Transgenic mouse model for the study of enterovirus 71 neuropathogenesis
Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 36; pp. 14753 - 14758 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.09.2013
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection. |
---|---|
AbstractList | Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection. [PUBLICATION ABSTRACT] EV71 infection with severe neurological complications has become a serious public health concern. However, suitable small animal models to study human EV71 pathogenesis are not available. We have generated a Tg mouse model by expressing the human EV71 receptor, Scavenger receptor B2, and found it to be susceptible to EV71 infection. This Tg mouse model exhibits neurological disease and pathology very similar to that observed in humans. The results confirm that the Scavenger receptor B2 receptor is important for EV71 infection in vivo. Further development of this new small animal model should greatly contribute toward investigation of EV71 pathogenesis and development of vaccines and antiviral drugs. Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection. Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection. Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection.Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection. |
Author | Sato, Yuko Shimanuki, Midori Shitara, Hiroshi Ong, Kien Chai Wong, Kum Thong Taya, Choji Koike, Satoshi Fujii, Ken Nagata, Noriyo Yamayoshi, Seiya |
Author_xml | – sequence: 1 givenname: Ken surname: Fujii fullname: Fujii, Ken – sequence: 2 givenname: Noriyo surname: Nagata fullname: Nagata, Noriyo – sequence: 3 givenname: Yuko surname: Sato fullname: Sato, Yuko – sequence: 4 givenname: Kien Chai surname: Ong fullname: Ong, Kien Chai – sequence: 5 givenname: Kum Thong surname: Wong fullname: Wong, Kum Thong – sequence: 6 givenname: Seiya surname: Yamayoshi fullname: Yamayoshi, Seiya – sequence: 7 givenname: Midori surname: Shimanuki fullname: Shimanuki, Midori – sequence: 8 givenname: Hiroshi surname: Shitara fullname: Shitara, Hiroshi – sequence: 9 givenname: Choji surname: Taya fullname: Taya, Choji – sequence: 10 givenname: Satoshi surname: Koike fullname: Koike, Satoshi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23959904$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1r3DAQxUVJaTZpzz21NfTSixNp9OlLoIQmKQR6aHIWsi3tavFKW8kO5L-vzG62baCQi32Y33u8N5oTdBRisAi9J_iMYEnPt8HkMwJEckEJwa_QguCG1II1-AgtMAZZKwbsGJ3kvMYYN1zhN-gYaMObBrMFurlLJuSlDb6rNnHKtnx7O1Qupmpc2SqPU_9YRVfZMNoUH3yaciVJFeyU4taMq1i0Nvv8Fr12Zsj23f5_iu6vvt1d3tS3P66_X369rTsBbKxb0hljSYNbAa7EVtwIBQJ61yrHBJWWKWlco4jqoeMS2l5iYUBJB9IApafoYue7ndqN7buSK5lBb5PfmPSoo_H630nwK72MD5pKITnnxeDL3iDFX5PNo9743NlhMMGWBWiiMCUgefMClDEFRHFKX4BSXJbOBRT08zN0HacUytJmqngKCbJQH__ueSj49HQF4DugSzHnZJ3u_GhGH-faftAE6_lE9Hwi-s-JFN35M92T9f8V1T7KPDjQBaeiRJZ8rv9hh6zzGNOBYSAJJUqU-afd3JmozTL5rO9_AiYCY8KACkl_A5iK2e8 |
CitedBy_id | crossref_primary_10_3389_fmicb_2017_02249 crossref_primary_10_3389_fmicb_2020_00540 crossref_primary_10_1016_j_virusres_2014_04_014 crossref_primary_10_1016_j_vaccine_2015_05_108 crossref_primary_10_1038_s41579_018_0005_4 crossref_primary_10_1099_jgv_0_000640 crossref_primary_10_1016_j_vaccine_2023_01_074 crossref_primary_10_1155_2014_878139 crossref_primary_10_3390_v17020181 crossref_primary_10_1111_imm_13895 crossref_primary_10_1016_j_vaccine_2016_04_029 crossref_primary_10_1371_journal_ppat_1005033 crossref_primary_10_1128_jvi_02042_21 crossref_primary_10_1186_1423_0127_21_14 crossref_primary_10_1016_j_celrep_2023_112389 crossref_primary_10_1128_JVI_00692_14 crossref_primary_10_1186_s12985_017_0913_3 crossref_primary_10_1128_JVI_01759_16 crossref_primary_10_3390_v13081661 crossref_primary_10_1016_j_bbrc_2022_08_015 crossref_primary_10_1002_jmv_29838 crossref_primary_10_1016_j_ajpath_2013_11_009 crossref_primary_10_1016_j_antiviral_2025_106102 crossref_primary_10_1038_s41426_018_0201_3 crossref_primary_10_1016_j_molcel_2021_10_003 crossref_primary_10_1038_emi_2017_49 crossref_primary_10_1007_s11262_014_1035_2 crossref_primary_10_1038_emi_2014_49 crossref_primary_10_1097_NEN_0000000000000122 crossref_primary_10_3390_v17030423 crossref_primary_10_3390_v7112920 crossref_primary_10_3390_nano10122342 crossref_primary_10_1128_JVI_00681_18 crossref_primary_10_3390_biomedicines12122773 crossref_primary_10_1038_s41467_025_57610_2 crossref_primary_10_3390_v15030785 crossref_primary_10_1002_rmv_2322 crossref_primary_10_1016_j_jviromet_2015_08_007 crossref_primary_10_1002_jmv_25525 crossref_primary_10_7774_cevr_2023_12_4_291 crossref_primary_10_1038_s41426_018_0077_2 crossref_primary_10_3390_v10120689 crossref_primary_10_3390_v11050460 crossref_primary_10_1038_s41467_023_43029_0 crossref_primary_10_1186_s13578_020_00503_2 crossref_primary_10_3390_v7112916 crossref_primary_10_1038_srep45069 crossref_primary_10_1128_mSphere_01048_20 crossref_primary_10_1016_j_vaccine_2022_04_064 crossref_primary_10_1080_22221751_2021_1906755 crossref_primary_10_1017_S0950268818000468 crossref_primary_10_3389_fmicb_2021_658093 crossref_primary_10_1186_s12879_017_2228_9 crossref_primary_10_1016_j_micpath_2020_104603 crossref_primary_10_2217_fmb_15_62 crossref_primary_10_1128_JVI_00183_19 crossref_primary_10_1007_s00705_022_05606_4 crossref_primary_10_1093_cid_ciu852 crossref_primary_10_3390_v10120674 crossref_primary_10_1186_s12985_021_01557_5 crossref_primary_10_4062_biomolther_2023_058 crossref_primary_10_1016_j_virusres_2018_07_008 crossref_primary_10_1111_nan_70005 crossref_primary_10_1038_s41598_019_47455_3 crossref_primary_10_1016_j_vaccine_2015_09_047 crossref_primary_10_1038_srep28876 crossref_primary_10_1371_journal_pntd_0003692 crossref_primary_10_1126_sciadv_aau4255 crossref_primary_10_1586_14787210_2014_895666 crossref_primary_10_1016_j_antiviral_2025_106133 crossref_primary_10_1007_s00705_016_3157_4 crossref_primary_10_11569_wcjd_v27_i24_1465 crossref_primary_10_1099_jgv_0_000723 crossref_primary_10_1093_ajcp_aqw089 crossref_primary_10_1016_j_vaccine_2023_08_029 crossref_primary_10_1080_14787210_2021_1851194 crossref_primary_10_1007_s13238_017_0405_7 crossref_primary_10_3389_fnmol_2022_870868 crossref_primary_10_7774_cevr_2023_0343 crossref_primary_10_1128_JVI_00289_14 crossref_primary_10_1177_2515135519888998 crossref_primary_10_1016_j_micinf_2023_105107 crossref_primary_10_1007_s12250_020_00294_3 crossref_primary_10_1016_j_vaccine_2015_10_103 crossref_primary_10_4236_wjv_2014_41006 crossref_primary_10_1016_j_biologicals_2016_01_003 crossref_primary_10_1016_j_jcpa_2020_02_001 crossref_primary_10_1007_s11910_024_01393_4 crossref_primary_10_1080_21645515_2015_1049780 crossref_primary_10_1186_s12929_019_0585_y crossref_primary_10_1371_journal_ppat_1008857 crossref_primary_10_1016_j_cytogfr_2014_08_002 crossref_primary_10_3390_v13020166 crossref_primary_10_1080_22221751_2020_1729665 crossref_primary_10_3389_fcimb_2022_873304 crossref_primary_10_1111_bpa_12279 crossref_primary_10_1016_j_antiviral_2016_11_008 crossref_primary_10_1128_JVI_01921_19 crossref_primary_10_2807_1560_7917_ES_2018_23_3_17_00310 crossref_primary_10_1093_nsr_nwv038 crossref_primary_10_1371_journal_ppat_1012022 crossref_primary_10_1080_22221751_2021_1934558 crossref_primary_10_2222_jsv_74_153 crossref_primary_10_3390_v9110351 crossref_primary_10_1016_j_coviro_2014_03_007 crossref_primary_10_1021_pr501199h crossref_primary_10_1186_1423_0127_21_31 crossref_primary_10_1186_s12929_020_0615_9 crossref_primary_10_1016_j_virusres_2017_11_023 crossref_primary_10_1007_s13365_019_00824_0 crossref_primary_10_1016_j_vaccine_2014_08_064 crossref_primary_10_1371_journal_ppat_1007190 crossref_primary_10_1080_22221751_2019_1644142 crossref_primary_10_1128_JVI_01515_21 crossref_primary_10_3389_fmicb_2020_01105 crossref_primary_10_1128_JVI_01818_18 crossref_primary_10_1371_journal_ppat_1007863 crossref_primary_10_1038_emi_2016_56 crossref_primary_10_1016_j_bbrep_2020_100860 crossref_primary_10_2222_jsv_68_71 crossref_primary_10_1038_srep31151 crossref_primary_10_1371_journal_pone_0119173 crossref_primary_10_1371_journal_pone_0193155 crossref_primary_10_7774_cevr_2017_6_1_4 crossref_primary_10_3389_fcimb_2016_00192 crossref_primary_10_1038_s41598_019_56703_5 crossref_primary_10_1128_jvi_00561_22 crossref_primary_10_1371_journal_pone_0147463 crossref_primary_10_3389_fimmu_2020_561758 crossref_primary_10_1128_JVI_00897_21 crossref_primary_10_1128_AAC_00695_20 crossref_primary_10_1128_AAC_01922_19 crossref_primary_10_3389_fpubh_2023_1284337 crossref_primary_10_1016_j_virol_2023_02_002 |
Cites_doi | 10.1128/JVI.78.15.7916-7924.2004 10.1046/j.1442-200x.2004.01868.x 10.1016/j.cell.2007.10.018 10.1016/j.vaccine.2011.06.044 10.1186/1743-422X-9-8 10.1056/NEJM199909233411301 10.1007/BF01310797 10.1128/jvi.68.2.681-688.1994 10.1242/jcs.00075 10.1016/j.vaccine.2011.11.087 10.1128/JVI.00297-11 10.1038/nm1713 10.1099/vir.0.19423-0 10.1128/JVI.06103-11 10.1016/S0022-3476(98)70155-6 10.1016/S0168-1702(99)00019-2 10.1007/BF01317504 10.1128/JVI.00999-09 10.1371/journal.pone.0057591 10.1002/jmv.2209 10.3181/00379727-90-22088 10.1093/clinids/6.Supplement_2.S387 10.1128/JVI.02358-10 10.1038/nm.1992 10.1194/jlr.M300353-JLR200 10.1007/BF00691653 10.1099/vir.0.79883-0 10.1128/JVI.00020-12 10.1371/journal.ppat.1000412 10.1007/BF01314873 10.1006/viro.1995.1030 10.1128/JVI.02070-12 10.1073/pnas.88.3.951 10.1093/infdis/129.3.304 10.1016/j.micinf.2011.04.004 10.1111/j.1365-2990.1982.tb00269.x 10.1007/s00705-011-1198-2 10.1111/j.1365-2990.2011.01247.x 10.1056/NEJM199909233411302 10.1126/science.1068284 10.1097/EDE.0b013e318231d67a 10.1006/viro.1995.1327 10.1016/0092-8674(90)90168-E 10.1097/00006454-198702000-00013 10.1086/520149 10.1093/hmg/ddg062 10.1007/BF01317855 10.1111/j.1651-2227.1987.tb10453.x 10.1186/1743-422X-6-141 10.7883/yoken.52.12 10.1093/oxfordjournals.jbchem.a021820 10.1056/NEJM195807242590408 10.1038/nm.1961 10.1097/nen.0b013e318163a990 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Copyright National Academy of Sciences Sep 3, 2013 |
Copyright_xml | – notice: Copyright National Academy of Sciences – notice: Copyright National Academy of Sciences Sep 3, 2013 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1217563110 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts Genetics Abstracts AGRICOLA MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Public Health |
DocumentTitleAlternate | Animal model for EV71 pathogenesis |
EISSN | 1091-6490 |
EndPage | 14758 |
ExternalDocumentID | PMC3767555 3068665031 23959904 10_1073_pnas_1217563110 110_36_14753 42713186 US201600142367 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | Asia-Pacific region |
GeographicLocations_xml | – name: Asia-Pacific region |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c624t-b1caae190b62f17585a68262dfb8f4637e487af9818d2c572bd706a287f27a233 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:45:20 EDT 2025 Fri Jul 11 05:57:15 EDT 2025 Fri Jul 11 01:09:09 EDT 2025 Thu Jul 10 23:07:40 EDT 2025 Mon Jun 30 07:45:25 EDT 2025 Thu Apr 03 07:04:42 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 Tue Jul 01 03:39:49 EDT 2025 Wed Nov 11 00:30:25 EST 2020 Thu May 29 08:40:50 EDT 2025 Thu Apr 03 09:46:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Keywords | neurotropism viral receptor picornavirus |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c624t-b1caae190b62f17585a68262dfb8f4637e487af9818d2c572bd706a287f27a233 |
Notes | http://dx.doi.org/10.1073/pnas.1217563110 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Author contributions: K.F., S.Y., and S.K. designed research; K.F., N.N., Y.S., K.C.O., K.T.W., S.Y., M.S., H.S., C.T., and S.K. performed research; K.F., N.N., K.T.W., and S.K. analyzed data; and K.F., N.N., K.T.W., and S.K. wrote the paper. Edited by Konstantin Chumakov, Center for Biologics Evaluation and Research, Rockville, MD, and accepted by the Editorial Board July 29, 2013 (received for review October 16, 2012) |
OpenAccessLink | https://www.pnas.org/content/pnas/110/36/14753.full.pdf |
PMID | 23959904 |
PQID | 1431446727 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1217563110 pnas_primary_110_36_14753 proquest_miscellaneous_1430395562 proquest_miscellaneous_1448218533 proquest_miscellaneous_1803127595 crossref_primary_10_1073_pnas_1217563110 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3767555 pubmed_primary_23959904 jstor_primary_42713186 proquest_journals_1431446727 fao_agris_US201600142367 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-03 |
PublicationDateYYYYMMDD | 2013-09-03 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_42_2 e_1_3_3_51_2 Bergelson JM (e_1_3_3_21_2) 2010 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 Shindarov LM (e_1_3_3_7_2) 1979; 23 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 Dragunsky E (e_1_3_3_53_2) 2003; 81 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_18_2 doi: 10.1128/JVI.78.15.7916-7924.2004 – ident: e_1_3_3_57_2 doi: 10.1046/j.1442-200x.2004.01868.x – ident: e_1_3_3_30_2 doi: 10.1016/j.cell.2007.10.018 – ident: e_1_3_3_45_2 doi: 10.1016/j.vaccine.2011.06.044 – ident: e_1_3_3_40_2 doi: 10.1186/1743-422X-9-8 – ident: e_1_3_3_3_2 doi: 10.1056/NEJM199909233411301 – ident: e_1_3_3_49_2 doi: 10.1007/BF01310797 – ident: e_1_3_3_51_2 doi: 10.1128/jvi.68.2.681-688.1994 – ident: e_1_3_3_29_2 doi: 10.1242/jcs.00075 – ident: e_1_3_3_46_2 doi: 10.1016/j.vaccine.2011.11.087 – ident: e_1_3_3_26_2 doi: 10.1128/JVI.00297-11 – ident: e_1_3_3_24_2 doi: 10.1038/nm1713 – ident: e_1_3_3_17_2 doi: 10.1099/vir.0.19423-0 – ident: e_1_3_3_20_2 doi: 10.1128/JVI.06103-11 – ident: e_1_3_3_43_2 doi: 10.1016/S0022-3476(98)70155-6 – ident: e_1_3_3_9_2 doi: 10.1016/S0168-1702(99)00019-2 – ident: e_1_3_3_16_2 doi: 10.1007/BF01317504 – ident: e_1_3_3_47_2 doi: 10.1128/JVI.00999-09 – ident: e_1_3_3_48_2 doi: 10.1371/journal.pone.0057591 – volume: 81 start-page: 251 year: 2003 ident: e_1_3_3_53_2 article-title: Transgenic mice as an alternative to monkeys for neurovirulence testing of live oral poliovirus vaccine: Validation by a WHO collaborative study publication-title: Bull World Health Organ – ident: e_1_3_3_14_2 doi: 10.1002/jmv.2209 – ident: e_1_3_3_58_2 doi: 10.3181/00379727-90-22088 – ident: e_1_3_3_42_2 doi: 10.1093/clinids/6.Supplement_2.S387 – ident: e_1_3_3_31_2 doi: 10.1128/JVI.02358-10 – ident: e_1_3_3_28_2 doi: 10.1038/nm.1992 – ident: e_1_3_3_36_2 doi: 10.1194/jlr.M300353-JLR200 – ident: e_1_3_3_12_2 doi: 10.1007/BF00691653 – ident: e_1_3_3_15_2 doi: 10.1099/vir.0.79883-0 – ident: e_1_3_3_32_2 doi: 10.1128/JVI.00020-12 – ident: e_1_3_3_55_2 doi: 10.1371/journal.ppat.1000412 – ident: e_1_3_3_8_2 doi: 10.1007/BF01314873 – ident: e_1_3_3_52_2 doi: 10.1006/viro.1995.1030 – ident: e_1_3_3_33_2 doi: 10.1128/JVI.02070-12 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.88.3.951 – ident: e_1_3_3_1_2 doi: 10.1093/infdis/129.3.304 – ident: e_1_3_3_19_2 doi: 10.1016/j.micinf.2011.04.004 – ident: e_1_3_3_13_2 doi: 10.1111/j.1365-2990.1982.tb00269.x – ident: e_1_3_3_37_2 doi: 10.1007/s00705-011-1198-2 – ident: e_1_3_3_2_2 – ident: e_1_3_3_5_2 doi: 10.1111/j.1365-2990.2011.01247.x – ident: e_1_3_3_4_2 doi: 10.1056/NEJM199909233411302 – ident: e_1_3_3_54_2 doi: 10.1126/science.1068284 – start-page: 73 volume-title: The Picornaviruses year: 2010 ident: e_1_3_3_21_2 – ident: e_1_3_3_10_2 doi: 10.1097/EDE.0b013e318231d67a – ident: e_1_3_3_50_2 doi: 10.1006/viro.1995.1327 – volume: 23 start-page: 284 year: 1979 ident: e_1_3_3_7_2 article-title: Epidemiological, clinical, and pathomorphological characteristics of epidemic poliomyelitis-like disease caused by enterovirus 71 publication-title: J Hyg Epidemiol Microbiol Immunol – ident: e_1_3_3_22_2 doi: 10.1016/0092-8674(90)90168-E – ident: e_1_3_3_41_2 doi: 10.1097/00006454-198702000-00013 – ident: e_1_3_3_44_2 doi: 10.1086/520149 – ident: e_1_3_3_35_2 doi: 10.1093/hmg/ddg062 – ident: e_1_3_3_11_2 doi: 10.1007/BF01317855 – ident: e_1_3_3_39_2 doi: 10.1111/j.1651-2227.1987.tb10453.x – ident: e_1_3_3_25_2 doi: 10.1186/1743-422X-6-141 – ident: e_1_3_3_56_2 doi: 10.7883/yoken.52.12 – ident: e_1_3_3_34_2 doi: 10.1093/oxfordjournals.jbchem.a021820 – ident: e_1_3_3_38_2 doi: 10.1056/NEJM195807242590408 – ident: e_1_3_3_27_2 doi: 10.1038/nm.1961 – ident: e_1_3_3_6_2 doi: 10.1097/nen.0b013e318163a990 |
SSID | ssj0009580 |
Score | 2.4851148 |
Snippet | Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic... EV71 infection with severe neurological complications has become a serious public health concern. However, suitable small animal models to study human EV71... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14753 |
SubjectTerms | Animal models Animals ataxia (disorder) Biological Sciences Blotting, Western Brain - metabolism Brain - pathology Brain - virology brain stem Cell Line, Tumor Central Nervous System Diseases - genetics Central Nervous System Diseases - metabolism Central Nervous System Diseases - virology cerebellum cerebrum children Chlorocebus aethiops death Disease models Disease Models, Animal encephalitis Enterovirus Enterovirus A Enterovirus A, Human - physiology Enterovirus Infections - genetics Enterovirus Infections - metabolism Enterovirus Infections - virology Epidemics ethics Hand foot and mouth disease Host-Pathogen Interactions Humans hypothalamus Immunohistochemistry Infections Lysosomal Membrane Proteins - genetics Lysosomal Membrane Proteins - metabolism Medical ethics Mice Mice, Transgenic monkeys mortality neonates Nervous system diseases Neurology Neurons paralysis Pathogenesis Pathology Public health Receptors Receptors, Scavenger - genetics Receptors, Scavenger - metabolism Rodents spinal cord Spinal Cord - metabolism Spinal Cord - pathology Spinal Cord - virology thalamus Time Factors transgenic animals vaccines Vero Cells Virology virus receptors Viruses |
Title | Transgenic mouse model for the study of enterovirus 71 neuropathogenesis |
URI | https://www.jstor.org/stable/42713186 http://www.pnas.org/content/110/36/14753.abstract https://www.ncbi.nlm.nih.gov/pubmed/23959904 https://www.proquest.com/docview/1431446727 https://www.proquest.com/docview/1430395562 https://www.proquest.com/docview/1448218533 https://www.proquest.com/docview/1803127595 https://pubmed.ncbi.nlm.nih.gov/PMC3767555 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZouXBBFCgNFGQkDkVRysZ27ORYIdAKiVUlulJvke0kZSWURc320l_fGcd5le0KuES7ieNEns_zcMbfEPKBZUIza7OosKyKhMCFJq0NhCq2KsFh0Jmr1vB9IedL8e0yuRxKybndJRtzam-37iv5H6nCOZAr7pL9B8n2ncIJ-A3yhSNIGI5_J2M0NHB1ZUOM4Mu2rk2fOdh0hNHIu4lLB9c3Taji0HFYYini9RVqulUz9lDPe4vWdPkDi27B8GzYfuJ1QhNG4fnCFzP2iwdYyCGLZnzIrdhx_1hrMrBkot3r3GtNn43awoOPlWAsVEsA7C0q_k-3qmvQL1hjuNYNslyoRPKu2ykH9vIHQyY8COeQcG6PPGYQFLg0zvmYYjltNxz5t-2InBT_dO8JEx9kr9LrLhkVGW6h6bZo437S7MgLuXhGnvrwgZ61WDggj8r6OTnoBpOeeBbxjy_IfAAHdeCgDhwUwEFBqNSBg64rOgIHVTH9AxwvyfLrl4vP88iXzYisZGITmdhqDfNsZiSrYowHtYQgkhWVSSshuSohSNVVBq5awWyimCnUTGoInSumNOP8kOzX67o8IjS2ZZyYuGKSz4RRIhOsUIbDORlLxU1ATruBzK3nlMfSJr9yl9ugeI7DmQ8jH5CT_obfLZ3Kw02PQDK5vgJjl08BEJBDJ66-C8FUDMZJBiRwvfRdQ99c5g6QATnuhJr7OQyPA_9ZCMxGCMj7_jJoWPxspusSxINtZjxLIFDY1UakDF1fvqNNCgaUqSRLAvKqxVL_ogweAH6hCIiaoKxvgCzw0yv16qdjg3d0TEny-uHhekOeDHP_mOxvrm_Kt-BKb8w7N4PuAAR-w4c |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transgenic+mouse+model+for+the+study+of+enterovirus+71+neuropathogenesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.date=2013-09-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=110&rft.issue=36&rft.spage=14753&rft.epage=14758&rft_id=info:doi/10.1073%2Fpnas.1217563110&rft.externalDocID=US201600142367 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F36.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F36.cover.gif |