Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles

Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microsph...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 32; no. 34; pp. 8839 - 8847
Main Authors Félix Lanao, Rosa P., Leeuwenburgh, Sander C.G., Wolke, Joop G.C., Jansen, John A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.12.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly ( d, l-lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro. The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix.
AbstractList Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly (d,l-lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro. The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix.
Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly (D,L-lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro. The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix.Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly (D,L-lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro. The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix.
Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly ( d, l-lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro. The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix.
Abstract Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly ( d , l -lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro . The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix.
Author Leeuwenburgh, Sander C.G.
Wolke, Joop G.C.
Jansen, John A.
Félix Lanao, Rosa P.
Author_xml – sequence: 1
  givenname: Rosa P.
  surname: Félix Lanao
  fullname: Félix Lanao, Rosa P.
– sequence: 2
  givenname: Sander C.G.
  surname: Leeuwenburgh
  fullname: Leeuwenburgh, Sander C.G.
– sequence: 3
  givenname: Joop G.C.
  surname: Wolke
  fullname: Wolke, Joop G.C.
– sequence: 4
  givenname: John A.
  surname: Jansen
  fullname: Jansen, John A.
  email: J.Jansen@dent.umcn.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21871661$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9rFDEUxYNU7Lb6FWTwRR-c9d7Mv4wPYlu1CgsK6nPIZO60WWeSMckI_fZm2SpSUPcpBH7ncDjnnrAj6ywx9gRhjYD1i-26M25SkbxRY1hzQFyDWANU99gKRSPyqoXqiK0AS563NfJjdhLCFtIfSv6AHfNEYV3jivXnyTvzFGZnA2XRZYMKMe_pyqve2KvnmbFb0lF1I2VajdosUzZfuzBfpwCZpolsDJl2NipjkyD7tLk8yyajvZuVj0aPFB6y-0NKSo9u31P29d3bLxfv883Hyw8XZ5tc17yMueoKKAVh1SMn5FCWbUV126miLIamLESLoua16AYuurboRSVUIapyAKKOQ1-csqd739m77wuFKCcTNI2jsuSWIFvgRZNqqv5LirYSFRZQJPLZP0lsEDgvsWkS-vgWXbqJejl7Myl_I3-1nYCXeyCVE4Kn4TeCIHfTyq38c1q5m1aCkClzEr--I9YmqmhS816Z8TCLN3sLSiP8MORl0Iaspt74tLHsnTnM5tUdGz2m7dN1fKMbClu3eLvToAxcgvy8O8PdFSICtNBAMjj_u8GhKX4Cn43z9A
CitedBy_id crossref_primary_10_1007_s10856_017_5861_3
crossref_primary_10_1021_acsbiomaterials_4c01521
crossref_primary_10_1590_0104_1428_1490
crossref_primary_10_3389_fbioe_2023_1327517
crossref_primary_10_1002_jbm_a_37827
crossref_primary_10_3390_ijms21103442
crossref_primary_10_1016_j_actbio_2013_03_007
crossref_primary_10_1002_term_1827
crossref_primary_10_1002_adhm_202000349
crossref_primary_10_1002_jbm_a_35641
crossref_primary_10_1016_j_actbio_2023_11_024
crossref_primary_10_1016_j_ijbiomac_2023_129086
crossref_primary_10_1039_D4RA00911H
crossref_primary_10_1002_jbm_a_34677
crossref_primary_10_1002_term_1546
crossref_primary_10_1016_j_actbio_2012_11_009
crossref_primary_10_1590_1678_4324_2021200592
crossref_primary_10_1016_j_jconrel_2017_01_045
crossref_primary_10_3390_bioengineering10101203
crossref_primary_10_1016_j_ijpharm_2020_119322
crossref_primary_10_3390_nano14141196
crossref_primary_10_1517_17425247_2014_944860
crossref_primary_10_1002_jbm_b_34306
crossref_primary_10_1039_C5TB01423A
crossref_primary_10_1080_00914037_2019_1706507
crossref_primary_10_1016_j_mtcomm_2020_100901
crossref_primary_10_1080_21870764_2022_2123514
crossref_primary_10_1016_j_jphotobiol_2017_06_002
crossref_primary_10_1002_jbm_b_32975
crossref_primary_10_1177_0885328216669474
crossref_primary_10_1111_cid_12358
crossref_primary_10_1016_j_actbio_2012_05_007
crossref_primary_10_4236_jbnb_2015_61002
crossref_primary_10_1088_1748_6041_10_6_065016
crossref_primary_10_1016_j_matdes_2024_113463
crossref_primary_10_1016_j_ceramint_2015_12_074
crossref_primary_10_1016_j_jmbbm_2023_105805
crossref_primary_10_1002_adfm_202400585
crossref_primary_10_1177_08853282241277477
crossref_primary_10_1002_adfm_202401953
crossref_primary_10_1089_ten_tea_2013_0670
crossref_primary_10_1016_j_jconrel_2014_04_036
crossref_primary_10_1016_j_actbio_2012_05_033
crossref_primary_10_1007_s00223_016_0202_y
crossref_primary_10_1002_jbm_b_33336
crossref_primary_10_1016_j_msec_2018_09_039
crossref_primary_10_1088_1748_605X_ab8835
crossref_primary_10_1002_jbm_a_34531
crossref_primary_10_1039_C4TB01634C
crossref_primary_10_1002_jbm_a_35584
crossref_primary_10_1016_j_msec_2014_11_049
crossref_primary_10_1016_j_colsurfb_2011_11_037
crossref_primary_10_1038_s41598_018_33692_5
crossref_primary_10_1002_mabi_201600141
crossref_primary_10_1016_j_bone_2013_05_017
crossref_primary_10_1016_j_cclet_2024_109684
crossref_primary_10_1089_ten_tec_2022_0012
crossref_primary_10_1002_nbm_3859
crossref_primary_10_1016_j_msec_2014_12_075
crossref_primary_10_3390_ma14112858
crossref_primary_10_1088_1361_6528_ac5017
crossref_primary_10_1002_jbm_a_36686
crossref_primary_10_1088_1748_605X_12_1_015009
crossref_primary_10_1002_term_1637
crossref_primary_10_1016_j_actbio_2018_07_054
crossref_primary_10_1016_j_jddst_2016_10_007
crossref_primary_10_1038_s41578_020_0204_2
crossref_primary_10_1021_acsomega_1c00031
crossref_primary_10_1002_adhm_201701035
crossref_primary_10_1177_0885328215577892
crossref_primary_10_1021_acsami_6b01160
crossref_primary_10_3390_biom13010094
crossref_primary_10_1002_adhm_201600532
crossref_primary_10_1016_j_actbio_2013_12_018
crossref_primary_10_1016_j_bioactmat_2022_08_009
crossref_primary_10_1002_adtp_202400400
crossref_primary_10_3892_etm_2019_8121
crossref_primary_10_1038_boneres_2017_56
crossref_primary_10_1016_j_actbio_2021_03_067
crossref_primary_10_1016_j_xphs_2016_05_002
crossref_primary_10_3390_ma5101841
crossref_primary_10_1016_j_actbio_2012_04_007
crossref_primary_10_1016_j_jmbbm_2017_03_027
crossref_primary_10_1016_j_actbio_2020_10_013
crossref_primary_10_1089_ten_tec_2011_0470
crossref_primary_10_2217_nnm_14_109
crossref_primary_10_1007_s10237_016_0827_9
crossref_primary_10_1038_srep11194
crossref_primary_10_1021_acsami_3c16545
crossref_primary_10_1089_ten_tec_2015_0016
crossref_primary_10_1002_jbm_a_35298
crossref_primary_10_3390_jfb14030134
crossref_primary_10_3390_pr12050944
crossref_primary_10_1016_j_ceramint_2019_12_272
crossref_primary_10_1016_j_jconrel_2012_07_007
crossref_primary_10_1002_term_1840
crossref_primary_10_1177_0885328218812173
crossref_primary_10_1016_j_spinee_2016_11_006
crossref_primary_10_1089_ten_tea_2012_0427
crossref_primary_10_1111_clr_12435
crossref_primary_10_3389_fbioe_2020_00754
crossref_primary_10_1016_j_jconrel_2015_08_004
crossref_primary_10_1088_1757_899X_532_1_012026
crossref_primary_10_1002_jbm_b_33536
crossref_primary_10_1016_j_jobe_2022_105719
crossref_primary_10_1002_jbm_b_33018
crossref_primary_10_1089_ten_tec_2023_0025
crossref_primary_10_1002_jbm_b_33654
crossref_primary_10_1002_jbm_b_32960
crossref_primary_10_1002_jbm_a_34694
crossref_primary_10_1016_j_ceramint_2021_07_086
crossref_primary_10_1002_term_2535
crossref_primary_10_1088_1748_605X_ab5f9c
crossref_primary_10_1016_j_ijbiomac_2019_05_090
crossref_primary_10_1016_j_msec_2015_09_081
crossref_primary_10_1039_C9TB02901J
crossref_primary_10_2497_jjspm_70_242
crossref_primary_10_1016_j_colsurfb_2014_12_003
crossref_primary_10_2320_matertrans_MT_Y2023006
crossref_primary_10_1089_ten_teb_2012_0443
crossref_primary_10_1002_jbm_b_33801
crossref_primary_10_1002_adhm_201801325
crossref_primary_10_1016_j_jddst_2020_101637
crossref_primary_10_1021_acsbiomaterials_9b00226
crossref_primary_10_1039_C4RA07522F
crossref_primary_10_1016_j_jconrel_2014_03_044
crossref_primary_10_1002_jbm_a_36245
crossref_primary_10_1002_jbm_a_34623
Cites_doi 10.1016/0142-9612(95)93575-X
10.1016/j.biomaterials.2009.11.005
10.1016/j.actbio.2011.05.036
10.1016/j.biomaterials.2005.03.049
10.1097/01.mnh.0000133975.32559.6b
10.1016/j.actbio.2010.04.015
10.1016/j.biomaterials.2006.03.001
10.1016/j.biomaterials.2003.10.079
10.1016/j.actbio.2008.05.009
10.1016/j.jconrel.2007.05.034
10.1016/j.biomaterials.2007.05.015
10.1016/j.bone.2007.08.044
10.1111/j.1600-0501.2011.02218.x
10.1016/S0142-9612(99)00002-2
10.1002/jab.770050208
10.1002/jbm.a.30886
10.1016/j.biomaterials.2004.09.036
10.1002/jbm.a.31831
10.1163/156856297X00272
10.1089/ten.2006.12.789
10.1016/0142-9612(91)90066-J
10.1079/PNS2003268
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Elsevier Ltd
Copyright © 2011 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2011 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7QO
7QP
8FD
FR3
P64
DOI 10.1016/j.biomaterials.2011.08.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE

Engineering Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 8847
ExternalDocumentID 21871661
10_1016_j_biomaterials_2011_08_005
S0142961211009070
1_s2_0_S0142961211009070
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7QO
7QP
8FD
FR3
P64
ID FETCH-LOGICAL-c624t-ab3048e15d12e1204495e69ba343f74389186268bf28b93d858a3854f0eeb20d3
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Fri Jul 11 01:55:15 EDT 2025
Thu Jul 10 18:57:05 EDT 2025
Fri Jul 11 04:37:48 EDT 2025
Mon Jul 21 06:02:10 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Tue Jul 01 03:47:30 EDT 2025
Fri Feb 23 02:23:03 EST 2024
Sun Feb 23 10:18:52 EST 2025
Tue Aug 26 17:17:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords Microspheres
Calcium phosphate cement
PLGA
Bone
In vivo
Language English
License Copyright © 2011 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c624t-ab3048e15d12e1204495e69ba343f74389186268bf28b93d858a3854f0eeb20d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21871661
PQID 1710224177
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_902370055
proquest_miscellaneous_895851303
proquest_miscellaneous_1710224177
pubmed_primary_21871661
crossref_primary_10_1016_j_biomaterials_2011_08_005
crossref_citationtrail_10_1016_j_biomaterials_2011_08_005
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2011_08_005
elsevier_clinicalkeyesjournals_1_s2_0_S0142961211009070
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2011_08_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xu, Weir, Burguera, Fraser (bib3) 2006; 27
Zolnik, Burgess (bib20) 2007; 122
Gbureck, Dembski, Thull, Barralet (bib1) 2005; 26
Perrin, English (bib16) 1997
Wang, Wu (bib21) 1997; 9
Arnett (bib25) 2003; 62
Félix Lanao, Leeuwenburgh, Wolke, Jansen (bib10) 2011; 7
Kronenthal, Oser, Martin (bib15) 1975
Winkler, Hoenig, Gildenhaar, Berger, Fritsch, Janssen (bib23) 2010; 6
Park (bib11) 1995; 16
Ginebra, Delgado, Harr, Almirall, Del Valle, Planell (bib4) 2007; 80
Wei, Jia, Wu, Wei, Zhou, Zhang (bib5) 2010; 31
Bohner, Gbureck, Barralet (bib2) 2005; 26
Xu, Burguera, Carey (bib6) 2007; 28
Schilling, Linhart, Filke, Gebauer, Schinke, Rueger (bib22) 2004; 25
Taylor, Daniels, Andriano, Heller (bib18) 1994; 5
Krieger, Frick, Bushinsky (bib13) 2004; 13
Tracy, Ward, Firouzabadian, Wang, Dong, Qian (bib12) 1999; 20
van de Watering FC, van den Beucken JJ, Walboomers XF, Jansen JA. Calcium phosphate/poly(d, l-lactic-co-glycolic acid) composite bone substitute materials: evaluation of temporal degradation and bone ingrowth in a rat critical-sized cranial defect. Clin Oral Implants Res 2011; in press.
Link, van den Dolder, van den Beucken, Cuijpers, Wolke, Mikos (bib8) 2008; 87
Le Geros (bib17) 1991; 15
Ruhe, Hedberg-Dirk, Padron, Spauwen, Jansen, Mikos (bib7) 2006; 12
Qi, Ye, Wang (bib9) 2008; 4
Klompmaker, Jansen, Veth, de Groot, Nijenhuis, Pennings (bib19) 1991; 12
Pereverzev, Komarova, Korcok, Armstrong, Tremblay, Dixon (bib24) 2008; 42
10.1016/j.biomaterials.2011.08.005_bib14
Taylor (10.1016/j.biomaterials.2011.08.005_bib18) 1994; 5
Park (10.1016/j.biomaterials.2011.08.005_bib11) 1995; 16
Winkler (10.1016/j.biomaterials.2011.08.005_bib23) 2010; 6
Ginebra (10.1016/j.biomaterials.2011.08.005_bib4) 2007; 80
Tracy (10.1016/j.biomaterials.2011.08.005_bib12) 1999; 20
Xu (10.1016/j.biomaterials.2011.08.005_bib6) 2007; 28
Arnett (10.1016/j.biomaterials.2011.08.005_bib25) 2003; 62
Le Geros (10.1016/j.biomaterials.2011.08.005_bib17) 1991; 15
Schilling (10.1016/j.biomaterials.2011.08.005_bib22) 2004; 25
Wang (10.1016/j.biomaterials.2011.08.005_bib21) 1997; 9
Xu (10.1016/j.biomaterials.2011.08.005_bib3) 2006; 27
Ruhe (10.1016/j.biomaterials.2011.08.005_bib7) 2006; 12
Gbureck (10.1016/j.biomaterials.2011.08.005_bib1) 2005; 26
Félix Lanao (10.1016/j.biomaterials.2011.08.005_bib10) 2011; 7
Perrin (10.1016/j.biomaterials.2011.08.005_bib16) 1997
Kronenthal (10.1016/j.biomaterials.2011.08.005_bib15) 1975
Zolnik (10.1016/j.biomaterials.2011.08.005_bib20) 2007; 122
Krieger (10.1016/j.biomaterials.2011.08.005_bib13) 2004; 13
Qi (10.1016/j.biomaterials.2011.08.005_bib9) 2008; 4
Link (10.1016/j.biomaterials.2011.08.005_bib8) 2008; 87
Wei (10.1016/j.biomaterials.2011.08.005_bib5) 2010; 31
Klompmaker (10.1016/j.biomaterials.2011.08.005_bib19) 1991; 12
Pereverzev (10.1016/j.biomaterials.2011.08.005_bib24) 2008; 42
Bohner (10.1016/j.biomaterials.2011.08.005_bib2) 2005; 26
References_xml – volume: 6
  start-page: 4127
  year: 2010
  end-page: 4135
  ident: bib23
  article-title: Volumetric analysis of osteoclastic bioresorption of calcium phosphate ceramics with different solubilities
  publication-title: Acta Biomater
– volume: 80
  start-page: 351
  year: 2007
  end-page: 361
  ident: bib4
  article-title: Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam
  publication-title: J Biomed Mater Res A
– volume: 62
  start-page: 511
  year: 2003
  end-page: 520
  ident: bib25
  article-title: Regulation of bone cell function by acid-base balance
  publication-title: Proc Nutr Soc
– volume: 31
  start-page: 1260
  year: 2010
  end-page: 1269
  ident: bib5
  article-title: Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration
  publication-title: Biomaterials
– reference: van de Watering FC, van den Beucken JJ, Walboomers XF, Jansen JA. Calcium phosphate/poly(d, l-lactic-co-glycolic acid) composite bone substitute materials: evaluation of temporal degradation and bone ingrowth in a rat critical-sized cranial defect. Clin Oral Implants Res 2011; in press.
– volume: 12
  start-page: 810
  year: 1991
  end-page: 816
  ident: bib19
  article-title: Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs
  publication-title: Biomaterials
– volume: 42
  start-page: 150
  year: 2008
  end-page: 161
  ident: bib24
  article-title: Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway
  publication-title: Bone
– volume: 16
  start-page: 1123
  year: 1995
  end-page: 1130
  ident: bib11
  article-title: Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition
  publication-title: Biomaterials
– volume: 26
  start-page: 6423
  year: 2005
  end-page: 6429
  ident: bib2
  article-title: Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment
  publication-title: Biomaterials
– volume: 87
  start-page: 760
  year: 2008
  end-page: 769
  ident: bib8
  article-title: Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites
  publication-title: J Biomed Mater Res A
– volume: 25
  start-page: 3963
  year: 2004
  end-page: 3972
  ident: bib22
  article-title: Resorbability of bone substitute biomaterials by human osteoclasts
  publication-title: Biomaterials
– year: 1997
  ident: bib16
  article-title: “Polyglycolide and polylactide” handbook of biodegradable polymers
– volume: 20
  start-page: 1057
  year: 1999
  end-page: 1062
  ident: bib12
  article-title: Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro
  publication-title: Biomaterials
– volume: 9
  start-page: 75
  year: 1997
  end-page: 87
  ident: bib21
  article-title: Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid oligomers: part II. Biodegradation and drug delivery application
  publication-title: J Biomater Sci Polym Ed
– volume: 12
  start-page: 789
  year: 2006
  end-page: 800
  ident: bib7
  article-title: Porous poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects
  publication-title: Tissue Eng
– volume: 7
  start-page: 3459
  year: 2011
  end-page: 3468
  ident: bib10
  article-title: In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres
  publication-title: Acta Biomater
– volume: 4
  start-page: 1837
  year: 2008
  end-page: 1845
  ident: bib9
  article-title: Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres
  publication-title: Acta Biomater
– volume: 13
  start-page: 423
  year: 2004
  end-page: 436
  ident: bib13
  article-title: Mechanism of acid-induced bone resorption
  publication-title: Curr Opin Nephrol Hypertens
– volume: 28
  start-page: 3786
  year: 2007
  end-page: 3796
  ident: bib6
  article-title: Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures
  publication-title: Biomaterials
– volume: 122
  start-page: 338
  year: 2007
  end-page: 344
  ident: bib20
  article-title: Effect of acidic pH on PLGA microsphere degradation and release
  publication-title: J Control Release
– volume: 15
  start-page: 1
  year: 1991
  end-page: 201
  ident: bib17
  article-title: Calcium phosphates in oral biology and medicine
  publication-title: Monogr Oral Sci
– volume: 5
  start-page: 151
  year: 1994
  end-page: 157
  ident: bib18
  article-title: Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products
  publication-title: J Appl Biomater
– volume: 26
  start-page: 3691
  year: 2005
  end-page: 3697
  ident: bib1
  article-title: Factors influencing calcium phosphate cement shelf-life
  publication-title: Biomaterials
– volume: 27
  start-page: 4279
  year: 2006
  end-page: 4287
  ident: bib3
  article-title: Injectable and macroporous calcium phosphate cement scaffold
  publication-title: Biomaterials
– year: 1975
  ident: bib15
  article-title: Biodegradable polymers in medicine and surgery
– volume: 16
  start-page: 1123
  year: 1995
  ident: 10.1016/j.biomaterials.2011.08.005_bib11
  article-title: Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(95)93575-X
– volume: 31
  start-page: 1260
  issue: 6
  year: 2010
  ident: 10.1016/j.biomaterials.2011.08.005_bib5
  article-title: Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.005
– volume: 7
  start-page: 3459
  year: 2011
  ident: 10.1016/j.biomaterials.2011.08.005_bib10
  article-title: In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2011.05.036
– volume: 26
  start-page: 6423
  year: 2005
  ident: 10.1016/j.biomaterials.2011.08.005_bib2
  article-title: Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.03.049
– volume: 13
  start-page: 423
  year: 2004
  ident: 10.1016/j.biomaterials.2011.08.005_bib13
  article-title: Mechanism of acid-induced bone resorption
  publication-title: Curr Opin Nephrol Hypertens
  doi: 10.1097/01.mnh.0000133975.32559.6b
– volume: 15
  start-page: 1
  year: 1991
  ident: 10.1016/j.biomaterials.2011.08.005_bib17
  article-title: Calcium phosphates in oral biology and medicine
  publication-title: Monogr Oral Sci
– volume: 6
  start-page: 4127
  year: 2010
  ident: 10.1016/j.biomaterials.2011.08.005_bib23
  article-title: Volumetric analysis of osteoclastic bioresorption of calcium phosphate ceramics with different solubilities
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2010.04.015
– volume: 27
  start-page: 4279
  year: 2006
  ident: 10.1016/j.biomaterials.2011.08.005_bib3
  article-title: Injectable and macroporous calcium phosphate cement scaffold
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.03.001
– year: 1997
  ident: 10.1016/j.biomaterials.2011.08.005_bib16
– volume: 25
  start-page: 3963
  year: 2004
  ident: 10.1016/j.biomaterials.2011.08.005_bib22
  article-title: Resorbability of bone substitute biomaterials by human osteoclasts
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.10.079
– volume: 4
  start-page: 1837
  issue: 6
  year: 2008
  ident: 10.1016/j.biomaterials.2011.08.005_bib9
  article-title: Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2008.05.009
– volume: 122
  start-page: 338
  year: 2007
  ident: 10.1016/j.biomaterials.2011.08.005_bib20
  article-title: Effect of acidic pH on PLGA microsphere degradation and release
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2007.05.034
– volume: 28
  start-page: 3786
  issue: 26
  year: 2007
  ident: 10.1016/j.biomaterials.2011.08.005_bib6
  article-title: Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.05.015
– volume: 42
  start-page: 150
  year: 2008
  ident: 10.1016/j.biomaterials.2011.08.005_bib24
  article-title: Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway
  publication-title: Bone
  doi: 10.1016/j.bone.2007.08.044
– ident: 10.1016/j.biomaterials.2011.08.005_bib14
  doi: 10.1111/j.1600-0501.2011.02218.x
– volume: 20
  start-page: 1057
  year: 1999
  ident: 10.1016/j.biomaterials.2011.08.005_bib12
  article-title: Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00002-2
– volume: 5
  start-page: 151
  year: 1994
  ident: 10.1016/j.biomaterials.2011.08.005_bib18
  article-title: Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products
  publication-title: J Appl Biomater
  doi: 10.1002/jab.770050208
– volume: 80
  start-page: 351
  year: 2007
  ident: 10.1016/j.biomaterials.2011.08.005_bib4
  article-title: Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.30886
– volume: 26
  start-page: 3691
  issue: 17
  year: 2005
  ident: 10.1016/j.biomaterials.2011.08.005_bib1
  article-title: Factors influencing calcium phosphate cement shelf-life
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.09.036
– volume: 87
  start-page: 760
  year: 2008
  ident: 10.1016/j.biomaterials.2011.08.005_bib8
  article-title: Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.31831
– volume: 9
  start-page: 75
  year: 1997
  ident: 10.1016/j.biomaterials.2011.08.005_bib21
  article-title: Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid oligomers: part II. Biodegradation and drug delivery application
  publication-title: J Biomater Sci Polym Ed
  doi: 10.1163/156856297X00272
– volume: 12
  start-page: 789
  year: 2006
  ident: 10.1016/j.biomaterials.2011.08.005_bib7
  article-title: Porous poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects
  publication-title: Tissue Eng
  doi: 10.1089/ten.2006.12.789
– year: 1975
  ident: 10.1016/j.biomaterials.2011.08.005_bib15
– volume: 12
  start-page: 810
  year: 1991
  ident: 10.1016/j.biomaterials.2011.08.005_bib19
  article-title: Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(91)90066-J
– volume: 62
  start-page: 511
  year: 2003
  ident: 10.1016/j.biomaterials.2011.08.005_bib25
  article-title: Regulation of bone cell function by acid-base balance
  publication-title: Proc Nutr Soc
  doi: 10.1079/PNS2003268
SSID ssj0014042
Score 2.4261556
Snippet Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but...
Abstract Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8839
SubjectTerms Advanced Basic Science
Animals
biocompatibility
Biocompatible Materials - administration & dosage
Biocompatible Materials - metabolism
biodegradability
Bone
Bone Cements - metabolism
Bone Regeneration
Calcium phosphate cement
calcium phosphates
Calcium Phosphates - administration & dosage
Calcium Phosphates - metabolism
Dentistry
Female
Femur - physiology
Injections
In vivo
Lactic Acid - administration & dosage
Lactic Acid - metabolism
Microspheres
PLGA
Polyglycolic Acid - administration & dosage
Polyglycolic Acid - metabolism
Porosity
Rabbits
Title Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961211009070
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961211009070
https://dx.doi.org/10.1016/j.biomaterials.2011.08.005
https://www.ncbi.nlm.nih.gov/pubmed/21871661
https://www.proquest.com/docview/1710224177
https://www.proquest.com/docview/895851303
https://www.proquest.com/docview/902370055
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hKqH2ULX0g7QFuVKPTTd2krWjqocFFZa2oB6KxM2yE0csgmxEsld-OzNOsqUqK63ENfEojmdsz9hv3gB8EkVSGnwZWllggMJLXAeL0lLM45SVxERJ-c4np-PpWfLjPD3fgIMhF4Zglf3a363pfrXun4z60RzVs9mIYEkiIwIsjn4CWi5lsCeSrPzL7RLmQewxooMxipBaD8SjHuNFKe6m7VT9l86TStk9vEmtckL9ZnT4Ap73XiSbdB19CRuu2oZn97gFt2HrpL81fwXF_rxy7KZDwzrWzllpmjYsiCeCtq7PbFbRcQxlUTHUWT5bXLP6Yt7UF9htlvsTxIYRqr2rJ8F-_zqasGvC8tUDsu41nB1-_3MwDfvqCmE-FkkbGhvj7HU8LbhwXEQJhkpunFkTJ3EpqSg6p2hH2VIom8WFSpWJVZqUkcNoPCriN7BZYfd3gKEfkMsozY1QPLFRZnwxIlmmJlfOqjiAbBhOnffU41QB40oPGLNLfV8VmlShqTxmlAYQL2XrjoBjLamvg9b0kGKKi6LGfWItafmQtGv6-d1orhuhI_2fDQbwbSn5jxmv_eWPg4lpnOd0eWMqN1_gF6Un_-NSBsBWtFEZXfKiU7K6SYY-miTitQDedha8HFV09jB4HvN3j_yH9_DUH7x7zM8H2GxvFm4XPbfW7vmpuQdPJsc_p6d3yvZEqQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4ICiv8DQS3AgbO8naEeqhPMqW7lYcWqk3104cdas2GzVZIS78Kf4gM3ksRXSllVCvSWbjHU_GM_Y33wC8FlmUG7zpW5lhgsJz9INZbinnccpKYqKkeufJ3nB0EH09jA_X4FdfC0Owys73tz698dbdlUGnzUE5nQ4IliQSIsDiGCeg5XbIyl334zvmbdXmziec5DdCbH_e_zjyu9YCfjoUUe0bi2m8cjzOuHBcBBHmCW6YWBNGYS6pIzinUF_ZXCibhJmKlQlVHOWBw1Q0yEL83WtwPUJ3QW0T3v1c4EqIrka0uEnh0_B6ptMGVEY19aZubesPfyj1zrt8VVwW9Tar3_ZduNOFrWyr1cw9WHPFBty-QGa4ATcm3TH9fcg-zArHzlv4rWP1jOWmqv2MiClorXzLpgXt_1DZFkMjSafzM1Yez6ryGIfN0mbLsmIEo28bWLBv4y9b7IzAg2UP5XsAB1ei84ewXuDwHwPDwCOVQZwaoXhkg8Q03Y9kHptUOatCD5JenTrtuM6p5cap7kFtJ_riVGiaCk39OIPYg3AhW7aMHytJve9nTfc1reiFNS5MK0nLy6Rd1TmUSnNdCR3of4zeg82F5F_fzcpvftWbmEbHQqdFpnCzOb5RNmyDXEoP2JJnVEKnyhgFLX8kwaBQEtObB49aC15oFaNLzNaH_Ml__oeXcHO0Pxnr8c7e7lO41ez6N4CjZ7Ben8_dcwwba_ui-UwZHF21X_gNS89-Pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bone+response+to+fast-degrading%2C+injectable+calcium+phosphate+cements+containing+PLGA+microparticles&rft.jtitle=Biomaterials&rft.au=F%C3%A9lix+Lanao%2C+Rosa+P&rft.au=Leeuwenburgh%2C+Sander+C+G&rft.au=Wolke%2C+Joop+G+C&rft.au=Jansen%2C+John+A&rft.date=2011-12-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=32&rft.issue=34&rft.spage=8839&rft_id=info:doi/10.1016%2Fj.biomaterials.2011.08.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961211X00285%2Fcov150h.gif