Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles
Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microsph...
Saved in:
Published in | Biomaterials Vol. 32; no. 34; pp. 8839 - 8847 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.12.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly (
d,
l-lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity
in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation
in vitro. The current study has investigated the
in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix. |
---|---|
AbstractList | Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly (d,l-lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro. The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix. Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly (D,L-lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro. The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix.Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly (D,L-lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro. The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix. Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly ( d, l-lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro. The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix. Abstract Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly ( d , l -lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro . The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix. |
Author | Leeuwenburgh, Sander C.G. Wolke, Joop G.C. Jansen, John A. Félix Lanao, Rosa P. |
Author_xml | – sequence: 1 givenname: Rosa P. surname: Félix Lanao fullname: Félix Lanao, Rosa P. – sequence: 2 givenname: Sander C.G. surname: Leeuwenburgh fullname: Leeuwenburgh, Sander C.G. – sequence: 3 givenname: Joop G.C. surname: Wolke fullname: Wolke, Joop G.C. – sequence: 4 givenname: John A. surname: Jansen fullname: Jansen, John A. email: J.Jansen@dent.umcn.nl |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21871661$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl9rFDEUxYNU7Lb6FWTwRR-c9d7Mv4wPYlu1CgsK6nPIZO60WWeSMckI_fZm2SpSUPcpBH7ncDjnnrAj6ywx9gRhjYD1i-26M25SkbxRY1hzQFyDWANU99gKRSPyqoXqiK0AS563NfJjdhLCFtIfSv6AHfNEYV3jivXnyTvzFGZnA2XRZYMKMe_pyqve2KvnmbFb0lF1I2VajdosUzZfuzBfpwCZpolsDJl2NipjkyD7tLk8yyajvZuVj0aPFB6y-0NKSo9u31P29d3bLxfv883Hyw8XZ5tc17yMueoKKAVh1SMn5FCWbUV126miLIamLESLoua16AYuurboRSVUIapyAKKOQ1-csqd739m77wuFKCcTNI2jsuSWIFvgRZNqqv5LirYSFRZQJPLZP0lsEDgvsWkS-vgWXbqJejl7Myl_I3-1nYCXeyCVE4Kn4TeCIHfTyq38c1q5m1aCkClzEr--I9YmqmhS816Z8TCLN3sLSiP8MORl0Iaspt74tLHsnTnM5tUdGz2m7dN1fKMbClu3eLvToAxcgvy8O8PdFSICtNBAMjj_u8GhKX4Cn43z9A |
CitedBy_id | crossref_primary_10_1007_s10856_017_5861_3 crossref_primary_10_1021_acsbiomaterials_4c01521 crossref_primary_10_1590_0104_1428_1490 crossref_primary_10_3389_fbioe_2023_1327517 crossref_primary_10_1002_jbm_a_37827 crossref_primary_10_3390_ijms21103442 crossref_primary_10_1016_j_actbio_2013_03_007 crossref_primary_10_1002_term_1827 crossref_primary_10_1002_adhm_202000349 crossref_primary_10_1002_jbm_a_35641 crossref_primary_10_1016_j_actbio_2023_11_024 crossref_primary_10_1016_j_ijbiomac_2023_129086 crossref_primary_10_1039_D4RA00911H crossref_primary_10_1002_jbm_a_34677 crossref_primary_10_1002_term_1546 crossref_primary_10_1016_j_actbio_2012_11_009 crossref_primary_10_1590_1678_4324_2021200592 crossref_primary_10_1016_j_jconrel_2017_01_045 crossref_primary_10_3390_bioengineering10101203 crossref_primary_10_1016_j_ijpharm_2020_119322 crossref_primary_10_3390_nano14141196 crossref_primary_10_1517_17425247_2014_944860 crossref_primary_10_1002_jbm_b_34306 crossref_primary_10_1039_C5TB01423A crossref_primary_10_1080_00914037_2019_1706507 crossref_primary_10_1016_j_mtcomm_2020_100901 crossref_primary_10_1080_21870764_2022_2123514 crossref_primary_10_1016_j_jphotobiol_2017_06_002 crossref_primary_10_1002_jbm_b_32975 crossref_primary_10_1177_0885328216669474 crossref_primary_10_1111_cid_12358 crossref_primary_10_1016_j_actbio_2012_05_007 crossref_primary_10_4236_jbnb_2015_61002 crossref_primary_10_1088_1748_6041_10_6_065016 crossref_primary_10_1016_j_matdes_2024_113463 crossref_primary_10_1016_j_ceramint_2015_12_074 crossref_primary_10_1016_j_jmbbm_2023_105805 crossref_primary_10_1002_adfm_202400585 crossref_primary_10_1177_08853282241277477 crossref_primary_10_1002_adfm_202401953 crossref_primary_10_1089_ten_tea_2013_0670 crossref_primary_10_1016_j_jconrel_2014_04_036 crossref_primary_10_1016_j_actbio_2012_05_033 crossref_primary_10_1007_s00223_016_0202_y crossref_primary_10_1002_jbm_b_33336 crossref_primary_10_1016_j_msec_2018_09_039 crossref_primary_10_1088_1748_605X_ab8835 crossref_primary_10_1002_jbm_a_34531 crossref_primary_10_1039_C4TB01634C crossref_primary_10_1002_jbm_a_35584 crossref_primary_10_1016_j_msec_2014_11_049 crossref_primary_10_1016_j_colsurfb_2011_11_037 crossref_primary_10_1038_s41598_018_33692_5 crossref_primary_10_1002_mabi_201600141 crossref_primary_10_1016_j_bone_2013_05_017 crossref_primary_10_1016_j_cclet_2024_109684 crossref_primary_10_1089_ten_tec_2022_0012 crossref_primary_10_1002_nbm_3859 crossref_primary_10_1016_j_msec_2014_12_075 crossref_primary_10_3390_ma14112858 crossref_primary_10_1088_1361_6528_ac5017 crossref_primary_10_1002_jbm_a_36686 crossref_primary_10_1088_1748_605X_12_1_015009 crossref_primary_10_1002_term_1637 crossref_primary_10_1016_j_actbio_2018_07_054 crossref_primary_10_1016_j_jddst_2016_10_007 crossref_primary_10_1038_s41578_020_0204_2 crossref_primary_10_1021_acsomega_1c00031 crossref_primary_10_1002_adhm_201701035 crossref_primary_10_1177_0885328215577892 crossref_primary_10_1021_acsami_6b01160 crossref_primary_10_3390_biom13010094 crossref_primary_10_1002_adhm_201600532 crossref_primary_10_1016_j_actbio_2013_12_018 crossref_primary_10_1016_j_bioactmat_2022_08_009 crossref_primary_10_1002_adtp_202400400 crossref_primary_10_3892_etm_2019_8121 crossref_primary_10_1038_boneres_2017_56 crossref_primary_10_1016_j_actbio_2021_03_067 crossref_primary_10_1016_j_xphs_2016_05_002 crossref_primary_10_3390_ma5101841 crossref_primary_10_1016_j_actbio_2012_04_007 crossref_primary_10_1016_j_jmbbm_2017_03_027 crossref_primary_10_1016_j_actbio_2020_10_013 crossref_primary_10_1089_ten_tec_2011_0470 crossref_primary_10_2217_nnm_14_109 crossref_primary_10_1007_s10237_016_0827_9 crossref_primary_10_1038_srep11194 crossref_primary_10_1021_acsami_3c16545 crossref_primary_10_1089_ten_tec_2015_0016 crossref_primary_10_1002_jbm_a_35298 crossref_primary_10_3390_jfb14030134 crossref_primary_10_3390_pr12050944 crossref_primary_10_1016_j_ceramint_2019_12_272 crossref_primary_10_1016_j_jconrel_2012_07_007 crossref_primary_10_1002_term_1840 crossref_primary_10_1177_0885328218812173 crossref_primary_10_1016_j_spinee_2016_11_006 crossref_primary_10_1089_ten_tea_2012_0427 crossref_primary_10_1111_clr_12435 crossref_primary_10_3389_fbioe_2020_00754 crossref_primary_10_1016_j_jconrel_2015_08_004 crossref_primary_10_1088_1757_899X_532_1_012026 crossref_primary_10_1002_jbm_b_33536 crossref_primary_10_1016_j_jobe_2022_105719 crossref_primary_10_1002_jbm_b_33018 crossref_primary_10_1089_ten_tec_2023_0025 crossref_primary_10_1002_jbm_b_33654 crossref_primary_10_1002_jbm_b_32960 crossref_primary_10_1002_jbm_a_34694 crossref_primary_10_1016_j_ceramint_2021_07_086 crossref_primary_10_1002_term_2535 crossref_primary_10_1088_1748_605X_ab5f9c crossref_primary_10_1016_j_ijbiomac_2019_05_090 crossref_primary_10_1016_j_msec_2015_09_081 crossref_primary_10_1039_C9TB02901J crossref_primary_10_2497_jjspm_70_242 crossref_primary_10_1016_j_colsurfb_2014_12_003 crossref_primary_10_2320_matertrans_MT_Y2023006 crossref_primary_10_1089_ten_teb_2012_0443 crossref_primary_10_1002_jbm_b_33801 crossref_primary_10_1002_adhm_201801325 crossref_primary_10_1016_j_jddst_2020_101637 crossref_primary_10_1021_acsbiomaterials_9b00226 crossref_primary_10_1039_C4RA07522F crossref_primary_10_1016_j_jconrel_2014_03_044 crossref_primary_10_1002_jbm_a_36245 crossref_primary_10_1002_jbm_a_34623 |
Cites_doi | 10.1016/0142-9612(95)93575-X 10.1016/j.biomaterials.2009.11.005 10.1016/j.actbio.2011.05.036 10.1016/j.biomaterials.2005.03.049 10.1097/01.mnh.0000133975.32559.6b 10.1016/j.actbio.2010.04.015 10.1016/j.biomaterials.2006.03.001 10.1016/j.biomaterials.2003.10.079 10.1016/j.actbio.2008.05.009 10.1016/j.jconrel.2007.05.034 10.1016/j.biomaterials.2007.05.015 10.1016/j.bone.2007.08.044 10.1111/j.1600-0501.2011.02218.x 10.1016/S0142-9612(99)00002-2 10.1002/jab.770050208 10.1002/jbm.a.30886 10.1016/j.biomaterials.2004.09.036 10.1002/jbm.a.31831 10.1163/156856297X00272 10.1089/ten.2006.12.789 10.1016/0142-9612(91)90066-J 10.1079/PNS2003268 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd Elsevier Ltd Copyright © 2011 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2011 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7QO 7QP 8FD FR3 P64 |
DOI | 10.1016/j.biomaterials.2011.08.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 8847 |
ExternalDocumentID | 21871661 10_1016_j_biomaterials_2011_08_005 S0142961211009070 1_s2_0_S0142961211009070 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7QO 7QP 8FD FR3 P64 |
ID | FETCH-LOGICAL-c624t-ab3048e15d12e1204495e69ba343f74389186268bf28b93d858a3854f0eeb20d3 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Fri Jul 11 01:55:15 EDT 2025 Thu Jul 10 18:57:05 EDT 2025 Fri Jul 11 04:37:48 EDT 2025 Mon Jul 21 06:02:10 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Tue Jul 01 03:47:30 EDT 2025 Fri Feb 23 02:23:03 EST 2024 Sun Feb 23 10:18:52 EST 2025 Tue Aug 26 17:17:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | Microspheres Calcium phosphate cement PLGA Bone In vivo |
Language | English |
License | Copyright © 2011 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c624t-ab3048e15d12e1204495e69ba343f74389186268bf28b93d858a3854f0eeb20d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21871661 |
PQID | 1710224177 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_902370055 proquest_miscellaneous_895851303 proquest_miscellaneous_1710224177 pubmed_primary_21871661 crossref_primary_10_1016_j_biomaterials_2011_08_005 crossref_citationtrail_10_1016_j_biomaterials_2011_08_005 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2011_08_005 elsevier_clinicalkeyesjournals_1_s2_0_S0142961211009070 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2011_08_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-12-01 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2011 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Xu, Weir, Burguera, Fraser (bib3) 2006; 27 Zolnik, Burgess (bib20) 2007; 122 Gbureck, Dembski, Thull, Barralet (bib1) 2005; 26 Perrin, English (bib16) 1997 Wang, Wu (bib21) 1997; 9 Arnett (bib25) 2003; 62 Félix Lanao, Leeuwenburgh, Wolke, Jansen (bib10) 2011; 7 Kronenthal, Oser, Martin (bib15) 1975 Winkler, Hoenig, Gildenhaar, Berger, Fritsch, Janssen (bib23) 2010; 6 Park (bib11) 1995; 16 Ginebra, Delgado, Harr, Almirall, Del Valle, Planell (bib4) 2007; 80 Wei, Jia, Wu, Wei, Zhou, Zhang (bib5) 2010; 31 Bohner, Gbureck, Barralet (bib2) 2005; 26 Xu, Burguera, Carey (bib6) 2007; 28 Schilling, Linhart, Filke, Gebauer, Schinke, Rueger (bib22) 2004; 25 Taylor, Daniels, Andriano, Heller (bib18) 1994; 5 Krieger, Frick, Bushinsky (bib13) 2004; 13 Tracy, Ward, Firouzabadian, Wang, Dong, Qian (bib12) 1999; 20 van de Watering FC, van den Beucken JJ, Walboomers XF, Jansen JA. Calcium phosphate/poly(d, l-lactic-co-glycolic acid) composite bone substitute materials: evaluation of temporal degradation and bone ingrowth in a rat critical-sized cranial defect. Clin Oral Implants Res 2011; in press. Link, van den Dolder, van den Beucken, Cuijpers, Wolke, Mikos (bib8) 2008; 87 Le Geros (bib17) 1991; 15 Ruhe, Hedberg-Dirk, Padron, Spauwen, Jansen, Mikos (bib7) 2006; 12 Qi, Ye, Wang (bib9) 2008; 4 Klompmaker, Jansen, Veth, de Groot, Nijenhuis, Pennings (bib19) 1991; 12 Pereverzev, Komarova, Korcok, Armstrong, Tremblay, Dixon (bib24) 2008; 42 10.1016/j.biomaterials.2011.08.005_bib14 Taylor (10.1016/j.biomaterials.2011.08.005_bib18) 1994; 5 Park (10.1016/j.biomaterials.2011.08.005_bib11) 1995; 16 Winkler (10.1016/j.biomaterials.2011.08.005_bib23) 2010; 6 Ginebra (10.1016/j.biomaterials.2011.08.005_bib4) 2007; 80 Tracy (10.1016/j.biomaterials.2011.08.005_bib12) 1999; 20 Xu (10.1016/j.biomaterials.2011.08.005_bib6) 2007; 28 Arnett (10.1016/j.biomaterials.2011.08.005_bib25) 2003; 62 Le Geros (10.1016/j.biomaterials.2011.08.005_bib17) 1991; 15 Schilling (10.1016/j.biomaterials.2011.08.005_bib22) 2004; 25 Wang (10.1016/j.biomaterials.2011.08.005_bib21) 1997; 9 Xu (10.1016/j.biomaterials.2011.08.005_bib3) 2006; 27 Ruhe (10.1016/j.biomaterials.2011.08.005_bib7) 2006; 12 Gbureck (10.1016/j.biomaterials.2011.08.005_bib1) 2005; 26 Félix Lanao (10.1016/j.biomaterials.2011.08.005_bib10) 2011; 7 Perrin (10.1016/j.biomaterials.2011.08.005_bib16) 1997 Kronenthal (10.1016/j.biomaterials.2011.08.005_bib15) 1975 Zolnik (10.1016/j.biomaterials.2011.08.005_bib20) 2007; 122 Krieger (10.1016/j.biomaterials.2011.08.005_bib13) 2004; 13 Qi (10.1016/j.biomaterials.2011.08.005_bib9) 2008; 4 Link (10.1016/j.biomaterials.2011.08.005_bib8) 2008; 87 Wei (10.1016/j.biomaterials.2011.08.005_bib5) 2010; 31 Klompmaker (10.1016/j.biomaterials.2011.08.005_bib19) 1991; 12 Pereverzev (10.1016/j.biomaterials.2011.08.005_bib24) 2008; 42 Bohner (10.1016/j.biomaterials.2011.08.005_bib2) 2005; 26 |
References_xml | – volume: 6 start-page: 4127 year: 2010 end-page: 4135 ident: bib23 article-title: Volumetric analysis of osteoclastic bioresorption of calcium phosphate ceramics with different solubilities publication-title: Acta Biomater – volume: 80 start-page: 351 year: 2007 end-page: 361 ident: bib4 article-title: Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam publication-title: J Biomed Mater Res A – volume: 62 start-page: 511 year: 2003 end-page: 520 ident: bib25 article-title: Regulation of bone cell function by acid-base balance publication-title: Proc Nutr Soc – volume: 31 start-page: 1260 year: 2010 end-page: 1269 ident: bib5 article-title: Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration publication-title: Biomaterials – reference: van de Watering FC, van den Beucken JJ, Walboomers XF, Jansen JA. Calcium phosphate/poly(d, l-lactic-co-glycolic acid) composite bone substitute materials: evaluation of temporal degradation and bone ingrowth in a rat critical-sized cranial defect. Clin Oral Implants Res 2011; in press. – volume: 12 start-page: 810 year: 1991 end-page: 816 ident: bib19 article-title: Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs publication-title: Biomaterials – volume: 42 start-page: 150 year: 2008 end-page: 161 ident: bib24 article-title: Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway publication-title: Bone – volume: 16 start-page: 1123 year: 1995 end-page: 1130 ident: bib11 article-title: Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition publication-title: Biomaterials – volume: 26 start-page: 6423 year: 2005 end-page: 6429 ident: bib2 article-title: Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment publication-title: Biomaterials – volume: 87 start-page: 760 year: 2008 end-page: 769 ident: bib8 article-title: Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites publication-title: J Biomed Mater Res A – volume: 25 start-page: 3963 year: 2004 end-page: 3972 ident: bib22 article-title: Resorbability of bone substitute biomaterials by human osteoclasts publication-title: Biomaterials – year: 1997 ident: bib16 article-title: “Polyglycolide and polylactide” handbook of biodegradable polymers – volume: 20 start-page: 1057 year: 1999 end-page: 1062 ident: bib12 article-title: Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro publication-title: Biomaterials – volume: 9 start-page: 75 year: 1997 end-page: 87 ident: bib21 article-title: Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid oligomers: part II. Biodegradation and drug delivery application publication-title: J Biomater Sci Polym Ed – volume: 12 start-page: 789 year: 2006 end-page: 800 ident: bib7 article-title: Porous poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects publication-title: Tissue Eng – volume: 7 start-page: 3459 year: 2011 end-page: 3468 ident: bib10 article-title: In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres publication-title: Acta Biomater – volume: 4 start-page: 1837 year: 2008 end-page: 1845 ident: bib9 article-title: Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres publication-title: Acta Biomater – volume: 13 start-page: 423 year: 2004 end-page: 436 ident: bib13 article-title: Mechanism of acid-induced bone resorption publication-title: Curr Opin Nephrol Hypertens – volume: 28 start-page: 3786 year: 2007 end-page: 3796 ident: bib6 article-title: Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures publication-title: Biomaterials – volume: 122 start-page: 338 year: 2007 end-page: 344 ident: bib20 article-title: Effect of acidic pH on PLGA microsphere degradation and release publication-title: J Control Release – volume: 15 start-page: 1 year: 1991 end-page: 201 ident: bib17 article-title: Calcium phosphates in oral biology and medicine publication-title: Monogr Oral Sci – volume: 5 start-page: 151 year: 1994 end-page: 157 ident: bib18 article-title: Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products publication-title: J Appl Biomater – volume: 26 start-page: 3691 year: 2005 end-page: 3697 ident: bib1 article-title: Factors influencing calcium phosphate cement shelf-life publication-title: Biomaterials – volume: 27 start-page: 4279 year: 2006 end-page: 4287 ident: bib3 article-title: Injectable and macroporous calcium phosphate cement scaffold publication-title: Biomaterials – year: 1975 ident: bib15 article-title: Biodegradable polymers in medicine and surgery – volume: 16 start-page: 1123 year: 1995 ident: 10.1016/j.biomaterials.2011.08.005_bib11 article-title: Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition publication-title: Biomaterials doi: 10.1016/0142-9612(95)93575-X – volume: 31 start-page: 1260 issue: 6 year: 2010 ident: 10.1016/j.biomaterials.2011.08.005_bib5 article-title: Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.005 – volume: 7 start-page: 3459 year: 2011 ident: 10.1016/j.biomaterials.2011.08.005_bib10 article-title: In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres publication-title: Acta Biomater doi: 10.1016/j.actbio.2011.05.036 – volume: 26 start-page: 6423 year: 2005 ident: 10.1016/j.biomaterials.2011.08.005_bib2 article-title: Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.03.049 – volume: 13 start-page: 423 year: 2004 ident: 10.1016/j.biomaterials.2011.08.005_bib13 article-title: Mechanism of acid-induced bone resorption publication-title: Curr Opin Nephrol Hypertens doi: 10.1097/01.mnh.0000133975.32559.6b – volume: 15 start-page: 1 year: 1991 ident: 10.1016/j.biomaterials.2011.08.005_bib17 article-title: Calcium phosphates in oral biology and medicine publication-title: Monogr Oral Sci – volume: 6 start-page: 4127 year: 2010 ident: 10.1016/j.biomaterials.2011.08.005_bib23 article-title: Volumetric analysis of osteoclastic bioresorption of calcium phosphate ceramics with different solubilities publication-title: Acta Biomater doi: 10.1016/j.actbio.2010.04.015 – volume: 27 start-page: 4279 year: 2006 ident: 10.1016/j.biomaterials.2011.08.005_bib3 article-title: Injectable and macroporous calcium phosphate cement scaffold publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.03.001 – year: 1997 ident: 10.1016/j.biomaterials.2011.08.005_bib16 – volume: 25 start-page: 3963 year: 2004 ident: 10.1016/j.biomaterials.2011.08.005_bib22 article-title: Resorbability of bone substitute biomaterials by human osteoclasts publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.10.079 – volume: 4 start-page: 1837 issue: 6 year: 2008 ident: 10.1016/j.biomaterials.2011.08.005_bib9 article-title: Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres publication-title: Acta Biomater doi: 10.1016/j.actbio.2008.05.009 – volume: 122 start-page: 338 year: 2007 ident: 10.1016/j.biomaterials.2011.08.005_bib20 article-title: Effect of acidic pH on PLGA microsphere degradation and release publication-title: J Control Release doi: 10.1016/j.jconrel.2007.05.034 – volume: 28 start-page: 3786 issue: 26 year: 2007 ident: 10.1016/j.biomaterials.2011.08.005_bib6 article-title: Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.05.015 – volume: 42 start-page: 150 year: 2008 ident: 10.1016/j.biomaterials.2011.08.005_bib24 article-title: Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway publication-title: Bone doi: 10.1016/j.bone.2007.08.044 – ident: 10.1016/j.biomaterials.2011.08.005_bib14 doi: 10.1111/j.1600-0501.2011.02218.x – volume: 20 start-page: 1057 year: 1999 ident: 10.1016/j.biomaterials.2011.08.005_bib12 article-title: Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00002-2 – volume: 5 start-page: 151 year: 1994 ident: 10.1016/j.biomaterials.2011.08.005_bib18 article-title: Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products publication-title: J Appl Biomater doi: 10.1002/jab.770050208 – volume: 80 start-page: 351 year: 2007 ident: 10.1016/j.biomaterials.2011.08.005_bib4 article-title: Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.30886 – volume: 26 start-page: 3691 issue: 17 year: 2005 ident: 10.1016/j.biomaterials.2011.08.005_bib1 article-title: Factors influencing calcium phosphate cement shelf-life publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.09.036 – volume: 87 start-page: 760 year: 2008 ident: 10.1016/j.biomaterials.2011.08.005_bib8 article-title: Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.31831 – volume: 9 start-page: 75 year: 1997 ident: 10.1016/j.biomaterials.2011.08.005_bib21 article-title: Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid oligomers: part II. Biodegradation and drug delivery application publication-title: J Biomater Sci Polym Ed doi: 10.1163/156856297X00272 – volume: 12 start-page: 789 year: 2006 ident: 10.1016/j.biomaterials.2011.08.005_bib7 article-title: Porous poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects publication-title: Tissue Eng doi: 10.1089/ten.2006.12.789 – year: 1975 ident: 10.1016/j.biomaterials.2011.08.005_bib15 – volume: 12 start-page: 810 year: 1991 ident: 10.1016/j.biomaterials.2011.08.005_bib19 article-title: Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs publication-title: Biomaterials doi: 10.1016/0142-9612(91)90066-J – volume: 62 start-page: 511 year: 2003 ident: 10.1016/j.biomaterials.2011.08.005_bib25 article-title: Regulation of bone cell function by acid-base balance publication-title: Proc Nutr Soc doi: 10.1079/PNS2003268 |
SSID | ssj0014042 |
Score | 2.4261556 |
Snippet | Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but... Abstract Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8839 |
SubjectTerms | Advanced Basic Science Animals biocompatibility Biocompatible Materials - administration & dosage Biocompatible Materials - metabolism biodegradability Bone Bone Cements - metabolism Bone Regeneration Calcium phosphate cement calcium phosphates Calcium Phosphates - administration & dosage Calcium Phosphates - metabolism Dentistry Female Femur - physiology Injections In vivo Lactic Acid - administration & dosage Lactic Acid - metabolism Microspheres PLGA Polyglycolic Acid - administration & dosage Polyglycolic Acid - metabolism Porosity Rabbits |
Title | Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961211009070 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961211009070 https://dx.doi.org/10.1016/j.biomaterials.2011.08.005 https://www.ncbi.nlm.nih.gov/pubmed/21871661 https://www.proquest.com/docview/1710224177 https://www.proquest.com/docview/895851303 https://www.proquest.com/docview/902370055 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hKqH2ULX0g7QFuVKPTTd2krWjqocFFZa2oB6KxM2yE0csgmxEsld-OzNOsqUqK63ENfEojmdsz9hv3gB8EkVSGnwZWllggMJLXAeL0lLM45SVxERJ-c4np-PpWfLjPD3fgIMhF4Zglf3a363pfrXun4z60RzVs9mIYEkiIwIsjn4CWi5lsCeSrPzL7RLmQewxooMxipBaD8SjHuNFKe6m7VT9l86TStk9vEmtckL9ZnT4Ap73XiSbdB19CRuu2oZn97gFt2HrpL81fwXF_rxy7KZDwzrWzllpmjYsiCeCtq7PbFbRcQxlUTHUWT5bXLP6Yt7UF9htlvsTxIYRqr2rJ8F-_zqasGvC8tUDsu41nB1-_3MwDfvqCmE-FkkbGhvj7HU8LbhwXEQJhkpunFkTJ3EpqSg6p2hH2VIom8WFSpWJVZqUkcNoPCriN7BZYfd3gKEfkMsozY1QPLFRZnwxIlmmJlfOqjiAbBhOnffU41QB40oPGLNLfV8VmlShqTxmlAYQL2XrjoBjLamvg9b0kGKKi6LGfWItafmQtGv6-d1orhuhI_2fDQbwbSn5jxmv_eWPg4lpnOd0eWMqN1_gF6Un_-NSBsBWtFEZXfKiU7K6SYY-miTitQDedha8HFV09jB4HvN3j_yH9_DUH7x7zM8H2GxvFm4XPbfW7vmpuQdPJsc_p6d3yvZEqQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4ICiv8DQS3AgbO8naEeqhPMqW7lYcWqk3104cdas2GzVZIS78Kf4gM3ksRXSllVCvSWbjHU_GM_Y33wC8FlmUG7zpW5lhgsJz9INZbinnccpKYqKkeufJ3nB0EH09jA_X4FdfC0Owys73tz698dbdlUGnzUE5nQ4IliQSIsDiGCeg5XbIyl334zvmbdXmziec5DdCbH_e_zjyu9YCfjoUUe0bi2m8cjzOuHBcBBHmCW6YWBNGYS6pIzinUF_ZXCibhJmKlQlVHOWBw1Q0yEL83WtwPUJ3QW0T3v1c4EqIrka0uEnh0_B6ptMGVEY19aZubesPfyj1zrt8VVwW9Tar3_ZduNOFrWyr1cw9WHPFBty-QGa4ATcm3TH9fcg-zArHzlv4rWP1jOWmqv2MiClorXzLpgXt_1DZFkMjSafzM1Yez6ryGIfN0mbLsmIEo28bWLBv4y9b7IzAg2UP5XsAB1ei84ewXuDwHwPDwCOVQZwaoXhkg8Q03Y9kHptUOatCD5JenTrtuM6p5cap7kFtJ_riVGiaCk39OIPYg3AhW7aMHytJve9nTfc1reiFNS5MK0nLy6Rd1TmUSnNdCR3of4zeg82F5F_fzcpvftWbmEbHQqdFpnCzOb5RNmyDXEoP2JJnVEKnyhgFLX8kwaBQEtObB49aC15oFaNLzNaH_Ml__oeXcHO0Pxnr8c7e7lO41ez6N4CjZ7Ben8_dcwwba_ui-UwZHF21X_gNS89-Pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bone+response+to+fast-degrading%2C+injectable+calcium+phosphate+cements+containing+PLGA+microparticles&rft.jtitle=Biomaterials&rft.au=F%C3%A9lix+Lanao%2C+Rosa+P&rft.au=Leeuwenburgh%2C+Sander+C+G&rft.au=Wolke%2C+Joop+G+C&rft.au=Jansen%2C+John+A&rft.date=2011-12-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=32&rft.issue=34&rft.spage=8839&rft_id=info:doi/10.1016%2Fj.biomaterials.2011.08.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961211X00285%2Fcov150h.gif |