Wearable Sensor-Based In-Home Assessment of Gait, Balance, and Physical Activity for Discrimination of Frailty Status: Baseline Results of the Arizona Frailty Cohort Study
Background: Frailty is a geriatric syndrome resulting from age-related cumulative decline across multiple physiologic systems, impaired homeostatic reserve, and reduced capacity to resist stress. Based on recent estimates, 10% of community-dwelling older individuals are frail and another 41.6% are p...
Saved in:
Published in | Gerontology (Basel) Vol. 61; no. 3; pp. 258 - 267 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background: Frailty is a geriatric syndrome resulting from age-related cumulative decline across multiple physiologic systems, impaired homeostatic reserve, and reduced capacity to resist stress. Based on recent estimates, 10% of community-dwelling older individuals are frail and another 41.6% are prefrail. Frail elders account for the highest health care costs in industrialized nations. Impaired physical function is a major indicator of frailty, and functional performance tests are useful for the identification of frailty. Objective instrumented assessments of physical functioning that are feasible for home frailty screening have not been adequately developed. Objective: To examine the ability of wearable sensor-based in-home assessment of gait, balance, and physical activity (PA) to discriminate between frailty levels (nonfrail, prefrail, and frail). Methods: In an observational cross-sectional study, in-home visits were completed in 125 older adults (nonfrail: n = 44, prefrail: n = 60, frail: n = 21) living in Tucson, Ariz., USA, between September 2012 and November 2013. Temporal-spatial gait parameters (speed, stride length, stride time, double support, and variability of stride velocity), postural balance (sway of hip, ankle, and center of mass), and PA (percentage of walking, standing, sitting, and lying; mean duration and variability of single walking, standing, sitting, and lying bouts) were measured in the participant's home using validated wearable sensor technology. Logistic regression was used to assess the most sensitive gait, balance, and PA variables for identifying prefrail participants (vs. nonfrail). Multinomial logistic regression was used to identify variables sensitive to discriminate between three frailty levels. Results: Gait speed (area under the curve, AUC = 0.802), hip sway (AUC = 0.734), and steps/day (AUC = 0.736) were the most sensitive parameters for the identification of prefrailty. Multinomial regression revealed that stride length (AUC = 0.857) and double support (AUC = 0.841) were the most sensitive gait parameters for discriminating between three frailty levels. Interestingly, walking bout duration variability was the most sensitive PA parameter for discriminating between three frailty levels (AUC = 0.818). No balance parameter discriminated between three frailty levels. Conclusion: Our results indicate that unique parameters derived from objective assessment of gait, balance, and PA are sensitive for the identification of prefrailty and the classification of a subject's frailty level. The present findings highlight the potential of wearable sensor technology for in-home assessment of frailty status. |
---|---|
AbstractList | Background: Frailty is a geriatric syndrome resulting from age-related cumulative decline across multiple physiologic systems, impaired homeostatic reserve, and reduced capacity to resist stress. Based on recent estimates, 10% of community-dwelling older individuals are frail and another 41.6% are prefrail. Frail elders account for the highest health care costs in industrialized nations. Impaired physical function is a major indicator of frailty, and functional performance tests are useful for the identification of frailty. Objective instrumented assessments of physical functioning that are feasible for home frailty screening have not been adequately developed. Objective: To examine the ability of wearable sensor-based in-home assessment of gait, balance, and physical activity (PA) to discriminate between frailty levels (nonfrail, prefrail, and frail). Methods: In an observational cross-sectional study, in-home visits were completed in 125 older adults (nonfrail: n = 44, prefrail: n = 60, frail: n = 21) living in Tucson, Ariz., USA, between September 2012 and November 2013. Temporal-spatial gait parameters (speed, stride length, stride time, double support, and variability of stride velocity), postural balance (sway of hip, ankle, and center of mass), and PA (percentage of walking, standing, sitting, and lying; mean duration and variability of single walking, standing, sitting, and lying bouts) were measured in the participant's home using validated wearable sensor technology. Logistic regression was used to assess the most sensitive gait, balance, and PA variables for identifying prefrail participants (vs. nonfrail). Multinomial logistic regression was used to identify variables sensitive to discriminate between three frailty levels. Results: Gait speed (area under the curve, AUC = 0.802), hip sway (AUC = 0.734), and steps/day (AUC = 0.736) were the most sensitive parameters for the identification of prefrailty. Multinomial regression revealed that stride length (AUC = 0.857) and double support (AUC = 0.841) were the most sensitive gait parameters for discriminating between three frailty levels. Interestingly, walking bout duration variability was the most sensitive PA parameter for discriminating between three frailty levels (AUC = 0.818). No balance parameter discriminated between three frailty levels. Conclusion: Our results indicate that unique parameters derived from objective assessment of gait, balance, and PA are sensitive for the identification of prefrailty and the classification of a subject's frailty level. The present findings highlight the potential of wearable sensor technology for in-home assessment of frailty status. © 2014 S. Karger AG, Basel Background: Frailty is a geriatric syndrome resulting from age-related cumulative decline across multiple physiologic systems, impaired homeostatic reserve, and reduced capacity to resist stress. Based on recent estimates, 10% of community-dwelling older individuals are frail and another 41.6% are prefrail. Frail elders account for the highest health care costs in industrialized nations. Impaired physical function is a major indicator of frailty, and functional performance tests are useful for the identification of frailty. Objective instrumented assessments of physical functioning that are feasible for home frailty screening have not been adequately developed. Objective: To examine the ability of wearable sensor-based in-home assessment of gait, balance, and physical activity (PA) to discriminate between frailty levels (nonfrail, prefrail, and frail). Methods: In an observational cross-sectional study, in-home visits were completed in 125 older adults (nonfrail: n = 44, prefrail: n = 60, frail: n = 21) living in Tucson, Ariz., USA, between September 2012 and November 2013. Temporal-spatial gait parameters (speed, stride length, stride time, double support, and variability of stride velocity), postural balance (sway of hip, ankle, and center of mass), and PA (percentage of walking, standing, sitting, and lying; mean duration and variability of single walking, standing, sitting, and lying bouts) were measured in the participant's home using validated wearable sensor technology. Logistic regression was used to assess the most sensitive gait, balance, and PA variables for identifying prefrail participants (vs. nonfrail). Multinomial logistic regression was used to identify variables sensitive to discriminate between three frailty levels. Results: Gait speed (area under the curve, AUC = 0.802), hip sway (AUC = 0.734), and steps/day (AUC = 0.736) were the most sensitive parameters for the identification of prefrailty. Multinomial regression revealed that stride length (AUC = 0.857) and double support (AUC = 0.841) were the most sensitive gait parameters for discriminating between three frailty levels. Interestingly, walking bout duration variability was the most sensitive PA parameter for discriminating between three frailty levels (AUC = 0.818). No balance parameter discriminated between three frailty levels. Conclusion: Our results indicate that unique parameters derived from objective assessment of gait, balance, and PA are sensitive for the identification of prefrailty and the classification of a subject's frailty level. The present findings highlight the potential of wearable sensor technology for in-home assessment of frailty status. Background: Frailty is a geriatric syndrome resulting from age-related cumulative decline across multiple physiologic systems, impaired homeostatic reserve, and reduced capacity to resist stress. Based on recent estimates, 10% of community-dwelling older individuals are frail and another 41.6% are prefrail. Frail elders account for the highest health care costs in industrialized nations. Impaired physical function is a major indicator of frailty, and functional performance tests are useful for the identification of frailty. Objective instrumented assessments of physical functioning that are feasible for home frailty screening have not been adequately developed. Objective: To examine the ability of wearable sensor-based in-home assessment of gait, balance, and physical activity (PA) to discriminate between frailty levels (nonfrail, prefrail, and frail). Methods: In an observational cross-sectional study, in-home visits were completed in 125 older adults (nonfrail: n = 44, prefrail: n = 60, frail: n = 21) living in Tucson, Ariz., USA, between September 2012 and November 2013. Temporal-spatial gait parameters (speed, stride length, stride time, double support, and variability of stride velocity), postural balance (sway of hip, ankle, and center of mass), and PA (percentage of walking, standing, sitting, and lying; mean duration and variability of single walking, standing, sitting, and lying bouts) were measured in the participant's home using validated wearable sensor technology. Logistic regression was used to assess the most sensitive gait, balance, and PA variables for identifying prefrail participants (vs. nonfrail). Multinomial logistic regression was used to identify variables sensitive to discriminate between three frailty levels. Results: Gait speed (area under the curve, AUC = 0.802), hip sway (AUC = 0.734), and steps/day (AUC = 0.736) were the most sensitive parameters for the identification of prefrailty. Multinomial regression revealed that stride length (AUC = 0.857) and double support (AUC = 0.841) were the most sensitive gait parameters for discriminating between three frailty levels. Interestingly, walking bout duration variability was the most sensitive PA parameter for discriminating between three frailty levels (AUC = 0.818). No balance parameter discriminated between three frailty levels. Conclusion: Our results indicate that unique parameters derived from objective assessment of gait, balance, and PA are sensitive for the identification of prefrailty and the classification of a subject's frailty level. The present findings highlight the potential of wearable sensor technology for in-home assessment of frailty status. Keywords: Monitoring, Physical function, Physical activity, Wearable sensors, Frailty Background: Frailty is a geriatric syndrome resulting from age-related cumulative decline across multiple physiologic systems, impaired homeostatic reserve, and reduced capacity to resist stress. Based on recent estimates, 10% of community-dwelling older individuals are frail and another 41.6% are prefrail. Frail elders account for the highest health care costs in industrialized nations. Impaired physical function is a major indicator of frailty, and functional performance tests are useful for the identification of frailty. Objective instrumented assessments of physical functioning that are feasible for home frailty screening have not been adequately developed. Objective: To examine the ability of wearable sensor-based in-home assessment of gait, balance, and physical activity (PA) to discriminate between frailty levels (nonfrail, prefrail, and frail). Methods: In an observational cross-sectional study, in-home visits were completed in 125 older adults (nonfrail: n = 44, prefrail: n = 60, frail: n = 21) living in Tucson, Ariz., USA, between September 2012 and November 2013. Temporal-spatial gait parameters (speed, stride length, stride time, double support, and variability of stride velocity), postural balance (sway of hip, ankle, and center of mass), and PA (percentage of walking, standing, sitting, and lying; mean duration and variability of single walking, standing, sitting, and lying bouts) were measured in the participant's home using validated wearable sensor technology. Logistic regression was used to assess the most sensitive gait, balance, and PA variables for identifying prefrail participants (vs. nonfrail). Multinomial logistic regression was used to identify variables sensitive to discriminate between three frailty levels. Results: Gait speed (area under the curve, AUC = 0.802), hip sway (AUC = 0.734), and steps/day (AUC = 0.736) were the most sensitive parameters for the identification of prefrailty. Multinomial regression revealed that stride length (AUC = 0.857) and double support (AUC = 0.841) were the most sensitive gait parameters for discriminating between three frailty levels. Interestingly, walking bout duration variability was the most sensitive PA parameter for discriminating between three frailty levels (AUC = 0.818). No balance parameter discriminated between three frailty levels. Conclusion: Our results indicate that unique parameters derived from objective assessment of gait, balance, and PA are sensitive for the identification of prefrailty and the classification of a subject's frailty level. The present findings highlight the potential of wearable sensor technology for in-home assessment of frailty status. copyright 2014 S. Karger AG, Basel BACKGROUNDFrailty is a geriatric syndrome resulting from age-related cumulative decline across multiple physiologic systems, impaired homeostatic reserve, and reduced capacity to resist stress. Based on recent estimates, 10% of community-dwelling older individuals are frail and another 41.6% are prefrail. Frail elders account for the highest health care costs in industrialized nations. Impaired physical function is a major indicator of frailty, and functional performance tests are useful for the identification of frailty. Objective instrumented assessments of physical functioning that are feasible for home frailty screening have not been adequately developed.OBJECTIVETo examine the ability of wearable sensor-based in-home assessment of gait, balance, and physical activity (PA) to discriminate between frailty levels (nonfrail, prefrail, and frail).METHODSIn an observational cross-sectional study, in-home visits were completed in 125 older adults (nonfrail: n=44, prefrail: n=60, frail: n=21) living in Tucson, Ariz., USA, between September 2012 and November 2013. Temporal-spatial gait parameters (speed, stride length, stride time, double support, and variability of stride velocity), postural balance (sway of hip, ankle, and center of mass), and PA (percentage of walking, standing, sitting, and lying; mean duration and variability of single walking, standing, sitting, and lying bouts) were measured in the participant's home using validated wearable sensor technology. Logistic regression was used to assess the most sensitive gait, balance, and PA variables for identifying prefrail participants (vs. nonfrail). Multinomial logistic regression was used to identify variables sensitive to discriminate between three frailty levels.RESULTSGait speed (area under the curve, AUC=0.802), hip sway (AUC=0.734), and steps/day (AUC=0.736) were the most sensitive parameters for the identification of prefrailty. Multinomial regression revealed that stride length (AUC=0.857) and double support (AUC=0.841) were the most sensitive gait parameters for discriminating between three frailty levels. Interestingly, walking bout duration variability was the most sensitive PA parameter for discriminating between three frailty levels (AUC=0.818). No balance parameter discriminated between three frailty levels.CONCLUSIONOur results indicate that unique parameters derived from objective assessment of gait, balance, and PA are sensitive for the identification of prefrailty and the classification of a subject's frailty level. The present findings highlight the potential of wearable sensor technology for in-home assessment of frailty status. Frailty is a geriatric syndrome resulting from age-related cumulative decline across multiple physiologic systems, impaired homeostatic reserve, and reduced capacity to resist stress. Based on recent estimates, 10% of community-dwelling older individuals are frail and another 41.6% are prefrail. Frail elders account for the highest health care costs in industrialized nations. Impaired physical function is a major indicator of frailty, and functional performance tests are useful for the identification of frailty. Objective instrumented assessments of physical functioning that are feasible for home frailty screening have not been adequately developed. To examine the ability of wearable sensor-based in-home assessment of gait, balance, and physical activity (PA) to discriminate between frailty levels (nonfrail, prefrail, and frail). In an observational cross-sectional study, in-home visits were completed in 125 older adults (nonfrail: n=44, prefrail: n=60, frail: n=21) living in Tucson, Ariz., USA, between September 2012 and November 2013. Temporal-spatial gait parameters (speed, stride length, stride time, double support, and variability of stride velocity), postural balance (sway of hip, ankle, and center of mass), and PA (percentage of walking, standing, sitting, and lying; mean duration and variability of single walking, standing, sitting, and lying bouts) were measured in the participant's home using validated wearable sensor technology. Logistic regression was used to assess the most sensitive gait, balance, and PA variables for identifying prefrail participants (vs. nonfrail). Multinomial logistic regression was used to identify variables sensitive to discriminate between three frailty levels. Gait speed (area under the curve, AUC=0.802), hip sway (AUC=0.734), and steps/day (AUC=0.736) were the most sensitive parameters for the identification of prefrailty. Multinomial regression revealed that stride length (AUC=0.857) and double support (AUC=0.841) were the most sensitive gait parameters for discriminating between three frailty levels. Interestingly, walking bout duration variability was the most sensitive PA parameter for discriminating between three frailty levels (AUC=0.818). No balance parameter discriminated between three frailty levels. Our results indicate that unique parameters derived from objective assessment of gait, balance, and PA are sensitive for the identification of prefrailty and the classification of a subject's frailty level. The present findings highlight the potential of wearable sensor technology for in-home assessment of frailty status. |
Audience | Academic |
Author | Mohler, Jane Wendel, Christopher Fain, Mindy Taylor-Piliae, Ruth Schwenk, Michael D''Huyvetter, Karen Najafi, Bijan |
AuthorAffiliation | a Arizona Center on Aging, College of Medicine, University of Arizona, Tucson, AZ d College of Nursing, University of Arizona, Tucson, AZ b Division of Geriatrics, General Internal Medicine, and Palliative Medicine, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ c Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ |
AuthorAffiliation_xml | – name: b Division of Geriatrics, General Internal Medicine, and Palliative Medicine, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ – name: c Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ – name: a Arizona Center on Aging, College of Medicine, University of Arizona, Tucson, AZ – name: d College of Nursing, University of Arizona, Tucson, AZ |
Author_xml | – sequence: 1 givenname: Michael surname: Schwenk fullname: Schwenk, Michael – sequence: 2 givenname: Jane surname: Mohler fullname: Mohler, Jane email: jmohler@aging.arizona.edu – sequence: 3 givenname: Christopher surname: Wendel fullname: Wendel, Christopher – sequence: 4 givenname: Karen surname: D''Huyvetter fullname: D''Huyvetter, Karen – sequence: 5 givenname: Mindy surname: Fain fullname: Fain, Mindy – sequence: 6 givenname: Ruth surname: Taylor-Piliae fullname: Taylor-Piliae, Ruth – sequence: 7 givenname: Bijan surname: Najafi fullname: Najafi, Bijan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25547185$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFDEUhgep2G31wnuRgCAKHc3HZDLjhbBd7QcUFKvo3XBm5kw3bTapSaaw_iX_pBl2XdQbrwLnPO97OG_OQbZnncUse8zoK8Zk_ZpSKsqa1vJeNmMFF_lU2MtmVNAiF7z4tp8dhHCdipQz-iDb51IWilVylv38iuChNUgu0Qbn82MI2JNzm5-5FZJ5CBjCCm0kbiCnoOMROQYDtsMjArYnH5froDswZN5FfafjmgzOk3c6dF6vtIWonZ2kJx60Sd3LCHEMb8g0xmiL5BOG0cQwMXGZBnr9w1nY8Qu3dD4m2divH2b3BzABH23fw-zLyfvPi7P84sPp-WJ-kXclL2LOgEKJHceqrpSCthy6XrGCgcBSqpZxIaVSAlqEUtG2rytZgBAD5xV0smXiMHu78b0d2xX2Xdreg2lu00bg140D3fzdsXrZXLm7pigkZ6xKBi-2Bt59HzHEZpUCQZNyQzeGhlW1EqpQJf0_WipVVZLSOqHP_kGv3ehtSiJRVV2WjKtp9vMNdQUGmyWCicvgzDh9RGjmpVCcFpSLBL7cgJ13IXgcdgsy2kxn1ezOKrFP_0xkR_6-owQ82QA34K_Q74Ct_hfnh9MS |
CitedBy_id | crossref_primary_10_3390_s21072258 crossref_primary_10_1136_bmjopen_2022_070507 crossref_primary_10_1177_1358863X16660626 crossref_primary_10_3390_s21165289 crossref_primary_10_3390_s21206918 crossref_primary_10_1016_j_gaitpost_2023_10_006 crossref_primary_10_1159_000535283 crossref_primary_10_1111_ggi_13492 crossref_primary_10_2196_19732 crossref_primary_10_1007_s40520_020_01686_x crossref_primary_10_3390_app7100986 crossref_primary_10_3390_s22165940 crossref_primary_10_1186_s12877_019_1089_z crossref_primary_10_1186_s12891_022_05211_1 crossref_primary_10_1186_s12984_023_01247_z crossref_primary_10_3389_fnagi_2021_729060 crossref_primary_10_2139_ssrn_4095799 crossref_primary_10_3389_fpubh_2023_1169083 crossref_primary_10_3390_s22186745 crossref_primary_10_3390_nu11081770 crossref_primary_10_1007_s40520_016_0693_4 crossref_primary_10_1007_s00391_016_1129_7 crossref_primary_10_2139_ssrn_4104254 crossref_primary_10_1159_000441494 crossref_primary_10_1590_s1980_220x2017028703392 crossref_primary_10_1109_JBHI_2017_2677901 crossref_primary_10_1109_JBHI_2022_3181738 crossref_primary_10_3390_s19030452 crossref_primary_10_1177_1084822316640266 crossref_primary_10_12968_jowc_2018_27_Sup6a_S1 crossref_primary_10_1186_s12877_020_01572_1 crossref_primary_10_1159_000502288 crossref_primary_10_1038_s41598_024_53025_z crossref_primary_10_3390_s22093555 crossref_primary_10_1093_gerona_gly170 crossref_primary_10_1109_TNSRE_2022_3186616 crossref_primary_10_1159_000515078 crossref_primary_10_3390_ijerph19138164 crossref_primary_10_3390_s20123427 crossref_primary_10_3390_s20020505 crossref_primary_10_1016_j_jalz_2018_05_003 crossref_primary_10_1186_s12889_019_7062_0 crossref_primary_10_1016_j_regg_2017_10_006 crossref_primary_10_1016_j_clinbiomech_2019_12_019 crossref_primary_10_3390_s20082218 crossref_primary_10_1007_s40520_023_02525_5 crossref_primary_10_3390_electronics9050728 crossref_primary_10_3390_s22103893 crossref_primary_10_1371_journal_pone_0264013 crossref_primary_10_3390_s21092983 crossref_primary_10_1007_s12603_016_0764_4 crossref_primary_10_2196_48270 crossref_primary_10_1186_s12877_023_04106_7 crossref_primary_10_1186_s12877_021_02252_4 crossref_primary_10_3390_s18061763 crossref_primary_10_1159_000530900 crossref_primary_10_3390_s21124017 crossref_primary_10_3390_std13020011 crossref_primary_10_3390_s22093532 crossref_primary_10_1123_jmpb_2019_0029 crossref_primary_10_1016_j_jclinepi_2021_04_009 crossref_primary_10_1186_s11556_019_0223_4 crossref_primary_10_1007_s40520_020_01626_9 crossref_primary_10_1007_s12603_018_1057_x crossref_primary_10_2196_14090 crossref_primary_10_1016_j_bbr_2020_113061 crossref_primary_10_1109_JBHI_2021_3100979 crossref_primary_10_1159_000520401 crossref_primary_10_1186_s12877_019_1048_8 crossref_primary_10_3389_fpubh_2022_861621 crossref_primary_10_1123_japa_2016_0287 crossref_primary_10_1371_journal_pone_0286707 crossref_primary_10_3390_s18051613 crossref_primary_10_1016_j_jos_2024_01_001 crossref_primary_10_3390_app10238451 crossref_primary_10_3390_s18051336 crossref_primary_10_1590_0034_7167_2019_0601 crossref_primary_10_1080_01616412_2016_1187829 crossref_primary_10_14336_AD_2020_1114 crossref_primary_10_1177_1932296819839703 crossref_primary_10_1186_s42490_019_0007_y crossref_primary_10_1007_s00256_015_2313_3 crossref_primary_10_7547_15_186 crossref_primary_10_2196_20834 crossref_primary_10_1038_s41746_019_0204_z crossref_primary_10_3390_s23125446 crossref_primary_10_1080_01621424_2016_1264340 crossref_primary_10_1177_1932296820904947 crossref_primary_10_1097_MRR_0000000000000453 crossref_primary_10_3310_hta21730 crossref_primary_10_1038_s41746_022_00657_y crossref_primary_10_1186_s12984_021_00909_0 crossref_primary_10_1186_s12877_022_03711_2 crossref_primary_10_1159_000445889 crossref_primary_10_1007_s12652_019_01593_8 crossref_primary_10_3390_brainsci13071018 crossref_primary_10_1016_j_clinbiomech_2016_10_007 crossref_primary_10_3389_fneur_2018_00257 crossref_primary_10_3390_s22239278 crossref_primary_10_3390_ijerph18010203 |
Cites_doi | 10.1159/000363136 10.1046/j.1532-5415.2001.49281.x 10.1016/0197-4580(89)90010-9 10.1016/j.critrevonc.2009.12.002 10.1093/gerona/gls119 10.1177/193229681300700507 10.1016/j.exger.2014.01.024 10.1093/gerona/glr007 10.1159/000081435 10.1016/j.gaitpost.2007.02.005 10.1177/193229681000400403 10.1016/S0021-9290(02)00008-8 10.1016/j.jbiomech.2011.06.007 10.1016/0021-9681(78)90058-9 10.1126/sageke.2004.16.pe16 10.1016/j.gaitpost.2008.09.002 10.1093/gerona/56.3.M146 10.1159/000354211 10.1111/jgs.12122 10.1016/j.archger.2011.12.005 10.2340/16501977-0791 10.1109/TBME.2002.800763 10.1093/gerona/gln001 10.1109/IEMBS.2011.6091605 10.1111/j.1532-5415.2009.02394.x 10.1016/j.jpainsymman.2009.04.007 10.1093/ageing/afi196 10.1093/ageing/afp226 10.1111/j.1532-5415.2008.02008.x 10.1016/j.archger.2010.06.013 10.2165/00007256-200131020-00002 10.1093/gerona/51A.6.M303 10.1016/S0966-6362(03)00089-4 10.1111/j.1447-0594.2012.00920.x 10.1016/j.exger.2006.08.011 10.1093/gerona/62.7.722 10.1093/gerona/59.12.1295 10.1016/0022-3956(75)90026-6 10.1111/j.1532-5415.2012.04145.x 10.1109/TBME.2003.812189 |
ContentType | Journal Article |
Copyright | 2014 S. Karger AG, Basel COPYRIGHT 2015 S. Karger AG Copyright (c) 2015 S. Karger AG, Basel |
Copyright_xml | – notice: 2014 S. Karger AG, Basel – notice: COPYRIGHT 2015 S. Karger AG – notice: Copyright (c) 2015 S. Karger AG, Basel |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 0-V 3V. 7RV 7TK 7X7 7XB 88E 88G 88I 88J 8AF 8AO 8C1 8FI 8FJ 8FK ABUWG AFKRA ALSLI AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 M0S M1P M2M M2P M2R NAPCQ PQEST PQQKQ PQUKI PRINS PSYQQ Q9U S0X 7X8 7TS 5PM |
DOI | 10.1159/000369095 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) Social Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Social Science Premium Collection ProQuest Central Essentials ProQuest Databases ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Psychology Database Science Database (ProQuest) Social Science Database Nursing & Allied Health Premium ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic SIRS Editorial MEDLINE - Academic Physical Education Index PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials SIRS Editorial ProQuest Social Science Journals (Alumni Edition) ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Medical Library (Alumni) Social Science Premium Collection ProQuest Public Health ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Social Science Journals ProQuest Medical Library ProQuest Psychology Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic Physical Education Index |
DatabaseTitleList | ProQuest One Psychology CrossRef Physical Education Index MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Social Welfare & Social Work Anatomy & Physiology |
EISSN | 1423-0003 |
EndPage | 267 |
ExternalDocumentID | 3719156581 A637204023 10_1159_000369095 25547185 369095 |
Genre | Journal Article Observational Study Research Support, N.I.H., Extramural |
GeographicLocations | Arizona United States |
GeographicLocations_xml | – name: Arizona – name: United States |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R42 AG032748 – fundername: NIA NIH HHS grantid: 2R42AG032748 |
GroupedDBID | --- -~X .GJ 0-V 0R~ 0~5 0~B 29H 30W 328 34G 36B 39C 3O. 3V. 4.4 53G 5GY 5RE 7RV 7X7 88E 88I 8AF 8AO 8C1 8FI 8FJ 8UI AAWTL AAYIC ABDNZ ABIVO ABJNI ABPAZ ABUWG ACGFS ACGOD ACNCT ACPRK ACPSR ACYGS ADAGL ADBBV AENEX AEYAO AFDXO AFFNX AFJJK AFKRA AHMBA ALDHI ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ARALO AZPMC AZQEC BENPR BKEYQ BPHCQ BVXVI CAG CCPQU COF CS3 CYUIP DWQXO E0A EBS EJD EMB EMOBN EX3 F5P FB. FYUFA GNUQQ HCIFZ HMCUK HZ~ H~9 IAO IHR IHW INH IY7 KUZGX L7B LPU M1P M2M M2P M2R N9A NAPCQ O1H O9- PQQKQ PROAC PSQYO PSYQQ RIG RKO RXVBD S0X SV3 TWZ UJ6 UKHRP UPT WH7 WOW X7L YCJ ZGI ZXP AEILP CGR CUY CVF ECM EIF ITC NPM AAYXX CITATION 7TK 7XB 8FK K9. PQEST PQUKI PRINS Q9U 7X8 7TS 5PM |
ID | FETCH-LOGICAL-c624t-1a0a6ec2e89877ab6fcd7141a3e657b12355773abea670bd9854a33f228ac5b13 |
IEDL.DBID | 8C1 |
ISSN | 0304-324X |
IngestDate | Tue Sep 17 21:19:48 EDT 2024 Thu Oct 24 23:56:21 EDT 2024 Fri Oct 25 02:27:29 EDT 2024 Thu Oct 10 20:19:56 EDT 2024 Tue Aug 20 22:10:32 EDT 2024 Fri Dec 06 08:16:03 EST 2024 Sat Sep 28 07:56:47 EDT 2024 Thu Aug 29 12:04:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Frailty Physical activity Monitoring Physical function Wearable sensors |
Language | English |
License | Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. 2014 S. Karger AG, Basel https://www.karger.com/Services/SiteLicenses |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c624t-1a0a6ec2e89877ab6fcd7141a3e657b12355773abea670bd9854a33f228ac5b13 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ORCID | 0000-0002-0320-8101 |
OpenAccessLink | https://karger.com/ger/article-pdf/61/3/258/2837376/000369095.pdf |
PMID | 25547185 |
PQID | 1689661278 |
PQPubID | 33168 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4452118 gale_healthsolutions_A637204023 proquest_journals_1689661278 karger_primary_369095 pubmed_primary_25547185 proquest_miscellaneous_1897374760 proquest_miscellaneous_1677885009 crossref_primary_10_1159_000369095 |
PublicationCentury | 2000 |
PublicationDate | 20150401 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 20150401 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Switzerland – name: Basel |
PublicationTitle | Gerontology (Basel) |
PublicationTitleAlternate | Gerontology |
PublicationYear | 2015 |
Publisher | S. Karger AG |
Publisher_xml | – name: S. Karger AG |
References | Fieo RA, Mortensen EL, Rantanen T, Avlund K: Improving a measure of mobility-related fatigue (the mobility-tiredness scale) by establishing item intensity. J Am Geriatr Soc 2013;61:429-433.2345200110.1111/jgs.12122 Mohler MJ, Fain MJ, Wertheimer AM, Najafi B, Nikolich-Žugich J: The frailty syndrome: clinical measurements and basic underpinnings in humans and animals. Exp Gerontol 2014;54C:6-13.2450305910.1016/j.exger.2014.01.024 Kiely DK, Cupples LA, Lipsitz LA: Validation and comparison of two frailty indexes: The MOBILIZE Boston Study. J Am Geriatr Soc 2009;57:1532-1539.1968211210.1111/j.1532-5415.2009.02394.x Peterson LE: Mlogitroc: Stata module to calculate multiclass ROC curves and AUC from multinomial logistic regression. Statistical Software Components S457181, Boston College Department of Economics, Boston, 2010. Theou O, Jakobi JM, Vandervoort AA, Jones GR: A comparison of physical activity (PA) assessment tools across levels of frailty. Arch Gerontol Geriatr 2012;54:307-314.2220945410.1016/j.archger.2011.12.005 Najafi B, Helbostad JL, Moe-Nilssen R, Zijlstra W, Aminian K: Does walking strategy in older people change as a function of walking distance? Gait Posture 2009;29:261-266.1895243510.1016/j.gaitpost.2008.09.002 Rockwood K, Mitnitski A: Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci 2007;62:722-727.1763431810.1093/gerona/62.7.722 Najafi B, Khan T, Wrobel J: Laboratory in a box: wearable sensors and its advantages for gait analysis. Conf Proc IEEE Eng Med Biol Soc 2011;2011:6507-6510.2225582910.1109/IEMBS.2011.6091605 Marzetti E, Leeuwenburgh C: Skeletal muscle apoptosis, sarcopenia and frailty at old age. Exp Gerontol 2006;41:1234-1238.1705287910.1016/j.exger.2006.08.011 Verghese J, Holtzer R, Lipton RB, Wang C: Mobility stress test approach to predicting frailty, disability, and mortality in high-functioning older adults. J Am Geriatr Soc 2012;60:1901-1905.2300271410.1111/j.1532-5415.2012.04145.x Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA; Cardiovascular Health Study Collaborative Research Group: Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001;56:M146-M156.1125315610.1093/gerona/56.3.M146 Najafi B, Armstrong DG, Mohler J: Novel wearable technology for assessing spontaneous daily physical activity and risk of falling in older adults with diabetes. J Diabetes Sci Technol 2013;7:1147-1160.2412494010.1177/193229681300700507 Taylor HL, Jacobs DR Jr, Schucker B, Knudsen J, Leon AS, Debacker G: A questionnaire for the assessment of leisure time physical activities. J Chron Dis 1978;31:741-755.74837010.1016/0021-9681(78)90058-9 Kressig RW, Gregor RJ, Oliver A, Waddell D, Smith W, O'Grady M, Curns AT, Kutner M, Wolf SL: Temporal and spatial features of gait in older adults transitioning to frailty. Gait Posture 2004;20:30-35.1519651710.1016/S0966-6362(03)00089-4 Woollacott MH: Changes in postural control and the integration of postural responses into voluntary movements with aging; in Brand T, Paulus W, Bles W, Deiterich M, Krafezyk S, Strabue A (eds): Disorders of Posture and Gait. Stuttgart, Georg Thieme Verlag, 1990, pp 221-228. Woollacott MH, Tang P-F: Balance control during walking in the older adult: research and its implications. Phys Ther 1997;77:646-660.9184689 Lindemann U, Najafi B, Zijlstra W, Hauer K, Muche R, Becker C, Aminian K: Distance to achieve steady state walking speed in frail elderly persons. Gait Posture 2008;27:91-96.1738318510.1016/j.gaitpost.2007.02.005 Montero-Odasso M, Muir SW, Hall M, Doherty TJ, Kloseck M, Beauchet O, Speechley M: Gait variability is associated with frailty in community-dwelling older adults. J Gerontol A Biol Sci Med Sci 2011;66:568-576.2135719010.1093/gerona/glr007 Kellen E, Bulens P, Deckx L, Schouten H, Van Dijk M, Verdonck I, Buntinx F: Identifying an accurate pre-screening tool in geriatric oncology. Crit Rev Oncol Hematol 2010;75:243-248.2006031310.1016/j.critrevonc.2009.12.002 Davis DH, Rockwood MR, Mitnitski AB, Rockwood K: Impairments in mobility and balance in relation to frailty. Arch Gerontol Geriatr 2011;53:79-83.2067881610.1016/j.archger.2010.06.013 Schwenk M, Hauer K, Zieschang T, Englert S, Mohler J, Najafi B: Sensor-derived physical activity parameters can predict future falls in people with dementia. Gerontology 2014;60:483-492.2517130010.1159/000363136 Hosmer DW Jr, Lemeshow S: Applied Logistic Regression. New York, John Wiley & Sons, 2004. Rodríguez-Mañas L, Féart C, Mann G, Viña J, Chatterji S, Chodzko-Zajko W, Harmand MG-C, Bergman H, Carcaillon L, Nicholson C: Searching for an operational definition of frailty: a Delphi method based consensus statement: the frailty operative definition-consensus conference project. J Gerontol A Biol Sci Med Sci 2013;68:62-67.2251128910.1093/gerona/gls119 Verghese J, Xue X: Identifying frailty in high functioning older adults with normal mobility. Age Ageing 2010;39:382-385.2005160710.1093/ageing/afp226 Schwenk M, Schmidt M, Pfisterer M, Oster P, Hauer K: Rollator use adversely impacts on assessment of gait and mobility during geriatric rehabilitation. J Rehabil Med 2011;43:424-429.2144855710.2340/16501977-0791 Judge JO, Davis RB 3rd, Õunpuu S: Step length reductions in advanced age: the role of ankle and hip kinetics. J Gerontol A Biol Sci Med Sci 1996;51:M303-M312.891450310.1093/gerona/51A.6.M303 Schwenk M, Howe C, Saleh A, Mohler J, Grewal G, Armstrong D, Najafi B: Frailty and technology: a systematic review of gait analysis in those with frailty. Gerontology 2013;60:79-89.2394944110.1159/000354211 Tudor-Locke C, Myers A: Challenges and opportunities for measuring physical activity in sedentary adults. Sports Med 2001;31:91-100.1122798110.2165/00007256-200131020-00002 Dayhoff NE, Suhrheinrich J, Wigglesworth J, Topp R, Moore S: Balance and muscle strength as predictors of frailty among older adults. J Gerontol Nurs 1998;24:18-27.9801527 Najafi B, Horn D, Marclay S, Crews RT, Wu S, Wrobel JS: Assessing postural control and postural control strategy in diabetes patients using innovative and wearable technology. J Diabetes Sci Technol 2010;4:780-791.2066343810.1177/193229681000400403 Aminian K, Najafi B, Büla C, Leyvraz PF, Robert P: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech 2002;35:689-699.1195550910.1016/S0021-9290(02)00008-8 Beauchet O, Dubost V, Gonthier R, Kressig RW: Dual-task-related gait changes in transitionally frail older adults: the type of the walking-associated cognitive task matters. Gerontology 2005;51:48-52.1559175610.1159/000081435 Najafi B, Aminian K, Loew F, Blanc Y, Robert PA: Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans Biomed Eng 2002;49:843-851.1214882310.1109/TBME.2002.800763 Lipsitz LA: Physiological complexity, aging, and the path to frailty. Sci Aging Knowledge Environ 2004:pe16.1510305510.1126/sageke.2004.16.pe16 Saliba D, Elliott M, Rubenstein LZ, Solomon DH, Young RT, Kamberg CJ, Roth C, MacLean CH, Shekelle PG, Sloss EM: The vulnerable elders survey: a tool for identifying vulnerable older people in the community. J Am Geriatr Soc 2001;49:1691-1699.1184400510.1046/j.1532-5415.2001.49281.x Hauer K, Lord SR, Lindemann U, Lamb SE, Aminian K, Schwenk M: Assessment of physical activity in older people with and without cognitive impairment. J Aging Phys Act 2011;19:347-372.21911876 Mahoney FI, Barthel DW: Functional evaluation: the Barthel index. Md State Med J 1965;14:61-65.14258950 Rowe DA, Kemble CD, Robinson TS, Mahar MT: Daily walking in older adults: day-to-day variability and criterion-referenced validity of total daily step counts. J Phys Act Health 2007;4:434-446.18209234 Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C: Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age Ageing 2005;34:614-619.1626718810.1093/ageing/afi196 Eaton W, Smith C, Ybarra M, Muntaner C, Tien A: Center for Epidemiologic Studies Depression Scale: review and revision; in Maruish M (ed): The Use of Psychological Testing for Treatment Planning and Outcomes Assessment. New Jersey, Lawrence Erlbaum Associates, 2004, vol 3, pp 363-377. Melzer D, Lan T-Y, Tom BD, Deeg DJ, Guralnik JM: Variation in thresholds for reporting mobility disability between national population subgroups and studies. J Gerontol A Biol Sci Med Sci 2004;59:1295-1303.1569952910.1093/gerona/59.12.1295 Peterson MJ, Giuliani C, Morey MC, Pieper CF, Evenson KR, Mercer V, Cohen HJ, Visser M, Brach JS, Kritchevsky SB: Physical activity as a preventative factor for frailty: the health, aging, and body composition study. J Gerontol A Biol Sci Med Sci 2009;64:61-68.1916427610.1093/gerona/gln001 Rothman MD, Leo-Summers L, Gill TM: Prognostic significance of potential frailty criteria. J Am Geriatr Soc 2008;56:2211-2216.1909392010.1111/j.1532-5415.2008.02008.x Horak FB, Shupert CL, Mirka A: Components of postural dyscontrol in the elderly: a review. Neurobiol Aging 1989;10:727-738.269780810.1016/0197-4580(89)90010-9 Fassbender K, Fainsinger RL, Carson M, Finegan BA: Cost trajectories at the end of life: the Canadian experience. J Pain Symptom Manage 2009;38:75-80.1961563010.1016/j.jpainsymman.2009.04.007 Martínez-Ramírez A, Lecumberri P, Gómez M, Rodriguez-Mañas L, García F, Izquierdo M: Frailty assessment based on wavelet analysis during quiet standing balance test. J Biomech 2011;44:2213-2220.2171901610.1016/j.jbiomech.2011.06.007 Jorstad-Stein EC, Hauer K, Becker C, Bonnefoy M, Nakash RA, Skelton DA, Lamb SE: Suitability of physical activity questionnaires for older adults in fall-prevention trials: a systematic review. J Aging Phys Act 2005;13:461-481.16301756 Folstein MF, Folstein SE, McHugh PR: ‘Mini-mental state'. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12 24503059 - Exp Gerontol. 2014 Jun;54:6-13 19164276 - J Gerontol A Biol Sci Med Sci. 2009 Jan;64(1):61-8 20060313 - Crit Rev Oncol Hematol. 2010 Sep;75(3):243-8 21719016 - J Biomech. 2011 Aug 11;44(12):2213-20 20663438 - J Diabetes Sci Technol. 2010 Jul;4(4):780-91 11253156 - J Gerontol A Biol Sci Med Sci. 2001 Mar;56(3):M146-56 19615630 - J Pain Symptom Manage. 2009 Jul;38(1):75-80 9801527 - J Gerontol Nurs. 1998 Jul;24(7):18-27; quiz 54-5 21911876 - J Aging Phys Act. 2011 Oct;19(4):347-72 25171300 - Gerontology. 2014;60(6):483-92 20678816 - Arch Gerontol Geriatr. 2011 Jul-Aug;53(1):79-83 12148823 - IEEE Trans Biomed Eng. 2002 Aug;49(8):843-51 16301756 - J Aging Phys Act. 2005 Oct;13(4):461-81 2697808 - Neurobiol Aging. 1989 Nov-Dec;10(6):727-38 19682112 - J Am Geriatr Soc. 2009 Sep;57(9):1532-9 21357190 - J Gerontol A Biol Sci Med Sci. 2011 May;66(5):568-76 15699529 - J Gerontol A Biol Sci Med Sci. 2004 Dec;59(12):1295-303 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98 15103055 - Sci Aging Knowledge Environ. 2004 Apr 21;2004(16):pe16 15196517 - Gait Posture. 2004 Aug;20(1):30-5 16267188 - Age Ageing. 2005 Nov;34(6):614-9 17052879 - Exp Gerontol. 2006 Dec;41(12):1234-8 11955509 - J Biomech. 2002 May;35(5):689-99 22255829 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6507-10 17383185 - Gait Posture. 2008 Jan;27(1):91-6 23949441 - Gerontology. 2014;60(1):79-89 24124940 - J Diabetes Sci Technol. 2013 Sep;7(5):1147-60 22882512 - Geriatr Gerontol Int. 2013 Apr;13(2):421-8 8914503 - J Gerontol A Biol Sci Med Sci. 1996 Nov;51(6):M303-12 748370 - J Chronic Dis. 1978;31(12):741-55 11844005 - J Am Geriatr Soc. 2001 Dec;49(12):1691-9 22209454 - Arch Gerontol Geriatr. 2012 May-Jun;54(3):e307-14 11227981 - Sports Med. 2001 Feb;31(2):91-100 9184689 - Phys Ther. 1997 Jun;77(6):646-60 17634318 - J Gerontol A Biol Sci Med Sci. 2007 Jul;62(7):722-7 22511289 - J Gerontol A Biol Sci Med Sci. 2013 Jan;68(1):62-7 23452001 - J Am Geriatr Soc. 2013 Mar;61(3):429-33 23002714 - J Am Geriatr Soc. 2012 Oct;60(10):1901-5 19093920 - J Am Geriatr Soc. 2008 Dec;56(12):2211-16 15591756 - Gerontology. 2005 Jan-Feb;51(1):48-52 20467494 - Cardiopulm Phys Ther J. 2008 Mar;19(1):17-22 12814238 - IEEE Trans Biomed Eng. 2003 Jun;50(6):711-23 20051607 - Age Ageing. 2010 May;39(3):382-5 21448557 - J Rehabil Med. 2011 Apr;43(5):424-9 14258950 - Md State Med J. 1965 Feb;14:61-5 18209234 - J Phys Act Health. 2007 Oct;4(4):434-46 18952435 - Gait Posture. 2009 Feb;29(2):261-6 ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref22 doi: 10.1159/000363136 – ident: ref10 doi: 10.1046/j.1532-5415.2001.49281.x – ident: ref37 doi: 10.1016/0197-4580(89)90010-9 – ident: ref13 doi: 10.1016/j.critrevonc.2009.12.002 – ident: ref39 doi: 10.1093/gerona/gls119 – ident: ref31 doi: 10.1177/193229681300700507 – ident: ref8 doi: 10.1016/j.exger.2014.01.024 – ident: ref9 doi: 10.1093/gerona/glr007 – ident: ref16 doi: 10.1159/000081435 – ident: ref34 doi: 10.1016/j.gaitpost.2007.02.005 – ident: ref14 doi: 10.1177/193229681000400403 – ident: ref24 doi: 10.1016/S0021-9290(02)00008-8 – ident: ref36 doi: 10.1016/j.jbiomech.2011.06.007 – ident: ref29 doi: 10.1016/0021-9681(78)90058-9 – ident: ref23 doi: 10.1126/sageke.2004.16.pe16 – ident: ref35 doi: 10.1016/j.gaitpost.2008.09.002 – ident: ref1 doi: 10.1093/gerona/56.3.M146 – ident: ref11 doi: 10.1159/000354211 – ident: ref27 doi: 10.1111/jgs.12122 – ident: ref20 doi: 10.1016/j.archger.2011.12.005 – ident: ref38 doi: 10.2340/16501977-0791 – ident: ref30 doi: 10.1109/TBME.2002.800763 – ident: ref19 doi: 10.1093/gerona/gln001 – ident: ref25 doi: 10.1109/IEMBS.2011.6091605 – ident: ref4 doi: 10.1111/j.1532-5415.2009.02394.x – ident: ref2 doi: 10.1016/j.jpainsymman.2009.04.007 – ident: ref28 doi: 10.1093/ageing/afi196 – ident: ref12 doi: 10.1093/ageing/afp226 – ident: ref15 doi: 10.1111/j.1532-5415.2008.02008.x – ident: ref7 doi: 10.1016/j.archger.2010.06.013 – ident: ref6 doi: 10.2165/00007256-200131020-00002 – ident: ref32 doi: 10.1093/gerona/51A.6.M303 – ident: ref17 doi: 10.1016/S0966-6362(03)00089-4 – ident: ref3 doi: 10.1111/j.1447-0594.2012.00920.x – ident: ref33 doi: 10.1016/j.exger.2006.08.011 – ident: ref40 doi: 10.1093/gerona/62.7.722 – ident: ref5 doi: 10.1093/gerona/59.12.1295 – ident: ref26 doi: 10.1016/0022-3956(75)90026-6 – ident: ref18 doi: 10.1111/j.1532-5415.2012.04145.x – ident: ref21 doi: 10.1109/TBME.2003.812189 |
SSID | ssj0030210 |
Score | 2.5133195 |
Snippet | Background: Frailty is a geriatric syndrome resulting from age-related cumulative decline across multiple physiologic systems, impaired homeostatic reserve,... Frailty is a geriatric syndrome resulting from age-related cumulative decline across multiple physiologic systems, impaired homeostatic reserve, and reduced... BACKGROUNDFrailty is a geriatric syndrome resulting from age-related cumulative decline across multiple physiologic systems, impaired homeostatic reserve, and... |
SourceID | pubmedcentral proquest gale crossref pubmed karger |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 258 |
SubjectTerms | Activity trackers Aged Aged, 80 and over Aging - physiology Arizona Biosensors Cohort Studies Cross-Sectional Studies Female Frail Elderly Frailty Gait Geriatric assessment Geriatric Assessment - methods Geriatric Assessment - statistics & numerical data Geriatrics Health aspects Humans Male Medical examination Methods Motor Activity Older people Physiological aspects Postural Balance Posture Regenerative and Technological Section / Original Paper Sensors Technology application Walking |
Title | Wearable Sensor-Based In-Home Assessment of Gait, Balance, and Physical Activity for Discrimination of Frailty Status: Baseline Results of the Arizona Frailty Cohort Study |
URI | https://karger.com/doi/10.1159/000369095 https://www.ncbi.nlm.nih.gov/pubmed/25547185 https://www.proquest.com/docview/1689661278 https://search.proquest.com/docview/1677885009 https://search.proquest.com/docview/1897374760 https://pubmed.ncbi.nlm.nih.gov/PMC4452118 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfYhhAXBN0YhVIMQpxmLYljO-GC2rIxkDahwbTeIjtxtWglGU16GP8S_yTvxUnYEJp6i19qR34fv2e_D0LeWhgItLJMgjVmIWhAZrLYMk-YmIciUEFTSPv4RB6dhV_mYt4euFVtWGWnExtFnZUpnpHv-zICZO4HKvpw9ZNh1yi8XW1baGyQLR8NHWaKz_oQD47-jLtFCBkAh3lbWQgs-H5TiCX2sK3EDXvUauX7lxiFvfof6Pw3dvKGMTp8TB61KJJO3LY_IfdsMSDbkwI86B_X9B1t4jqbA_MBeXDcXp8PyMgl49Jzu1zolQXC7kG5utwmv8-B7TGVin4D57ZcsSmYuIx-Lhg2U6eTvognLRf0k87rPTrFyMjU7lFdZG7WFNeVup4UFBAx_ZijZsKIG-QBfBXAcr6EUQS66-o9xWkQ7dJTW62XdYU0gEvh8_Jf4Cj09LPyApwFiqGP1zvk7PDg--yItc0cWCqDsGa-9rS0aWCjOFJKY45RpvzQ19xKoQym7AqluDZWS-UBv0Qi1JwvgiDSqTA-f0o2i7KwzwiNBc9EqDw_MkGYag4_Y3yrA86NtJk3JG-6LU2uXM2OpPF1RJz0-z4kr3CzE5du2st5MpFN3x6AMkOy4_ig_5PuzVHHFkkr8FXylz2H5HU_DKKK9y-6sOUaaZSKIgGo9g6aKFYcXDwJX7HrOK2fHrw_hBKwAHWLB3sCLBV-e6TIL5qS4SGIHbiSz-9e-gvyEPCgcIFJI7JZr9b2JWCu2ozJhpqrcSNeY7I1PTj5evoHI08tMg |
link.rule.ids | 230,314,780,784,885,12056,12223,21388,27924,27925,31719,31720,33266,33267,33744,33745,43310,43579,43805,73745,74014,74302 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLagQ8ALgm5AoTCDEE-zlsR2nPCC2rHRwVqhsWl9i-zE1aKVZKTpw_hL_EnOyY0Noalv8UntyOfyHftcCHlnYcDTyjIfrDEToAGZSULLHGlCLqSnvKqQ9nTmT07Fl7mcNwduqyasstWJlaJO8hjPyHddPwBk7noq-Hj5k2HXKLxdbVpo3CUbWDld9sjGeH_27bjVxRw9mvoeQTCADvOmthDY8N2qFEvoYGOJaxap0cv3LjAOu_gf7Pw3evKaOTp4TB41OJKO6o1_Qu7YrE82Rxn40D-u6HtaRXZWR-Z9cn_aXKD3ybBOx6VndrnQhQXC9kFeXGyS32fA-JhMRb-De5sXbAxGLqGHGcN26nTUlfGk-YJ-1mm5Q8cYGxnbHaqzpJ41xnXFdVcKCpiYfkpRN2HMDXIBvgpwOV3CKELd9eoDxWkQ79Jju1ovyxXSADKFz0t_gavQ0e_l5-AuUAx-vNoipwf7J3sT1rRzYLHviZK52tG-jT0bhIFSGrOMEuUKV3PrS2UwaVcqxbWx2lcOcEwgheZ84XmBjqVx-VPSy_LMPic0lDyRQjluYDwRaw4_Y1yrPc6NbxNnQN62Wxpd1lU7osrbkWHU7fuAbONmR3XCaSfp0civOvcAmBmQrZoPuj9p3xy2bBE1Ir-K_jLogLzphkFY8QZGZzZfI41SQSAB195CE4SKg5Pnw1c8qzmtmx78PwQTsAB1gwc7AiwWfnMkS8-rouECBA-cyRe3L32bPJicTI-io8PZ15fkIaBDWYcpDUmvLNb2FSCw0rxuxOwPZNQvPw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLegQxMXBN2AQmEGIU6zmthxnHBB7bayAaumwbTeIidxtWglGUl7GP8S_yTvJU7YEJpyi19iR34fvxe_D0LeGRjgWhnmgzVmHmhAFqehYY6MQ-FJrnhdSPt45h-eeZ_ncm7jnyobVtnqxFpRp0WC_8hHrh8AMne5CkYLGxZxsj_9ePWTYQcpPGm17TTukw2wig7vkY3JwezktNXLAr2b5kzBYwAj5rbOENjzUV2WJXSwycQN62R19INLjMku_wdB_42kvGGapo_JI4sp6bhhgifknsn7ZGucgz_945q-p3WUZ_37vE82j-1hep8Mm9Rcem6WC10aIGxvFOXlFvl9DkKAiVX0G7i6RckmYPBSepQzbK1Ox11JT1os6CedrXbpBOMkE7NLdZ42sya4rqTpUEEBH9P9DPUUxt8gR-CjAJ2zJYwi7F1XHyhOg9iXnppqvVxVSAMoFT4v-wVuQ0e_V1yA60AxEPJ6m5xND77vHTLb2oElPvdWzNWO9k3CTRAGSmnMOEqV67laGF-qGBN4pVJCx0b7ygHuCaSnhVhwHuhExq54Snp5kZvnhIZSpNJTjhvE3Eu0gCuOXaO5ELFvUmdA3rZbGl01FTyi2vORYdTt-4Ds4GZHTfJpJ_XR2K-7-ACwGZDthg-6l7RPDlu2iKz4V9FfZh2QN90wCC6exujcFGukUSoIJGDcO2iCUAlw-Hz4imcNp3XTgy-IwAIWoG7xYEeAhcNvj-TZRV1A3AMhBMfyxd1L3yGbIGHR16PZl5fkIQBF2UQsDUlvVa7NKwBjq_i1lbI_nsUzbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+sensor-based+in-home+assessment+of+gait%2C+balance%2C+and+physical+activity+for+discrimination+of+frailty+status%3A+baseline+results+of+the+Arizona+frailty+cohort+study&rft.jtitle=Gerontology+%28Basel%29&rft.au=Schwenk%2C+Michael&rft.au=Mohler%2C+Jane&rft.au=Wendel%2C+Christopher&rft.au=D%27Huyvetter%2C+Karen&rft.date=2015-04-01&rft.eissn=1423-0003&rft.volume=61&rft.issue=3&rft.spage=258&rft.epage=267&rft_id=info:doi/10.1159%2F000369095&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-324X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-324X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-324X&client=summon |