_018_0074_4 crossref_primary_10_1002_adma_202002940 crossref_primary_10_3389_fmicb_2021_701611 crossref_primary_10_1039_D1NR08460G crossref_primary_10_1016_j_sbi_2019_03_008 crossref_primary_10_3389_fimmu_2021_734471 crossref_primary_10_3390_vaccines10111920 crossref_primary_10_1002_mco2_32 crossref_primary_10_3390_ijms241914884 crossref_primary_10_3390_mps7010013 crossref_primary_10_1016_j_ijpharm_2024_124320 crossref_primary_10_1016_j_cell_2020_10_043 crossref_primary_10_1126_scitranslmed_abf3685 crossref_primary_10_1016_j_addr_2020_06_024 crossref_primary_10_1016_j_celrep_2024_115036 crossref_primary_10_3389_fimmu_2017_02005 crossref_primary_10_1124_jpet_123_001673 crossref_primary_10_2174_1568026620666200325114400 crossref_primary_10_3390_cancers15051626 crossref_primary_10_1038_s41467_021_26912_6 crossref_primary_10_1038_s41598_024_76377_y crossref_primary_10_3390_cancers16050991 crossref_primary_10_1016_j_ijbiomac_2024_134837 crossref_primary_10_1016_j_vaccine_2016_06_021 crossref_primary_10_1371_journal_ppat_1007464 crossref_primary_10_1007_s12257_020_0383_0 crossref_primary_10_1016_j_bbagen_2022_130288 crossref_primary_10_3390_ph11040124 crossref_primary_10_1172_jci_insight_85687 crossref_primary_10_1016_j_meegid_2023_105443 crossref_primary_10_1515_mr_2023_0001 crossref_primary_10_3390_vaccines11030540 crossref_primary_10_1038_s41598_019_45381_y crossref_primary_10_1016_j_celrep_2024_115168 crossref_primary_10_1155_2020_4297937 crossref_primary_10_1007_s10930_020_09930_z crossref_primary_10_1038_s41565_020_0739_9 crossref_primary_10_3390_nano10051008 crossref_primary_10_1038_d41586_018_07366_1 crossref_primary_10_3389_fimmu_2018_00932 crossref_primary_10_1016_j_immuni_2019_03_010 crossref_primary_10_1016_j_vaccine_2020_07_016 crossref_primary_10_1038_s41467_023_37162_z crossref_primary_10_3390_ijms26052056 crossref_primary_10_1016_j_csbj_2015_11_001 crossref_primary_10_1128_JVI_01349_18 crossref_primary_10_15212_ZOONOSES_2023_0018 crossref_primary_10_1126_science_aat9120 crossref_primary_10_3390_v12070718 crossref_primary_10_1016_j_chom_2023_09_011 crossref_primary_10_1126_sciadv_abl7346 crossref_primary_10_3390_v14030541 crossref_primary_10_1016_S2666_5247_23_00410_X crossref_primary_10_1080_22221751_2021_1994354 crossref_primary_10_1016_j_msard_2022_103875 crossref_primary_10_1016_j_nano_2018_11_009 crossref_primary_10_1038_s41390_019_0591_5 crossref_primary_10_1186_s12951_023_01938_8 crossref_primary_10_1016_j_ccr_2021_214188 crossref_primary_10_1002_jmv_29203 crossref_primary_10_3389_fonc_2019_00104 crossref_primary_10_1039_D4NA00964A crossref_primary_10_1016_j_immuni_2025_01_010 crossref_primary_10_1038_s41541_023_00653_7 crossref_primary_10_1186_s12879_023_08031_3 crossref_primary_10_1021_acssynbio_2c00391 crossref_primary_10_1128_JVI_01343_21 crossref_primary_10_1038_s41467_022_34961_8 crossref_primary_10_1186_s12943_025_02270_5 crossref_primary_10_1038_nrc_2016_92 crossref_primary_10_1016_j_celrep_2021_110143 crossref_primary_10_1038_s41392_024_01745_z crossref_primary_10_1021_acsnano_4c00949 crossref_primary_10_1021_acs_bioconjchem_1c00208 crossref_primary_10_1038_s41541_020_0183_8 crossref_primary_10_1038_s41541_022_00547_0 crossref_primary_10_1038_s41565_020_0648_y crossref_primary_10_3389_fmolb_2022_976490 crossref_primary_10_3390_vaccines9050431 crossref_primary_10_1016_j_addr_2021_113871 crossref_primary_10_1038_s41541_021_00414_4 crossref_primary_10_3390_vaccines7030076 crossref_primary_10_1038_s41598_018_28700_7 crossref_primary_10_3390_vaccines5010006 crossref_primary_10_1016_j_immuni_2022_10_003 crossref_primary_10_1080_14760584_2017_1293529 crossref_primary_10_1371_journal_ppat_1009169 crossref_primary_10_3389_fimmu_2020_606569 crossref_primary_10_1016_j_vaccine_2019_08_030 crossref_primary_10_1017_S0950268819000335 crossref_primary_10_3390_nano12050734 crossref_primary_10_1016_j_coviro_2022_101260 crossref_primary_10_3390_vaccines11040821 crossref_primary_10_1016_j_virol_2016_12_025 crossref_primary_10_3390_vaccines6020031 crossref_primary_10_1021_acs_bioconjchem_4c00387 crossref_primary_10_1016_j_xcrm_2022_100658 crossref_primary_10_3389_fimmu_2024_1419634 crossref_primary_10_1002_advs_202303366 crossref_primary_10_3389_fneur_2022_887794 crossref_primary_10_3390_s21155201 crossref_primary_10_1146_annurev_cancerbio_050216_034315 crossref_primary_10_1038_s41582_023_00775_5 crossref_primary_10_1007_s11262_023_02013_y crossref_primary_10_1360_SSV_2024_0187 crossref_primary_10_1360_SSV_2024_0186 crossref_primary_10_3390_v16010128 crossref_primary_10_1007_s00018_020_03538_3 crossref_primary_10_1007_s11259_022_09942_3 crossref_primary_10_1093_infdis_jiaa654 crossref_primary_10_1016_j_cell_2019_01_046 crossref_primary_10_3389_fbioe_2022_867119 crossref_primary_10_1021_acsabm_2c00328 crossref_primary_10_3390_pharmaceutics13101621 crossref_primary_10_1002_jmv_29595 crossref_primary_10_1038_s41467_018_04227_3 crossref_primary_10_1016_j_celrep_2023_113552 crossref_primary_10_1016_j_ymthe_2022_02_011 crossref_primary_10_1038_s41579_019_0249_7 crossref_primary_10_1186_s40580_021_00294_3 crossref_primary_10_1371_journal_ppat_1010137 crossref_primary_10_1038_nm_4512 crossref_primary_10_1126_scitranslmed_abi5735 crossref_primary_10_3389_fimmu_2024_1530364 crossref_primary_10_1360_SSV_2024_0179 crossref_primary_10_1093_infdis_jiy122 crossref_primary_10_1126_scitranslmed_abe5449 crossref_primary_10_1016_j_actbio_2021_05_003 crossref_primary_10_1021_acsnano_3c07741 crossref_primary_10_1016_j_addr_2019_07_009 crossref_primary_10_1038_s41467_024_52908_z crossref_primary_10_3389_fimmu_2018_01093 crossref_primary_10_3389_fimmu_2022_867918 crossref_primary_10_3389_fimmu_2021_677027 crossref_primary_10_1016_j_xpro_2025_103610 crossref_primary_10_1111_pbi_13369 crossref_primary_10_1021_acsnano_4c13146 crossref_primary_10_1093_infdis_jiy250 crossref_primary_10_3390_biom11020297 crossref_primary_10_1007_s40265_021_01530_0 crossref_primary_10_1038_s41467_022_30222_w crossref_primary_10_1038_s41598_017_01421_z crossref_primary_10_1016_j_ejpb_2024_114589 crossref_primary_10_3390_ijms22041934 crossref_primary_10_1038_s41541_022_00587_6 crossref_primary_10_2217_nnm_2018_0147 crossref_primary_10_1007_s10529_019_02755_6 crossref_primary_10_3389_fimmu_2022_1059133 crossref_primary_10_3390_v16060936 crossref_primary_10_3390_vaccines8020169 crossref_primary_10_3389_fmolb_2024_1403635 crossref_primary_10_1111_imr_12481 crossref_primary_10_1038_s41573_024_01041_z crossref_primary_10_3390_ijms222413445 crossref_primary_10_3390_cancers12092565 crossref_primary_10_1016_j_bioactmat_2024_12_029 crossref_primary_10_1016_j_biotechadv_2020_107547 crossref_primary_10_1172_jci_insight_136653 crossref_primary_10_1038_s41541_021_00364_x crossref_primary_10_3389_fcimb_2021_605258 crossref_primary_10_1016_j_biopha_2023_114797 crossref_primary_10_1093_infdis_jiz231 crossref_primary_10_3390_v12010035 crossref_primary_10_3389_fcimb_2024_1406091 crossref_primary_10_3390_vaccines9020162 crossref_primary_10_1002_EXP_20210082 crossref_primary_10_1016_j_celrep_2024_114235 crossref_primary_10_1016_j_xcrm_2024_101587 crossref_primary_10_1128_mbio_02913_24 crossref_primary_10_1002_2211_5463_12267 |
Cites_doi | 10.1038/nature12202 10.1126/science.1234150 10.1126/scitranslmed.3002336 10.1073/pnas.1111497108 10.1016/j.jmb.2009.04.078 10.1128/JVI.01822-13 10.1128/jvi.62.12.4452-4464.1988 10.1128/JVI.00906-07 10.1006/jsbi.2002.4435 10.1128/JVI.00445-07 10.1371/journal.ppat.1002387 10.1146/annurev.immunol.15.1.235 10.1107/S0907444906018294 10.1089/ind.2006.2.143 10.1126/science.1192819 10.1073/pnas.77.9.5307 10.1038/nmat3775 10.1128/JVI.01409-07 10.1128/JVI.02717-12 10.1371/journal.ppat.1002308 10.1038/nsmb1161 10.1126/scitranslmed.3002878 10.1371/journal.ppat.1003364 10.1128/JVI.01673-08 10.1016/0042-6822(89)90345-0 10.1038/nsmb.1473 10.1002/smll.200700011 10.1016/0378-1119(95)00149-Z 10.1073/pnas.81.14.4510 10.1038/nrmicro2548 10.1128/JVI.79.3.1635-1644.2005 10.1128/JVI.02553-10 10.1016/0022-1759(84)90093-0 10.1038/nature11414 10.1073/pnas.1320041110 10.1111/imr.12005 10.1038/nature11371 10.1126/science.1636086 10.1016/j.celrep.2013.01.023 10.1126/science.276.5321.2024 10.1128/jvi.67.5.2552-2558.1993 10.1073/pnas.1212371109 10.1038/318287a0 10.1038/nm830 10.1097/COH.0b013e328363a90e 10.1128/jvi.43.2.730-736.1982 10.1016/j.virol.2009.06.013 10.1006/jmbi.1995.0274 10.1107/S0907444913016776 10.1016/j.vaccine.2007.04.008 10.1038/nchembio.1163 10.1016/S0140-6736(64)91524-7 10.1073/pnas.77.5.2979 10.1126/science.1187659 10.1038/nprot.2010.126 10.1086/523813 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. Copyright © 2015 Elsevier Inc. All rights reserved. 2015 Elsevier Inc. |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. 2015 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2015.07.043 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 1100 |
ExternalDocumentID | PMC4757492 26279189 10_1016_j_cell_2015_07_043 S0092867415009599 |
Genre | Journal Article Research Support, N.I.H., Intramural Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA AI000978 – fundername: CCR NIH HHS grantid: HHSN261200800001C – fundername: NCI NIH HHS grantid: HHSN261200800001E |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AAUCE AAVLU AAXJY AAXUO AAYJJ ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAHBH AAIKJ AALRI AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c624t-cf9404a8b4a750ea965cee7a057b9ac56f1206b339c7b8f4c81d07376cf4886b3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 14:12:45 EDT 2025 Fri Jul 11 09:50:05 EDT 2025 Fri Jul 11 01:23:35 EDT 2025 Mon Jul 21 05:58:49 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Tue Jul 01 02:16:53 EDT 2025 Fri Feb 23 02:30:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2015 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c624t-cf9404a8b4a750ea965cee7a057b9ac56f1206b339c7b8f4c81d07376cf4886b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA Present address: George Washington University Law School, 2000 H Street NW, Washington, DC 20052, USA Present address: Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki-shi, Osaka 567-0085, Japan |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867415009599 |
PMID | 26279189 |
PQID | 1708897447 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4757492 proquest_miscellaneous_2000223626 proquest_miscellaneous_1708897447 pubmed_primary_26279189 crossref_primary_10_1016_j_cell_2015_07_043 crossref_citationtrail_10_1016_j_cell_2015_07_043 elsevier_sciencedirect_doi_10_1016_j_cell_2015_07_043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-27 |
PublicationDateYYYYMMDD | 2015-08-27 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Li, Soistman, Carter (bib31) 2006; 2 Cohen, Fauci, Varmus, Nabel (bib9) 2011; 3 Sutter, Boehringer, Gutmann, Günther, Prangishvili, Loessner, Stetter, Weber-Ban, Ban (bib46) 2008; 15 Luka, Chase, Pearson (bib33) 1984; 67 Connolly, Jackson, Jardetzky, Longnecker (bib10) 2011; 9 Gu, Huang, Ruan, Miao, Lu, Chu, Motz, Wolf (bib17) 1995; 84 Lee, Lin, Chan, Ko, Lai, Wang (bib30) 2013; 69 Rossmann, Bernal, Pletnev (bib41) 2001; 136 Meldrum, Heywood, Mann (bib36) 1992; 257 Bachmann, Zinkernagel (bib1) 1997; 15 Ogembo, Kannan, Ghiran, Nicholson-Weller, Finberg, Tsokos, Fingeroth (bib39) 2013; 3 Whittle, Zhang, Khurana, King, Manischewitz, Golding, Dormitzer, Haynes, Walter, Moody (bib55) 2011; 108 Krey, Meola, Keck, Damier-Piolle, Foung, Rey (bib28) 2013; 9 Young, Herbert, Barlow, Holers, Hannan (bib57) 2008; 82 Sashihara, Burbelo, Savoldo, Pierson, Cohen (bib42) 2009; 391 Cho, Shin, Lee, Kim, Park, Lee, Lee, Park, Kim (bib8) 2009; 390 Chen, Fischer, Kouiavskaia, Hansen, Ludtke, Bidzhieva, Makiya, Agulto, Purcell, Chumakov (bib7) 2013; 110 Zhou, Georgiev, Wu, Yang, Dai, Finzi, Kwon, Scheid, Shi, Xu (bib58) 2010; 329 Serafini-Cessi, Malagolini, Nanni, Dall’Olio, Campadelli-Fiume, Tanner, Kieff (bib44) 1989; 170 Wang, Li, Ellenburg, Soistman, Ruble, Wright, Ho, Carter (bib54) 2006; 62 Georgiev, Gordon Joyce, Zhou, Kwong (bib16) 2013; 8 Jääskeläinen, Harinen, Lamminmäki, Korpimäki, Pelliniemi, Soukka, Virta (bib22) 2007; 3 van den Brink, Ter Meulen, Cox, Jongeneelen, Thijsse, Throsby, Marissen, Rood, Bakker, Gelderblom (bib53) 2005; 79 Julien, Lee, Wilson (bib25) 2012; 250 Hutt-Fletcher (bib20) 2007; 81 Tugizov, Berline, Palefsky (bib52) 2003; 9 Huard, Kane, Tezcan (bib19) 2013; 9 Lee, Yoshida, Ekiert, Sakai, Suzuki, Takada, Wilson (bib29) 2012; 109 Meng, Zhang, Plevka, Yu, Tijssen, Rossmann (bib37) 2013; 87 Thorley-Lawson, Poodry (bib50) 1982; 43 Epstein, Achong, Barr (bib13) 1964; 1 Elliott, Suhrbier, Miles, Lawrence, Pye, Le, Rosenstengel, Nguyen, Allworth, Burrows (bib12) 2008; 82 Lingwood, McTamney, Yassine, Whittle, Guo, Boyington, Wei, Nabel (bib32) 2012; 489 Wu, Yang, Li, Hogerkorp, Schief, Seaman, Zhou, Schmidt, Wu, Xu (bib56) 2010; 329 McLellan (bib35) 2013; 123 Szakonyi, Klein, Hannan, Young, Ma, Asokan, Holers, Chen (bib47) 2006; 13 Irvine, Swartz, Szeto (bib21) 2013; 12 Chen, Chumakov, Dragunsky, Kouiavskaia, Makiya, Neverov, Rezapkin, Sebrell, Purcell (bib6) 2011; 85 Okuno, Isegawa, Sasao, Ueda (bib40) 1993; 67 Joyce, Kanekiyo, Xu, Biertümpfel, Boyington, Moquin, Shi, Wu, Yang, Yang (bib24) 2013; 87 Blasco, Moss (bib4) 1995; 158 Moutschen, Léonard, Sokal, Smets, Haumont, Mazzu, Bollen, Denamur, Peeters, Dubin, Denis (bib38) 2007; 25 Bachmann, Kalinke, Althage, Freer, Burkhart, Roost, Aguet, Hengartner, Zinkernagel (bib2) 1997; 276 Hoffman, Lazarowitz, Hayward (bib18) 1980; 77 Thorley-Lawson, Geilinger (bib49) 1980; 77 Kanekiyo, Wei, Yassine, McTamney, Boyington, Whittle, Rao, Kong, Wang, Nabel (bib26) 2013; 499 Fingeroth, Weis, Tedder, Strominger, Biro, Fearon (bib15) 1984; 81 Jardine, Julien, Menis, Ota, Kalyuzhniy, McGuire, Sok, Huang, MacPherson, Jones (bib23) 2013; 340 Khurana, Verma, Yewdell, Hilbert, Castellino, Lattanzi, Del Giudice, Rappuoli, Golding (bib27) 2011; 3 Baker, Zhang, Ludtke, Chiu (bib3) 2010; 5 Chen, Earl, Americo, Damon, Smith, Yu, Sebrell, Emerson, Cohen, Eisenberg (bib5) 2007; 81 Ekiert, Kashyap, Steel, Rubrum, Bhabha, Khayat, Lee, Dillon, O’Neil, Faynboym (bib11) 2012; 489 Epstein, Morgan, Finerty, Randle, Kirkwood (bib14) 1985; 318 Sashihara, Hoshino, Bowman, Krogmann, Burbelo, Coffield, Kamrud, Cohen (bib43) 2011; 7 Sokal, Hoppenbrouwers, Vandermeulen, Moutschen, Léonard, Moreels, Haumont, Bollen, Smets, Denis (bib45) 2007; 196 Trikha, Theil, Allewell (bib51) 1995; 248 Machiels, Lété, Guillaume, Mast, Stevenson, Vanderplasschen, Gillet (bib34) 2011; 7 Tanner, Whang, Sample, Sears, Kieff (bib48) 1988; 62 Serafini-Cessi (10.1016/j.cell.2015.07.043_bib44) 1989; 170 Luka (10.1016/j.cell.2015.07.043_bib33) 1984; 67 Meng (10.1016/j.cell.2015.07.043_bib37) 2013; 87 Sashihara (10.1016/j.cell.2015.07.043_bib42) 2009; 391 Machiels (10.1016/j.cell.2015.07.043_bib34) 2011; 7 Chen (10.1016/j.cell.2015.07.043_bib7) 2013; 110 Rossmann (10.1016/j.cell.2015.07.043_bib41) 2001; 136 Lingwood (10.1016/j.cell.2015.07.043_bib32) 2012; 489 Joyce (10.1016/j.cell.2015.07.043_bib24) 2013; 87 Lee (10.1016/j.cell.2015.07.043_bib30) 2013; 69 Sutter (10.1016/j.cell.2015.07.043_bib46) 2008; 15 Irvine (10.1016/j.cell.2015.07.043_bib21) 2013; 12 Chen (10.1016/j.cell.2015.07.043_bib6) 2011; 85 Szakonyi (10.1016/j.cell.2015.07.043_bib47) 2006; 13 Sokal (10.1016/j.cell.2015.07.043_bib45) 2007; 196 Elliott (10.1016/j.cell.2015.07.043_bib12) 2008; 82 Ogembo (10.1016/j.cell.2015.07.043_bib39) 2013; 3 Cohen (10.1016/j.cell.2015.07.043_bib9) 2011; 3 Huard (10.1016/j.cell.2015.07.043_bib19) 2013; 9 Ekiert (10.1016/j.cell.2015.07.043_bib11) 2012; 489 Georgiev (10.1016/j.cell.2015.07.043_bib16) 2013; 8 Julien (10.1016/j.cell.2015.07.043_bib25) 2012; 250 Epstein (10.1016/j.cell.2015.07.043_bib14) 1985; 318 Wu (10.1016/j.cell.2015.07.043_bib56) 2010; 329 Moutschen (10.1016/j.cell.2015.07.043_bib38) 2007; 25 Fingeroth (10.1016/j.cell.2015.07.043_bib15) 1984; 81 Hutt-Fletcher (10.1016/j.cell.2015.07.043_bib20) 2007; 81 Thorley-Lawson (10.1016/j.cell.2015.07.043_bib50) 1982; 43 Thorley-Lawson (10.1016/j.cell.2015.07.043_bib49) 1980; 77 Jääskeläinen (10.1016/j.cell.2015.07.043_bib22) 2007; 3 Sashihara (10.1016/j.cell.2015.07.043_bib43) 2011; 7 Tanner (10.1016/j.cell.2015.07.043_bib48) 1988; 62 Gu (10.1016/j.cell.2015.07.043_bib17) 1995; 84 Epstein (10.1016/j.cell.2015.07.043_bib13) 1964; 1 Tugizov (10.1016/j.cell.2015.07.043_bib52) 2003; 9 Khurana (10.1016/j.cell.2015.07.043_bib27) 2011; 3 van den Brink (10.1016/j.cell.2015.07.043_bib53) 2005; 79 Connolly (10.1016/j.cell.2015.07.043_bib10) 2011; 9 Krey (10.1016/j.cell.2015.07.043_bib28) 2013; 9 Okuno (10.1016/j.cell.2015.07.043_bib40) 1993; 67 Meldrum (10.1016/j.cell.2015.07.043_bib36) 1992; 257 Baker (10.1016/j.cell.2015.07.043_bib3) 2010; 5 Hoffman (10.1016/j.cell.2015.07.043_bib18) 1980; 77 Bachmann (10.1016/j.cell.2015.07.043_bib1) 1997; 15 Li (10.1016/j.cell.2015.07.043_bib31) 2006; 2 Young (10.1016/j.cell.2015.07.043_bib57) 2008; 82 Wang (10.1016/j.cell.2015.07.043_bib54) 2006; 62 Chen (10.1016/j.cell.2015.07.043_bib5) 2007; 81 Whittle (10.1016/j.cell.2015.07.043_bib55) 2011; 108 Jardine (10.1016/j.cell.2015.07.043_bib23) 2013; 340 Blasco (10.1016/j.cell.2015.07.043_bib4) 1995; 158 Lee (10.1016/j.cell.2015.07.043_bib29) 2012; 109 McLellan (10.1016/j.cell.2015.07.043_bib35) 2013; 123 Zhou (10.1016/j.cell.2015.07.043_bib58) 2010; 329 Trikha (10.1016/j.cell.2015.07.043_bib51) 1995; 248 Cho (10.1016/j.cell.2015.07.043_bib8) 2009; 390 Kanekiyo (10.1016/j.cell.2015.07.043_bib26) 2013; 499 Bachmann (10.1016/j.cell.2015.07.043_bib2) 1997; 276 |
References_xml | – volume: 196 start-page: 1749 year: 2007 end-page: 1753 ident: bib45 article-title: Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults publication-title: J. Infect. Dis. – volume: 84 start-page: 171 year: 1995 end-page: 177 ident: bib17 article-title: First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen publication-title: Dev. Biol. Stand. – volume: 158 start-page: 157 year: 1995 end-page: 162 ident: bib4 article-title: Selection of recombinant vaccinia viruses on the basis of plaque formation publication-title: Gene – volume: 3 start-page: 1362 year: 2007 end-page: 1367 ident: bib22 article-title: Production of apoferritin-based bioinorganic hybrid nanoparticles by bacterial fermentation followed by self-assembly publication-title: Small – volume: 136 start-page: 190 year: 2001 end-page: 200 ident: bib41 article-title: Combining electron microscopic with x-ray crystallographic structures publication-title: J. Struct. Biol. – volume: 79 start-page: 1635 year: 2005 end-page: 1644 ident: bib53 article-title: Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus publication-title: J. Virol. – volume: 489 start-page: 526 year: 2012 end-page: 532 ident: bib11 article-title: Cross-neutralization of influenza A viruses mediated by a single antibody loop publication-title: Nature – volume: 329 start-page: 811 year: 2010 end-page: 817 ident: bib58 article-title: Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01 publication-title: Science – volume: 85 start-page: 4354 year: 2011 end-page: 4362 ident: bib6 article-title: Chimpanzee-human monoclonal antibodies for treatment of chronic poliovirus excretors and emergency postexposure prophylaxis publication-title: J. Virol. – volume: 250 start-page: 180 year: 2012 end-page: 198 ident: bib25 article-title: Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA publication-title: Immunol. Rev. – volume: 69 start-page: 1935 year: 2013 end-page: 1945 ident: bib30 article-title: Structural basis for the antibody neutralization of herpes simplex virus publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 1 start-page: 702 year: 1964 end-page: 703 ident: bib13 article-title: Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma publication-title: Lancet – volume: 77 start-page: 5307 year: 1980 end-page: 5311 ident: bib49 article-title: Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein-Barr virus neutralize infectivity publication-title: Proc. Natl. Acad. Sci. USA – volume: 257 start-page: 522 year: 1992 end-page: 523 ident: bib36 article-title: Magnetoferritin: in vitro synthesis of a novel magnetic protein publication-title: Science – volume: 248 start-page: 949 year: 1995 end-page: 967 ident: bib51 article-title: High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function publication-title: J. Mol. Biol. – volume: 340 start-page: 711 year: 2013 end-page: 716 ident: bib23 article-title: Rational HIV immunogen design to target specific germline B cell receptors publication-title: Science – volume: 81 start-page: 4510 year: 1984 end-page: 4514 ident: bib15 article-title: Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 307 year: 2003 end-page: 314 ident: bib52 article-title: Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells publication-title: Nat. Med. – volume: 12 start-page: 978 year: 2013 end-page: 990 ident: bib21 article-title: Engineering synthetic vaccines using cues from natural immunity publication-title: Nat. Mater. – volume: 499 start-page: 102 year: 2013 end-page: 106 ident: bib26 article-title: Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies publication-title: Nature – volume: 9 start-page: e1003364 year: 2013 ident: bib28 article-title: Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape publication-title: PLoS Pathog. – volume: 67 start-page: 145 year: 1984 end-page: 156 ident: bib33 article-title: A sensitive enzyme-linked immunosorbent assay (ELISA) against the major EBV-associated antigens. I. Correlation between ELISA and immunofluorescence titers using purified antigens publication-title: J. Immunol. Methods – volume: 82 start-page: 1448 year: 2008 end-page: 1457 ident: bib12 article-title: Phase I trial of a CD8+ T-cell peptide epitope-based vaccine for infectious mononucleosis publication-title: J. Virol. – volume: 329 start-page: 856 year: 2010 end-page: 861 ident: bib56 article-title: Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1 publication-title: Science – volume: 43 start-page: 730 year: 1982 end-page: 736 ident: bib50 article-title: Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo publication-title: J. Virol. – volume: 3 start-page: 371 year: 2013 end-page: 385 ident: bib39 article-title: Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor publication-title: Cell Rep. – volume: 87 start-page: 12523 year: 2013 end-page: 12530 ident: bib37 article-title: The structure and host entry of an invertebrate parvovirus publication-title: J. Virol. – volume: 391 start-page: 249 year: 2009 end-page: 256 ident: bib42 article-title: Human antibody titers to Epstein-Barr Virus (EBV) gp350 correlate with neutralization of infectivity better than antibody titers to EBV gp42 using a rapid flow cytometry-based EBV neutralization assay publication-title: Virology – volume: 123 start-page: 3 year: 2013 ident: bib35 article-title: Mid Staffordshire inquiry. Too long, too late but Francis can still help make the NHS better publication-title: Health Serv. J. – volume: 82 start-page: 11217 year: 2008 end-page: 11227 ident: bib57 article-title: Molecular basis of the interaction between complement receptor type 2 (CR2/CD21) and Epstein-Barr virus glycoprotein gp350 publication-title: J. Virol. – volume: 5 start-page: 1697 year: 2010 end-page: 1708 ident: bib3 article-title: Cryo-EM of macromolecular assemblies at near-atomic resolution publication-title: Nat. Protoc. – volume: 9 start-page: 169 year: 2013 end-page: 176 ident: bib19 article-title: Re-engineering protein interfaces yields copper-inducible ferritin cage assembly publication-title: Nat. Chem. Biol. – volume: 276 start-page: 2024 year: 1997 end-page: 2027 ident: bib2 article-title: The role of antibody concentration and avidity in antiviral protection publication-title: Science – volume: 62 start-page: 800 year: 2006 end-page: 806 ident: bib54 article-title: Structure of human ferritin L chain publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 81 start-page: 8989 year: 2007 end-page: 8995 ident: bib5 article-title: Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model publication-title: J. Virol. – volume: 15 start-page: 939 year: 2008 end-page: 947 ident: bib46 article-title: Structural basis of enzyme encapsulation into a bacterial nanocompartment publication-title: Nat. Struct. Mol. Biol. – volume: 3 start-page: 107fs7 year: 2011 ident: bib9 article-title: Epstein-Barr virus: an important vaccine target for cancer prevention publication-title: Sci. Transl. Med. – volume: 77 start-page: 2979 year: 1980 end-page: 2983 ident: bib18 article-title: Monoclonal antibody against a 250,000-dalton glycoprotein of Epstein-Barr virus identifies a membrane antigen and a neutralizing antigen publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 4697 year: 2007 end-page: 4705 ident: bib38 article-title: Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults publication-title: Vaccine – volume: 109 start-page: 17040 year: 2012 end-page: 17045 ident: bib29 article-title: Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity publication-title: Proc. Natl. Acad. Sci. USA – volume: 390 start-page: 83 year: 2009 end-page: 98 ident: bib8 article-title: The crystal structure of ferritin from Helicobacter pylori reveals unusual conformational changes for iron uptake publication-title: J. Mol. Biol. – volume: 170 start-page: 1 year: 1989 end-page: 10 ident: bib44 article-title: Characterization of N- and O-linked oligosaccharides of glycoprotein 350 from Epstein-Barr virus publication-title: Virology – volume: 3 start-page: 85ra48 year: 2011 ident: bib27 article-title: MF59 adjuvant enhances diversity and affinity of antibody-mediated immune response to pandemic influenza vaccines publication-title: Sci. Transl. Med. – volume: 8 start-page: 382 year: 2013 end-page: 392 ident: bib16 article-title: Elicitation of HIV-1-neutralizing antibodies against the CD4-binding site publication-title: Curr. Opin. HIV AIDS – volume: 2 start-page: 143 year: 2006 end-page: 147 ident: bib31 article-title: Ferritin nanoparticle technology. A new platform for antigen presentation and vaccine development publication-title: Ind. Biotechnol. – volume: 7 start-page: e1002308 year: 2011 ident: bib43 article-title: Soluble rhesus lymphocryptovirus gp350 protects against infection and reduces viral loads in animals that become infected with virus after challenge publication-title: PLoS Pathog. – volume: 489 start-page: 566 year: 2012 end-page: 570 ident: bib32 article-title: Structural and genetic basis for development of broadly neutralizing influenza antibodies publication-title: Nature – volume: 7 start-page: e1002387 year: 2011 ident: bib34 article-title: Antibody evasion by a gammaherpesvirus O-glycan shield publication-title: PLoS Pathog. – volume: 81 start-page: 7825 year: 2007 end-page: 7832 ident: bib20 article-title: Epstein-Barr virus entry publication-title: J. Virol. – volume: 108 start-page: 14216 year: 2011 end-page: 14221 ident: bib55 article-title: Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin publication-title: Proc. Natl. Acad. Sci. USA – volume: 87 start-page: 2294 year: 2013 end-page: 2306 ident: bib24 article-title: Outer domain of HIV-1 gp120: antigenic optimization, structural malleability, and crystal structure with antibody VRC-PG04 publication-title: J. Virol. – volume: 62 start-page: 4452 year: 1988 end-page: 4464 ident: bib48 article-title: Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr virus adsorption to lymphocytes publication-title: J. Virol. – volume: 15 start-page: 235 year: 1997 end-page: 270 ident: bib1 article-title: Neutralizing antiviral B cell responses publication-title: Annu. Rev. Immunol. – volume: 13 start-page: 996 year: 2006 end-page: 1001 ident: bib47 article-title: Structure of the Epstein-Barr virus major envelope glycoprotein publication-title: Nat. Struct. Mol. Biol. – volume: 67 start-page: 2552 year: 1993 end-page: 2558 ident: bib40 article-title: A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains publication-title: J. Virol. – volume: 110 start-page: 20242 year: 2013 end-page: 20247 ident: bib7 article-title: Cross-neutralizing human anti-poliovirus antibodies bind the recognition site for cellular receptor publication-title: Proc. Natl. Acad. Sci USA – volume: 9 start-page: 369 year: 2011 end-page: 381 ident: bib10 article-title: Fusing structure and function: a structural view of the herpesvirus entry machinery publication-title: Nat. Rev. Microbiol. – volume: 318 start-page: 287 year: 1985 end-page: 289 ident: bib14 article-title: Protection of cottontop tamarins against Epstein-Barr virus-induced malignant lymphoma by a prototype subunit vaccine publication-title: Nature – volume: 499 start-page: 102 year: 2013 ident: 10.1016/j.cell.2015.07.043_bib26 article-title: Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies publication-title: Nature doi: 10.1038/nature12202 – volume: 340 start-page: 711 year: 2013 ident: 10.1016/j.cell.2015.07.043_bib23 article-title: Rational HIV immunogen design to target specific germline B cell receptors publication-title: Science doi: 10.1126/science.1234150 – volume: 3 start-page: 85ra48 year: 2011 ident: 10.1016/j.cell.2015.07.043_bib27 article-title: MF59 adjuvant enhances diversity and affinity of antibody-mediated immune response to pandemic influenza vaccines publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3002336 – volume: 108 start-page: 14216 year: 2011 ident: 10.1016/j.cell.2015.07.043_bib55 article-title: Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1111497108 – volume: 390 start-page: 83 year: 2009 ident: 10.1016/j.cell.2015.07.043_bib8 article-title: The crystal structure of ferritin from Helicobacter pylori reveals unusual conformational changes for iron uptake publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.04.078 – volume: 87 start-page: 12523 year: 2013 ident: 10.1016/j.cell.2015.07.043_bib37 article-title: The structure and host entry of an invertebrate parvovirus publication-title: J. Virol. doi: 10.1128/JVI.01822-13 – volume: 84 start-page: 171 year: 1995 ident: 10.1016/j.cell.2015.07.043_bib17 article-title: First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen publication-title: Dev. Biol. Stand. – volume: 62 start-page: 4452 year: 1988 ident: 10.1016/j.cell.2015.07.043_bib48 article-title: Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr virus adsorption to lymphocytes publication-title: J. Virol. doi: 10.1128/jvi.62.12.4452-4464.1988 – volume: 81 start-page: 8989 year: 2007 ident: 10.1016/j.cell.2015.07.043_bib5 article-title: Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model publication-title: J. Virol. doi: 10.1128/JVI.00906-07 – volume: 136 start-page: 190 year: 2001 ident: 10.1016/j.cell.2015.07.043_bib41 article-title: Combining electron microscopic with x-ray crystallographic structures publication-title: J. Struct. Biol. doi: 10.1006/jsbi.2002.4435 – volume: 81 start-page: 7825 year: 2007 ident: 10.1016/j.cell.2015.07.043_bib20 article-title: Epstein-Barr virus entry publication-title: J. Virol. doi: 10.1128/JVI.00445-07 – volume: 7 start-page: e1002387 year: 2011 ident: 10.1016/j.cell.2015.07.043_bib34 article-title: Antibody evasion by a gammaherpesvirus O-glycan shield publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002387 – volume: 15 start-page: 235 year: 1997 ident: 10.1016/j.cell.2015.07.043_bib1 article-title: Neutralizing antiviral B cell responses publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.15.1.235 – volume: 62 start-page: 800 year: 2006 ident: 10.1016/j.cell.2015.07.043_bib54 article-title: Structure of human ferritin L chain publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444906018294 – volume: 2 start-page: 143 year: 2006 ident: 10.1016/j.cell.2015.07.043_bib31 article-title: Ferritin nanoparticle technology. A new platform for antigen presentation and vaccine development publication-title: Ind. Biotechnol. doi: 10.1089/ind.2006.2.143 – volume: 329 start-page: 811 year: 2010 ident: 10.1016/j.cell.2015.07.043_bib58 article-title: Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01 publication-title: Science doi: 10.1126/science.1192819 – volume: 123 start-page: 3 year: 2013 ident: 10.1016/j.cell.2015.07.043_bib35 article-title: Mid Staffordshire inquiry. Too long, too late but Francis can still help make the NHS better publication-title: Health Serv. J. – volume: 77 start-page: 5307 year: 1980 ident: 10.1016/j.cell.2015.07.043_bib49 article-title: Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein-Barr virus neutralize infectivity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.77.9.5307 – volume: 12 start-page: 978 year: 2013 ident: 10.1016/j.cell.2015.07.043_bib21 article-title: Engineering synthetic vaccines using cues from natural immunity publication-title: Nat. Mater. doi: 10.1038/nmat3775 – volume: 82 start-page: 1448 year: 2008 ident: 10.1016/j.cell.2015.07.043_bib12 article-title: Phase I trial of a CD8+ T-cell peptide epitope-based vaccine for infectious mononucleosis publication-title: J. Virol. doi: 10.1128/JVI.01409-07 – volume: 87 start-page: 2294 year: 2013 ident: 10.1016/j.cell.2015.07.043_bib24 article-title: Outer domain of HIV-1 gp120: antigenic optimization, structural malleability, and crystal structure with antibody VRC-PG04 publication-title: J. Virol. doi: 10.1128/JVI.02717-12 – volume: 7 start-page: e1002308 year: 2011 ident: 10.1016/j.cell.2015.07.043_bib43 article-title: Soluble rhesus lymphocryptovirus gp350 protects against infection and reduces viral loads in animals that become infected with virus after challenge publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002308 – volume: 13 start-page: 996 year: 2006 ident: 10.1016/j.cell.2015.07.043_bib47 article-title: Structure of the Epstein-Barr virus major envelope glycoprotein publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1161 – volume: 3 start-page: 107fs7 year: 2011 ident: 10.1016/j.cell.2015.07.043_bib9 article-title: Epstein-Barr virus: an important vaccine target for cancer prevention publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3002878 – volume: 9 start-page: e1003364 year: 2013 ident: 10.1016/j.cell.2015.07.043_bib28 article-title: Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003364 – volume: 82 start-page: 11217 year: 2008 ident: 10.1016/j.cell.2015.07.043_bib57 article-title: Molecular basis of the interaction between complement receptor type 2 (CR2/CD21) and Epstein-Barr virus glycoprotein gp350 publication-title: J. Virol. doi: 10.1128/JVI.01673-08 – volume: 170 start-page: 1 year: 1989 ident: 10.1016/j.cell.2015.07.043_bib44 article-title: Characterization of N- and O-linked oligosaccharides of glycoprotein 350 from Epstein-Barr virus publication-title: Virology doi: 10.1016/0042-6822(89)90345-0 – volume: 15 start-page: 939 year: 2008 ident: 10.1016/j.cell.2015.07.043_bib46 article-title: Structural basis of enzyme encapsulation into a bacterial nanocompartment publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1473 – volume: 3 start-page: 1362 year: 2007 ident: 10.1016/j.cell.2015.07.043_bib22 article-title: Production of apoferritin-based bioinorganic hybrid nanoparticles by bacterial fermentation followed by self-assembly publication-title: Small doi: 10.1002/smll.200700011 – volume: 158 start-page: 157 year: 1995 ident: 10.1016/j.cell.2015.07.043_bib4 article-title: Selection of recombinant vaccinia viruses on the basis of plaque formation publication-title: Gene doi: 10.1016/0378-1119(95)00149-Z – volume: 81 start-page: 4510 year: 1984 ident: 10.1016/j.cell.2015.07.043_bib15 article-title: Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.81.14.4510 – volume: 9 start-page: 369 year: 2011 ident: 10.1016/j.cell.2015.07.043_bib10 article-title: Fusing structure and function: a structural view of the herpesvirus entry machinery publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2548 – volume: 79 start-page: 1635 year: 2005 ident: 10.1016/j.cell.2015.07.043_bib53 article-title: Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus publication-title: J. Virol. doi: 10.1128/JVI.79.3.1635-1644.2005 – volume: 85 start-page: 4354 year: 2011 ident: 10.1016/j.cell.2015.07.043_bib6 article-title: Chimpanzee-human monoclonal antibodies for treatment of chronic poliovirus excretors and emergency postexposure prophylaxis publication-title: J. Virol. doi: 10.1128/JVI.02553-10 – volume: 67 start-page: 145 year: 1984 ident: 10.1016/j.cell.2015.07.043_bib33 article-title: A sensitive enzyme-linked immunosorbent assay (ELISA) against the major EBV-associated antigens. I. Correlation between ELISA and immunofluorescence titers using purified antigens publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(84)90093-0 – volume: 489 start-page: 526 year: 2012 ident: 10.1016/j.cell.2015.07.043_bib11 article-title: Cross-neutralization of influenza A viruses mediated by a single antibody loop publication-title: Nature doi: 10.1038/nature11414 – volume: 110 start-page: 20242 year: 2013 ident: 10.1016/j.cell.2015.07.043_bib7 article-title: Cross-neutralizing human anti-poliovirus antibodies bind the recognition site for cellular receptor publication-title: Proc. Natl. Acad. Sci USA doi: 10.1073/pnas.1320041110 – volume: 250 start-page: 180 year: 2012 ident: 10.1016/j.cell.2015.07.043_bib25 article-title: Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA publication-title: Immunol. Rev. doi: 10.1111/imr.12005 – volume: 489 start-page: 566 year: 2012 ident: 10.1016/j.cell.2015.07.043_bib32 article-title: Structural and genetic basis for development of broadly neutralizing influenza antibodies publication-title: Nature doi: 10.1038/nature11371 – volume: 257 start-page: 522 year: 1992 ident: 10.1016/j.cell.2015.07.043_bib36 article-title: Magnetoferritin: in vitro synthesis of a novel magnetic protein publication-title: Science doi: 10.1126/science.1636086 – volume: 3 start-page: 371 year: 2013 ident: 10.1016/j.cell.2015.07.043_bib39 article-title: Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.01.023 – volume: 276 start-page: 2024 year: 1997 ident: 10.1016/j.cell.2015.07.043_bib2 article-title: The role of antibody concentration and avidity in antiviral protection publication-title: Science doi: 10.1126/science.276.5321.2024 – volume: 67 start-page: 2552 year: 1993 ident: 10.1016/j.cell.2015.07.043_bib40 article-title: A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains publication-title: J. Virol. doi: 10.1128/jvi.67.5.2552-2558.1993 – volume: 109 start-page: 17040 year: 2012 ident: 10.1016/j.cell.2015.07.043_bib29 article-title: Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1212371109 – volume: 318 start-page: 287 year: 1985 ident: 10.1016/j.cell.2015.07.043_bib14 article-title: Protection of cottontop tamarins against Epstein-Barr virus-induced malignant lymphoma by a prototype subunit vaccine publication-title: Nature doi: 10.1038/318287a0 – volume: 9 start-page: 307 year: 2003 ident: 10.1016/j.cell.2015.07.043_bib52 article-title: Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells publication-title: Nat. Med. doi: 10.1038/nm830 – volume: 8 start-page: 382 year: 2013 ident: 10.1016/j.cell.2015.07.043_bib16 article-title: Elicitation of HIV-1-neutralizing antibodies against the CD4-binding site publication-title: Curr. Opin. HIV AIDS doi: 10.1097/COH.0b013e328363a90e – volume: 43 start-page: 730 year: 1982 ident: 10.1016/j.cell.2015.07.043_bib50 article-title: Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo publication-title: J. Virol. doi: 10.1128/jvi.43.2.730-736.1982 – volume: 391 start-page: 249 year: 2009 ident: 10.1016/j.cell.2015.07.043_bib42 article-title: Human antibody titers to Epstein-Barr Virus (EBV) gp350 correlate with neutralization of infectivity better than antibody titers to EBV gp42 using a rapid flow cytometry-based EBV neutralization assay publication-title: Virology doi: 10.1016/j.virol.2009.06.013 – volume: 248 start-page: 949 year: 1995 ident: 10.1016/j.cell.2015.07.043_bib51 article-title: High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1995.0274 – volume: 69 start-page: 1935 year: 2013 ident: 10.1016/j.cell.2015.07.043_bib30 article-title: Structural basis for the antibody neutralization of herpes simplex virus publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444913016776 – volume: 25 start-page: 4697 year: 2007 ident: 10.1016/j.cell.2015.07.043_bib38 article-title: Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults publication-title: Vaccine doi: 10.1016/j.vaccine.2007.04.008 – volume: 9 start-page: 169 year: 2013 ident: 10.1016/j.cell.2015.07.043_bib19 article-title: Re-engineering protein interfaces yields copper-inducible ferritin cage assembly publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1163 – volume: 1 start-page: 702 year: 1964 ident: 10.1016/j.cell.2015.07.043_bib13 article-title: Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma publication-title: Lancet doi: 10.1016/S0140-6736(64)91524-7 – volume: 77 start-page: 2979 year: 1980 ident: 10.1016/j.cell.2015.07.043_bib18 article-title: Monoclonal antibody against a 250,000-dalton glycoprotein of Epstein-Barr virus identifies a membrane antigen and a neutralizing antigen publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.77.5.2979 – volume: 329 start-page: 856 year: 2010 ident: 10.1016/j.cell.2015.07.043_bib56 article-title: Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1 publication-title: Science doi: 10.1126/science.1187659 – volume: 5 start-page: 1697 year: 2010 ident: 10.1016/j.cell.2015.07.043_bib3 article-title: Cryo-EM of macromolecular assemblies at near-atomic resolution publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.126 – volume: 196 start-page: 1749 year: 2007 ident: 10.1016/j.cell.2015.07.043_bib45 article-title: Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults publication-title: J. Infect. Dis. doi: 10.1086/523813 |
SSID | ssj0008555 |
Score | 2.5972092 |
Snippet | Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually... • Self-assembling nanoparticles present the conserved gp350 receptor-binding domain • The nanoparticles elicit more potent neutralizing antibodies than soluble... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1090 |
SubjectTerms | animal models Animals Antibodies, Neutralizing - immunology complement Crystallography, X-Ray Drug Design Female glycoproteins Herpesvirus 4, Human Herpesvirus Vaccines - chemistry Herpesvirus Vaccines - genetics Herpesvirus Vaccines - immunology Herpesvirus Vaccines - isolation & purification Human gammaherpesvirus 4 immunity Macaca fascicularis Mice Mice, Inbred BALB C nanoparticles Nanoparticles - chemistry Nanoparticles - ultrastructure neoplasms neutralization neutralizing antibodies Primates Receptors, Complement 3d - chemistry Receptors, Complement 3d - immunology Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - immunology Recombinant Proteins - isolation & purification vaccine development vaccines viruses |
Title | Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site |
URI | https://dx.doi.org/10.1016/j.cell.2015.07.043 https://www.ncbi.nlm.nih.gov/pubmed/26279189 https://www.proquest.com/docview/1708897447 https://www.proquest.com/docview/2000223626 https://pubmed.ncbi.nlm.nih.gov/PMC4757492 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEJTXFoqMxA1ZTRw_j2xpVVUqB9hWe7OcaSyCUHa1jwP_nhknWbGg9sAx8Thyxh7PF2fmG8Y-pAr9aiVB3GlbCCUVCIfIV1jXKFAp6pQo3_n6i7m8UVdzPT9gZ2MuDIVVDnt_v6fn3Xq4czpo83TZtpTj66Uz5BEzvS4l8VXK5SS--XS3Gzut-yoGHi0fpYfEmT7Giw7HKbxLZwJPVd3nnP4Fn3_HUP7hlC6esicDmuSf-gE_YwdNd8Qe9fUlfz1ns6_DUR__nAM1-CLx2PHz5ZpqXIppXK34bbvarvltBPrDzmc5MBzdGUdgyBFTNkv8KBfTNie_8G8IUF-wm4vz2dmlGMooCDBSbQQkrwoVXa0iwoMmeqPRM9qISK32EbRJpSxMXVUebO2SAoSwaPjWQELrxoaX7LBbdM1rxpP1UOJDQVegoLhzhW4KX0MRS6hiNBNWjvoLMHCMU6mLn2EMJvsRSOeBdB4KG1DnE_Zx12fZM2w8KK3HaQl76ySgC3iw3_txDgMaEDXHrlls16G0FOlllbL3y8jME0TMPRP2qp_33VilkdaXzk-Y3VsROwEi8N5v6drvmchbWW2Vl8f_-U5v2GO6ohNuad-yw81q25wgRNrU77IN_AY1eQ7y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXxJvlaSRuyGri-BEf2dJqC20PsK32ZjluLIJQdrWPA_-eGSdZsaD2wDVjR8nYM_PFmfkG4H0sMK4WIvArZTIuhQy8ROTLTVnLIKNXMVK989m5nlzIzzM124PDoRaG0ip739_59OSt-ysHvTYPFk1DNb5WlJoiYqLXtbfgNqIBQ_0bTmbjrTsuleraGFg0fRzeV850SV50Ok75XSoxeMriuuj0L_r8O4nyj6h0_ADu93CSfeye-CHs1e0juNM1mPz1GKZf-7M-9illarB5ZL5lR4sVNbnkY79csstmuVmxSx_oFzubpsxwjGcMkSFDUFkv8Kucj5tU_cK-IUJ9AhfHR9PDCe_7KPCghVzzEK3MpC8r6REf1N5qhaHReIRqlfVB6ZiLTFdFYYOpyigDYli0fKNDRPNGwVPYb-dt_RxYNDbkeNOgiiBDdlVmqs5sFTKfh8J7PYJ80J8LPck49br46YZssh-OdO5I5y4zDnU-gg_bOYuOYuPG0WpYFrezURzGgBvnvRvW0KEFkdi39XyzcrmhVC8jpbl-jEhEQUTdM4Jn3bpvn1VoYWxe2hGYnR2xHUAM3ruStvmemLylUUZa8eI_3-kt3J1Mz07d6cn5l5dwjyR03C3MK9hfLzf1a8RL6-pNsoff0J8SEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+an+Epstein-Barr+Virus+Vaccine+Targeting+the+Receptor-Binding+Site&rft.jtitle=Cell&rft.au=Kanekiyo%2C+Masaru&rft.au=Bu%2C+Wei&rft.au=Joyce%2C+M.%C2%A0Gordon&rft.au=Meng%2C+Geng&rft.date=2015-08-27&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=162&rft.issue=5&rft.spage=1090&rft.epage=1100&rft_id=info:doi/10.1016%2Fj.cell.2015.07.043&rft.externalDocID=S0092867415009599 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |