Transgenic mouse model for the study of enterovirus 71 neuropathogenesis

Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 36; pp. 14753 - 14758
Main Authors Fujii, Ken, Nagata, Noriyo, Sato, Yuko, Ong, Kien Chai, Wong, Kum Thong, Yamayoshi, Seiya, Shimanuki, Midori, Shitara, Hiroshi, Taya, Choji, Koike, Satoshi
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.09.2013
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection.
AbstractList Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection. [PUBLICATION ABSTRACT]
EV71 infection with severe neurological complications has become a serious public health concern. However, suitable small animal models to study human EV71 pathogenesis are not available. We have generated a Tg mouse model by expressing the human EV71 receptor, Scavenger receptor B2, and found it to be susceptible to EV71 infection. This Tg mouse model exhibits neurological disease and pathology very similar to that observed in humans. The results confirm that the Scavenger receptor B2 receptor is important for EV71 infection in vivo. Further development of this new small animal model should greatly contribute toward investigation of EV71 pathogenesis and development of vaccines and antiviral drugs. Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection.
Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection.
Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection.Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection.
Author Sato, Yuko
Shimanuki, Midori
Shitara, Hiroshi
Ong, Kien Chai
Wong, Kum Thong
Taya, Choji
Koike, Satoshi
Fujii, Ken
Nagata, Noriyo
Yamayoshi, Seiya
Author_xml – sequence: 1
  givenname: Ken
  surname: Fujii
  fullname: Fujii, Ken
– sequence: 2
  givenname: Noriyo
  surname: Nagata
  fullname: Nagata, Noriyo
– sequence: 3
  givenname: Yuko
  surname: Sato
  fullname: Sato, Yuko
– sequence: 4
  givenname: Kien Chai
  surname: Ong
  fullname: Ong, Kien Chai
– sequence: 5
  givenname: Kum Thong
  surname: Wong
  fullname: Wong, Kum Thong
– sequence: 6
  givenname: Seiya
  surname: Yamayoshi
  fullname: Yamayoshi, Seiya
– sequence: 7
  givenname: Midori
  surname: Shimanuki
  fullname: Shimanuki, Midori
– sequence: 8
  givenname: Hiroshi
  surname: Shitara
  fullname: Shitara, Hiroshi
– sequence: 9
  givenname: Choji
  surname: Taya
  fullname: Taya, Choji
– sequence: 10
  givenname: Satoshi
  surname: Koike
  fullname: Koike, Satoshi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23959904$$D View this record in MEDLINE/PubMed
BookMark eNqNks1r3DAQxUVJaTZpzz21NfTSixNp9OlLoIQmKQR6aHIWsi3tavFKW8kO5L-vzG62baCQi32Y33u8N5oTdBRisAi9J_iMYEnPt8HkMwJEckEJwa_QguCG1II1-AgtMAZZKwbsGJ3kvMYYN1zhN-gYaMObBrMFurlLJuSlDb6rNnHKtnx7O1Qupmpc2SqPU_9YRVfZMNoUH3yaciVJFeyU4taMq1i0Nvv8Fr12Zsj23f5_iu6vvt1d3tS3P66_X369rTsBbKxb0hljSYNbAa7EVtwIBQJ61yrHBJWWKWlco4jqoeMS2l5iYUBJB9IApafoYue7ndqN7buSK5lBb5PfmPSoo_H630nwK72MD5pKITnnxeDL3iDFX5PNo9743NlhMMGWBWiiMCUgefMClDEFRHFKX4BSXJbOBRT08zN0HacUytJmqngKCbJQH__ueSj49HQF4DugSzHnZJ3u_GhGH-faftAE6_lE9Hwi-s-JFN35M92T9f8V1T7KPDjQBaeiRJZ8rv9hh6zzGNOBYSAJJUqU-afd3JmozTL5rO9_AiYCY8KACkl_A5iK2e8
CitedBy_id crossref_primary_10_3389_fmicb_2017_02249
crossref_primary_10_3389_fmicb_2020_00540
crossref_primary_10_1016_j_virusres_2014_04_014
crossref_primary_10_1016_j_vaccine_2015_05_108
crossref_primary_10_1038_s41579_018_0005_4
crossref_primary_10_1099_jgv_0_000640
crossref_primary_10_1016_j_vaccine_2023_01_074
crossref_primary_10_1155_2014_878139
crossref_primary_10_3390_v17020181
crossref_primary_10_1111_imm_13895
crossref_primary_10_1016_j_vaccine_2016_04_029
crossref_primary_10_1371_journal_ppat_1005033
crossref_primary_10_1128_jvi_02042_21
crossref_primary_10_1186_1423_0127_21_14
crossref_primary_10_1016_j_celrep_2023_112389
crossref_primary_10_1128_JVI_00692_14
crossref_primary_10_1186_s12985_017_0913_3
crossref_primary_10_1128_JVI_01759_16
crossref_primary_10_3390_v13081661
crossref_primary_10_1016_j_bbrc_2022_08_015
crossref_primary_10_1002_jmv_29838
crossref_primary_10_1016_j_ajpath_2013_11_009
crossref_primary_10_1016_j_antiviral_2025_106102
crossref_primary_10_1038_s41426_018_0201_3
crossref_primary_10_1016_j_molcel_2021_10_003
crossref_primary_10_1038_emi_2017_49
crossref_primary_10_1007_s11262_014_1035_2
crossref_primary_10_1038_emi_2014_49
crossref_primary_10_1097_NEN_0000000000000122
crossref_primary_10_3390_v17030423
crossref_primary_10_3390_v7112920
crossref_primary_10_3390_nano10122342
crossref_primary_10_1128_JVI_00681_18
crossref_primary_10_3390_biomedicines12122773
crossref_primary_10_1038_s41467_025_57610_2
crossref_primary_10_3390_v15030785
crossref_primary_10_1002_rmv_2322
crossref_primary_10_1016_j_jviromet_2015_08_007
crossref_primary_10_1002_jmv_25525
crossref_primary_10_7774_cevr_2023_12_4_291
crossref_primary_10_1038_s41426_018_0077_2
crossref_primary_10_3390_v10120689
crossref_primary_10_3390_v11050460
crossref_primary_10_1038_s41467_023_43029_0
crossref_primary_10_1186_s13578_020_00503_2
crossref_primary_10_3390_v7112916
crossref_primary_10_1038_srep45069
crossref_primary_10_1128_mSphere_01048_20
crossref_primary_10_1016_j_vaccine_2022_04_064
crossref_primary_10_1080_22221751_2021_1906755
crossref_primary_10_1017_S0950268818000468
crossref_primary_10_3389_fmicb_2021_658093
crossref_primary_10_1186_s12879_017_2228_9
crossref_primary_10_1016_j_micpath_2020_104603
crossref_primary_10_2217_fmb_15_62
crossref_primary_10_1128_JVI_00183_19
crossref_primary_10_1007_s00705_022_05606_4
crossref_primary_10_1093_cid_ciu852
crossref_primary_10_3390_v10120674
crossref_primary_10_1186_s12985_021_01557_5
crossref_primary_10_4062_biomolther_2023_058
crossref_primary_10_1016_j_virusres_2018_07_008
crossref_primary_10_1111_nan_70005
crossref_primary_10_1038_s41598_019_47455_3
crossref_primary_10_1016_j_vaccine_2015_09_047
crossref_primary_10_1038_srep28876
crossref_primary_10_1371_journal_pntd_0003692
crossref_primary_10_1126_sciadv_aau4255
crossref_primary_10_1586_14787210_2014_895666
crossref_primary_10_1016_j_antiviral_2025_106133
crossref_primary_10_1007_s00705_016_3157_4
crossref_primary_10_11569_wcjd_v27_i24_1465
crossref_primary_10_1099_jgv_0_000723
crossref_primary_10_1093_ajcp_aqw089
crossref_primary_10_1016_j_vaccine_2023_08_029
crossref_primary_10_1080_14787210_2021_1851194
crossref_primary_10_1007_s13238_017_0405_7
crossref_primary_10_3389_fnmol_2022_870868
crossref_primary_10_7774_cevr_2023_0343
crossref_primary_10_1128_JVI_00289_14
crossref_primary_10_1177_2515135519888998
crossref_primary_10_1016_j_micinf_2023_105107
crossref_primary_10_1007_s12250_020_00294_3
crossref_primary_10_1016_j_vaccine_2015_10_103
crossref_primary_10_4236_wjv_2014_41006
crossref_primary_10_1016_j_biologicals_2016_01_003
crossref_primary_10_1016_j_jcpa_2020_02_001
crossref_primary_10_1007_s11910_024_01393_4
crossref_primary_10_1080_21645515_2015_1049780
crossref_primary_10_1186_s12929_019_0585_y
crossref_primary_10_1371_journal_ppat_1008857
crossref_primary_10_1016_j_cytogfr_2014_08_002
crossref_primary_10_3390_v13020166
crossref_primary_10_1080_22221751_2020_1729665
crossref_primary_10_3389_fcimb_2022_873304
crossref_primary_10_1111_bpa_12279
crossref_primary_10_1016_j_antiviral_2016_11_008
crossref_primary_10_1128_JVI_01921_19
crossref_primary_10_2807_1560_7917_ES_2018_23_3_17_00310
crossref_primary_10_1093_nsr_nwv038
crossref_primary_10_1371_journal_ppat_1012022
crossref_primary_10_1080_22221751_2021_1934558
crossref_primary_10_2222_jsv_74_153
crossref_primary_10_3390_v9110351
crossref_primary_10_1016_j_coviro_2014_03_007
crossref_primary_10_1021_pr501199h
crossref_primary_10_1186_1423_0127_21_31
crossref_primary_10_1186_s12929_020_0615_9
crossref_primary_10_1016_j_virusres_2017_11_023
crossref_primary_10_1007_s13365_019_00824_0
crossref_primary_10_1016_j_vaccine_2014_08_064
crossref_primary_10_1371_journal_ppat_1007190
crossref_primary_10_1080_22221751_2019_1644142
crossref_primary_10_1128_JVI_01515_21
crossref_primary_10_3389_fmicb_2020_01105
crossref_primary_10_1128_JVI_01818_18
crossref_primary_10_1371_journal_ppat_1007863
crossref_primary_10_1038_emi_2016_56
crossref_primary_10_1016_j_bbrep_2020_100860
crossref_primary_10_2222_jsv_68_71
crossref_primary_10_1038_srep31151
crossref_primary_10_1371_journal_pone_0119173
crossref_primary_10_1371_journal_pone_0193155
crossref_primary_10_7774_cevr_2017_6_1_4
crossref_primary_10_3389_fcimb_2016_00192
crossref_primary_10_1038_s41598_019_56703_5
crossref_primary_10_1128_jvi_00561_22
crossref_primary_10_1371_journal_pone_0147463
crossref_primary_10_3389_fimmu_2020_561758
crossref_primary_10_1128_JVI_00897_21
crossref_primary_10_1128_AAC_00695_20
crossref_primary_10_1128_AAC_01922_19
crossref_primary_10_3389_fpubh_2023_1284337
crossref_primary_10_1016_j_virol_2023_02_002
Cites_doi 10.1128/JVI.78.15.7916-7924.2004
10.1046/j.1442-200x.2004.01868.x
10.1016/j.cell.2007.10.018
10.1016/j.vaccine.2011.06.044
10.1186/1743-422X-9-8
10.1056/NEJM199909233411301
10.1007/BF01310797
10.1128/jvi.68.2.681-688.1994
10.1242/jcs.00075
10.1016/j.vaccine.2011.11.087
10.1128/JVI.00297-11
10.1038/nm1713
10.1099/vir.0.19423-0
10.1128/JVI.06103-11
10.1016/S0022-3476(98)70155-6
10.1016/S0168-1702(99)00019-2
10.1007/BF01317504
10.1128/JVI.00999-09
10.1371/journal.pone.0057591
10.1002/jmv.2209
10.3181/00379727-90-22088
10.1093/clinids/6.Supplement_2.S387
10.1128/JVI.02358-10
10.1038/nm.1992
10.1194/jlr.M300353-JLR200
10.1007/BF00691653
10.1099/vir.0.79883-0
10.1128/JVI.00020-12
10.1371/journal.ppat.1000412
10.1007/BF01314873
10.1006/viro.1995.1030
10.1128/JVI.02070-12
10.1073/pnas.88.3.951
10.1093/infdis/129.3.304
10.1016/j.micinf.2011.04.004
10.1111/j.1365-2990.1982.tb00269.x
10.1007/s00705-011-1198-2
10.1111/j.1365-2990.2011.01247.x
10.1056/NEJM199909233411302
10.1126/science.1068284
10.1097/EDE.0b013e318231d67a
10.1006/viro.1995.1327
10.1016/0092-8674(90)90168-E
10.1097/00006454-198702000-00013
10.1086/520149
10.1093/hmg/ddg062
10.1007/BF01317855
10.1111/j.1651-2227.1987.tb10453.x
10.1186/1743-422X-6-141
10.7883/yoken.52.12
10.1093/oxfordjournals.jbchem.a021820
10.1056/NEJM195807242590408
10.1038/nm.1961
10.1097/nen.0b013e318163a990
ContentType Journal Article
Copyright Copyright National Academy of Sciences
Copyright National Academy of Sciences Sep 3, 2013
Copyright_xml – notice: Copyright National Academy of Sciences
– notice: Copyright National Academy of Sciences Sep 3, 2013
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1217563110
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Virology and AIDS Abstracts

Genetics Abstracts

AGRICOLA

MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Public Health
DocumentTitleAlternate Animal model for EV71 pathogenesis
EISSN 1091-6490
EndPage 14758
ExternalDocumentID PMC3767555
3068665031
23959904
10_1073_pnas_1217563110
110_36_14753
42713186
US201600142367
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Asia-Pacific region
GeographicLocations_xml – name: Asia-Pacific region
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c624t-b1caae190b62f17585a68262dfb8f4637e487af9818d2c572bd706a287f27a233
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:45:20 EDT 2025
Fri Jul 11 05:57:15 EDT 2025
Fri Jul 11 01:09:09 EDT 2025
Thu Jul 10 23:07:40 EDT 2025
Mon Jun 30 07:45:25 EDT 2025
Thu Apr 03 07:04:42 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
Tue Jul 01 03:39:49 EDT 2025
Wed Nov 11 00:30:25 EST 2020
Thu May 29 08:40:50 EDT 2025
Thu Apr 03 09:46:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords neurotropism
viral receptor
picornavirus
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c624t-b1caae190b62f17585a68262dfb8f4637e487af9818d2c572bd706a287f27a233
Notes http://dx.doi.org/10.1073/pnas.1217563110
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Author contributions: K.F., S.Y., and S.K. designed research; K.F., N.N., Y.S., K.C.O., K.T.W., S.Y., M.S., H.S., C.T., and S.K. performed research; K.F., N.N., K.T.W., and S.K. analyzed data; and K.F., N.N., K.T.W., and S.K. wrote the paper.
Edited by Konstantin Chumakov, Center for Biologics Evaluation and Research, Rockville, MD, and accepted by the Editorial Board July 29, 2013 (received for review October 16, 2012)
OpenAccessLink https://www.pnas.org/content/pnas/110/36/14753.full.pdf
PMID 23959904
PQID 1431446727
PQPubID 42026
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_1217563110
pnas_primary_110_36_14753
proquest_miscellaneous_1430395562
proquest_miscellaneous_1448218533
proquest_miscellaneous_1803127595
crossref_primary_10_1073_pnas_1217563110
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3767555
pubmed_primary_23959904
jstor_primary_42713186
proquest_journals_1431446727
fao_agris_US201600142367
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-03
PublicationDateYYYYMMDD 2013-09-03
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_42_2
e_1_3_3_51_2
Bergelson JM (e_1_3_3_21_2) 2010
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
Shindarov LM (e_1_3_3_7_2) 1979; 23
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
Dragunsky E (e_1_3_3_53_2) 2003; 81
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_18_2
  doi: 10.1128/JVI.78.15.7916-7924.2004
– ident: e_1_3_3_57_2
  doi: 10.1046/j.1442-200x.2004.01868.x
– ident: e_1_3_3_30_2
  doi: 10.1016/j.cell.2007.10.018
– ident: e_1_3_3_45_2
  doi: 10.1016/j.vaccine.2011.06.044
– ident: e_1_3_3_40_2
  doi: 10.1186/1743-422X-9-8
– ident: e_1_3_3_3_2
  doi: 10.1056/NEJM199909233411301
– ident: e_1_3_3_49_2
  doi: 10.1007/BF01310797
– ident: e_1_3_3_51_2
  doi: 10.1128/jvi.68.2.681-688.1994
– ident: e_1_3_3_29_2
  doi: 10.1242/jcs.00075
– ident: e_1_3_3_46_2
  doi: 10.1016/j.vaccine.2011.11.087
– ident: e_1_3_3_26_2
  doi: 10.1128/JVI.00297-11
– ident: e_1_3_3_24_2
  doi: 10.1038/nm1713
– ident: e_1_3_3_17_2
  doi: 10.1099/vir.0.19423-0
– ident: e_1_3_3_20_2
  doi: 10.1128/JVI.06103-11
– ident: e_1_3_3_43_2
  doi: 10.1016/S0022-3476(98)70155-6
– ident: e_1_3_3_9_2
  doi: 10.1016/S0168-1702(99)00019-2
– ident: e_1_3_3_16_2
  doi: 10.1007/BF01317504
– ident: e_1_3_3_47_2
  doi: 10.1128/JVI.00999-09
– ident: e_1_3_3_48_2
  doi: 10.1371/journal.pone.0057591
– volume: 81
  start-page: 251
  year: 2003
  ident: e_1_3_3_53_2
  article-title: Transgenic mice as an alternative to monkeys for neurovirulence testing of live oral poliovirus vaccine: Validation by a WHO collaborative study
  publication-title: Bull World Health Organ
– ident: e_1_3_3_14_2
  doi: 10.1002/jmv.2209
– ident: e_1_3_3_58_2
  doi: 10.3181/00379727-90-22088
– ident: e_1_3_3_42_2
  doi: 10.1093/clinids/6.Supplement_2.S387
– ident: e_1_3_3_31_2
  doi: 10.1128/JVI.02358-10
– ident: e_1_3_3_28_2
  doi: 10.1038/nm.1992
– ident: e_1_3_3_36_2
  doi: 10.1194/jlr.M300353-JLR200
– ident: e_1_3_3_12_2
  doi: 10.1007/BF00691653
– ident: e_1_3_3_15_2
  doi: 10.1099/vir.0.79883-0
– ident: e_1_3_3_32_2
  doi: 10.1128/JVI.00020-12
– ident: e_1_3_3_55_2
  doi: 10.1371/journal.ppat.1000412
– ident: e_1_3_3_8_2
  doi: 10.1007/BF01314873
– ident: e_1_3_3_52_2
  doi: 10.1006/viro.1995.1030
– ident: e_1_3_3_33_2
  doi: 10.1128/JVI.02070-12
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.88.3.951
– ident: e_1_3_3_1_2
  doi: 10.1093/infdis/129.3.304
– ident: e_1_3_3_19_2
  doi: 10.1016/j.micinf.2011.04.004
– ident: e_1_3_3_13_2
  doi: 10.1111/j.1365-2990.1982.tb00269.x
– ident: e_1_3_3_37_2
  doi: 10.1007/s00705-011-1198-2
– ident: e_1_3_3_2_2
– ident: e_1_3_3_5_2
  doi: 10.1111/j.1365-2990.2011.01247.x
– ident: e_1_3_3_4_2
  doi: 10.1056/NEJM199909233411302
– ident: e_1_3_3_54_2
  doi: 10.1126/science.1068284
– start-page: 73
  volume-title: The Picornaviruses
  year: 2010
  ident: e_1_3_3_21_2
– ident: e_1_3_3_10_2
  doi: 10.1097/EDE.0b013e318231d67a
– ident: e_1_3_3_50_2
  doi: 10.1006/viro.1995.1327
– volume: 23
  start-page: 284
  year: 1979
  ident: e_1_3_3_7_2
  article-title: Epidemiological, clinical, and pathomorphological characteristics of epidemic poliomyelitis-like disease caused by enterovirus 71
  publication-title: J Hyg Epidemiol Microbiol Immunol
– ident: e_1_3_3_22_2
  doi: 10.1016/0092-8674(90)90168-E
– ident: e_1_3_3_41_2
  doi: 10.1097/00006454-198702000-00013
– ident: e_1_3_3_44_2
  doi: 10.1086/520149
– ident: e_1_3_3_35_2
  doi: 10.1093/hmg/ddg062
– ident: e_1_3_3_11_2
  doi: 10.1007/BF01317855
– ident: e_1_3_3_39_2
  doi: 10.1111/j.1651-2227.1987.tb10453.x
– ident: e_1_3_3_25_2
  doi: 10.1186/1743-422X-6-141
– ident: e_1_3_3_56_2
  doi: 10.7883/yoken.52.12
– ident: e_1_3_3_34_2
  doi: 10.1093/oxfordjournals.jbchem.a021820
– ident: e_1_3_3_38_2
  doi: 10.1056/NEJM195807242590408
– ident: e_1_3_3_27_2
  doi: 10.1038/nm.1961
– ident: e_1_3_3_6_2
  doi: 10.1097/nen.0b013e318163a990
SSID ssj0009580
Score 2.4851148
Snippet Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic...
EV71 infection with severe neurological complications has become a serious public health concern. However, suitable small animal models to study human EV71...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14753
SubjectTerms Animal models
Animals
ataxia (disorder)
Biological Sciences
Blotting, Western
Brain - metabolism
Brain - pathology
Brain - virology
brain stem
Cell Line, Tumor
Central Nervous System Diseases - genetics
Central Nervous System Diseases - metabolism
Central Nervous System Diseases - virology
cerebellum
cerebrum
children
Chlorocebus aethiops
death
Disease models
Disease Models, Animal
encephalitis
Enterovirus
Enterovirus A
Enterovirus A, Human - physiology
Enterovirus Infections - genetics
Enterovirus Infections - metabolism
Enterovirus Infections - virology
Epidemics
ethics
Hand foot and mouth disease
Host-Pathogen Interactions
Humans
hypothalamus
Immunohistochemistry
Infections
Lysosomal Membrane Proteins - genetics
Lysosomal Membrane Proteins - metabolism
Medical ethics
Mice
Mice, Transgenic
monkeys
mortality
neonates
Nervous system diseases
Neurology
Neurons
paralysis
Pathogenesis
Pathology
Public health
Receptors
Receptors, Scavenger - genetics
Receptors, Scavenger - metabolism
Rodents
spinal cord
Spinal Cord - metabolism
Spinal Cord - pathology
Spinal Cord - virology
thalamus
Time Factors
transgenic animals
vaccines
Vero Cells
Virology
virus receptors
Viruses
Title Transgenic mouse model for the study of enterovirus 71 neuropathogenesis
URI https://www.jstor.org/stable/42713186
http://www.pnas.org/content/110/36/14753.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23959904
https://www.proquest.com/docview/1431446727
https://www.proquest.com/docview/1430395562
https://www.proquest.com/docview/1448218533
https://www.proquest.com/docview/1803127595
https://pubmed.ncbi.nlm.nih.gov/PMC3767555
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZouXBBFCgNFGQkDkVRysZ27ORYIdAKiVUlulJvke0kZSWURc320l_fGcd5le0KuES7ieNEns_zcMbfEPKBZUIza7OosKyKhMCFJq0NhCq2KsFh0Jmr1vB9IedL8e0yuRxKybndJRtzam-37iv5H6nCOZAr7pL9B8n2ncIJ-A3yhSNIGI5_J2M0NHB1ZUOM4Mu2rk2fOdh0hNHIu4lLB9c3Taji0HFYYini9RVqulUz9lDPe4vWdPkDi27B8GzYfuJ1QhNG4fnCFzP2iwdYyCGLZnzIrdhx_1hrMrBkot3r3GtNn43awoOPlWAsVEsA7C0q_k-3qmvQL1hjuNYNslyoRPKu2ykH9vIHQyY8COeQcG6PPGYQFLg0zvmYYjltNxz5t-2InBT_dO8JEx9kr9LrLhkVGW6h6bZo437S7MgLuXhGnvrwgZ61WDggj8r6OTnoBpOeeBbxjy_IfAAHdeCgDhwUwEFBqNSBg64rOgIHVTH9AxwvyfLrl4vP88iXzYisZGITmdhqDfNsZiSrYowHtYQgkhWVSSshuSohSNVVBq5awWyimCnUTGoInSumNOP8kOzX67o8IjS2ZZyYuGKSz4RRIhOsUIbDORlLxU1ATruBzK3nlMfSJr9yl9ugeI7DmQ8jH5CT_obfLZ3Kw02PQDK5vgJjl08BEJBDJ66-C8FUDMZJBiRwvfRdQ99c5g6QATnuhJr7OQyPA_9ZCMxGCMj7_jJoWPxspusSxINtZjxLIFDY1UakDF1fvqNNCgaUqSRLAvKqxVL_ogweAH6hCIiaoKxvgCzw0yv16qdjg3d0TEny-uHhekOeDHP_mOxvrm_Kt-BKb8w7N4PuAAR-w4c
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transgenic+mouse+model+for+the+study+of+enterovirus+71+neuropathogenesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.date=2013-09-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=110&rft.issue=36&rft.spage=14753&rft.epage=14758&rft_id=info:doi/10.1073%2Fpnas.1217563110&rft.externalDocID=US201600142367
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F36.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F36.cover.gif