Naive Human Pluripotent Cells Feature a Methylation Landscape Devoid of Blastocyst or Germline Memory
Human embryonic stem cells (hESCs) typically exhibit “primed” pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naive epiblast cells in human pre-implantati...
Saved in:
Published in | Cell stem cell Vol. 18; no. 3; pp. 323 - 329 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human embryonic stem cells (hESCs) typically exhibit “primed” pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naive epiblast cells in human pre-implantation embryos. We have discovered that reverting primed hESCs to a hypomethylated naive state or deriving a new hESC line under naive conditions results in the establishment of Stage Specific Embryonic Antigen 4 (SSEA4)-negative hESC lines with a transcriptional program resembling the human pre-implantation epiblast. In contrast, we discovered that the methylome of naive hESCs in vitro is distinct from that of the human epiblast in vivo with loss of DNA methylation at primary imprints and a lost “memory” of the methylation state of the human oocyte. This failure to recover the naive epiblast methylation landscape appears to be a consistent feature of self-renewing hypomethylated naive hESCs in vitro.
[Display omitted]
•Reversion or derivation of hESCs in 5iLAF results in SSEA4-negative cells•SSEA4-negative hESCs show gene expression consistent with naive pluripotency•Naive hESCs show lost “memory” of gamete and blastocyst methylation•Imprinting is lost in naive hESCs
Pastor and colleagues show that reversion of primed hESCs in 5iLAF, or derivation of hESCs in 5iLAF, results in a population of naive cells characterized by loss of the marker SSEA4. However, these cells have a methylation pattern with little resemblance to blastocyst and near total loss of imprinting. |
---|---|
AbstractList | Human embryonic stem cells (hESCs) typically exhibit “primed” pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naive epiblast cells in human pre-implantation embryos. We have discovered that reverting primed hESCs to a hypomethylated naive state or deriving a new hESC line under naive conditions results in the establishment of Stage Specific Embryonic Antigen 4 (SSEA4)-negative hESC lines with a transcriptional program resembling the human pre-implantation epiblast. In contrast, we discovered that the methylome of naive hESCs in vitro is distinct from that of the human epiblast in vivo with loss of DNA methylation at primary imprints and a lost “memory” of the methylation state of the human oocyte. This failure to recover the naive epiblast methylation landscape appears to be a consistent feature of self-renewing hypomethylated naive hESCs in vitro.
[Display omitted]
•Reversion or derivation of hESCs in 5iLAF results in SSEA4-negative cells•SSEA4-negative hESCs show gene expression consistent with naive pluripotency•Naive hESCs show lost “memory” of gamete and blastocyst methylation•Imprinting is lost in naive hESCs
Pastor and colleagues show that reversion of primed hESCs in 5iLAF, or derivation of hESCs in 5iLAF, results in a population of naive cells characterized by loss of the marker SSEA4. However, these cells have a methylation pattern with little resemblance to blastocyst and near total loss of imprinting. Human embryonic stem cells (hESCs) typically exhibit "primed" pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naive epiblast cells in human pre-implantation embryos. We have discovered that reverting primed hESCs to a hypomethylated naive state or deriving a new hESC line under naive conditions results in the establishment of Stage Specific Embryonic Antigen 4 (SSEA4)-negative hESC lines with a transcriptional program resembling the human pre-implantation epiblast. In contrast, we discovered that the methylome of naive hESCs in vitro is distinct from that of the human epiblast in vivo with loss of DNA methylation at primary imprints and a lost "memory" of the methylation state of the human oocyte. This failure to recover the naive epiblast methylation landscape appears to be a consistent feature of self-renewing hypomethylated naive hESCs in vitro.Human embryonic stem cells (hESCs) typically exhibit "primed" pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naive epiblast cells in human pre-implantation embryos. We have discovered that reverting primed hESCs to a hypomethylated naive state or deriving a new hESC line under naive conditions results in the establishment of Stage Specific Embryonic Antigen 4 (SSEA4)-negative hESC lines with a transcriptional program resembling the human pre-implantation epiblast. In contrast, we discovered that the methylome of naive hESCs in vitro is distinct from that of the human epiblast in vivo with loss of DNA methylation at primary imprints and a lost "memory" of the methylation state of the human oocyte. This failure to recover the naive epiblast methylation landscape appears to be a consistent feature of self-renewing hypomethylated naive hESCs in vitro. Human embryonic stem cells (hESCs) typically exhibit "primed" pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naive epiblast cells in human pre-implantation embryos. We have discovered that reverting primed hESCs to a hypomethylated naive state or deriving a new hESC line under naive conditions results in the establishment of Stage Specific Embryonic Antigen 4 (SSEA4)-negative hESC lines with a transcriptional program resembling the human pre-implantation epiblast. In contrast, we discovered that the methylome of naive hESCs in vitro is distinct from that of the human epiblast in vivo with loss of DNA methylation at primary imprints and a lost "memory" of the methylation state of the human oocyte. This failure to recover the naive epiblast methylation landscape appears to be a consistent feature of self-renewing hypomethylated naive hESCs in vitro. Human embryonic stem cells (hESCs) typically exhibit “primed” pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naïve epiblast cells in human pre-implantation embryos. We have discovered that reverting primed hESCs to a hypomethylated naïve state or deriving a new hESC line under naïve conditions results in the establishment of Stage Specific Embryonic Antigen 4 (SSEA4) negative hESC lines with a transcriptional program resembling the human pre-implantation epiblast. In contrast, we discovered that the methylome of naïve hESCs in vitro is distinct from the human epiblast in vivo with loss of DNA methylation at primary imprints and a lost “memory” of the methylation state of the human oocyte. This failure to recover the naïve epiblast methylation landscape appears to be a consistent feature of self-renewing hypomethylated naïve hESCs in vitro . |
Author | Plath, Kathrin Pastor, William A. Sahakyan, Anna Chen, Di Jacobsen, Steven E. Liu, Wanlu Lukianchikov, Anastasia Clark, Amander T. Kim, Rachel |
AuthorAffiliation | 3 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California Los Angeles, Los Angeles CA 90095 2 Department of Biological Chemistry, University of California Los Angeles, Los Angeles CA 90095 1 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles CA 90095 4 Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles CA 90095 |
AuthorAffiliation_xml | – name: 1 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles CA 90095 – name: 2 Department of Biological Chemistry, University of California Los Angeles, Los Angeles CA 90095 – name: 4 Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles CA 90095 – name: 3 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California Los Angeles, Los Angeles CA 90095 |
Author_xml | – sequence: 1 givenname: William A. surname: Pastor fullname: Pastor, William A. organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 2 givenname: Di surname: Chen fullname: Chen, Di organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 3 givenname: Wanlu surname: Liu fullname: Liu, Wanlu organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 4 givenname: Rachel surname: Kim fullname: Kim, Rachel organization: Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 5 givenname: Anna surname: Sahakyan fullname: Sahakyan, Anna organization: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 6 givenname: Anastasia surname: Lukianchikov fullname: Lukianchikov, Anastasia organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 7 givenname: Kathrin surname: Plath fullname: Plath, Kathrin organization: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 8 givenname: Steven E. surname: Jacobsen fullname: Jacobsen, Steven E. email: jacobsen@ucla.edu organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 9 givenname: Amander T. surname: Clark fullname: Clark, Amander T. email: clarka@ucla.edu organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26853856$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUV1rFDEUDVKxX_4BHySPvsyazCSTCYhgV9sKq_VBn0MmuWOzzCRrklnYf2_WbaX1oQgXciHnHM495xQd-eABoVeULCih7dv1ImWYFnXZF4SWkc_QCe0Er6QQ4qjssmEVl0Qeo9OU1oRwQYl4gY7rtuNNx9sTBF-12wK-nift8bdxjm4TMviMlzCOCV-CznMErPEXyLe7UWcXPF5pb5PRG8AfYRucxWHAF6NOOZhdyjhEfAVxGp2HQptC3J2j54MeE7y8e8_Qj8tP35fX1erm6vPyw6oybc1yxWsOPSVMs47ybhjqTvTQWEtaCpoxaXpGgPcttVbzWraS87o3ojOE9xQsbc7Q-4PuZu4nsKYcEvWoNtFNOu5U0E49_vHuVv0MW8WEkKzZC7y5E4jh1wwpq8klU6LQHsKcFBUlzYbK9n-ggnSi5ZwU6OuHtv76ua-hALoDwMSQUoRBGZf_ZF1culFRovaNq7XaN672jStCy8hCrf-h3qs_SXp3IEEpY-sgqmQceAPWRTBZ2eCeov8GmdHGMw |
CitedBy_id | crossref_primary_10_1016_j_stem_2017_02_014 crossref_primary_10_1038_ncomms15055 crossref_primary_10_1002_bies_201700239 crossref_primary_10_1111_cpr_13468 crossref_primary_10_1016_j_stem_2017_09_003 crossref_primary_10_1007_s10719_016_9740_9 crossref_primary_10_1038_s41467_020_15271_3 crossref_primary_10_1271_kagakutoseibutsu_55_750 crossref_primary_10_1016_j_celrep_2016_12_001 crossref_primary_10_1007_s40778_016_0055_3 crossref_primary_10_7554_eLife_47859 crossref_primary_10_1038_s41467_017_02107_w crossref_primary_10_15252_embr_201847533 crossref_primary_10_1002_stem_2558 crossref_primary_10_1038_nature20484 crossref_primary_10_1126_sciadv_adg1936 crossref_primary_10_1038_s41556_018_0089_0 crossref_primary_10_7554_eLife_29518 crossref_primary_10_1126_science_abo7923 crossref_primary_10_1242_dev_201155 crossref_primary_10_1016_j_celrep_2022_111907 crossref_primary_10_37496_rbz5220220137 crossref_primary_10_1038_s41467_021_22201_4 crossref_primary_10_1038_s42003_020_01218_3 crossref_primary_10_1007_s00018_022_04549_y crossref_primary_10_1038_s41598_024_53381_w crossref_primary_10_1016_j_isci_2024_109569 crossref_primary_10_1016_j_biocel_2022_106263 crossref_primary_10_1016_j_stemcr_2020_01_009 crossref_primary_10_1038_labinvest_2017_87 crossref_primary_10_1038_s41556_024_01595_5 crossref_primary_10_1016_j_stemcr_2020_05_014 crossref_primary_10_1016_j_stem_2019_06_010 crossref_primary_10_3390_cells10040876 crossref_primary_10_1016_j_stemcr_2021_02_002 crossref_primary_10_1016_j_stem_2019_06_013 crossref_primary_10_1111_cpr_13317 crossref_primary_10_1038_s41556_022_00932_w crossref_primary_10_3390_ijms24098386 crossref_primary_10_1016_j_stemcr_2021_09_002 crossref_primary_10_3390_cells11192929 crossref_primary_10_3390_genes10020176 crossref_primary_10_1016_j_stemcr_2020_01_012 crossref_primary_10_1016_j_celrep_2018_12_011 crossref_primary_10_3390_ijms26010271 crossref_primary_10_1038_s41556_018_0067_6 crossref_primary_10_1186_s12915_017_0453_8 crossref_primary_10_1186_s13619_023_00179_2 crossref_primary_10_1016_j_scr_2017_12_016 crossref_primary_10_1016_j_yexcr_2019_111645 crossref_primary_10_1016_j_stem_2016_05_025 crossref_primary_10_1038_nature23286 crossref_primary_10_1093_nar_gkaa567 crossref_primary_10_1016_j_celrep_2018_08_062 crossref_primary_10_1101_gr_233437_117 crossref_primary_10_1016_j_stemcr_2019_10_009 crossref_primary_10_1016_j_yexcr_2020_111935 crossref_primary_10_1002_bies_202400108 crossref_primary_10_1007_s11427_024_2721_y crossref_primary_10_1016_j_stem_2022_04_004 crossref_primary_10_1016_j_gde_2025_102342 crossref_primary_10_1080_14789450_2019_1604229 crossref_primary_10_1371_journal_pgen_1006427 crossref_primary_10_1093_lifemedi_lnad006 crossref_primary_10_1016_j_stem_2016_08_008 crossref_primary_10_1242_dev_203090 crossref_primary_10_1126_science_aat1674 crossref_primary_10_18632_oncotarget_25353 crossref_primary_10_1016_j_biomaterials_2018_07_007 crossref_primary_10_1016_j_scr_2019_101655 crossref_primary_10_3390_cells10123558 crossref_primary_10_1002_stem_2507 crossref_primary_10_1016_j_stem_2020_06_002 crossref_primary_10_1093_nar_gkad058 crossref_primary_10_1007_s11427_024_2660_3 crossref_primary_10_1038_nrg_2016_88 crossref_primary_10_1631_jzus_B2200440 crossref_primary_10_1242_dev_146811 crossref_primary_10_1093_molehr_gay007 crossref_primary_10_1016_j_stemcr_2025_102419 crossref_primary_10_1002_adfm_202104046 crossref_primary_10_1016_j_celrep_2020_02_073 crossref_primary_10_1016_j_yexcr_2019_111749 crossref_primary_10_1016_j_cell_2024_05_027 crossref_primary_10_1016_j_yexcr_2019_111747 crossref_primary_10_1073_pnas_2003155117 crossref_primary_10_1016_j_molcel_2016_04_025 crossref_primary_10_1038_s41467_020_14764_5 crossref_primary_10_1016_j_gde_2023_102084 crossref_primary_10_1242_bio_052662 crossref_primary_10_1016_j_gde_2023_102088 crossref_primary_10_1007_s00018_022_04478_w crossref_primary_10_1089_scd_2017_0066 crossref_primary_10_1093_biolre_ioac096 crossref_primary_10_3390_cells10082049 crossref_primary_10_1002_1873_3468_12826 crossref_primary_10_1038_s41467_022_30775_w crossref_primary_10_5483_BMBRep_2021_54_10_094 crossref_primary_10_1242_dev_138982 crossref_primary_10_1016_j_stem_2016_10_006 crossref_primary_10_1002_rmb2_12490 crossref_primary_10_1186_s13287_019_1318_6 crossref_primary_10_1038_s41467_020_14629_x crossref_primary_10_1186_s13072_019_0259_8 crossref_primary_10_1242_dev_142679 crossref_primary_10_1242_dev_167833 crossref_primary_10_15252_embj_2018101033 crossref_primary_10_1002_stem_2527 crossref_primary_10_1038_s41467_024_52431_1 crossref_primary_10_1242_dev_128389 crossref_primary_10_1089_scd_2017_0055 crossref_primary_10_1038_s41467_020_17269_3 crossref_primary_10_1016_j_celrep_2020_02_090 crossref_primary_10_1038_s41586_023_06424_7 crossref_primary_10_1016_j_stemcr_2020_06_003 crossref_primary_10_1016_j_stemcr_2019_03_014 crossref_primary_10_1016_j_ydbio_2021_03_025 crossref_primary_10_1038_s41586_022_04625_0 crossref_primary_10_1038_s41556_020_0573_1 crossref_primary_10_1016_j_scr_2017_11_017 crossref_primary_10_1038_s41588_017_0003_x crossref_primary_10_1016_j_stem_2016_02_012 crossref_primary_10_1016_j_stemcr_2017_11_020 crossref_primary_10_1016_j_gde_2023_102135 crossref_primary_10_1016_j_stem_2020_11_003 crossref_primary_10_1016_j_crmeth_2022_100317 crossref_primary_10_1038_s41592_018_0104_1 crossref_primary_10_1038_s41467_022_30924_1 crossref_primary_10_1016_j_stem_2023_09_010 crossref_primary_10_1007_s11427_021_2076_x crossref_primary_10_1016_j_isci_2022_105469 crossref_primary_10_1016_j_stemcr_2022_11_015 crossref_primary_10_1038_nrm_2015_28 crossref_primary_10_1016_j_biomaterials_2020_120015 crossref_primary_10_1371_journal_pone_0234628 crossref_primary_10_1038_s41467_021_26949_7 crossref_primary_10_1038_s41467_024_44969_x crossref_primary_10_1038_s41536_021_00135_1 crossref_primary_10_1038_s41420_023_01670_0 crossref_primary_10_1016_j_celrep_2017_04_020 crossref_primary_10_1016_j_scr_2021_102334 crossref_primary_10_1016_j_preteyeres_2018_11_001 crossref_primary_10_1007_s12015_023_10613_2 crossref_primary_10_1186_s13059_019_1748_6 crossref_primary_10_1242_dev_145177 crossref_primary_10_1016_j_stemcr_2025_102450 crossref_primary_10_1126_sciadv_adf2245 crossref_primary_10_1016_j_chembiol_2016_07_007 crossref_primary_10_1038_nature23274 crossref_primary_10_1016_j_cell_2022_12_047 crossref_primary_10_1016_j_celrep_2018_12_099 crossref_primary_10_1016_j_gde_2017_02_003 crossref_primary_10_1038_s41467_018_08020_0 crossref_primary_10_1007_s10739_022_09691_8 crossref_primary_10_1016_j_bbrc_2019_01_037 crossref_primary_10_1016_j_yexcr_2020_112215 crossref_primary_10_1016_j_cels_2019_03_012 crossref_primary_10_1007_s11427_018_9334_2 crossref_primary_10_1242_dev_158501 crossref_primary_10_1038_s41592_022_01571_7 crossref_primary_10_1038_s42003_022_03087_4 crossref_primary_10_1007_s12015_019_09935_x crossref_primary_10_1016_j_stem_2022_06_006 crossref_primary_10_1016_j_celrep_2021_109215 crossref_primary_10_1016_j_placenta_2024_08_014 crossref_primary_10_1098_rsob_240214 crossref_primary_10_1016_j_stem_2021_04_001 crossref_primary_10_1126_sciadv_abk0013 crossref_primary_10_7554_eLife_67259 crossref_primary_10_1002_ar_24304 crossref_primary_10_1002_1873_3468_13167 crossref_primary_10_3389_fcell_2019_00076 crossref_primary_10_1007_s12015_024_10699_2 crossref_primary_10_3390_ijms25063214 crossref_primary_10_1016_j_stem_2024_12_007 crossref_primary_10_1016_j_yjmcc_2023_01_007 crossref_primary_10_2217_epi_2017_0115 crossref_primary_10_3390_biom13121684 crossref_primary_10_1016_j_gde_2017_06_009 crossref_primary_10_3390_cells11111729 crossref_primary_10_1016_j_tcb_2018_05_005 crossref_primary_10_3390_biomedicines10061358 crossref_primary_10_1042_BST20230479 crossref_primary_10_3390_cells10113246 crossref_primary_10_1038_s41576_024_00760_8 crossref_primary_10_1016_j_celrep_2021_109233 crossref_primary_10_12688_f1000research_12596_1 crossref_primary_10_1016_j_jgg_2024_11_005 crossref_primary_10_1073_pnas_2211073119 crossref_primary_10_1016_j_semcdb_2020_05_001 crossref_primary_10_1016_j_scr_2021_102493 crossref_primary_10_1016_j_stem_2016_06_011 crossref_primary_10_1016_j_ydbio_2024_02_001 crossref_primary_10_1038_nmeth_4436 crossref_primary_10_1242_dev_195792 crossref_primary_10_1093_nar_gkad540 crossref_primary_10_3390_ijms20215428 crossref_primary_10_1038_s41422_019_0265_1 crossref_primary_10_1038_s42003_025_07899_y crossref_primary_10_1242_dev_157404 crossref_primary_10_1038_s41586_020_2734_6 crossref_primary_10_1016_j_devcel_2016_09_015 crossref_primary_10_1002_bies_202400077 crossref_primary_10_1038_s41556_018_0254_5 crossref_primary_10_1371_journal_pbio_3002162 crossref_primary_10_1016_j_celrep_2024_114232 crossref_primary_10_1016_j_xpro_2024_103446 crossref_primary_10_1016_j_celrep_2022_110994 crossref_primary_10_1016_j_reth_2020_08_001 crossref_primary_10_1016_j_stem_2024_01_009 |
Cites_doi | 10.1093/hmg/ddm245 10.1016/j.cell.2011.06.052 10.1016/j.stem.2014.09.014 10.1038/nsmb.2510 10.1038/ng.3258 10.1371/journal.pgen.1004868 10.1016/j.stemcr.2015.07.006 10.1038/nature10960 10.1073/pnas.1319738111 10.1016/j.cell.2014.08.029 10.1016/j.stem.2014.07.002 10.1007/s10815-009-9353-3 10.1016/j.cell.2015.05.012 10.1038/nsmb.2660 10.1016/j.celrep.2014.05.037 10.1038/nature13581 10.1038/nature12745 10.1016/j.stem.2014.04.003 10.1016/j.ccr.2005.09.007 10.1016/j.stem.2009.05.015 10.1007/s004270050146 10.1093/hmg/ddr506 10.1371/journal.pone.0021208 10.1016/0163-7258(94)00053-6 10.1016/j.stem.2013.11.015 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7TM 8FD FR3 P64 5PM |
DOI | 10.1016/j.stem.2016.01.019 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-9777 |
EndPage | 329 |
ExternalDocumentID | PMC4779431 26853856 10_1016_j_stem_2016_01_019 S1934590916000205 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: F31 GM115122 – fundername: NICHD NIH HHS grantid: R01 HD079546 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: P01 GM099134 |
GroupedDBID | --- --K 0R~ 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 WQ6 ZA5 ZBA 5VS AAEDT AAIKJ AAMRU AAQFI AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT CGR CUY CVF ECM EIF NPM 7X8 7QO 7TM 8FD FR3 P64 5PM EFKBS |
ID | FETCH-LOGICAL-c624t-525eb104a48158ff287be3dd061ea449cb40e5b61dda52969552bc78c05b1ed13 |
IEDL.DBID | IXB |
ISSN | 1934-5909 1875-9777 |
IngestDate | Thu Aug 21 14:04:51 EDT 2025 Fri Jul 11 03:41:51 EDT 2025 Thu Jul 10 18:06:40 EDT 2025 Thu Apr 03 07:02:36 EDT 2025 Tue Jul 01 01:08:27 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Fri Feb 23 02:30:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c624t-525eb104a48158ff287be3dd061ea449cb40e5b61dda52969552bc78c05b1ed13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1934590916000205 |
PMID | 26853856 |
PQID | 1770876550 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4779431 proquest_miscellaneous_1790931961 proquest_miscellaneous_1770876550 pubmed_primary_26853856 crossref_citationtrail_10_1016_j_stem_2016_01_019 crossref_primary_10_1016_j_stem_2016_01_019 elsevier_sciencedirect_doi_10_1016_j_stem_2016_01_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-03 |
PublicationDateYYYYMMDD | 2016-03-03 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell stem cell |
PublicationTitleAlternate | Cell Stem Cell |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ware, Nelson, Mecham, Hesson, Zhou, Jonlin, Jimenez-Caliani, Deng, Cavanaugh, Cook (bib22) 2014; 111 Diaz Perez, Kim, Li, Marquez, Patel, Plath, Clark (bib4) 2012; 21 Takashima, Guo, Loos, Nichols, Ficz, Krueger, Oxley, Santos, Clarke, Mansfield (bib19) 2014; 158 Huang, Maruyama, Fan (bib9) 2014; 15 Rugg-Gunn, Ferguson-Smith, Pedersen (bib15) 2007; 16 Gkountela, Zhang, Shafiq, Liao, Hargan-Calvopiña, Chen, Clark (bib6) 2015; 161 Haaf (bib7) 1995; 65 Smith, Chan, Mikkelsen, Gu, Gnirke, Regev, Meissner (bib16) 2012; 484 Holm, Jackson-Grusby, Brambrink, Yamada, Rideout, Jaenisch (bib25) 2005; 8 Tang, Barbacioru, Nordman, Bao, Lee, Wang, Tuch, Heard, Lao, Surani (bib20) 2011; 6 Buecker, Srinivasan, Wu, Calo, Acampora, Faial, Simeone, Tan, Swigut, Wysocka (bib1) 2014; 14 Yan, Yang, Guo, Yang, Wu, Li, Liu, Lian, Zheng, Yan (bib23) 2013; 20 Okae, Chiba, Hiura, Hamada, Sato, Utsunomiya, Kikuchi, Yoshida, Tanaka, Suyama, Arima (bib13) 2014; 10 Butler (bib2) 2009; 26 Smith, Chan, Humm, Karnik, Mekhoubad, Regev, Eggan, Meissner (bib17) 2014; 511 Nichols, Smith (bib12) 2009; 4 Yang, Kalkan, Morissroe, Marks, Stunnenberg, Smith, Sharrocks (bib24) 2014; 7 Chan, Göke, Ng, Lu, Gonzales, Tan, Tng, Hong, Lim, Ng (bib3) 2013; 13 Hayashi, Ohta, Kurimoto, Aramaki, Saitou (bib8) 2011; 146 Theunissen, Powell, Wang, Mitalipova, Faddah, Reddy, Fan, Maetzel, Ganz, Shi (bib21) 2014; 15 Leitch, McEwen, Turp, Encheva, Carroll, Grabole, Mansfield, Nashun, Knezovich, Smith (bib10) 2013; 20 Oliveros-Etter, Li, Nee, Hosohama, Hargan-Calvopina, Lee, Joti, Yu, Clark (bib14) 2015; 5 Gafni, Weinberger, Mansour, Manor, Chomsky, Ben-Yosef, Kalma, Viukov, Maza, Zviran (bib5) 2013; 504 Tada, Tada, Hilton, Barton, Sado, Takagi, Surani (bib18) 1998; 207 Liao, Karnik, Gu, Ziller, Clement, Tsankov, Akopian, Gifford, Donaghey, Galonska (bib11) 2015; 47 Hayashi (10.1016/j.stem.2016.01.019_bib8) 2011; 146 Tada (10.1016/j.stem.2016.01.019_bib18) 1998; 207 Tang (10.1016/j.stem.2016.01.019_bib20) 2011; 6 Ware (10.1016/j.stem.2016.01.019_bib22) 2014; 111 Smith (10.1016/j.stem.2016.01.019_bib17) 2014; 511 Nichols (10.1016/j.stem.2016.01.019_bib12) 2009; 4 Gafni (10.1016/j.stem.2016.01.019_bib5) 2013; 504 Butler (10.1016/j.stem.2016.01.019_bib2) 2009; 26 Liao (10.1016/j.stem.2016.01.019_bib11) 2015; 47 Buecker (10.1016/j.stem.2016.01.019_bib1) 2014; 14 Yan (10.1016/j.stem.2016.01.019_bib23) 2013; 20 Oliveros-Etter (10.1016/j.stem.2016.01.019_bib14) 2015; 5 Theunissen (10.1016/j.stem.2016.01.019_bib21) 2014; 15 Diaz Perez (10.1016/j.stem.2016.01.019_bib4) 2012; 21 Smith (10.1016/j.stem.2016.01.019_bib16) 2012; 484 Rugg-Gunn (10.1016/j.stem.2016.01.019_bib15) 2007; 16 Leitch (10.1016/j.stem.2016.01.019_bib10) 2013; 20 Okae (10.1016/j.stem.2016.01.019_bib13) 2014; 10 Takashima (10.1016/j.stem.2016.01.019_bib19) 2014; 158 Yang (10.1016/j.stem.2016.01.019_bib24) 2014; 7 Holm (10.1016/j.stem.2016.01.019_bib25) 2005; 8 Chan (10.1016/j.stem.2016.01.019_bib3) 2013; 13 Haaf (10.1016/j.stem.2016.01.019_bib7) 1995; 65 Gkountela (10.1016/j.stem.2016.01.019_bib6) 2015; 161 Huang (10.1016/j.stem.2016.01.019_bib9) 2014; 15 25090446 - Cell Stem Cell. 2014 Oct 2;15(4):471-87 26278040 - Stem Cell Reports. 2015 Sep 8;5(3):337-49 25215486 - Cell. 2014 Sep 11;158(6):1254-69 22456710 - Nature. 2012 Apr 19;484(7394):339-44 26004067 - Cell. 2015 Jun 4;161(6):1425-36 23416945 - Nat Struct Mol Biol. 2013 Mar;20(3):311-6 17911167 - Hum Mol Genet. 2007 Oct 15;16 Spec No. 2:R243-51 25079558 - Nature. 2014 Jul 31;511(7511):611-5 19844787 - J Assist Reprod Genet. 2009 Sep-Oct;26(9-10):477-86 21731673 - PLoS One. 2011;6(6):e21208 25501653 - PLoS Genet. 2014 Dec;10(12):e1004868 23934149 - Nat Struct Mol Biol. 2013 Sep;20(9):1131-9 24931607 - Cell Rep. 2014 Jun 26;7(6):1968-81 22058289 - Hum Mol Genet. 2012 Feb 15;21(4):751-64 24905168 - Cell Stem Cell. 2014 Jun 5;14(6):838-53 24172903 - Nature. 2013 Dec 12;504(7479):282-6 9510550 - Dev Genes Evol. 1998 Feb;207(8):551-61 24623855 - Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4484-9 25280217 - Cell Stem Cell. 2014 Oct 2;15(4):410-5 7536332 - Pharmacol Ther. 1995 Jan;65(1):19-46 24315441 - Cell Stem Cell. 2013 Dec 5;13(6):663-75 25822089 - Nat Genet. 2015 May;47(5):469-78 21820164 - Cell. 2011 Aug 19;146(4):519-32 19497275 - Cell Stem Cell. 2009 Jun 5;4(6):487-92 |
References_xml | – volume: 15 start-page: 471 year: 2014 end-page: 487 ident: bib21 article-title: Systematic identification of culture conditions for induction and maintenance of naive human pluripotency publication-title: Cell Stem Cell – volume: 484 start-page: 339 year: 2012 end-page: 344 ident: bib16 article-title: A unique regulatory phase of DNA methylation in the early mammalian embryo publication-title: Nature – volume: 47 start-page: 469 year: 2015 end-page: 478 ident: bib11 article-title: Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells publication-title: Nat. Genet. – volume: 6 start-page: e21208 year: 2011 ident: bib20 article-title: Deterministic and stochastic allele specific gene expression in single mouse blastomeres publication-title: PLoS ONE – volume: 511 start-page: 611 year: 2014 end-page: 615 ident: bib17 article-title: DNA methylation dynamics of the human preimplantation embryo publication-title: Nature – volume: 10 start-page: e1004868 year: 2014 ident: bib13 article-title: Genome-wide analysis of DNA methylation dynamics during early human development publication-title: PLoS Genet. – volume: 5 start-page: 337 year: 2015 end-page: 349 ident: bib14 article-title: PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation publication-title: Stem Cell Reports – volume: 158 start-page: 1254 year: 2014 end-page: 1269 ident: bib19 article-title: Resetting transcription factor control circuitry toward ground-state pluripotency in human publication-title: Cell – volume: 15 start-page: 410 year: 2014 end-page: 415 ident: bib9 article-title: The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses publication-title: Cell Stem Cell – volume: 4 start-page: 487 year: 2009 end-page: 492 ident: bib12 article-title: Naive and primed pluripotent states publication-title: Cell Stem Cell – volume: 20 start-page: 311 year: 2013 end-page: 316 ident: bib10 article-title: Naive pluripotency is associated with global DNA hypomethylation publication-title: Nat. Struct. Mol. Biol. – volume: 146 start-page: 519 year: 2011 end-page: 532 ident: bib8 article-title: Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells publication-title: Cell – volume: 161 start-page: 1425 year: 2015 end-page: 1436 ident: bib6 article-title: DNA Demethylation Dynamics in the Human Prenatal Germline publication-title: Cell – volume: 504 start-page: 282 year: 2013 end-page: 286 ident: bib5 article-title: Derivation of novel human ground state naive pluripotent stem cells publication-title: Nature – volume: 20 start-page: 1131 year: 2013 end-page: 1139 ident: bib23 article-title: Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells publication-title: Nat. Struct. Mol. Biol. – volume: 7 start-page: 1968 year: 2014 end-page: 1981 ident: bib24 article-title: Otx2 and Oct4 drive early enhancer activation during embryonic stem cell transition from naive pluripotency publication-title: Cell Rep. – volume: 26 start-page: 477 year: 2009 end-page: 486 ident: bib2 article-title: Genomic imprinting disorders in humans: a mini-review publication-title: J. Assist. Reprod. Genet. – volume: 111 start-page: 4484 year: 2014 end-page: 4489 ident: bib22 article-title: Derivation of naive human embryonic stem cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 275 year: 2005 end-page: 285 ident: bib25 article-title: Global loss of imprinting leads to widespread tumorigenesis in adult mice publication-title: Cancer Cell – volume: 16 start-page: R243 year: 2007 end-page: R251 ident: bib15 article-title: Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines publication-title: Hum. Mol. Genet. – volume: 13 start-page: 663 year: 2013 end-page: 675 ident: bib3 article-title: Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast publication-title: Cell Stem Cell – volume: 65 start-page: 19 year: 1995 end-page: 46 ident: bib7 article-title: The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes publication-title: Pharmacol. Ther. – volume: 21 start-page: 751 year: 2012 end-page: 764 ident: bib4 article-title: Derivation of new human embryonic stem cell lines reveals rapid epigenetic progression in vitro that can be prevented by chemical modification of chromatin publication-title: Hum. Mol. Genet. – volume: 14 start-page: 838 year: 2014 end-page: 853 ident: bib1 article-title: Reorganization of enhancer patterns in transition from naive to primed pluripotency publication-title: Cell Stem Cell – volume: 207 start-page: 551 year: 1998 end-page: 561 ident: bib18 article-title: Epigenotype switching of imprintable loci in embryonic germ cells publication-title: Dev. Genes Evol. – volume: 16 start-page: R243 issue: Spec No. 2 year: 2007 ident: 10.1016/j.stem.2016.01.019_bib15 article-title: Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm245 – volume: 146 start-page: 519 year: 2011 ident: 10.1016/j.stem.2016.01.019_bib8 article-title: Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells publication-title: Cell doi: 10.1016/j.cell.2011.06.052 – volume: 15 start-page: 410 year: 2014 ident: 10.1016/j.stem.2016.01.019_bib9 article-title: The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.09.014 – volume: 20 start-page: 311 year: 2013 ident: 10.1016/j.stem.2016.01.019_bib10 article-title: Naive pluripotency is associated with global DNA hypomethylation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2510 – volume: 47 start-page: 469 year: 2015 ident: 10.1016/j.stem.2016.01.019_bib11 article-title: Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells publication-title: Nat. Genet. doi: 10.1038/ng.3258 – volume: 10 start-page: e1004868 year: 2014 ident: 10.1016/j.stem.2016.01.019_bib13 article-title: Genome-wide analysis of DNA methylation dynamics during early human development publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004868 – volume: 5 start-page: 337 year: 2015 ident: 10.1016/j.stem.2016.01.019_bib14 article-title: PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2015.07.006 – volume: 484 start-page: 339 year: 2012 ident: 10.1016/j.stem.2016.01.019_bib16 article-title: A unique regulatory phase of DNA methylation in the early mammalian embryo publication-title: Nature doi: 10.1038/nature10960 – volume: 111 start-page: 4484 year: 2014 ident: 10.1016/j.stem.2016.01.019_bib22 article-title: Derivation of naive human embryonic stem cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1319738111 – volume: 158 start-page: 1254 year: 2014 ident: 10.1016/j.stem.2016.01.019_bib19 article-title: Resetting transcription factor control circuitry toward ground-state pluripotency in human publication-title: Cell doi: 10.1016/j.cell.2014.08.029 – volume: 15 start-page: 471 year: 2014 ident: 10.1016/j.stem.2016.01.019_bib21 article-title: Systematic identification of culture conditions for induction and maintenance of naive human pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.07.002 – volume: 26 start-page: 477 year: 2009 ident: 10.1016/j.stem.2016.01.019_bib2 article-title: Genomic imprinting disorders in humans: a mini-review publication-title: J. Assist. Reprod. Genet. doi: 10.1007/s10815-009-9353-3 – volume: 161 start-page: 1425 year: 2015 ident: 10.1016/j.stem.2016.01.019_bib6 article-title: DNA Demethylation Dynamics in the Human Prenatal Germline publication-title: Cell doi: 10.1016/j.cell.2015.05.012 – volume: 20 start-page: 1131 year: 2013 ident: 10.1016/j.stem.2016.01.019_bib23 article-title: Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2660 – volume: 7 start-page: 1968 year: 2014 ident: 10.1016/j.stem.2016.01.019_bib24 article-title: Otx2 and Oct4 drive early enhancer activation during embryonic stem cell transition from naive pluripotency publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.05.037 – volume: 511 start-page: 611 year: 2014 ident: 10.1016/j.stem.2016.01.019_bib17 article-title: DNA methylation dynamics of the human preimplantation embryo publication-title: Nature doi: 10.1038/nature13581 – volume: 504 start-page: 282 year: 2013 ident: 10.1016/j.stem.2016.01.019_bib5 article-title: Derivation of novel human ground state naive pluripotent stem cells publication-title: Nature doi: 10.1038/nature12745 – volume: 14 start-page: 838 year: 2014 ident: 10.1016/j.stem.2016.01.019_bib1 article-title: Reorganization of enhancer patterns in transition from naive to primed pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.04.003 – volume: 8 start-page: 275 year: 2005 ident: 10.1016/j.stem.2016.01.019_bib25 article-title: Global loss of imprinting leads to widespread tumorigenesis in adult mice publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.09.007 – volume: 4 start-page: 487 year: 2009 ident: 10.1016/j.stem.2016.01.019_bib12 article-title: Naive and primed pluripotent states publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.05.015 – volume: 207 start-page: 551 year: 1998 ident: 10.1016/j.stem.2016.01.019_bib18 article-title: Epigenotype switching of imprintable loci in embryonic germ cells publication-title: Dev. Genes Evol. doi: 10.1007/s004270050146 – volume: 21 start-page: 751 year: 2012 ident: 10.1016/j.stem.2016.01.019_bib4 article-title: Derivation of new human embryonic stem cell lines reveals rapid epigenetic progression in vitro that can be prevented by chemical modification of chromatin publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr506 – volume: 6 start-page: e21208 year: 2011 ident: 10.1016/j.stem.2016.01.019_bib20 article-title: Deterministic and stochastic allele specific gene expression in single mouse blastomeres publication-title: PLoS ONE doi: 10.1371/journal.pone.0021208 – volume: 65 start-page: 19 year: 1995 ident: 10.1016/j.stem.2016.01.019_bib7 article-title: The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes publication-title: Pharmacol. Ther. doi: 10.1016/0163-7258(94)00053-6 – volume: 13 start-page: 663 year: 2013 ident: 10.1016/j.stem.2016.01.019_bib3 article-title: Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.11.015 – reference: 7536332 - Pharmacol Ther. 1995 Jan;65(1):19-46 – reference: 21820164 - Cell. 2011 Aug 19;146(4):519-32 – reference: 25079558 - Nature. 2014 Jul 31;511(7511):611-5 – reference: 25090446 - Cell Stem Cell. 2014 Oct 2;15(4):471-87 – reference: 25501653 - PLoS Genet. 2014 Dec;10(12):e1004868 – reference: 25280217 - Cell Stem Cell. 2014 Oct 2;15(4):410-5 – reference: 9510550 - Dev Genes Evol. 1998 Feb;207(8):551-61 – reference: 25215486 - Cell. 2014 Sep 11;158(6):1254-69 – reference: 17911167 - Hum Mol Genet. 2007 Oct 15;16 Spec No. 2:R243-51 – reference: 24315441 - Cell Stem Cell. 2013 Dec 5;13(6):663-75 – reference: 22456710 - Nature. 2012 Apr 19;484(7394):339-44 – reference: 24623855 - Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4484-9 – reference: 25822089 - Nat Genet. 2015 May;47(5):469-78 – reference: 23934149 - Nat Struct Mol Biol. 2013 Sep;20(9):1131-9 – reference: 22058289 - Hum Mol Genet. 2012 Feb 15;21(4):751-64 – reference: 24905168 - Cell Stem Cell. 2014 Jun 5;14(6):838-53 – reference: 26278040 - Stem Cell Reports. 2015 Sep 8;5(3):337-49 – reference: 23416945 - Nat Struct Mol Biol. 2013 Mar;20(3):311-6 – reference: 24172903 - Nature. 2013 Dec 12;504(7479):282-6 – reference: 26004067 - Cell. 2015 Jun 4;161(6):1425-36 – reference: 24931607 - Cell Rep. 2014 Jun 26;7(6):1968-81 – reference: 19844787 - J Assist Reprod Genet. 2009 Sep-Oct;26(9-10):477-86 – reference: 19497275 - Cell Stem Cell. 2009 Jun 5;4(6):487-92 – reference: 21731673 - PLoS One. 2011;6(6):e21208 |
SSID | ssj0057107 |
Score | 2.5925415 |
Snippet | Human embryonic stem cells (hESCs) typically exhibit “primed” pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has... Human embryonic stem cells (hESCs) typically exhibit "primed" pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 323 |
SubjectTerms | Animals Blastocyst - cytology Blastocyst - metabolism Cell Line DNA Methylation Human Embryonic Stem Cells - cytology Human Embryonic Stem Cells - metabolism Humans Mice Oocytes - cytology Oocytes - metabolism Pluripotent Stem Cells - cytology Pluripotent Stem Cells - metabolism Stage-Specific Embryonic Antigens - metabolism |
Title | Naive Human Pluripotent Cells Feature a Methylation Landscape Devoid of Blastocyst or Germline Memory |
URI | https://dx.doi.org/10.1016/j.stem.2016.01.019 https://www.ncbi.nlm.nih.gov/pubmed/26853856 https://www.proquest.com/docview/1770876550 https://www.proquest.com/docview/1790931961 https://pubmed.ncbi.nlm.nih.gov/PMC4779431 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalMNhLafejTdsVDfY2TPxDku3HNmtWyhIGbSBvQpZkmuLaIXEK-e97J9th6UoeCnlJcgJbJ3_3nXX3iZAfOYSB0ITGY9xCghJGwlPCWE8IneZJlEeJ660ajcXNhN1O-XSPDLpeGCyrbLG_wXSH1u0v_XY2-_PZrH8H1IPxFOKdcPtp2GgescQ18U2vOjTmEEHjZmeZeWjdNs40NV6olYzlXcJJd6LaztvB6X_y-bqG8p-gNDwkBy2bpJfNBR-RPVt-Ih-a8yXXn4kdKwAz6l7U07_FCgCiAo5c04EtiiVF-rdaWKroyIK_mqo4-gebf7Esiv6yz9XM0CqnV8Cx60qvlzWtFvQ3oDmyUxj2VC3WX8hkeH0_uPHacxU8LUJWQ-7JAaF9plCoJclzSJoyGxkDod0qxlKdMd_yTATGKNyWTTkPMx0n2udZYE0QfSX7ZVXaE0K5TjDDVrnShuXaVyKLUl-AWcIySOV6JOgmVOpWdBzPvihkV132KNEJEp0g_QA-MObnZsy8kdzYac07P8mthSMhJuwc971zqoQnCrdJVGmr1VIGcYw6fZC67bKBpYToFfTIcbMQNtcaCqBACRc9Em8tkY0BKnpv_1POHpyyN4tRry84fec9nZGP-M2VyEXnZL9erOw34Ex1duEeihfGuxYJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tixBcEG_K00hwQlHzsJ3kwIHdZWnZtkJiV-rNOLYjuuomqzYF9XfxB5nJo6KAekBaqafGrlLP-JtvNOPPAK9zDAOhDa3HhcMEJYykp6V1npQmzZMoj5L6bNV4Igdn_NNUTPfgZ3cWhtoqW-xvML1G6_abfrua_cvZrP8FqQcXKcY7WdfTus7KE7f-gXnb8t3wCI38JgyPP5weDrz2agHPyJBXmH4JBCmfa9IqSfIc84bMRdZidHOa89Rk3Hcik4G1miqTqRBhZuLE-CILnA0i_N1rcB3ZR0xoMJwedPAvMGTHTSmbe_R67UmdpqmMxJmpn0zWWqEk7_PvaPg32_2zafO3KHh8B2639JW9b1boLuy54h7caC60XN8HN9GInqyuDLDP8xUiUomkvGKHbj5fMuKbq4Vjmo0dOkjThsdGdNqY-rDYkfteziwrc3aApL4qzXpZsXLBPmL4IDqM0y7KxfoBnF3Jaj-E_aIs3GNgwiSU0utcG8tz42uZRakvcVjCM8wdexB0C6pMq3JOl23MVdfOdq7ICIqMoPwAPzjn7WbOZaPxsXO06OyktjxVYRDaOe9VZ1SFW5jqMrpw5WqpgjgmYUDMFXeNQVciuAx68KhxhM27hhI5VyJkD-ItF9kMIAnx7SfF7FstJc5jEggMnvznf3oJNwen45EaDScnT-EWPan786JnsF8tVu45ErYqe1FvEAZfr3pH_gJ4dFLp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Naive+Human+Pluripotent+Cells+Feature+a+Methylation+Landscape+Devoid+of+Blastocyst+or+Germline+Memory&rft.jtitle=Cell+stem+cell&rft.au=Pastor%2C+William%C2%A0A.&rft.au=Chen%2C+Di&rft.au=Liu%2C+Wanlu&rft.au=Kim%2C+Rachel&rft.date=2016-03-03&rft.pub=Elsevier+Inc&rft.issn=1934-5909&rft.eissn=1875-9777&rft.volume=18&rft.issue=3&rft.spage=323&rft.epage=329&rft_id=info:doi/10.1016%2Fj.stem.2016.01.019&rft.externalDocID=S1934590916000205 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon |