Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site

Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through c...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 162; no. 5; pp. 1090 - 1100
Main Authors Kanekiyo, Masaru, Bu, Wei, Joyce, M. Gordon, Meng, Geng, Whittle, James R.R., Baxa, Ulrich, Yamamoto, Takuya, Narpala, Sandeep, Todd, John-Paul, Rao, Srinivas S., McDermott, Adrian B., Koup, Richard A., Rossmann, Michael G., Mascola, John R., Graham, Barney S., Cohen, Jeffrey I., Nabel, Gary J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses. [Display omitted] [Display omitted] •Self-assembling nanoparticles present the conserved gp350 receptor-binding domain•The nanoparticles elicit more potent neutralizing antibodies than soluble gp350•These neutralizing antibodies predominantly target the CR2-binding site on gp350•The nanoparticles elicit potent neutralizing antibodies in mice and non-human primates Structurally designed EBV vaccine candidates based on self-assembling nanoparticles elicit potent and durable virus-neutralizing antibodies that target the receptor-binding site on the viral envelope protein gp350, a site of vulnerability, serving as a template to develop an EBV vaccine and providing a basis for immunofocusing through rational vaccine design.
AbstractList Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.
Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.
• Self-assembling nanoparticles present the conserved gp350 receptor-binding domain • The nanoparticles elicit more potent neutralizing antibodies than soluble gp350 • These neutralizing antibodies predominantly target the CR2-binding site on gp350 • The nanoparticles elicit potent neutralizing antibodies in mice and non-human primates Structurally designed EBV vaccine candidates based on self-assembling nanoparticles elicit potent and durable virus-neutralizing antibodies that target the receptor-binding site on the viral envelope protein gp350, a site of vulnerability, serving as a template to develop an EBV vaccine and providing a basis for immunofocusing through rational vaccine design.
Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses. [Display omitted] [Display omitted] •Self-assembling nanoparticles present the conserved gp350 receptor-binding domain•The nanoparticles elicit more potent neutralizing antibodies than soluble gp350•These neutralizing antibodies predominantly target the CR2-binding site on gp350•The nanoparticles elicit potent neutralizing antibodies in mice and non-human primates Structurally designed EBV vaccine candidates based on self-assembling nanoparticles elicit potent and durable virus-neutralizing antibodies that target the receptor-binding site on the viral envelope protein gp350, a site of vulnerability, serving as a template to develop an EBV vaccine and providing a basis for immunofocusing through rational vaccine design.
Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.[Display omitted]
Author Kanekiyo, Masaru
Nabel, Gary J.
Rao, Srinivas S.
Joyce, M. Gordon
McDermott, Adrian B.
Yamamoto, Takuya
Narpala, Sandeep
Bu, Wei
Mascola, John R.
Meng, Geng
Cohen, Jeffrey I.
Baxa, Ulrich
Whittle, James R.R.
Graham, Barney S.
Rossmann, Michael G.
Koup, Richard A.
Todd, John-Paul
Author_xml – sequence: 1
  givenname: Masaru
  surname: Kanekiyo
  fullname: Kanekiyo, Masaru
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 2
  givenname: Wei
  surname: Bu
  fullname: Bu, Wei
  organization: Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 3
  givenname: M. Gordon
  surname: Joyce
  fullname: Joyce, M. Gordon
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 4
  givenname: Geng
  surname: Meng
  fullname: Meng, Geng
  organization: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
– sequence: 5
  givenname: James R.R.
  surname: Whittle
  fullname: Whittle, James R.R.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 6
  givenname: Ulrich
  surname: Baxa
  fullname: Baxa, Ulrich
  organization: Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
– sequence: 7
  givenname: Takuya
  surname: Yamamoto
  fullname: Yamamoto, Takuya
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 8
  givenname: Sandeep
  surname: Narpala
  fullname: Narpala, Sandeep
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 9
  givenname: John-Paul
  surname: Todd
  fullname: Todd, John-Paul
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 10
  givenname: Srinivas S.
  surname: Rao
  fullname: Rao, Srinivas S.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 11
  givenname: Adrian B.
  surname: McDermott
  fullname: McDermott, Adrian B.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 12
  givenname: Richard A.
  surname: Koup
  fullname: Koup, Richard A.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 13
  givenname: Michael G.
  surname: Rossmann
  fullname: Rossmann, Michael G.
  organization: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
– sequence: 14
  givenname: John R.
  surname: Mascola
  fullname: Mascola, John R.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 15
  givenname: Barney S.
  surname: Graham
  fullname: Graham, Barney S.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 16
  givenname: Jeffrey I.
  surname: Cohen
  fullname: Cohen, Jeffrey I.
  email: jcohen@niaid.nih.gov
  organization: Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 17
  givenname: Gary J.
  surname: Nabel
  fullname: Nabel, Gary J.
  email: gary.nabel@sanofi.com
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26279189$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1rFDEUxYNU7Lb6D_gg8-jLjDeZTD5ABFvrBxSEuvY1ZLJ3tllmkzXJFvrfO-PWoj7Up0Du7xzuPeeEHIUYkJCXFBoKVLzZNA7HsWFAuwZkA7x9QhYUtKw5leyILAA0q5WQ_Jic5LwBANV13TNyzASTmiq9IMsrW3wMdqw-YPbrUMWhsqG62OWCPtRnNqXq2qd9rq6tcz5gtbRpjcWHdVVusLpCh7sSU33mw2r-_OYLPidPBztmfHH_npLvHy-W55_ry6-fvpy_v6ydYLzUbtAcuFU9t7IDtFp0DlFa6GSvrevEQBmIvm21k70auFN0BbKVwg1cqWlwSt4dfHf7fosrh6EkO5pd8lub7ky03vw9Cf7GrOOt4bKTXLPJ4PW9QYo_9piL2fo8h2oDxn02bIqMsVYw8V-USlBKS87lhL76c62HfX6nPgHsALgUc044PCAUzFyt2ZjZ2szVGpBmqnYSqX9Ezpdf5U2n-fFx6duDFKcybj0mk53H4HDlE7piVtE_Jv8JNrO-8Q
CitedBy_id crossref_primary_10_3390_vaccines9111290
crossref_primary_10_7554_eLife_57659
crossref_primary_10_1038_nbt_4052
crossref_primary_10_1016_j_cossms_2021_100964
crossref_primary_10_3389_fimmu_2022_942897
crossref_primary_10_3390_biom11081072
crossref_primary_10_3390_v13071296
crossref_primary_10_1016_j_nantod_2025_102648
crossref_primary_10_1021_acs_bioconjchem_2c00030
crossref_primary_10_1021_acs_nanolett_0c04687
crossref_primary_10_1038_s41467_023_39770_1
crossref_primary_10_7774_cevr_2025_14_e7
crossref_primary_10_1038_s41467_023_37417_9
crossref_primary_10_1089_ten_teb_2023_0117
crossref_primary_10_1038_nbt_3994
crossref_primary_10_1016_j_celrep_2023_112266
crossref_primary_10_3390_vaccines8040593
crossref_primary_10_1371_journal_ppat_1010573
crossref_primary_10_1093_clinchem_hvaa027
crossref_primary_10_1126_sciadv_aaz6225
crossref_primary_10_1016_j_jmgm_2022_108196
crossref_primary_10_1038_s41541_023_00619_9
crossref_primary_10_1080_14756366_2023_2219868
crossref_primary_10_1101_cshperspect_a029413
crossref_primary_10_1016_j_jtauto_2019_100017
crossref_primary_10_1021_acs_molpharmaceut_2c01080
crossref_primary_10_1371_journal_ppat_1005549
crossref_primary_10_1002_adhm_201901203
crossref_primary_10_3390_vaccines12050546
crossref_primary_10_1016_j_cclet_2022_108098
crossref_primary_10_1021_acsbiomaterials_9b01255
crossref_primary_10_1016_j_jconrel_2022_12_022
crossref_primary_10_1146_annurev_pathmechdis_012418_013023
crossref_primary_10_1038_s41565_020_0737_y
crossref_primary_10_1042_EBC20160018
crossref_primary_10_3390_cells11172757
crossref_primary_10_1186_s12917_024_04159_9
crossref_primary_10_1038_s12276_022_00859_0
crossref_primary_10_1002_wnan_1681
crossref_primary_10_1126_sciimmunol_aba6466
crossref_primary_10_1021_acsinfecdis_7b00192
crossref_primary_10_1586_14760584_2016_1129905
crossref_primary_10_1016_j_ddmod_2020_01_001
crossref_primary_10_3389_fimmu_2024_1445209
crossref_primary_10_1038_ncomms10618
crossref_primary_10_1128_mSphere_00901_20
crossref_primary_10_1016_j_ijbiomac_2022_10_126
crossref_primary_10_1093_glycob_cwae092
crossref_primary_10_1073_pnas_2106433118
crossref_primary_10_1002_adfm_202315509
crossref_primary_10_1021_acs_bioconjchem_6b00370
crossref_primary_10_1007_s40588_019_00127_2
crossref_primary_10_1016_j_biomaterials_2024_122946
crossref_primary_10_1007_s40506_024_00271_4
crossref_primary_10_2147_IJN_S499938
crossref_primary_10_1038_s41541_024_00954_5
crossref_primary_10_1007_s12275_022_1608_z
crossref_primary_10_2217_nnm_2016_0146
crossref_primary_10_1016_j_pt_2023_06_011
crossref_primary_10_1007_s00705_024_06095_3
crossref_primary_10_1128_CVI_00674_15
crossref_primary_10_1021_acs_biochem_2c00241
crossref_primary_10_3390_nano11061467
crossref_primary_10_1021_acsnano_0c08379
crossref_primary_10_1038_s41392_020_00376_4
crossref_primary_10_1097_COH_0000000000000549
crossref_primary_10_1186_s12879_019_4578_y
crossref_primary_10_3389_fmicb_2024_1348276
crossref_primary_10_1371_journal_ppat_1011514
crossref_primary_10_53365_nrfhh_186350
crossref_primary_10_1128_jvi_00336_22
crossref_primary_10_1016_j_coi_2019_03_003
crossref_primary_10_3390_microorganisms9112191
crossref_primary_10_1017_S1431927618006712
crossref_primary_10_1016_j_ijbiomac_2024_130820
crossref_primary_10_1021_acscentsci_0c01405
crossref_primary_10_3390_v14112372
crossref_primary_10_1021_acsnano_6b07343
crossref_primary_10_1038_s41467_024_44869_0
crossref_primary_10_1038_s41590_018_0305_x
crossref_primary_10_1016_j_bej_2022_108580
crossref_primary_10_1002_adtp_202300360
crossref_primary_10_1007_s11427_024_2766_0
crossref_primary_10_33483_jfpau_1033286
crossref_primary_10_1002_adfm_202008352
crossref_primary_10_1128_mbio_01868_23
crossref_primary_10_1128_mBio_00230_21
crossref_primary_10_1016_j_virol_2019_07_026
crossref_primary_10_1158_1055_9965_EPI_24_0576
crossref_primary_10_1038_s41541_018_0074_4
crossref_primary_10_1002_adma_202002940
crossref_primary_10_3389_fmicb_2021_701611
crossref_primary_10_1039_D1NR08460G
crossref_primary_10_1016_j_sbi_2019_03_008
crossref_primary_10_3389_fimmu_2021_734471
crossref_primary_10_3390_vaccines10111920
crossref_primary_10_1002_mco2_32
crossref_primary_10_3390_ijms241914884
crossref_primary_10_3390_mps7010013
crossref_primary_10_1016_j_ijpharm_2024_124320
crossref_primary_10_1016_j_cell_2020_10_043
crossref_primary_10_1126_scitranslmed_abf3685
crossref_primary_10_1016_j_addr_2020_06_024
crossref_primary_10_1016_j_celrep_2024_115036
crossref_primary_10_3389_fimmu_2017_02005
crossref_primary_10_1124_jpet_123_001673
crossref_primary_10_2174_1568026620666200325114400
crossref_primary_10_3390_cancers15051626
crossref_primary_10_1038_s41467_021_26912_6
crossref_primary_10_1038_s41598_024_76377_y
crossref_primary_10_3390_cancers16050991
crossref_primary_10_1016_j_ijbiomac_2024_134837
crossref_primary_10_1016_j_vaccine_2016_06_021
crossref_primary_10_1371_journal_ppat_1007464
crossref_primary_10_1007_s12257_020_0383_0
crossref_primary_10_1016_j_bbagen_2022_130288
crossref_primary_10_3390_ph11040124
crossref_primary_10_1172_jci_insight_85687
crossref_primary_10_1016_j_meegid_2023_105443
crossref_primary_10_1515_mr_2023_0001
crossref_primary_10_3390_vaccines11030540
crossref_primary_10_1038_s41598_019_45381_y
crossref_primary_10_1016_j_celrep_2024_115168
crossref_primary_10_1155_2020_4297937
crossref_primary_10_1007_s10930_020_09930_z
crossref_primary_10_1038_s41565_020_0739_9
crossref_primary_10_3390_nano10051008
crossref_primary_10_1038_d41586_018_07366_1
crossref_primary_10_3389_fimmu_2018_00932
crossref_primary_10_1016_j_immuni_2019_03_010
crossref_primary_10_1016_j_vaccine_2020_07_016
crossref_primary_10_1038_s41467_023_37162_z
crossref_primary_10_3390_ijms26052056
crossref_primary_10_1016_j_csbj_2015_11_001
crossref_primary_10_1128_JVI_01349_18
crossref_primary_10_15212_ZOONOSES_2023_0018
crossref_primary_10_1126_science_aat9120
crossref_primary_10_3390_v12070718
crossref_primary_10_1016_j_chom_2023_09_011
crossref_primary_10_1126_sciadv_abl7346
crossref_primary_10_3390_v14030541
crossref_primary_10_1016_S2666_5247_23_00410_X
crossref_primary_10_1080_22221751_2021_1994354
crossref_primary_10_1016_j_msard_2022_103875
crossref_primary_10_1016_j_nano_2018_11_009
crossref_primary_10_1038_s41390_019_0591_5
crossref_primary_10_1186_s12951_023_01938_8
crossref_primary_10_1016_j_ccr_2021_214188
crossref_primary_10_1002_jmv_29203
crossref_primary_10_3389_fonc_2019_00104
crossref_primary_10_1039_D4NA00964A
crossref_primary_10_1016_j_immuni_2025_01_010
crossref_primary_10_1038_s41541_023_00653_7
crossref_primary_10_1186_s12879_023_08031_3
crossref_primary_10_1021_acssynbio_2c00391
crossref_primary_10_1128_JVI_01343_21
crossref_primary_10_1038_s41467_022_34961_8
crossref_primary_10_1186_s12943_025_02270_5
crossref_primary_10_1038_nrc_2016_92
crossref_primary_10_1016_j_celrep_2021_110143
crossref_primary_10_1038_s41392_024_01745_z
crossref_primary_10_1021_acsnano_4c00949
crossref_primary_10_1021_acs_bioconjchem_1c00208
crossref_primary_10_1038_s41541_020_0183_8
crossref_primary_10_1038_s41541_022_00547_0
crossref_primary_10_1038_s41565_020_0648_y
crossref_primary_10_3389_fmolb_2022_976490
crossref_primary_10_3390_vaccines9050431
crossref_primary_10_1016_j_addr_2021_113871
crossref_primary_10_1038_s41541_021_00414_4
crossref_primary_10_3390_vaccines7030076
crossref_primary_10_1038_s41598_018_28700_7
crossref_primary_10_3390_vaccines5010006
crossref_primary_10_1016_j_immuni_2022_10_003
crossref_primary_10_1080_14760584_2017_1293529
crossref_primary_10_1371_journal_ppat_1009169
crossref_primary_10_3389_fimmu_2020_606569
crossref_primary_10_1016_j_vaccine_2019_08_030
crossref_primary_10_1017_S0950268819000335
crossref_primary_10_3390_nano12050734
crossref_primary_10_1016_j_coviro_2022_101260
crossref_primary_10_3390_vaccines11040821
crossref_primary_10_1016_j_virol_2016_12_025
crossref_primary_10_3390_vaccines6020031
crossref_primary_10_1021_acs_bioconjchem_4c00387
crossref_primary_10_1016_j_xcrm_2022_100658
crossref_primary_10_3389_fimmu_2024_1419634
crossref_primary_10_1002_advs_202303366
crossref_primary_10_3389_fneur_2022_887794
crossref_primary_10_3390_s21155201
crossref_primary_10_1146_annurev_cancerbio_050216_034315
crossref_primary_10_1038_s41582_023_00775_5
crossref_primary_10_1007_s11262_023_02013_y
crossref_primary_10_1360_SSV_2024_0187
crossref_primary_10_1360_SSV_2024_0186
crossref_primary_10_3390_v16010128
crossref_primary_10_1007_s00018_020_03538_3
crossref_primary_10_1007_s11259_022_09942_3
crossref_primary_10_1093_infdis_jiaa654
crossref_primary_10_1016_j_cell_2019_01_046
crossref_primary_10_3389_fbioe_2022_867119
crossref_primary_10_1021_acsabm_2c00328
crossref_primary_10_3390_pharmaceutics13101621
crossref_primary_10_1002_jmv_29595
crossref_primary_10_1038_s41467_018_04227_3
crossref_primary_10_1016_j_celrep_2023_113552
crossref_primary_10_1016_j_ymthe_2022_02_011
crossref_primary_10_1038_s41579_019_0249_7
crossref_primary_10_1186_s40580_021_00294_3
crossref_primary_10_1371_journal_ppat_1010137
crossref_primary_10_1038_nm_4512
crossref_primary_10_1126_scitranslmed_abi5735
crossref_primary_10_3389_fimmu_2024_1530364
crossref_primary_10_1360_SSV_2024_0179
crossref_primary_10_1093_infdis_jiy122
crossref_primary_10_1126_scitranslmed_abe5449
crossref_primary_10_1016_j_actbio_2021_05_003
crossref_primary_10_1021_acsnano_3c07741
crossref_primary_10_1016_j_addr_2019_07_009
crossref_primary_10_1038_s41467_024_52908_z
crossref_primary_10_3389_fimmu_2018_01093
crossref_primary_10_3389_fimmu_2022_867918
crossref_primary_10_3389_fimmu_2021_677027
crossref_primary_10_1016_j_xpro_2025_103610
crossref_primary_10_1111_pbi_13369
crossref_primary_10_1021_acsnano_4c13146
crossref_primary_10_1093_infdis_jiy250
crossref_primary_10_3390_biom11020297
crossref_primary_10_1007_s40265_021_01530_0
crossref_primary_10_1038_s41467_022_30222_w
crossref_primary_10_1038_s41598_017_01421_z
crossref_primary_10_1016_j_ejpb_2024_114589
crossref_primary_10_3390_ijms22041934
crossref_primary_10_1038_s41541_022_00587_6
crossref_primary_10_2217_nnm_2018_0147
crossref_primary_10_1007_s10529_019_02755_6
crossref_primary_10_3389_fimmu_2022_1059133
crossref_primary_10_3390_v16060936
crossref_primary_10_3390_vaccines8020169
crossref_primary_10_3389_fmolb_2024_1403635
crossref_primary_10_1111_imr_12481
crossref_primary_10_1038_s41573_024_01041_z
crossref_primary_10_3390_ijms222413445
crossref_primary_10_3390_cancers12092565
crossref_primary_10_1016_j_bioactmat_2024_12_029
crossref_primary_10_1016_j_biotechadv_2020_107547
crossref_primary_10_1172_jci_insight_136653
crossref_primary_10_1038_s41541_021_00364_x
crossref_primary_10_3389_fcimb_2021_605258
crossref_primary_10_1016_j_biopha_2023_114797
crossref_primary_10_1093_infdis_jiz231
crossref_primary_10_3390_v12010035
crossref_primary_10_3389_fcimb_2024_1406091
crossref_primary_10_3390_vaccines9020162
crossref_primary_10_1002_EXP_20210082
crossref_primary_10_1016_j_celrep_2024_114235
crossref_primary_10_1016_j_xcrm_2024_101587
crossref_primary_10_1128_mbio_02913_24
crossref_primary_10_1002_2211_5463_12267
Cites_doi 10.1038/nature12202
10.1126/science.1234150
10.1126/scitranslmed.3002336
10.1073/pnas.1111497108
10.1016/j.jmb.2009.04.078
10.1128/JVI.01822-13
10.1128/jvi.62.12.4452-4464.1988
10.1128/JVI.00906-07
10.1006/jsbi.2002.4435
10.1128/JVI.00445-07
10.1371/journal.ppat.1002387
10.1146/annurev.immunol.15.1.235
10.1107/S0907444906018294
10.1089/ind.2006.2.143
10.1126/science.1192819
10.1073/pnas.77.9.5307
10.1038/nmat3775
10.1128/JVI.01409-07
10.1128/JVI.02717-12
10.1371/journal.ppat.1002308
10.1038/nsmb1161
10.1126/scitranslmed.3002878
10.1371/journal.ppat.1003364
10.1128/JVI.01673-08
10.1016/0042-6822(89)90345-0
10.1038/nsmb.1473
10.1002/smll.200700011
10.1016/0378-1119(95)00149-Z
10.1073/pnas.81.14.4510
10.1038/nrmicro2548
10.1128/JVI.79.3.1635-1644.2005
10.1128/JVI.02553-10
10.1016/0022-1759(84)90093-0
10.1038/nature11414
10.1073/pnas.1320041110
10.1111/imr.12005
10.1038/nature11371
10.1126/science.1636086
10.1016/j.celrep.2013.01.023
10.1126/science.276.5321.2024
10.1128/jvi.67.5.2552-2558.1993
10.1073/pnas.1212371109
10.1038/318287a0
10.1038/nm830
10.1097/COH.0b013e328363a90e
10.1128/jvi.43.2.730-736.1982
10.1016/j.virol.2009.06.013
10.1006/jmbi.1995.0274
10.1107/S0907444913016776
10.1016/j.vaccine.2007.04.008
10.1038/nchembio.1163
10.1016/S0140-6736(64)91524-7
10.1073/pnas.77.5.2979
10.1126/science.1187659
10.1038/nprot.2010.126
10.1086/523813
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright © 2015 Elsevier Inc. All rights reserved. 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved. 2015 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2015.07.043
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1100
ExternalDocumentID PMC4757492
26279189
10_1016_j_cell_2015_07_043
S0092867415009599
Genre Journal Article
Research Support, N.I.H., Intramural
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA AI000978
– fundername: CCR NIH HHS
  grantid: HHSN261200800001C
– fundername: NCI NIH HHS
  grantid: HHSN261200800001E
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AAUCE
AAVLU
AAXJY
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAHBH
AAIKJ
AALRI
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c624t-cf9404a8b4a750ea965cee7a057b9ac56f1206b339c7b8f4c81d07376cf4886b3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 14:12:45 EDT 2025
Fri Jul 11 09:50:05 EDT 2025
Fri Jul 11 01:23:35 EDT 2025
Mon Jul 21 05:58:49 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Tue Jul 01 02:16:53 EDT 2025
Fri Feb 23 02:30:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2015 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c624t-cf9404a8b4a750ea965cee7a057b9ac56f1206b339c7b8f4c81d07376cf4886b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
Present address: George Washington University Law School, 2000 H Street NW, Washington, DC 20052, USA
Present address: Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki-shi, Osaka 567-0085, Japan
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867415009599
PMID 26279189
PQID 1708897447
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4757492
proquest_miscellaneous_2000223626
proquest_miscellaneous_1708897447
pubmed_primary_26279189
crossref_primary_10_1016_j_cell_2015_07_043
crossref_citationtrail_10_1016_j_cell_2015_07_043
elsevier_sciencedirect_doi_10_1016_j_cell_2015_07_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-27
PublicationDateYYYYMMDD 2015-08-27
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Li, Soistman, Carter (bib31) 2006; 2
Cohen, Fauci, Varmus, Nabel (bib9) 2011; 3
Sutter, Boehringer, Gutmann, Günther, Prangishvili, Loessner, Stetter, Weber-Ban, Ban (bib46) 2008; 15
Luka, Chase, Pearson (bib33) 1984; 67
Connolly, Jackson, Jardetzky, Longnecker (bib10) 2011; 9
Gu, Huang, Ruan, Miao, Lu, Chu, Motz, Wolf (bib17) 1995; 84
Lee, Lin, Chan, Ko, Lai, Wang (bib30) 2013; 69
Rossmann, Bernal, Pletnev (bib41) 2001; 136
Meldrum, Heywood, Mann (bib36) 1992; 257
Bachmann, Zinkernagel (bib1) 1997; 15
Ogembo, Kannan, Ghiran, Nicholson-Weller, Finberg, Tsokos, Fingeroth (bib39) 2013; 3
Whittle, Zhang, Khurana, King, Manischewitz, Golding, Dormitzer, Haynes, Walter, Moody (bib55) 2011; 108
Krey, Meola, Keck, Damier-Piolle, Foung, Rey (bib28) 2013; 9
Young, Herbert, Barlow, Holers, Hannan (bib57) 2008; 82
Sashihara, Burbelo, Savoldo, Pierson, Cohen (bib42) 2009; 391
Cho, Shin, Lee, Kim, Park, Lee, Lee, Park, Kim (bib8) 2009; 390
Chen, Fischer, Kouiavskaia, Hansen, Ludtke, Bidzhieva, Makiya, Agulto, Purcell, Chumakov (bib7) 2013; 110
Zhou, Georgiev, Wu, Yang, Dai, Finzi, Kwon, Scheid, Shi, Xu (bib58) 2010; 329
Serafini-Cessi, Malagolini, Nanni, Dall’Olio, Campadelli-Fiume, Tanner, Kieff (bib44) 1989; 170
Wang, Li, Ellenburg, Soistman, Ruble, Wright, Ho, Carter (bib54) 2006; 62
Georgiev, Gordon Joyce, Zhou, Kwong (bib16) 2013; 8
Jääskeläinen, Harinen, Lamminmäki, Korpimäki, Pelliniemi, Soukka, Virta (bib22) 2007; 3
van den Brink, Ter Meulen, Cox, Jongeneelen, Thijsse, Throsby, Marissen, Rood, Bakker, Gelderblom (bib53) 2005; 79
Julien, Lee, Wilson (bib25) 2012; 250
Hutt-Fletcher (bib20) 2007; 81
Tugizov, Berline, Palefsky (bib52) 2003; 9
Huard, Kane, Tezcan (bib19) 2013; 9
Lee, Yoshida, Ekiert, Sakai, Suzuki, Takada, Wilson (bib29) 2012; 109
Meng, Zhang, Plevka, Yu, Tijssen, Rossmann (bib37) 2013; 87
Thorley-Lawson, Poodry (bib50) 1982; 43
Epstein, Achong, Barr (bib13) 1964; 1
Elliott, Suhrbier, Miles, Lawrence, Pye, Le, Rosenstengel, Nguyen, Allworth, Burrows (bib12) 2008; 82
Lingwood, McTamney, Yassine, Whittle, Guo, Boyington, Wei, Nabel (bib32) 2012; 489
Wu, Yang, Li, Hogerkorp, Schief, Seaman, Zhou, Schmidt, Wu, Xu (bib56) 2010; 329
McLellan (bib35) 2013; 123
Szakonyi, Klein, Hannan, Young, Ma, Asokan, Holers, Chen (bib47) 2006; 13
Irvine, Swartz, Szeto (bib21) 2013; 12
Chen, Chumakov, Dragunsky, Kouiavskaia, Makiya, Neverov, Rezapkin, Sebrell, Purcell (bib6) 2011; 85
Okuno, Isegawa, Sasao, Ueda (bib40) 1993; 67
Joyce, Kanekiyo, Xu, Biertümpfel, Boyington, Moquin, Shi, Wu, Yang, Yang (bib24) 2013; 87
Blasco, Moss (bib4) 1995; 158
Moutschen, Léonard, Sokal, Smets, Haumont, Mazzu, Bollen, Denamur, Peeters, Dubin, Denis (bib38) 2007; 25
Bachmann, Kalinke, Althage, Freer, Burkhart, Roost, Aguet, Hengartner, Zinkernagel (bib2) 1997; 276
Hoffman, Lazarowitz, Hayward (bib18) 1980; 77
Thorley-Lawson, Geilinger (bib49) 1980; 77
Kanekiyo, Wei, Yassine, McTamney, Boyington, Whittle, Rao, Kong, Wang, Nabel (bib26) 2013; 499
Fingeroth, Weis, Tedder, Strominger, Biro, Fearon (bib15) 1984; 81
Jardine, Julien, Menis, Ota, Kalyuzhniy, McGuire, Sok, Huang, MacPherson, Jones (bib23) 2013; 340
Khurana, Verma, Yewdell, Hilbert, Castellino, Lattanzi, Del Giudice, Rappuoli, Golding (bib27) 2011; 3
Baker, Zhang, Ludtke, Chiu (bib3) 2010; 5
Chen, Earl, Americo, Damon, Smith, Yu, Sebrell, Emerson, Cohen, Eisenberg (bib5) 2007; 81
Ekiert, Kashyap, Steel, Rubrum, Bhabha, Khayat, Lee, Dillon, O’Neil, Faynboym (bib11) 2012; 489
Epstein, Morgan, Finerty, Randle, Kirkwood (bib14) 1985; 318
Sashihara, Hoshino, Bowman, Krogmann, Burbelo, Coffield, Kamrud, Cohen (bib43) 2011; 7
Sokal, Hoppenbrouwers, Vandermeulen, Moutschen, Léonard, Moreels, Haumont, Bollen, Smets, Denis (bib45) 2007; 196
Trikha, Theil, Allewell (bib51) 1995; 248
Machiels, Lété, Guillaume, Mast, Stevenson, Vanderplasschen, Gillet (bib34) 2011; 7
Tanner, Whang, Sample, Sears, Kieff (bib48) 1988; 62
Serafini-Cessi (10.1016/j.cell.2015.07.043_bib44) 1989; 170
Luka (10.1016/j.cell.2015.07.043_bib33) 1984; 67
Meng (10.1016/j.cell.2015.07.043_bib37) 2013; 87
Sashihara (10.1016/j.cell.2015.07.043_bib42) 2009; 391
Machiels (10.1016/j.cell.2015.07.043_bib34) 2011; 7
Chen (10.1016/j.cell.2015.07.043_bib7) 2013; 110
Rossmann (10.1016/j.cell.2015.07.043_bib41) 2001; 136
Lingwood (10.1016/j.cell.2015.07.043_bib32) 2012; 489
Joyce (10.1016/j.cell.2015.07.043_bib24) 2013; 87
Lee (10.1016/j.cell.2015.07.043_bib30) 2013; 69
Sutter (10.1016/j.cell.2015.07.043_bib46) 2008; 15
Irvine (10.1016/j.cell.2015.07.043_bib21) 2013; 12
Chen (10.1016/j.cell.2015.07.043_bib6) 2011; 85
Szakonyi (10.1016/j.cell.2015.07.043_bib47) 2006; 13
Sokal (10.1016/j.cell.2015.07.043_bib45) 2007; 196
Elliott (10.1016/j.cell.2015.07.043_bib12) 2008; 82
Ogembo (10.1016/j.cell.2015.07.043_bib39) 2013; 3
Cohen (10.1016/j.cell.2015.07.043_bib9) 2011; 3
Huard (10.1016/j.cell.2015.07.043_bib19) 2013; 9
Ekiert (10.1016/j.cell.2015.07.043_bib11) 2012; 489
Georgiev (10.1016/j.cell.2015.07.043_bib16) 2013; 8
Julien (10.1016/j.cell.2015.07.043_bib25) 2012; 250
Epstein (10.1016/j.cell.2015.07.043_bib14) 1985; 318
Wu (10.1016/j.cell.2015.07.043_bib56) 2010; 329
Moutschen (10.1016/j.cell.2015.07.043_bib38) 2007; 25
Fingeroth (10.1016/j.cell.2015.07.043_bib15) 1984; 81
Hutt-Fletcher (10.1016/j.cell.2015.07.043_bib20) 2007; 81
Thorley-Lawson (10.1016/j.cell.2015.07.043_bib50) 1982; 43
Thorley-Lawson (10.1016/j.cell.2015.07.043_bib49) 1980; 77
Jääskeläinen (10.1016/j.cell.2015.07.043_bib22) 2007; 3
Sashihara (10.1016/j.cell.2015.07.043_bib43) 2011; 7
Tanner (10.1016/j.cell.2015.07.043_bib48) 1988; 62
Gu (10.1016/j.cell.2015.07.043_bib17) 1995; 84
Epstein (10.1016/j.cell.2015.07.043_bib13) 1964; 1
Tugizov (10.1016/j.cell.2015.07.043_bib52) 2003; 9
Khurana (10.1016/j.cell.2015.07.043_bib27) 2011; 3
van den Brink (10.1016/j.cell.2015.07.043_bib53) 2005; 79
Connolly (10.1016/j.cell.2015.07.043_bib10) 2011; 9
Krey (10.1016/j.cell.2015.07.043_bib28) 2013; 9
Okuno (10.1016/j.cell.2015.07.043_bib40) 1993; 67
Meldrum (10.1016/j.cell.2015.07.043_bib36) 1992; 257
Baker (10.1016/j.cell.2015.07.043_bib3) 2010; 5
Hoffman (10.1016/j.cell.2015.07.043_bib18) 1980; 77
Bachmann (10.1016/j.cell.2015.07.043_bib1) 1997; 15
Li (10.1016/j.cell.2015.07.043_bib31) 2006; 2
Young (10.1016/j.cell.2015.07.043_bib57) 2008; 82
Wang (10.1016/j.cell.2015.07.043_bib54) 2006; 62
Chen (10.1016/j.cell.2015.07.043_bib5) 2007; 81
Whittle (10.1016/j.cell.2015.07.043_bib55) 2011; 108
Jardine (10.1016/j.cell.2015.07.043_bib23) 2013; 340
Blasco (10.1016/j.cell.2015.07.043_bib4) 1995; 158
Lee (10.1016/j.cell.2015.07.043_bib29) 2012; 109
McLellan (10.1016/j.cell.2015.07.043_bib35) 2013; 123
Zhou (10.1016/j.cell.2015.07.043_bib58) 2010; 329
Trikha (10.1016/j.cell.2015.07.043_bib51) 1995; 248
Cho (10.1016/j.cell.2015.07.043_bib8) 2009; 390
Kanekiyo (10.1016/j.cell.2015.07.043_bib26) 2013; 499
Bachmann (10.1016/j.cell.2015.07.043_bib2) 1997; 276
References_xml – volume: 196
  start-page: 1749
  year: 2007
  end-page: 1753
  ident: bib45
  article-title: Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults
  publication-title: J. Infect. Dis.
– volume: 84
  start-page: 171
  year: 1995
  end-page: 177
  ident: bib17
  article-title: First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen
  publication-title: Dev. Biol. Stand.
– volume: 158
  start-page: 157
  year: 1995
  end-page: 162
  ident: bib4
  article-title: Selection of recombinant vaccinia viruses on the basis of plaque formation
  publication-title: Gene
– volume: 3
  start-page: 1362
  year: 2007
  end-page: 1367
  ident: bib22
  article-title: Production of apoferritin-based bioinorganic hybrid nanoparticles by bacterial fermentation followed by self-assembly
  publication-title: Small
– volume: 136
  start-page: 190
  year: 2001
  end-page: 200
  ident: bib41
  article-title: Combining electron microscopic with x-ray crystallographic structures
  publication-title: J. Struct. Biol.
– volume: 79
  start-page: 1635
  year: 2005
  end-page: 1644
  ident: bib53
  article-title: Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus
  publication-title: J. Virol.
– volume: 489
  start-page: 526
  year: 2012
  end-page: 532
  ident: bib11
  article-title: Cross-neutralization of influenza A viruses mediated by a single antibody loop
  publication-title: Nature
– volume: 329
  start-page: 811
  year: 2010
  end-page: 817
  ident: bib58
  article-title: Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01
  publication-title: Science
– volume: 85
  start-page: 4354
  year: 2011
  end-page: 4362
  ident: bib6
  article-title: Chimpanzee-human monoclonal antibodies for treatment of chronic poliovirus excretors and emergency postexposure prophylaxis
  publication-title: J. Virol.
– volume: 250
  start-page: 180
  year: 2012
  end-page: 198
  ident: bib25
  article-title: Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA
  publication-title: Immunol. Rev.
– volume: 69
  start-page: 1935
  year: 2013
  end-page: 1945
  ident: bib30
  article-title: Structural basis for the antibody neutralization of herpes simplex virus
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 1
  start-page: 702
  year: 1964
  end-page: 703
  ident: bib13
  article-title: Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma
  publication-title: Lancet
– volume: 77
  start-page: 5307
  year: 1980
  end-page: 5311
  ident: bib49
  article-title: Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein-Barr virus neutralize infectivity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 257
  start-page: 522
  year: 1992
  end-page: 523
  ident: bib36
  article-title: Magnetoferritin: in vitro synthesis of a novel magnetic protein
  publication-title: Science
– volume: 248
  start-page: 949
  year: 1995
  end-page: 967
  ident: bib51
  article-title: High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function
  publication-title: J. Mol. Biol.
– volume: 340
  start-page: 711
  year: 2013
  end-page: 716
  ident: bib23
  article-title: Rational HIV immunogen design to target specific germline B cell receptors
  publication-title: Science
– volume: 81
  start-page: 4510
  year: 1984
  end-page: 4514
  ident: bib15
  article-title: Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 307
  year: 2003
  end-page: 314
  ident: bib52
  article-title: Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells
  publication-title: Nat. Med.
– volume: 12
  start-page: 978
  year: 2013
  end-page: 990
  ident: bib21
  article-title: Engineering synthetic vaccines using cues from natural immunity
  publication-title: Nat. Mater.
– volume: 499
  start-page: 102
  year: 2013
  end-page: 106
  ident: bib26
  article-title: Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies
  publication-title: Nature
– volume: 9
  start-page: e1003364
  year: 2013
  ident: bib28
  article-title: Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape
  publication-title: PLoS Pathog.
– volume: 67
  start-page: 145
  year: 1984
  end-page: 156
  ident: bib33
  article-title: A sensitive enzyme-linked immunosorbent assay (ELISA) against the major EBV-associated antigens. I. Correlation between ELISA and immunofluorescence titers using purified antigens
  publication-title: J. Immunol. Methods
– volume: 82
  start-page: 1448
  year: 2008
  end-page: 1457
  ident: bib12
  article-title: Phase I trial of a CD8+ T-cell peptide epitope-based vaccine for infectious mononucleosis
  publication-title: J. Virol.
– volume: 329
  start-page: 856
  year: 2010
  end-page: 861
  ident: bib56
  article-title: Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1
  publication-title: Science
– volume: 43
  start-page: 730
  year: 1982
  end-page: 736
  ident: bib50
  article-title: Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo
  publication-title: J. Virol.
– volume: 3
  start-page: 371
  year: 2013
  end-page: 385
  ident: bib39
  article-title: Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor
  publication-title: Cell Rep.
– volume: 87
  start-page: 12523
  year: 2013
  end-page: 12530
  ident: bib37
  article-title: The structure and host entry of an invertebrate parvovirus
  publication-title: J. Virol.
– volume: 391
  start-page: 249
  year: 2009
  end-page: 256
  ident: bib42
  article-title: Human antibody titers to Epstein-Barr Virus (EBV) gp350 correlate with neutralization of infectivity better than antibody titers to EBV gp42 using a rapid flow cytometry-based EBV neutralization assay
  publication-title: Virology
– volume: 123
  start-page: 3
  year: 2013
  ident: bib35
  article-title: Mid Staffordshire inquiry. Too long, too late but Francis can still help make the NHS better
  publication-title: Health Serv. J.
– volume: 82
  start-page: 11217
  year: 2008
  end-page: 11227
  ident: bib57
  article-title: Molecular basis of the interaction between complement receptor type 2 (CR2/CD21) and Epstein-Barr virus glycoprotein gp350
  publication-title: J. Virol.
– volume: 5
  start-page: 1697
  year: 2010
  end-page: 1708
  ident: bib3
  article-title: Cryo-EM of macromolecular assemblies at near-atomic resolution
  publication-title: Nat. Protoc.
– volume: 9
  start-page: 169
  year: 2013
  end-page: 176
  ident: bib19
  article-title: Re-engineering protein interfaces yields copper-inducible ferritin cage assembly
  publication-title: Nat. Chem. Biol.
– volume: 276
  start-page: 2024
  year: 1997
  end-page: 2027
  ident: bib2
  article-title: The role of antibody concentration and avidity in antiviral protection
  publication-title: Science
– volume: 62
  start-page: 800
  year: 2006
  end-page: 806
  ident: bib54
  article-title: Structure of human ferritin L chain
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 81
  start-page: 8989
  year: 2007
  end-page: 8995
  ident: bib5
  article-title: Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model
  publication-title: J. Virol.
– volume: 15
  start-page: 939
  year: 2008
  end-page: 947
  ident: bib46
  article-title: Structural basis of enzyme encapsulation into a bacterial nanocompartment
  publication-title: Nat. Struct. Mol. Biol.
– volume: 3
  start-page: 107fs7
  year: 2011
  ident: bib9
  article-title: Epstein-Barr virus: an important vaccine target for cancer prevention
  publication-title: Sci. Transl. Med.
– volume: 77
  start-page: 2979
  year: 1980
  end-page: 2983
  ident: bib18
  article-title: Monoclonal antibody against a 250,000-dalton glycoprotein of Epstein-Barr virus identifies a membrane antigen and a neutralizing antigen
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 4697
  year: 2007
  end-page: 4705
  ident: bib38
  article-title: Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults
  publication-title: Vaccine
– volume: 109
  start-page: 17040
  year: 2012
  end-page: 17045
  ident: bib29
  article-title: Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 390
  start-page: 83
  year: 2009
  end-page: 98
  ident: bib8
  article-title: The crystal structure of ferritin from Helicobacter pylori reveals unusual conformational changes for iron uptake
  publication-title: J. Mol. Biol.
– volume: 170
  start-page: 1
  year: 1989
  end-page: 10
  ident: bib44
  article-title: Characterization of N- and O-linked oligosaccharides of glycoprotein 350 from Epstein-Barr virus
  publication-title: Virology
– volume: 3
  start-page: 85ra48
  year: 2011
  ident: bib27
  article-title: MF59 adjuvant enhances diversity and affinity of antibody-mediated immune response to pandemic influenza vaccines
  publication-title: Sci. Transl. Med.
– volume: 8
  start-page: 382
  year: 2013
  end-page: 392
  ident: bib16
  article-title: Elicitation of HIV-1-neutralizing antibodies against the CD4-binding site
  publication-title: Curr. Opin. HIV AIDS
– volume: 2
  start-page: 143
  year: 2006
  end-page: 147
  ident: bib31
  article-title: Ferritin nanoparticle technology. A new platform for antigen presentation and vaccine development
  publication-title: Ind. Biotechnol.
– volume: 7
  start-page: e1002308
  year: 2011
  ident: bib43
  article-title: Soluble rhesus lymphocryptovirus gp350 protects against infection and reduces viral loads in animals that become infected with virus after challenge
  publication-title: PLoS Pathog.
– volume: 489
  start-page: 566
  year: 2012
  end-page: 570
  ident: bib32
  article-title: Structural and genetic basis for development of broadly neutralizing influenza antibodies
  publication-title: Nature
– volume: 7
  start-page: e1002387
  year: 2011
  ident: bib34
  article-title: Antibody evasion by a gammaherpesvirus O-glycan shield
  publication-title: PLoS Pathog.
– volume: 81
  start-page: 7825
  year: 2007
  end-page: 7832
  ident: bib20
  article-title: Epstein-Barr virus entry
  publication-title: J. Virol.
– volume: 108
  start-page: 14216
  year: 2011
  end-page: 14221
  ident: bib55
  article-title: Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 87
  start-page: 2294
  year: 2013
  end-page: 2306
  ident: bib24
  article-title: Outer domain of HIV-1 gp120: antigenic optimization, structural malleability, and crystal structure with antibody VRC-PG04
  publication-title: J. Virol.
– volume: 62
  start-page: 4452
  year: 1988
  end-page: 4464
  ident: bib48
  article-title: Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr virus adsorption to lymphocytes
  publication-title: J. Virol.
– volume: 15
  start-page: 235
  year: 1997
  end-page: 270
  ident: bib1
  article-title: Neutralizing antiviral B cell responses
  publication-title: Annu. Rev. Immunol.
– volume: 13
  start-page: 996
  year: 2006
  end-page: 1001
  ident: bib47
  article-title: Structure of the Epstein-Barr virus major envelope glycoprotein
  publication-title: Nat. Struct. Mol. Biol.
– volume: 67
  start-page: 2552
  year: 1993
  end-page: 2558
  ident: bib40
  article-title: A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains
  publication-title: J. Virol.
– volume: 110
  start-page: 20242
  year: 2013
  end-page: 20247
  ident: bib7
  article-title: Cross-neutralizing human anti-poliovirus antibodies bind the recognition site for cellular receptor
  publication-title: Proc. Natl. Acad. Sci USA
– volume: 9
  start-page: 369
  year: 2011
  end-page: 381
  ident: bib10
  article-title: Fusing structure and function: a structural view of the herpesvirus entry machinery
  publication-title: Nat. Rev. Microbiol.
– volume: 318
  start-page: 287
  year: 1985
  end-page: 289
  ident: bib14
  article-title: Protection of cottontop tamarins against Epstein-Barr virus-induced malignant lymphoma by a prototype subunit vaccine
  publication-title: Nature
– volume: 499
  start-page: 102
  year: 2013
  ident: 10.1016/j.cell.2015.07.043_bib26
  article-title: Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies
  publication-title: Nature
  doi: 10.1038/nature12202
– volume: 340
  start-page: 711
  year: 2013
  ident: 10.1016/j.cell.2015.07.043_bib23
  article-title: Rational HIV immunogen design to target specific germline B cell receptors
  publication-title: Science
  doi: 10.1126/science.1234150
– volume: 3
  start-page: 85ra48
  year: 2011
  ident: 10.1016/j.cell.2015.07.043_bib27
  article-title: MF59 adjuvant enhances diversity and affinity of antibody-mediated immune response to pandemic influenza vaccines
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3002336
– volume: 108
  start-page: 14216
  year: 2011
  ident: 10.1016/j.cell.2015.07.043_bib55
  article-title: Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1111497108
– volume: 390
  start-page: 83
  year: 2009
  ident: 10.1016/j.cell.2015.07.043_bib8
  article-title: The crystal structure of ferritin from Helicobacter pylori reveals unusual conformational changes for iron uptake
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.04.078
– volume: 87
  start-page: 12523
  year: 2013
  ident: 10.1016/j.cell.2015.07.043_bib37
  article-title: The structure and host entry of an invertebrate parvovirus
  publication-title: J. Virol.
  doi: 10.1128/JVI.01822-13
– volume: 84
  start-page: 171
  year: 1995
  ident: 10.1016/j.cell.2015.07.043_bib17
  article-title: First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen
  publication-title: Dev. Biol. Stand.
– volume: 62
  start-page: 4452
  year: 1988
  ident: 10.1016/j.cell.2015.07.043_bib48
  article-title: Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr virus adsorption to lymphocytes
  publication-title: J. Virol.
  doi: 10.1128/jvi.62.12.4452-4464.1988
– volume: 81
  start-page: 8989
  year: 2007
  ident: 10.1016/j.cell.2015.07.043_bib5
  article-title: Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model
  publication-title: J. Virol.
  doi: 10.1128/JVI.00906-07
– volume: 136
  start-page: 190
  year: 2001
  ident: 10.1016/j.cell.2015.07.043_bib41
  article-title: Combining electron microscopic with x-ray crystallographic structures
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.2002.4435
– volume: 81
  start-page: 7825
  year: 2007
  ident: 10.1016/j.cell.2015.07.043_bib20
  article-title: Epstein-Barr virus entry
  publication-title: J. Virol.
  doi: 10.1128/JVI.00445-07
– volume: 7
  start-page: e1002387
  year: 2011
  ident: 10.1016/j.cell.2015.07.043_bib34
  article-title: Antibody evasion by a gammaherpesvirus O-glycan shield
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002387
– volume: 15
  start-page: 235
  year: 1997
  ident: 10.1016/j.cell.2015.07.043_bib1
  article-title: Neutralizing antiviral B cell responses
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.15.1.235
– volume: 62
  start-page: 800
  year: 2006
  ident: 10.1016/j.cell.2015.07.043_bib54
  article-title: Structure of human ferritin L chain
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444906018294
– volume: 2
  start-page: 143
  year: 2006
  ident: 10.1016/j.cell.2015.07.043_bib31
  article-title: Ferritin nanoparticle technology. A new platform for antigen presentation and vaccine development
  publication-title: Ind. Biotechnol.
  doi: 10.1089/ind.2006.2.143
– volume: 329
  start-page: 811
  year: 2010
  ident: 10.1016/j.cell.2015.07.043_bib58
  article-title: Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01
  publication-title: Science
  doi: 10.1126/science.1192819
– volume: 123
  start-page: 3
  year: 2013
  ident: 10.1016/j.cell.2015.07.043_bib35
  article-title: Mid Staffordshire inquiry. Too long, too late but Francis can still help make the NHS better
  publication-title: Health Serv. J.
– volume: 77
  start-page: 5307
  year: 1980
  ident: 10.1016/j.cell.2015.07.043_bib49
  article-title: Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein-Barr virus neutralize infectivity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.77.9.5307
– volume: 12
  start-page: 978
  year: 2013
  ident: 10.1016/j.cell.2015.07.043_bib21
  article-title: Engineering synthetic vaccines using cues from natural immunity
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3775
– volume: 82
  start-page: 1448
  year: 2008
  ident: 10.1016/j.cell.2015.07.043_bib12
  article-title: Phase I trial of a CD8+ T-cell peptide epitope-based vaccine for infectious mononucleosis
  publication-title: J. Virol.
  doi: 10.1128/JVI.01409-07
– volume: 87
  start-page: 2294
  year: 2013
  ident: 10.1016/j.cell.2015.07.043_bib24
  article-title: Outer domain of HIV-1 gp120: antigenic optimization, structural malleability, and crystal structure with antibody VRC-PG04
  publication-title: J. Virol.
  doi: 10.1128/JVI.02717-12
– volume: 7
  start-page: e1002308
  year: 2011
  ident: 10.1016/j.cell.2015.07.043_bib43
  article-title: Soluble rhesus lymphocryptovirus gp350 protects against infection and reduces viral loads in animals that become infected with virus after challenge
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002308
– volume: 13
  start-page: 996
  year: 2006
  ident: 10.1016/j.cell.2015.07.043_bib47
  article-title: Structure of the Epstein-Barr virus major envelope glycoprotein
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1161
– volume: 3
  start-page: 107fs7
  year: 2011
  ident: 10.1016/j.cell.2015.07.043_bib9
  article-title: Epstein-Barr virus: an important vaccine target for cancer prevention
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3002878
– volume: 9
  start-page: e1003364
  year: 2013
  ident: 10.1016/j.cell.2015.07.043_bib28
  article-title: Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003364
– volume: 82
  start-page: 11217
  year: 2008
  ident: 10.1016/j.cell.2015.07.043_bib57
  article-title: Molecular basis of the interaction between complement receptor type 2 (CR2/CD21) and Epstein-Barr virus glycoprotein gp350
  publication-title: J. Virol.
  doi: 10.1128/JVI.01673-08
– volume: 170
  start-page: 1
  year: 1989
  ident: 10.1016/j.cell.2015.07.043_bib44
  article-title: Characterization of N- and O-linked oligosaccharides of glycoprotein 350 from Epstein-Barr virus
  publication-title: Virology
  doi: 10.1016/0042-6822(89)90345-0
– volume: 15
  start-page: 939
  year: 2008
  ident: 10.1016/j.cell.2015.07.043_bib46
  article-title: Structural basis of enzyme encapsulation into a bacterial nanocompartment
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1473
– volume: 3
  start-page: 1362
  year: 2007
  ident: 10.1016/j.cell.2015.07.043_bib22
  article-title: Production of apoferritin-based bioinorganic hybrid nanoparticles by bacterial fermentation followed by self-assembly
  publication-title: Small
  doi: 10.1002/smll.200700011
– volume: 158
  start-page: 157
  year: 1995
  ident: 10.1016/j.cell.2015.07.043_bib4
  article-title: Selection of recombinant vaccinia viruses on the basis of plaque formation
  publication-title: Gene
  doi: 10.1016/0378-1119(95)00149-Z
– volume: 81
  start-page: 4510
  year: 1984
  ident: 10.1016/j.cell.2015.07.043_bib15
  article-title: Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.81.14.4510
– volume: 9
  start-page: 369
  year: 2011
  ident: 10.1016/j.cell.2015.07.043_bib10
  article-title: Fusing structure and function: a structural view of the herpesvirus entry machinery
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2548
– volume: 79
  start-page: 1635
  year: 2005
  ident: 10.1016/j.cell.2015.07.043_bib53
  article-title: Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.3.1635-1644.2005
– volume: 85
  start-page: 4354
  year: 2011
  ident: 10.1016/j.cell.2015.07.043_bib6
  article-title: Chimpanzee-human monoclonal antibodies for treatment of chronic poliovirus excretors and emergency postexposure prophylaxis
  publication-title: J. Virol.
  doi: 10.1128/JVI.02553-10
– volume: 67
  start-page: 145
  year: 1984
  ident: 10.1016/j.cell.2015.07.043_bib33
  article-title: A sensitive enzyme-linked immunosorbent assay (ELISA) against the major EBV-associated antigens. I. Correlation between ELISA and immunofluorescence titers using purified antigens
  publication-title: J. Immunol. Methods
  doi: 10.1016/0022-1759(84)90093-0
– volume: 489
  start-page: 526
  year: 2012
  ident: 10.1016/j.cell.2015.07.043_bib11
  article-title: Cross-neutralization of influenza A viruses mediated by a single antibody loop
  publication-title: Nature
  doi: 10.1038/nature11414
– volume: 110
  start-page: 20242
  year: 2013
  ident: 10.1016/j.cell.2015.07.043_bib7
  article-title: Cross-neutralizing human anti-poliovirus antibodies bind the recognition site for cellular receptor
  publication-title: Proc. Natl. Acad. Sci USA
  doi: 10.1073/pnas.1320041110
– volume: 250
  start-page: 180
  year: 2012
  ident: 10.1016/j.cell.2015.07.043_bib25
  article-title: Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12005
– volume: 489
  start-page: 566
  year: 2012
  ident: 10.1016/j.cell.2015.07.043_bib32
  article-title: Structural and genetic basis for development of broadly neutralizing influenza antibodies
  publication-title: Nature
  doi: 10.1038/nature11371
– volume: 257
  start-page: 522
  year: 1992
  ident: 10.1016/j.cell.2015.07.043_bib36
  article-title: Magnetoferritin: in vitro synthesis of a novel magnetic protein
  publication-title: Science
  doi: 10.1126/science.1636086
– volume: 3
  start-page: 371
  year: 2013
  ident: 10.1016/j.cell.2015.07.043_bib39
  article-title: Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.01.023
– volume: 276
  start-page: 2024
  year: 1997
  ident: 10.1016/j.cell.2015.07.043_bib2
  article-title: The role of antibody concentration and avidity in antiviral protection
  publication-title: Science
  doi: 10.1126/science.276.5321.2024
– volume: 67
  start-page: 2552
  year: 1993
  ident: 10.1016/j.cell.2015.07.043_bib40
  article-title: A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains
  publication-title: J. Virol.
  doi: 10.1128/jvi.67.5.2552-2558.1993
– volume: 109
  start-page: 17040
  year: 2012
  ident: 10.1016/j.cell.2015.07.043_bib29
  article-title: Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1212371109
– volume: 318
  start-page: 287
  year: 1985
  ident: 10.1016/j.cell.2015.07.043_bib14
  article-title: Protection of cottontop tamarins against Epstein-Barr virus-induced malignant lymphoma by a prototype subunit vaccine
  publication-title: Nature
  doi: 10.1038/318287a0
– volume: 9
  start-page: 307
  year: 2003
  ident: 10.1016/j.cell.2015.07.043_bib52
  article-title: Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells
  publication-title: Nat. Med.
  doi: 10.1038/nm830
– volume: 8
  start-page: 382
  year: 2013
  ident: 10.1016/j.cell.2015.07.043_bib16
  article-title: Elicitation of HIV-1-neutralizing antibodies against the CD4-binding site
  publication-title: Curr. Opin. HIV AIDS
  doi: 10.1097/COH.0b013e328363a90e
– volume: 43
  start-page: 730
  year: 1982
  ident: 10.1016/j.cell.2015.07.043_bib50
  article-title: Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo
  publication-title: J. Virol.
  doi: 10.1128/jvi.43.2.730-736.1982
– volume: 391
  start-page: 249
  year: 2009
  ident: 10.1016/j.cell.2015.07.043_bib42
  article-title: Human antibody titers to Epstein-Barr Virus (EBV) gp350 correlate with neutralization of infectivity better than antibody titers to EBV gp42 using a rapid flow cytometry-based EBV neutralization assay
  publication-title: Virology
  doi: 10.1016/j.virol.2009.06.013
– volume: 248
  start-page: 949
  year: 1995
  ident: 10.1016/j.cell.2015.07.043_bib51
  article-title: High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1995.0274
– volume: 69
  start-page: 1935
  year: 2013
  ident: 10.1016/j.cell.2015.07.043_bib30
  article-title: Structural basis for the antibody neutralization of herpes simplex virus
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444913016776
– volume: 25
  start-page: 4697
  year: 2007
  ident: 10.1016/j.cell.2015.07.043_bib38
  article-title: Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2007.04.008
– volume: 9
  start-page: 169
  year: 2013
  ident: 10.1016/j.cell.2015.07.043_bib19
  article-title: Re-engineering protein interfaces yields copper-inducible ferritin cage assembly
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1163
– volume: 1
  start-page: 702
  year: 1964
  ident: 10.1016/j.cell.2015.07.043_bib13
  article-title: Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma
  publication-title: Lancet
  doi: 10.1016/S0140-6736(64)91524-7
– volume: 77
  start-page: 2979
  year: 1980
  ident: 10.1016/j.cell.2015.07.043_bib18
  article-title: Monoclonal antibody against a 250,000-dalton glycoprotein of Epstein-Barr virus identifies a membrane antigen and a neutralizing antigen
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.77.5.2979
– volume: 329
  start-page: 856
  year: 2010
  ident: 10.1016/j.cell.2015.07.043_bib56
  article-title: Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1
  publication-title: Science
  doi: 10.1126/science.1187659
– volume: 5
  start-page: 1697
  year: 2010
  ident: 10.1016/j.cell.2015.07.043_bib3
  article-title: Cryo-EM of macromolecular assemblies at near-atomic resolution
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.126
– volume: 196
  start-page: 1749
  year: 2007
  ident: 10.1016/j.cell.2015.07.043_bib45
  article-title: Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults
  publication-title: J. Infect. Dis.
  doi: 10.1086/523813
SSID ssj0008555
Score 2.5972092
Snippet Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually...
• Self-assembling nanoparticles present the conserved gp350 receptor-binding domain • The nanoparticles elicit more potent neutralizing antibodies than soluble...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1090
SubjectTerms animal models
Animals
Antibodies, Neutralizing - immunology
complement
Crystallography, X-Ray
Drug Design
Female
glycoproteins
Herpesvirus 4, Human
Herpesvirus Vaccines - chemistry
Herpesvirus Vaccines - genetics
Herpesvirus Vaccines - immunology
Herpesvirus Vaccines - isolation & purification
Human gammaherpesvirus 4
immunity
Macaca fascicularis
Mice
Mice, Inbred BALB C
nanoparticles
Nanoparticles - chemistry
Nanoparticles - ultrastructure
neoplasms
neutralization
neutralizing antibodies
Primates
Receptors, Complement 3d - chemistry
Receptors, Complement 3d - immunology
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - immunology
Recombinant Proteins - isolation & purification
vaccine development
vaccines
viruses
Title Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site
URI https://dx.doi.org/10.1016/j.cell.2015.07.043
https://www.ncbi.nlm.nih.gov/pubmed/26279189
https://www.proquest.com/docview/1708897447
https://www.proquest.com/docview/2000223626
https://pubmed.ncbi.nlm.nih.gov/PMC4757492
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEJTXFoqMxA1ZTRw_j2xpVVUqB9hWe7OcaSyCUHa1jwP_nhknWbGg9sAx8Thyxh7PF2fmG8Y-pAr9aiVB3GlbCCUVCIfIV1jXKFAp6pQo3_n6i7m8UVdzPT9gZ2MuDIVVDnt_v6fn3Xq4czpo83TZtpTj66Uz5BEzvS4l8VXK5SS--XS3Gzut-yoGHi0fpYfEmT7Giw7HKbxLZwJPVd3nnP4Fn3_HUP7hlC6esicDmuSf-gE_YwdNd8Qe9fUlfz1ns6_DUR__nAM1-CLx2PHz5ZpqXIppXK34bbvarvltBPrDzmc5MBzdGUdgyBFTNkv8KBfTNie_8G8IUF-wm4vz2dmlGMooCDBSbQQkrwoVXa0iwoMmeqPRM9qISK32EbRJpSxMXVUebO2SAoSwaPjWQELrxoaX7LBbdM1rxpP1UOJDQVegoLhzhW4KX0MRS6hiNBNWjvoLMHCMU6mLn2EMJvsRSOeBdB4KG1DnE_Zx12fZM2w8KK3HaQl76ySgC3iw3_txDgMaEDXHrlls16G0FOlllbL3y8jME0TMPRP2qp_33VilkdaXzk-Y3VsROwEi8N5v6drvmchbWW2Vl8f_-U5v2GO6ohNuad-yw81q25wgRNrU77IN_AY1eQ7y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXxJvlaSRuyGri-BEf2dJqC20PsK32ZjluLIJQdrWPA_-eGSdZsaD2wDVjR8nYM_PFmfkG4H0sMK4WIvArZTIuhQy8ROTLTVnLIKNXMVK989m5nlzIzzM124PDoRaG0ip739_59OSt-ysHvTYPFk1DNb5WlJoiYqLXtbfgNqIBQ_0bTmbjrTsuleraGFg0fRzeV850SV50Ok75XSoxeMriuuj0L_r8O4nyj6h0_ADu93CSfeye-CHs1e0juNM1mPz1GKZf-7M-9illarB5ZL5lR4sVNbnkY79csstmuVmxSx_oFzubpsxwjGcMkSFDUFkv8Kucj5tU_cK-IUJ9AhfHR9PDCe_7KPCghVzzEK3MpC8r6REf1N5qhaHReIRqlfVB6ZiLTFdFYYOpyigDYli0fKNDRPNGwVPYb-dt_RxYNDbkeNOgiiBDdlVmqs5sFTKfh8J7PYJ80J8LPck49br46YZssh-OdO5I5y4zDnU-gg_bOYuOYuPG0WpYFrezURzGgBvnvRvW0KEFkdi39XyzcrmhVC8jpbl-jEhEQUTdM4Jn3bpvn1VoYWxe2hGYnR2xHUAM3ruStvmemLylUUZa8eI_3-kt3J1Mz07d6cn5l5dwjyR03C3MK9hfLzf1a8RL6-pNsoff0J8SEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+an+Epstein-Barr+Virus+Vaccine+Targeting+the+Receptor-Binding+Site&rft.jtitle=Cell&rft.au=Kanekiyo%2C+Masaru&rft.au=Bu%2C+Wei&rft.au=Joyce%2C+M.%C2%A0Gordon&rft.au=Meng%2C+Geng&rft.date=2015-08-27&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=162&rft.issue=5&rft.spage=1090&rft.epage=1100&rft_id=info:doi/10.1016%2Fj.cell.2015.07.043&rft.externalDocID=S0092867415009599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon