Naive Human Pluripotent Cells Feature a Methylation Landscape Devoid of Blastocyst or Germline Memory

Human embryonic stem cells (hESCs) typically exhibit “primed” pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naive epiblast cells in human pre-implantati...

Full description

Saved in:
Bibliographic Details
Published inCell stem cell Vol. 18; no. 3; pp. 323 - 329
Main Authors Pastor, William A., Chen, Di, Liu, Wanlu, Kim, Rachel, Sahakyan, Anna, Lukianchikov, Anastasia, Plath, Kathrin, Jacobsen, Steven E., Clark, Amander T.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human embryonic stem cells (hESCs) typically exhibit “primed” pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naive epiblast cells in human pre-implantation embryos. We have discovered that reverting primed hESCs to a hypomethylated naive state or deriving a new hESC line under naive conditions results in the establishment of Stage Specific Embryonic Antigen 4 (SSEA4)-negative hESC lines with a transcriptional program resembling the human pre-implantation epiblast. In contrast, we discovered that the methylome of naive hESCs in vitro is distinct from that of the human epiblast in vivo with loss of DNA methylation at primary imprints and a lost “memory” of the methylation state of the human oocyte. This failure to recover the naive epiblast methylation landscape appears to be a consistent feature of self-renewing hypomethylated naive hESCs in vitro. [Display omitted] •Reversion or derivation of hESCs in 5iLAF results in SSEA4-negative cells•SSEA4-negative hESCs show gene expression consistent with naive pluripotency•Naive hESCs show lost “memory” of gamete and blastocyst methylation•Imprinting is lost in naive hESCs Pastor and colleagues show that reversion of primed hESCs in 5iLAF, or derivation of hESCs in 5iLAF, results in a population of naive cells characterized by loss of the marker SSEA4. However, these cells have a methylation pattern with little resemblance to blastocyst and near total loss of imprinting.
AbstractList Human embryonic stem cells (hESCs) typically exhibit “primed” pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naive epiblast cells in human pre-implantation embryos. We have discovered that reverting primed hESCs to a hypomethylated naive state or deriving a new hESC line under naive conditions results in the establishment of Stage Specific Embryonic Antigen 4 (SSEA4)-negative hESC lines with a transcriptional program resembling the human pre-implantation epiblast. In contrast, we discovered that the methylome of naive hESCs in vitro is distinct from that of the human epiblast in vivo with loss of DNA methylation at primary imprints and a lost “memory” of the methylation state of the human oocyte. This failure to recover the naive epiblast methylation landscape appears to be a consistent feature of self-renewing hypomethylated naive hESCs in vitro. [Display omitted] •Reversion or derivation of hESCs in 5iLAF results in SSEA4-negative cells•SSEA4-negative hESCs show gene expression consistent with naive pluripotency•Naive hESCs show lost “memory” of gamete and blastocyst methylation•Imprinting is lost in naive hESCs Pastor and colleagues show that reversion of primed hESCs in 5iLAF, or derivation of hESCs in 5iLAF, results in a population of naive cells characterized by loss of the marker SSEA4. However, these cells have a methylation pattern with little resemblance to blastocyst and near total loss of imprinting.
Human embryonic stem cells (hESCs) typically exhibit "primed" pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naive epiblast cells in human pre-implantation embryos. We have discovered that reverting primed hESCs to a hypomethylated naive state or deriving a new hESC line under naive conditions results in the establishment of Stage Specific Embryonic Antigen 4 (SSEA4)-negative hESC lines with a transcriptional program resembling the human pre-implantation epiblast. In contrast, we discovered that the methylome of naive hESCs in vitro is distinct from that of the human epiblast in vivo with loss of DNA methylation at primary imprints and a lost "memory" of the methylation state of the human oocyte. This failure to recover the naive epiblast methylation landscape appears to be a consistent feature of self-renewing hypomethylated naive hESCs in vitro.Human embryonic stem cells (hESCs) typically exhibit "primed" pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naive epiblast cells in human pre-implantation embryos. We have discovered that reverting primed hESCs to a hypomethylated naive state or deriving a new hESC line under naive conditions results in the establishment of Stage Specific Embryonic Antigen 4 (SSEA4)-negative hESC lines with a transcriptional program resembling the human pre-implantation epiblast. In contrast, we discovered that the methylome of naive hESCs in vitro is distinct from that of the human epiblast in vivo with loss of DNA methylation at primary imprints and a lost "memory" of the methylation state of the human oocyte. This failure to recover the naive epiblast methylation landscape appears to be a consistent feature of self-renewing hypomethylated naive hESCs in vitro.
Human embryonic stem cells (hESCs) typically exhibit "primed" pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naive epiblast cells in human pre-implantation embryos. We have discovered that reverting primed hESCs to a hypomethylated naive state or deriving a new hESC line under naive conditions results in the establishment of Stage Specific Embryonic Antigen 4 (SSEA4)-negative hESC lines with a transcriptional program resembling the human pre-implantation epiblast. In contrast, we discovered that the methylome of naive hESCs in vitro is distinct from that of the human epiblast in vivo with loss of DNA methylation at primary imprints and a lost "memory" of the methylation state of the human oocyte. This failure to recover the naive epiblast methylation landscape appears to be a consistent feature of self-renewing hypomethylated naive hESCs in vitro.
Human embryonic stem cells (hESCs) typically exhibit “primed” pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has led to a search for growth conditions that support self-renewal of hESCs akin to hypomethylated naïve epiblast cells in human pre-implantation embryos. We have discovered that reverting primed hESCs to a hypomethylated naïve state or deriving a new hESC line under naïve conditions results in the establishment of Stage Specific Embryonic Antigen 4 (SSEA4) negative hESC lines with a transcriptional program resembling the human pre-implantation epiblast. In contrast, we discovered that the methylome of naïve hESCs in vitro is distinct from the human epiblast in vivo with loss of DNA methylation at primary imprints and a lost “memory” of the methylation state of the human oocyte. This failure to recover the naïve epiblast methylation landscape appears to be a consistent feature of self-renewing hypomethylated naïve hESCs in vitro .
Author Plath, Kathrin
Pastor, William A.
Sahakyan, Anna
Chen, Di
Jacobsen, Steven E.
Liu, Wanlu
Lukianchikov, Anastasia
Clark, Amander T.
Kim, Rachel
AuthorAffiliation 3 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California Los Angeles, Los Angeles CA 90095
2 Department of Biological Chemistry, University of California Los Angeles, Los Angeles CA 90095
1 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles CA 90095
4 Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles CA 90095
AuthorAffiliation_xml – name: 1 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles CA 90095
– name: 2 Department of Biological Chemistry, University of California Los Angeles, Los Angeles CA 90095
– name: 4 Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles CA 90095
– name: 3 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California Los Angeles, Los Angeles CA 90095
Author_xml – sequence: 1
  givenname: William A.
  surname: Pastor
  fullname: Pastor, William A.
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 2
  givenname: Di
  surname: Chen
  fullname: Chen, Di
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 3
  givenname: Wanlu
  surname: Liu
  fullname: Liu, Wanlu
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 4
  givenname: Rachel
  surname: Kim
  fullname: Kim, Rachel
  organization: Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 5
  givenname: Anna
  surname: Sahakyan
  fullname: Sahakyan, Anna
  organization: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 6
  givenname: Anastasia
  surname: Lukianchikov
  fullname: Lukianchikov, Anastasia
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 7
  givenname: Kathrin
  surname: Plath
  fullname: Plath, Kathrin
  organization: Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 8
  givenname: Steven E.
  surname: Jacobsen
  fullname: Jacobsen, Steven E.
  email: jacobsen@ucla.edu
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 9
  givenname: Amander T.
  surname: Clark
  fullname: Clark, Amander T.
  email: clarka@ucla.edu
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26853856$$D View this record in MEDLINE/PubMed
BookMark eNqNUV1rFDEUDVKxX_4BHySPvsyazCSTCYhgV9sKq_VBn0MmuWOzzCRrklnYf2_WbaX1oQgXciHnHM495xQd-eABoVeULCih7dv1ImWYFnXZF4SWkc_QCe0Er6QQ4qjssmEVl0Qeo9OU1oRwQYl4gY7rtuNNx9sTBF-12wK-nift8bdxjm4TMviMlzCOCV-CznMErPEXyLe7UWcXPF5pb5PRG8AfYRucxWHAF6NOOZhdyjhEfAVxGp2HQptC3J2j54MeE7y8e8_Qj8tP35fX1erm6vPyw6oybc1yxWsOPSVMs47ybhjqTvTQWEtaCpoxaXpGgPcttVbzWraS87o3ojOE9xQsbc7Q-4PuZu4nsKYcEvWoNtFNOu5U0E49_vHuVv0MW8WEkKzZC7y5E4jh1wwpq8klU6LQHsKcFBUlzYbK9n-ggnSi5ZwU6OuHtv76ua-hALoDwMSQUoRBGZf_ZF1culFRovaNq7XaN672jStCy8hCrf-h3qs_SXp3IEEpY-sgqmQceAPWRTBZ2eCeov8GmdHGMw
CitedBy_id crossref_primary_10_1016_j_stem_2017_02_014
crossref_primary_10_1038_ncomms15055
crossref_primary_10_1002_bies_201700239
crossref_primary_10_1111_cpr_13468
crossref_primary_10_1016_j_stem_2017_09_003
crossref_primary_10_1007_s10719_016_9740_9
crossref_primary_10_1038_s41467_020_15271_3
crossref_primary_10_1271_kagakutoseibutsu_55_750
crossref_primary_10_1016_j_celrep_2016_12_001
crossref_primary_10_1007_s40778_016_0055_3
crossref_primary_10_7554_eLife_47859
crossref_primary_10_1038_s41467_017_02107_w
crossref_primary_10_15252_embr_201847533
crossref_primary_10_1002_stem_2558
crossref_primary_10_1038_nature20484
crossref_primary_10_1126_sciadv_adg1936
crossref_primary_10_1038_s41556_018_0089_0
crossref_primary_10_7554_eLife_29518
crossref_primary_10_1126_science_abo7923
crossref_primary_10_1242_dev_201155
crossref_primary_10_1016_j_celrep_2022_111907
crossref_primary_10_37496_rbz5220220137
crossref_primary_10_1038_s41467_021_22201_4
crossref_primary_10_1038_s42003_020_01218_3
crossref_primary_10_1007_s00018_022_04549_y
crossref_primary_10_1038_s41598_024_53381_w
crossref_primary_10_1016_j_isci_2024_109569
crossref_primary_10_1016_j_biocel_2022_106263
crossref_primary_10_1016_j_stemcr_2020_01_009
crossref_primary_10_1038_labinvest_2017_87
crossref_primary_10_1038_s41556_024_01595_5
crossref_primary_10_1016_j_stemcr_2020_05_014
crossref_primary_10_1016_j_stem_2019_06_010
crossref_primary_10_3390_cells10040876
crossref_primary_10_1016_j_stemcr_2021_02_002
crossref_primary_10_1016_j_stem_2019_06_013
crossref_primary_10_1111_cpr_13317
crossref_primary_10_1038_s41556_022_00932_w
crossref_primary_10_3390_ijms24098386
crossref_primary_10_1016_j_stemcr_2021_09_002
crossref_primary_10_3390_cells11192929
crossref_primary_10_3390_genes10020176
crossref_primary_10_1016_j_stemcr_2020_01_012
crossref_primary_10_1016_j_celrep_2018_12_011
crossref_primary_10_3390_ijms26010271
crossref_primary_10_1038_s41556_018_0067_6
crossref_primary_10_1186_s12915_017_0453_8
crossref_primary_10_1186_s13619_023_00179_2
crossref_primary_10_1016_j_scr_2017_12_016
crossref_primary_10_1016_j_yexcr_2019_111645
crossref_primary_10_1016_j_stem_2016_05_025
crossref_primary_10_1038_nature23286
crossref_primary_10_1093_nar_gkaa567
crossref_primary_10_1016_j_celrep_2018_08_062
crossref_primary_10_1101_gr_233437_117
crossref_primary_10_1016_j_stemcr_2019_10_009
crossref_primary_10_1016_j_yexcr_2020_111935
crossref_primary_10_1002_bies_202400108
crossref_primary_10_1007_s11427_024_2721_y
crossref_primary_10_1016_j_stem_2022_04_004
crossref_primary_10_1016_j_gde_2025_102342
crossref_primary_10_1080_14789450_2019_1604229
crossref_primary_10_1371_journal_pgen_1006427
crossref_primary_10_1093_lifemedi_lnad006
crossref_primary_10_1016_j_stem_2016_08_008
crossref_primary_10_1242_dev_203090
crossref_primary_10_1126_science_aat1674
crossref_primary_10_18632_oncotarget_25353
crossref_primary_10_1016_j_biomaterials_2018_07_007
crossref_primary_10_1016_j_scr_2019_101655
crossref_primary_10_3390_cells10123558
crossref_primary_10_1002_stem_2507
crossref_primary_10_1016_j_stem_2020_06_002
crossref_primary_10_1093_nar_gkad058
crossref_primary_10_1007_s11427_024_2660_3
crossref_primary_10_1038_nrg_2016_88
crossref_primary_10_1631_jzus_B2200440
crossref_primary_10_1242_dev_146811
crossref_primary_10_1093_molehr_gay007
crossref_primary_10_1016_j_stemcr_2025_102419
crossref_primary_10_1002_adfm_202104046
crossref_primary_10_1016_j_celrep_2020_02_073
crossref_primary_10_1016_j_yexcr_2019_111749
crossref_primary_10_1016_j_cell_2024_05_027
crossref_primary_10_1016_j_yexcr_2019_111747
crossref_primary_10_1073_pnas_2003155117
crossref_primary_10_1016_j_molcel_2016_04_025
crossref_primary_10_1038_s41467_020_14764_5
crossref_primary_10_1016_j_gde_2023_102084
crossref_primary_10_1242_bio_052662
crossref_primary_10_1016_j_gde_2023_102088
crossref_primary_10_1007_s00018_022_04478_w
crossref_primary_10_1089_scd_2017_0066
crossref_primary_10_1093_biolre_ioac096
crossref_primary_10_3390_cells10082049
crossref_primary_10_1002_1873_3468_12826
crossref_primary_10_1038_s41467_022_30775_w
crossref_primary_10_5483_BMBRep_2021_54_10_094
crossref_primary_10_1242_dev_138982
crossref_primary_10_1016_j_stem_2016_10_006
crossref_primary_10_1002_rmb2_12490
crossref_primary_10_1186_s13287_019_1318_6
crossref_primary_10_1038_s41467_020_14629_x
crossref_primary_10_1186_s13072_019_0259_8
crossref_primary_10_1242_dev_142679
crossref_primary_10_1242_dev_167833
crossref_primary_10_15252_embj_2018101033
crossref_primary_10_1002_stem_2527
crossref_primary_10_1038_s41467_024_52431_1
crossref_primary_10_1242_dev_128389
crossref_primary_10_1089_scd_2017_0055
crossref_primary_10_1038_s41467_020_17269_3
crossref_primary_10_1016_j_celrep_2020_02_090
crossref_primary_10_1038_s41586_023_06424_7
crossref_primary_10_1016_j_stemcr_2020_06_003
crossref_primary_10_1016_j_stemcr_2019_03_014
crossref_primary_10_1016_j_ydbio_2021_03_025
crossref_primary_10_1038_s41586_022_04625_0
crossref_primary_10_1038_s41556_020_0573_1
crossref_primary_10_1016_j_scr_2017_11_017
crossref_primary_10_1038_s41588_017_0003_x
crossref_primary_10_1016_j_stem_2016_02_012
crossref_primary_10_1016_j_stemcr_2017_11_020
crossref_primary_10_1016_j_gde_2023_102135
crossref_primary_10_1016_j_stem_2020_11_003
crossref_primary_10_1016_j_crmeth_2022_100317
crossref_primary_10_1038_s41592_018_0104_1
crossref_primary_10_1038_s41467_022_30924_1
crossref_primary_10_1016_j_stem_2023_09_010
crossref_primary_10_1007_s11427_021_2076_x
crossref_primary_10_1016_j_isci_2022_105469
crossref_primary_10_1016_j_stemcr_2022_11_015
crossref_primary_10_1038_nrm_2015_28
crossref_primary_10_1016_j_biomaterials_2020_120015
crossref_primary_10_1371_journal_pone_0234628
crossref_primary_10_1038_s41467_021_26949_7
crossref_primary_10_1038_s41467_024_44969_x
crossref_primary_10_1038_s41536_021_00135_1
crossref_primary_10_1038_s41420_023_01670_0
crossref_primary_10_1016_j_celrep_2017_04_020
crossref_primary_10_1016_j_scr_2021_102334
crossref_primary_10_1016_j_preteyeres_2018_11_001
crossref_primary_10_1007_s12015_023_10613_2
crossref_primary_10_1186_s13059_019_1748_6
crossref_primary_10_1242_dev_145177
crossref_primary_10_1016_j_stemcr_2025_102450
crossref_primary_10_1126_sciadv_adf2245
crossref_primary_10_1016_j_chembiol_2016_07_007
crossref_primary_10_1038_nature23274
crossref_primary_10_1016_j_cell_2022_12_047
crossref_primary_10_1016_j_celrep_2018_12_099
crossref_primary_10_1016_j_gde_2017_02_003
crossref_primary_10_1038_s41467_018_08020_0
crossref_primary_10_1007_s10739_022_09691_8
crossref_primary_10_1016_j_bbrc_2019_01_037
crossref_primary_10_1016_j_yexcr_2020_112215
crossref_primary_10_1016_j_cels_2019_03_012
crossref_primary_10_1007_s11427_018_9334_2
crossref_primary_10_1242_dev_158501
crossref_primary_10_1038_s41592_022_01571_7
crossref_primary_10_1038_s42003_022_03087_4
crossref_primary_10_1007_s12015_019_09935_x
crossref_primary_10_1016_j_stem_2022_06_006
crossref_primary_10_1016_j_celrep_2021_109215
crossref_primary_10_1016_j_placenta_2024_08_014
crossref_primary_10_1098_rsob_240214
crossref_primary_10_1016_j_stem_2021_04_001
crossref_primary_10_1126_sciadv_abk0013
crossref_primary_10_7554_eLife_67259
crossref_primary_10_1002_ar_24304
crossref_primary_10_1002_1873_3468_13167
crossref_primary_10_3389_fcell_2019_00076
crossref_primary_10_1007_s12015_024_10699_2
crossref_primary_10_3390_ijms25063214
crossref_primary_10_1016_j_stem_2024_12_007
crossref_primary_10_1016_j_yjmcc_2023_01_007
crossref_primary_10_2217_epi_2017_0115
crossref_primary_10_3390_biom13121684
crossref_primary_10_1016_j_gde_2017_06_009
crossref_primary_10_3390_cells11111729
crossref_primary_10_1016_j_tcb_2018_05_005
crossref_primary_10_3390_biomedicines10061358
crossref_primary_10_1042_BST20230479
crossref_primary_10_3390_cells10113246
crossref_primary_10_1038_s41576_024_00760_8
crossref_primary_10_1016_j_celrep_2021_109233
crossref_primary_10_12688_f1000research_12596_1
crossref_primary_10_1016_j_jgg_2024_11_005
crossref_primary_10_1073_pnas_2211073119
crossref_primary_10_1016_j_semcdb_2020_05_001
crossref_primary_10_1016_j_scr_2021_102493
crossref_primary_10_1016_j_stem_2016_06_011
crossref_primary_10_1016_j_ydbio_2024_02_001
crossref_primary_10_1038_nmeth_4436
crossref_primary_10_1242_dev_195792
crossref_primary_10_1093_nar_gkad540
crossref_primary_10_3390_ijms20215428
crossref_primary_10_1038_s41422_019_0265_1
crossref_primary_10_1038_s42003_025_07899_y
crossref_primary_10_1242_dev_157404
crossref_primary_10_1038_s41586_020_2734_6
crossref_primary_10_1016_j_devcel_2016_09_015
crossref_primary_10_1002_bies_202400077
crossref_primary_10_1038_s41556_018_0254_5
crossref_primary_10_1371_journal_pbio_3002162
crossref_primary_10_1016_j_celrep_2024_114232
crossref_primary_10_1016_j_xpro_2024_103446
crossref_primary_10_1016_j_celrep_2022_110994
crossref_primary_10_1016_j_reth_2020_08_001
crossref_primary_10_1016_j_stem_2024_01_009
Cites_doi 10.1093/hmg/ddm245
10.1016/j.cell.2011.06.052
10.1016/j.stem.2014.09.014
10.1038/nsmb.2510
10.1038/ng.3258
10.1371/journal.pgen.1004868
10.1016/j.stemcr.2015.07.006
10.1038/nature10960
10.1073/pnas.1319738111
10.1016/j.cell.2014.08.029
10.1016/j.stem.2014.07.002
10.1007/s10815-009-9353-3
10.1016/j.cell.2015.05.012
10.1038/nsmb.2660
10.1016/j.celrep.2014.05.037
10.1038/nature13581
10.1038/nature12745
10.1016/j.stem.2014.04.003
10.1016/j.ccr.2005.09.007
10.1016/j.stem.2009.05.015
10.1007/s004270050146
10.1093/hmg/ddr506
10.1371/journal.pone.0021208
10.1016/0163-7258(94)00053-6
10.1016/j.stem.2013.11.015
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TM
8FD
FR3
P64
5PM
DOI 10.1016/j.stem.2016.01.019
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE - Academic
Engineering Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-9777
EndPage 329
ExternalDocumentID PMC4779431
26853856
10_1016_j_stem_2016_01_019
S1934590916000205
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: F31 GM115122
– fundername: NICHD NIH HHS
  grantid: R01 HD079546
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: P01 GM099134
GroupedDBID ---
--K
0R~
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
WQ6
ZA5
ZBA
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TM
8FD
FR3
P64
5PM
EFKBS
ID FETCH-LOGICAL-c624t-525eb104a48158ff287be3dd061ea449cb40e5b61dda52969552bc78c05b1ed13
IEDL.DBID IXB
ISSN 1934-5909
1875-9777
IngestDate Thu Aug 21 14:04:51 EDT 2025
Fri Jul 11 03:41:51 EDT 2025
Thu Jul 10 18:06:40 EDT 2025
Thu Apr 03 07:02:36 EDT 2025
Tue Jul 01 01:08:27 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Fri Feb 23 02:30:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c624t-525eb104a48158ff287be3dd061ea449cb40e5b61dda52969552bc78c05b1ed13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1934590916000205
PMID 26853856
PQID 1770876550
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4779431
proquest_miscellaneous_1790931961
proquest_miscellaneous_1770876550
pubmed_primary_26853856
crossref_citationtrail_10_1016_j_stem_2016_01_019
crossref_primary_10_1016_j_stem_2016_01_019
elsevier_sciencedirect_doi_10_1016_j_stem_2016_01_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-03
PublicationDateYYYYMMDD 2016-03-03
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell stem cell
PublicationTitleAlternate Cell Stem Cell
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ware, Nelson, Mecham, Hesson, Zhou, Jonlin, Jimenez-Caliani, Deng, Cavanaugh, Cook (bib22) 2014; 111
Diaz Perez, Kim, Li, Marquez, Patel, Plath, Clark (bib4) 2012; 21
Takashima, Guo, Loos, Nichols, Ficz, Krueger, Oxley, Santos, Clarke, Mansfield (bib19) 2014; 158
Huang, Maruyama, Fan (bib9) 2014; 15
Rugg-Gunn, Ferguson-Smith, Pedersen (bib15) 2007; 16
Gkountela, Zhang, Shafiq, Liao, Hargan-Calvopiña, Chen, Clark (bib6) 2015; 161
Haaf (bib7) 1995; 65
Smith, Chan, Mikkelsen, Gu, Gnirke, Regev, Meissner (bib16) 2012; 484
Holm, Jackson-Grusby, Brambrink, Yamada, Rideout, Jaenisch (bib25) 2005; 8
Tang, Barbacioru, Nordman, Bao, Lee, Wang, Tuch, Heard, Lao, Surani (bib20) 2011; 6
Buecker, Srinivasan, Wu, Calo, Acampora, Faial, Simeone, Tan, Swigut, Wysocka (bib1) 2014; 14
Yan, Yang, Guo, Yang, Wu, Li, Liu, Lian, Zheng, Yan (bib23) 2013; 20
Okae, Chiba, Hiura, Hamada, Sato, Utsunomiya, Kikuchi, Yoshida, Tanaka, Suyama, Arima (bib13) 2014; 10
Butler (bib2) 2009; 26
Smith, Chan, Humm, Karnik, Mekhoubad, Regev, Eggan, Meissner (bib17) 2014; 511
Nichols, Smith (bib12) 2009; 4
Yang, Kalkan, Morissroe, Marks, Stunnenberg, Smith, Sharrocks (bib24) 2014; 7
Chan, Göke, Ng, Lu, Gonzales, Tan, Tng, Hong, Lim, Ng (bib3) 2013; 13
Hayashi, Ohta, Kurimoto, Aramaki, Saitou (bib8) 2011; 146
Theunissen, Powell, Wang, Mitalipova, Faddah, Reddy, Fan, Maetzel, Ganz, Shi (bib21) 2014; 15
Leitch, McEwen, Turp, Encheva, Carroll, Grabole, Mansfield, Nashun, Knezovich, Smith (bib10) 2013; 20
Oliveros-Etter, Li, Nee, Hosohama, Hargan-Calvopina, Lee, Joti, Yu, Clark (bib14) 2015; 5
Gafni, Weinberger, Mansour, Manor, Chomsky, Ben-Yosef, Kalma, Viukov, Maza, Zviran (bib5) 2013; 504
Tada, Tada, Hilton, Barton, Sado, Takagi, Surani (bib18) 1998; 207
Liao, Karnik, Gu, Ziller, Clement, Tsankov, Akopian, Gifford, Donaghey, Galonska (bib11) 2015; 47
Hayashi (10.1016/j.stem.2016.01.019_bib8) 2011; 146
Tada (10.1016/j.stem.2016.01.019_bib18) 1998; 207
Tang (10.1016/j.stem.2016.01.019_bib20) 2011; 6
Ware (10.1016/j.stem.2016.01.019_bib22) 2014; 111
Smith (10.1016/j.stem.2016.01.019_bib17) 2014; 511
Nichols (10.1016/j.stem.2016.01.019_bib12) 2009; 4
Gafni (10.1016/j.stem.2016.01.019_bib5) 2013; 504
Butler (10.1016/j.stem.2016.01.019_bib2) 2009; 26
Liao (10.1016/j.stem.2016.01.019_bib11) 2015; 47
Buecker (10.1016/j.stem.2016.01.019_bib1) 2014; 14
Yan (10.1016/j.stem.2016.01.019_bib23) 2013; 20
Oliveros-Etter (10.1016/j.stem.2016.01.019_bib14) 2015; 5
Theunissen (10.1016/j.stem.2016.01.019_bib21) 2014; 15
Diaz Perez (10.1016/j.stem.2016.01.019_bib4) 2012; 21
Smith (10.1016/j.stem.2016.01.019_bib16) 2012; 484
Rugg-Gunn (10.1016/j.stem.2016.01.019_bib15) 2007; 16
Leitch (10.1016/j.stem.2016.01.019_bib10) 2013; 20
Okae (10.1016/j.stem.2016.01.019_bib13) 2014; 10
Takashima (10.1016/j.stem.2016.01.019_bib19) 2014; 158
Yang (10.1016/j.stem.2016.01.019_bib24) 2014; 7
Holm (10.1016/j.stem.2016.01.019_bib25) 2005; 8
Chan (10.1016/j.stem.2016.01.019_bib3) 2013; 13
Haaf (10.1016/j.stem.2016.01.019_bib7) 1995; 65
Gkountela (10.1016/j.stem.2016.01.019_bib6) 2015; 161
Huang (10.1016/j.stem.2016.01.019_bib9) 2014; 15
25090446 - Cell Stem Cell. 2014 Oct 2;15(4):471-87
26278040 - Stem Cell Reports. 2015 Sep 8;5(3):337-49
25215486 - Cell. 2014 Sep 11;158(6):1254-69
22456710 - Nature. 2012 Apr 19;484(7394):339-44
26004067 - Cell. 2015 Jun 4;161(6):1425-36
23416945 - Nat Struct Mol Biol. 2013 Mar;20(3):311-6
17911167 - Hum Mol Genet. 2007 Oct 15;16 Spec No. 2:R243-51
25079558 - Nature. 2014 Jul 31;511(7511):611-5
19844787 - J Assist Reprod Genet. 2009 Sep-Oct;26(9-10):477-86
21731673 - PLoS One. 2011;6(6):e21208
25501653 - PLoS Genet. 2014 Dec;10(12):e1004868
23934149 - Nat Struct Mol Biol. 2013 Sep;20(9):1131-9
24931607 - Cell Rep. 2014 Jun 26;7(6):1968-81
22058289 - Hum Mol Genet. 2012 Feb 15;21(4):751-64
24905168 - Cell Stem Cell. 2014 Jun 5;14(6):838-53
24172903 - Nature. 2013 Dec 12;504(7479):282-6
9510550 - Dev Genes Evol. 1998 Feb;207(8):551-61
24623855 - Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4484-9
25280217 - Cell Stem Cell. 2014 Oct 2;15(4):410-5
7536332 - Pharmacol Ther. 1995 Jan;65(1):19-46
24315441 - Cell Stem Cell. 2013 Dec 5;13(6):663-75
25822089 - Nat Genet. 2015 May;47(5):469-78
21820164 - Cell. 2011 Aug 19;146(4):519-32
19497275 - Cell Stem Cell. 2009 Jun 5;4(6):487-92
References_xml – volume: 15
  start-page: 471
  year: 2014
  end-page: 487
  ident: bib21
  article-title: Systematic identification of culture conditions for induction and maintenance of naive human pluripotency
  publication-title: Cell Stem Cell
– volume: 484
  start-page: 339
  year: 2012
  end-page: 344
  ident: bib16
  article-title: A unique regulatory phase of DNA methylation in the early mammalian embryo
  publication-title: Nature
– volume: 47
  start-page: 469
  year: 2015
  end-page: 478
  ident: bib11
  article-title: Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells
  publication-title: Nat. Genet.
– volume: 6
  start-page: e21208
  year: 2011
  ident: bib20
  article-title: Deterministic and stochastic allele specific gene expression in single mouse blastomeres
  publication-title: PLoS ONE
– volume: 511
  start-page: 611
  year: 2014
  end-page: 615
  ident: bib17
  article-title: DNA methylation dynamics of the human preimplantation embryo
  publication-title: Nature
– volume: 10
  start-page: e1004868
  year: 2014
  ident: bib13
  article-title: Genome-wide analysis of DNA methylation dynamics during early human development
  publication-title: PLoS Genet.
– volume: 5
  start-page: 337
  year: 2015
  end-page: 349
  ident: bib14
  article-title: PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation
  publication-title: Stem Cell Reports
– volume: 158
  start-page: 1254
  year: 2014
  end-page: 1269
  ident: bib19
  article-title: Resetting transcription factor control circuitry toward ground-state pluripotency in human
  publication-title: Cell
– volume: 15
  start-page: 410
  year: 2014
  end-page: 415
  ident: bib9
  article-title: The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses
  publication-title: Cell Stem Cell
– volume: 4
  start-page: 487
  year: 2009
  end-page: 492
  ident: bib12
  article-title: Naive and primed pluripotent states
  publication-title: Cell Stem Cell
– volume: 20
  start-page: 311
  year: 2013
  end-page: 316
  ident: bib10
  article-title: Naive pluripotency is associated with global DNA hypomethylation
  publication-title: Nat. Struct. Mol. Biol.
– volume: 146
  start-page: 519
  year: 2011
  end-page: 532
  ident: bib8
  article-title: Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells
  publication-title: Cell
– volume: 161
  start-page: 1425
  year: 2015
  end-page: 1436
  ident: bib6
  article-title: DNA Demethylation Dynamics in the Human Prenatal Germline
  publication-title: Cell
– volume: 504
  start-page: 282
  year: 2013
  end-page: 286
  ident: bib5
  article-title: Derivation of novel human ground state naive pluripotent stem cells
  publication-title: Nature
– volume: 20
  start-page: 1131
  year: 2013
  end-page: 1139
  ident: bib23
  article-title: Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells
  publication-title: Nat. Struct. Mol. Biol.
– volume: 7
  start-page: 1968
  year: 2014
  end-page: 1981
  ident: bib24
  article-title: Otx2 and Oct4 drive early enhancer activation during embryonic stem cell transition from naive pluripotency
  publication-title: Cell Rep.
– volume: 26
  start-page: 477
  year: 2009
  end-page: 486
  ident: bib2
  article-title: Genomic imprinting disorders in humans: a mini-review
  publication-title: J. Assist. Reprod. Genet.
– volume: 111
  start-page: 4484
  year: 2014
  end-page: 4489
  ident: bib22
  article-title: Derivation of naive human embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 275
  year: 2005
  end-page: 285
  ident: bib25
  article-title: Global loss of imprinting leads to widespread tumorigenesis in adult mice
  publication-title: Cancer Cell
– volume: 16
  start-page: R243
  year: 2007
  end-page: R251
  ident: bib15
  article-title: Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines
  publication-title: Hum. Mol. Genet.
– volume: 13
  start-page: 663
  year: 2013
  end-page: 675
  ident: bib3
  article-title: Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast
  publication-title: Cell Stem Cell
– volume: 65
  start-page: 19
  year: 1995
  end-page: 46
  ident: bib7
  article-title: The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes
  publication-title: Pharmacol. Ther.
– volume: 21
  start-page: 751
  year: 2012
  end-page: 764
  ident: bib4
  article-title: Derivation of new human embryonic stem cell lines reveals rapid epigenetic progression in vitro that can be prevented by chemical modification of chromatin
  publication-title: Hum. Mol. Genet.
– volume: 14
  start-page: 838
  year: 2014
  end-page: 853
  ident: bib1
  article-title: Reorganization of enhancer patterns in transition from naive to primed pluripotency
  publication-title: Cell Stem Cell
– volume: 207
  start-page: 551
  year: 1998
  end-page: 561
  ident: bib18
  article-title: Epigenotype switching of imprintable loci in embryonic germ cells
  publication-title: Dev. Genes Evol.
– volume: 16
  start-page: R243
  issue: Spec No. 2
  year: 2007
  ident: 10.1016/j.stem.2016.01.019_bib15
  article-title: Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm245
– volume: 146
  start-page: 519
  year: 2011
  ident: 10.1016/j.stem.2016.01.019_bib8
  article-title: Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.052
– volume: 15
  start-page: 410
  year: 2014
  ident: 10.1016/j.stem.2016.01.019_bib9
  article-title: The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.09.014
– volume: 20
  start-page: 311
  year: 2013
  ident: 10.1016/j.stem.2016.01.019_bib10
  article-title: Naive pluripotency is associated with global DNA hypomethylation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2510
– volume: 47
  start-page: 469
  year: 2015
  ident: 10.1016/j.stem.2016.01.019_bib11
  article-title: Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3258
– volume: 10
  start-page: e1004868
  year: 2014
  ident: 10.1016/j.stem.2016.01.019_bib13
  article-title: Genome-wide analysis of DNA methylation dynamics during early human development
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004868
– volume: 5
  start-page: 337
  year: 2015
  ident: 10.1016/j.stem.2016.01.019_bib14
  article-title: PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2015.07.006
– volume: 484
  start-page: 339
  year: 2012
  ident: 10.1016/j.stem.2016.01.019_bib16
  article-title: A unique regulatory phase of DNA methylation in the early mammalian embryo
  publication-title: Nature
  doi: 10.1038/nature10960
– volume: 111
  start-page: 4484
  year: 2014
  ident: 10.1016/j.stem.2016.01.019_bib22
  article-title: Derivation of naive human embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1319738111
– volume: 158
  start-page: 1254
  year: 2014
  ident: 10.1016/j.stem.2016.01.019_bib19
  article-title: Resetting transcription factor control circuitry toward ground-state pluripotency in human
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.029
– volume: 15
  start-page: 471
  year: 2014
  ident: 10.1016/j.stem.2016.01.019_bib21
  article-title: Systematic identification of culture conditions for induction and maintenance of naive human pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.07.002
– volume: 26
  start-page: 477
  year: 2009
  ident: 10.1016/j.stem.2016.01.019_bib2
  article-title: Genomic imprinting disorders in humans: a mini-review
  publication-title: J. Assist. Reprod. Genet.
  doi: 10.1007/s10815-009-9353-3
– volume: 161
  start-page: 1425
  year: 2015
  ident: 10.1016/j.stem.2016.01.019_bib6
  article-title: DNA Demethylation Dynamics in the Human Prenatal Germline
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.012
– volume: 20
  start-page: 1131
  year: 2013
  ident: 10.1016/j.stem.2016.01.019_bib23
  article-title: Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2660
– volume: 7
  start-page: 1968
  year: 2014
  ident: 10.1016/j.stem.2016.01.019_bib24
  article-title: Otx2 and Oct4 drive early enhancer activation during embryonic stem cell transition from naive pluripotency
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.05.037
– volume: 511
  start-page: 611
  year: 2014
  ident: 10.1016/j.stem.2016.01.019_bib17
  article-title: DNA methylation dynamics of the human preimplantation embryo
  publication-title: Nature
  doi: 10.1038/nature13581
– volume: 504
  start-page: 282
  year: 2013
  ident: 10.1016/j.stem.2016.01.019_bib5
  article-title: Derivation of novel human ground state naive pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature12745
– volume: 14
  start-page: 838
  year: 2014
  ident: 10.1016/j.stem.2016.01.019_bib1
  article-title: Reorganization of enhancer patterns in transition from naive to primed pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.04.003
– volume: 8
  start-page: 275
  year: 2005
  ident: 10.1016/j.stem.2016.01.019_bib25
  article-title: Global loss of imprinting leads to widespread tumorigenesis in adult mice
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2005.09.007
– volume: 4
  start-page: 487
  year: 2009
  ident: 10.1016/j.stem.2016.01.019_bib12
  article-title: Naive and primed pluripotent states
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.05.015
– volume: 207
  start-page: 551
  year: 1998
  ident: 10.1016/j.stem.2016.01.019_bib18
  article-title: Epigenotype switching of imprintable loci in embryonic germ cells
  publication-title: Dev. Genes Evol.
  doi: 10.1007/s004270050146
– volume: 21
  start-page: 751
  year: 2012
  ident: 10.1016/j.stem.2016.01.019_bib4
  article-title: Derivation of new human embryonic stem cell lines reveals rapid epigenetic progression in vitro that can be prevented by chemical modification of chromatin
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddr506
– volume: 6
  start-page: e21208
  year: 2011
  ident: 10.1016/j.stem.2016.01.019_bib20
  article-title: Deterministic and stochastic allele specific gene expression in single mouse blastomeres
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0021208
– volume: 65
  start-page: 19
  year: 1995
  ident: 10.1016/j.stem.2016.01.019_bib7
  article-title: The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes
  publication-title: Pharmacol. Ther.
  doi: 10.1016/0163-7258(94)00053-6
– volume: 13
  start-page: 663
  year: 2013
  ident: 10.1016/j.stem.2016.01.019_bib3
  article-title: Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.11.015
– reference: 7536332 - Pharmacol Ther. 1995 Jan;65(1):19-46
– reference: 21820164 - Cell. 2011 Aug 19;146(4):519-32
– reference: 25079558 - Nature. 2014 Jul 31;511(7511):611-5
– reference: 25090446 - Cell Stem Cell. 2014 Oct 2;15(4):471-87
– reference: 25501653 - PLoS Genet. 2014 Dec;10(12):e1004868
– reference: 25280217 - Cell Stem Cell. 2014 Oct 2;15(4):410-5
– reference: 9510550 - Dev Genes Evol. 1998 Feb;207(8):551-61
– reference: 25215486 - Cell. 2014 Sep 11;158(6):1254-69
– reference: 17911167 - Hum Mol Genet. 2007 Oct 15;16 Spec No. 2:R243-51
– reference: 24315441 - Cell Stem Cell. 2013 Dec 5;13(6):663-75
– reference: 22456710 - Nature. 2012 Apr 19;484(7394):339-44
– reference: 24623855 - Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4484-9
– reference: 25822089 - Nat Genet. 2015 May;47(5):469-78
– reference: 23934149 - Nat Struct Mol Biol. 2013 Sep;20(9):1131-9
– reference: 22058289 - Hum Mol Genet. 2012 Feb 15;21(4):751-64
– reference: 24905168 - Cell Stem Cell. 2014 Jun 5;14(6):838-53
– reference: 26278040 - Stem Cell Reports. 2015 Sep 8;5(3):337-49
– reference: 23416945 - Nat Struct Mol Biol. 2013 Mar;20(3):311-6
– reference: 24172903 - Nature. 2013 Dec 12;504(7479):282-6
– reference: 26004067 - Cell. 2015 Jun 4;161(6):1425-36
– reference: 24931607 - Cell Rep. 2014 Jun 26;7(6):1968-81
– reference: 19844787 - J Assist Reprod Genet. 2009 Sep-Oct;26(9-10):477-86
– reference: 19497275 - Cell Stem Cell. 2009 Jun 5;4(6):487-92
– reference: 21731673 - PLoS One. 2011;6(6):e21208
SSID ssj0057107
Score 2.5925415
Snippet Human embryonic stem cells (hESCs) typically exhibit “primed” pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has...
Human embryonic stem cells (hESCs) typically exhibit "primed" pluripotency, analogous to stem cells derived from the mouse post-implantation epiblast. This has...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 323
SubjectTerms Animals
Blastocyst - cytology
Blastocyst - metabolism
Cell Line
DNA Methylation
Human Embryonic Stem Cells - cytology
Human Embryonic Stem Cells - metabolism
Humans
Mice
Oocytes - cytology
Oocytes - metabolism
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - metabolism
Stage-Specific Embryonic Antigens - metabolism
Title Naive Human Pluripotent Cells Feature a Methylation Landscape Devoid of Blastocyst or Germline Memory
URI https://dx.doi.org/10.1016/j.stem.2016.01.019
https://www.ncbi.nlm.nih.gov/pubmed/26853856
https://www.proquest.com/docview/1770876550
https://www.proquest.com/docview/1790931961
https://pubmed.ncbi.nlm.nih.gov/PMC4779431
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalMNhLafejTdsVDfY2TPxDku3HNmtWyhIGbSBvQpZkmuLaIXEK-e97J9th6UoeCnlJcgJbJ3_3nXX3iZAfOYSB0ITGY9xCghJGwlPCWE8IneZJlEeJ660ajcXNhN1O-XSPDLpeGCyrbLG_wXSH1u0v_XY2-_PZrH8H1IPxFOKdcPtp2GgescQ18U2vOjTmEEHjZmeZeWjdNs40NV6olYzlXcJJd6LaztvB6X_y-bqG8p-gNDwkBy2bpJfNBR-RPVt-Ih-a8yXXn4kdKwAz6l7U07_FCgCiAo5c04EtiiVF-rdaWKroyIK_mqo4-gebf7Esiv6yz9XM0CqnV8Cx60qvlzWtFvQ3oDmyUxj2VC3WX8hkeH0_uPHacxU8LUJWQ-7JAaF9plCoJclzSJoyGxkDod0qxlKdMd_yTATGKNyWTTkPMx0n2udZYE0QfSX7ZVXaE0K5TjDDVrnShuXaVyKLUl-AWcIySOV6JOgmVOpWdBzPvihkV132KNEJEp0g_QA-MObnZsy8kdzYac07P8mthSMhJuwc971zqoQnCrdJVGmr1VIGcYw6fZC67bKBpYToFfTIcbMQNtcaCqBACRc9Em8tkY0BKnpv_1POHpyyN4tRry84fec9nZGP-M2VyEXnZL9erOw34Ex1duEeihfGuxYJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tixBcEG_K00hwQlHzsJ3kwIHdZWnZtkJiV-rNOLYjuuomqzYF9XfxB5nJo6KAekBaqafGrlLP-JtvNOPPAK9zDAOhDa3HhcMEJYykp6V1npQmzZMoj5L6bNV4Igdn_NNUTPfgZ3cWhtoqW-xvML1G6_abfrua_cvZrP8FqQcXKcY7WdfTus7KE7f-gXnb8t3wCI38JgyPP5weDrz2agHPyJBXmH4JBCmfa9IqSfIc84bMRdZidHOa89Rk3Hcik4G1miqTqRBhZuLE-CILnA0i_N1rcB3ZR0xoMJwedPAvMGTHTSmbe_R67UmdpqmMxJmpn0zWWqEk7_PvaPg32_2zafO3KHh8B2639JW9b1boLuy54h7caC60XN8HN9GInqyuDLDP8xUiUomkvGKHbj5fMuKbq4Vjmo0dOkjThsdGdNqY-rDYkfteziwrc3aApL4qzXpZsXLBPmL4IDqM0y7KxfoBnF3Jaj-E_aIs3GNgwiSU0utcG8tz42uZRakvcVjCM8wdexB0C6pMq3JOl23MVdfOdq7ICIqMoPwAPzjn7WbOZaPxsXO06OyktjxVYRDaOe9VZ1SFW5jqMrpw5WqpgjgmYUDMFXeNQVciuAx68KhxhM27hhI5VyJkD-ItF9kMIAnx7SfF7FstJc5jEggMnvznf3oJNwen45EaDScnT-EWPan786JnsF8tVu45ErYqe1FvEAZfr3pH_gJ4dFLp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Naive+Human+Pluripotent+Cells+Feature+a+Methylation+Landscape+Devoid+of+Blastocyst+or+Germline+Memory&rft.jtitle=Cell+stem+cell&rft.au=Pastor%2C+William%C2%A0A.&rft.au=Chen%2C+Di&rft.au=Liu%2C+Wanlu&rft.au=Kim%2C+Rachel&rft.date=2016-03-03&rft.pub=Elsevier+Inc&rft.issn=1934-5909&rft.eissn=1875-9777&rft.volume=18&rft.issue=3&rft.spage=323&rft.epage=329&rft_id=info:doi/10.1016%2Fj.stem.2016.01.019&rft.externalDocID=S1934590916000205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon