Non-parametric combination and related permutation tests for neuroimaging

In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well‐known definition of union‐intersection tests an...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 37; no. 4; pp. 1486 - 1511
Main Authors Winkler, Anderson M., Webster, Matthew A., Brooks, Jonathan C., Tracey, Irene, Smith, Stephen M., Nichols, Thomas E.
Format Journal Article Web Resource
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.04.2016
John Wiley & Sons, Inc
John Wiley & Sons
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well‐known definition of union‐intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume‐based representations of the brain, including non‐imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non‐parametric combination (NPC) methodology, such that instead of a two‐phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one‐way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. Hum Brain Mapp 37:1486‐1511, 2016. © 2016 Wiley Periodicals, Inc.
AbstractList In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well-known definition of union-intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume-based representations of the brain, including non-imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non-parametric combination (NPC) methodology, such that instead of a two-phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one-way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction.
Abstract In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well‐known definition of union‐intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume‐based representations of the brain, including non‐imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non‐parametric combination (NPC) methodology, such that instead of a two‐phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one‐way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. Hum Brain Mapp 37:1486‐1511, 2016 . © 2016 Wiley Periodicals, Inc.
In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well-known definition of union-intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume-based representations of the brain, including non-imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non-parametric combination (NPC) methodology, such that instead of a two-phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one-way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. Hum Brain Mapp 37:1486-1511, 2016. © 2016 Wiley Periodicals, Inc.
In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well‐known definition of union‐intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume‐based representations of the brain, including non‐imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non‐parametric combination (NPC) methodology, such that instead of a two‐phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one‐way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. Hum Brain Mapp 37:1486‐1511, 2016 . © 2016 Wiley Periodicals, Inc.
In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well-known definition of union-intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume-based representations of the brain, including non-imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non-parametric combination (NPC) methodology, such that instead of a two-phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one-way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. Hum Brain Mapp 37:1486-1511, 2016. copyright 2016 Wiley Periodicals, Inc.
Author Winkler, Anderson M.
Webster, Matthew A.
Smith, Stephen M.
Brooks, Jonathan C.
Tracey, Irene
Nichols, Thomas E.
AuthorAffiliation 1 Oxford Centre for Functional MRI of the Brain University of Oxford Oxford United Kingdom
3 Department of Statistics & Warwick Manufacturing Group University of Warwick Coventry United Kingdom
2 Clinical Research and Imaging Centre, University of Bristol Bristol United Kingdom
AuthorAffiliation_xml – name: 2 Clinical Research and Imaging Centre, University of Bristol Bristol United Kingdom
– name: 1 Oxford Centre for Functional MRI of the Brain University of Oxford Oxford United Kingdom
– name: 3 Department of Statistics & Warwick Manufacturing Group University of Warwick Coventry United Kingdom
Author_xml – sequence: 1
  givenname: Anderson M.
  surname: Winkler
  fullname: Winkler, Anderson M.
  email: winkler@fmrib.ox.ac.uk
  organization: Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
– sequence: 2
  givenname: Matthew A.
  surname: Webster
  fullname: Webster, Matthew A.
  organization: Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
– sequence: 3
  givenname: Jonathan C.
  surname: Brooks
  fullname: Brooks, Jonathan C.
  organization: Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom
– sequence: 4
  givenname: Irene
  surname: Tracey
  fullname: Tracey, Irene
  organization: Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
– sequence: 5
  givenname: Stephen M.
  surname: Smith
  fullname: Smith, Stephen M.
  organization: Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
– sequence: 6
  givenname: Thomas E.
  surname: Nichols
  fullname: Nichols, Thomas E.
  organization: Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26848101$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1TAQhS1URB-w4A-gSGzoIq1fsZMNEi1wW6ktLEAsR7bjpC6JfXGSlv57nJv2CpCQWHlkf-eMfTz7aMcHbxF6SfARwZgeX-v-iDJCiidoj-BK5phUbGeuRZFXXJJdtD8MNxgnBJNnaJeKkpcEkz10fhV8vlZR9XaMzmQm9Np5NbrgM-XrLNpOjbbO1jb207jsj3YYh6wJMfN2isH1qnW-fY6eNqob7IuH9QB9_fjhy-lZfvFpdX767iI3gvIil5rXFWFEqbJuGqtKwxQTGrNKFrLBWhNuOOcNpZUoDK8LjMsGN5jrktG6xuwAvV1815PubW2sH6PqYB3TPeI9BOXgzxPvrqENt8BlciCzAVsMOmdbCyFqB7d0I9zUU9eCMqAt0JQTJAmRs-rNQ9sYfkwpAejdYGzXKW_DNACRUgjBBKf_g1LCJZYioa__Qm_CFH3Kb6ZICoHxKlGHC2ViGIZom-1rCYZ5AiBNAGwmILGvfo9nSz5-eQKOF-DOdfb-305wdnL5aJkvCjeM9udWoeJ3EJLJAr5dreDz6n3FT7CES_YLEOTKhQ
CitedBy_id crossref_primary_10_1002_hbm_24186
crossref_primary_10_1016_j_nicl_2020_102309
crossref_primary_10_1038_s41467_018_06304_z
crossref_primary_10_3389_fneur_2020_629463
crossref_primary_10_1016_j_mri_2018_01_004
crossref_primary_10_1002_hbm_25399
crossref_primary_10_1002_hbm_25795
crossref_primary_10_1007_s11229_021_03276_4
crossref_primary_10_1523_JNEUROSCI_2310_19_2020
crossref_primary_10_1016_j_psychres_2022_115039
crossref_primary_10_1016_j_inffus_2020_09_008
crossref_primary_10_1016_j_nicl_2022_103124
crossref_primary_10_1111_desc_13340
crossref_primary_10_1016_j_neuroimage_2021_117744
crossref_primary_10_1016_j_jpain_2021_11_006
crossref_primary_10_1002_aur_2875
crossref_primary_10_3389_fnhum_2022_921505
crossref_primary_10_1016_j_media_2024_103222
crossref_primary_10_1126_science_aau2528
crossref_primary_10_1002_hbm_23362
crossref_primary_10_1016_j_neuroimage_2019_116127
crossref_primary_10_1126_sciadv_adk6840
crossref_primary_10_1016_j_nicl_2021_102837
crossref_primary_10_1080_08982112_2019_1578974
crossref_primary_10_1523_JNEUROSCI_0537_23_2023
crossref_primary_10_1016_j_bpsc_2023_03_010
crossref_primary_10_1016_j_nicl_2020_102410
crossref_primary_10_1007_s12520_020_01096_0
crossref_primary_10_1016_j_neuroimage_2020_116760
crossref_primary_10_1016_j_neuroimage_2020_117695
crossref_primary_10_3233_JAD_180541
crossref_primary_10_1523_JNEUROSCI_0389_21_2022
crossref_primary_10_1016_j_neurobiolaging_2020_01_006
crossref_primary_10_1002_hbm_24447
crossref_primary_10_1162_imag_a_00017
crossref_primary_10_1016_j_cortex_2021_12_016
crossref_primary_10_3389_fnins_2017_00656
crossref_primary_10_1016_j_jagp_2024_04_016
crossref_primary_10_1002_hbm_26628
crossref_primary_10_1016_j_pnpbp_2022_110533
crossref_primary_10_1016_j_clinph_2020_05_028
crossref_primary_10_1002_sim_9725
crossref_primary_10_1016_j_pscychresns_2019_111017
crossref_primary_10_1016_j_nicl_2022_103139
crossref_primary_10_1016_j_nicl_2022_103258
crossref_primary_10_1038_s42255_023_00816_9
crossref_primary_10_3389_fnins_2021_711067
crossref_primary_10_1093_texcom_tgaa075
crossref_primary_10_3389_fnagi_2017_00155
crossref_primary_10_1371_journal_pcbi_1009216
crossref_primary_10_1038_s42256_019_0069_5
crossref_primary_10_1016_j_neulet_2020_134956
crossref_primary_10_1016_j_neuroscience_2021_01_005
crossref_primary_10_1007_s00221_021_06261_y
crossref_primary_10_1002_hbm_24874
crossref_primary_10_1038_s41467_022_31687_5
crossref_primary_10_3389_fnins_2018_00595
crossref_primary_10_1002_eat_23448
crossref_primary_10_1002_hbm_25846
crossref_primary_10_1007_s11682_022_00641_w
crossref_primary_10_1093_braincomms_fcac024
crossref_primary_10_1016_j_neuroimage_2019_116028
crossref_primary_10_1111_pcn_13652
crossref_primary_10_1016_j_neuroimage_2019_116301
crossref_primary_10_1016_j_bpsgos_2022_10_003
crossref_primary_10_1038_s41467_021_27201_y
crossref_primary_10_1177_1352458519900972
crossref_primary_10_1016_j_nicl_2017_10_018
crossref_primary_10_1002_hbm_24227
crossref_primary_10_2139_ssrn_4185559
crossref_primary_10_1002_hbm_25314
crossref_primary_10_1080_17470919_2022_2043432
crossref_primary_10_1007_s11682_019_00230_4
crossref_primary_10_1371_journal_pone_0299670
crossref_primary_10_1002_hbm_25750
crossref_primary_10_1109_JBHI_2021_3101662
crossref_primary_10_1111_add_13699
crossref_primary_10_2139_ssrn_4123878
crossref_primary_10_3389_fninf_2023_1104508
crossref_primary_10_1523_ENEURO_0357_19_2020
crossref_primary_10_1007_s00429_022_02571_1
crossref_primary_10_1016_j_parkreldis_2020_10_048
crossref_primary_10_1038_s41398_021_01321_x
crossref_primary_10_1177_0284185120909960
crossref_primary_10_1038_s41598_017_14323_x
crossref_primary_10_3390_healthcare11162263
crossref_primary_10_1016_j_neuroimage_2019_116030
crossref_primary_10_1016_j_ynirp_2022_100084
crossref_primary_10_1016_j_ynirp_2022_100082
crossref_primary_10_1016_j_neurobiolaging_2017_08_009
crossref_primary_10_1002_hbm_24494
crossref_primary_10_7554_eLife_75056
crossref_primary_10_3389_fnins_2024_1391437
crossref_primary_10_1016_j_neuron_2017_09_007
crossref_primary_10_1016_j_jneumeth_2020_108654
crossref_primary_10_1093_braincomms_fcad180
crossref_primary_10_1016_j_nicl_2018_101630
crossref_primary_10_1016_j_nicl_2022_103306
crossref_primary_10_1016_j_neuroimage_2022_119438
crossref_primary_10_1002_brb3_1987
crossref_primary_10_3233_JAD_220551
crossref_primary_10_1016_j_physbeh_2020_112923
crossref_primary_10_1016_j_cortex_2021_08_017
crossref_primary_10_1016_j_jpsychires_2020_10_037
crossref_primary_10_1016_j_neuroimage_2016_12_072
crossref_primary_10_1016_j_neuroimage_2021_118009
crossref_primary_10_1016_j_nicl_2021_102640
crossref_primary_10_1162_jocn_a_01657
crossref_primary_10_3390_healthcare10081514
crossref_primary_10_1002_hbm_25458
crossref_primary_10_1002_wics_1457
crossref_primary_10_1007_s40474_020_00191_0
crossref_primary_10_1016_j_neuron_2017_12_018
crossref_primary_10_3389_fpsyt_2021_678709
crossref_primary_10_1097_j_pain_0000000000002594
crossref_primary_10_1038_s41467_023_44307_7
crossref_primary_10_1007_s10260_019_00494_6
crossref_primary_10_1016_j_brs_2022_08_025
crossref_primary_10_1038_s41398_021_01622_1
crossref_primary_10_1136_jnnp_2020_323894
crossref_primary_10_1002_hbm_24442
crossref_primary_10_1002_hbm_25013
crossref_primary_10_1016_j_pneurobio_2020_101770
crossref_primary_10_1016_j_resuscitation_2017_07_020
crossref_primary_10_1017_S095457941900035X
crossref_primary_10_1002_hbm_25096
crossref_primary_10_1016_j_jaci_2021_09_010
crossref_primary_10_3390_brainsci10030136
crossref_primary_10_1016_j_neuroimage_2020_116799
crossref_primary_10_1016_j_nicl_2023_103342
crossref_primary_10_1038_s41386_022_01308_2
crossref_primary_10_1093_cercor_bhx308
crossref_primary_10_1109_TUFFC_2020_3004982
crossref_primary_10_1007_s11920_022_01385_6
crossref_primary_10_1038_s41467_021_22960_0
crossref_primary_10_1093_cercor_bhab468
crossref_primary_10_1002_gepi_22033
crossref_primary_10_2463_mrms_mp_2023_0138
crossref_primary_10_1016_j_jad_2023_07_068
crossref_primary_10_1016_j_neuroimage_2019_05_044
crossref_primary_10_1093_cercor_bhac164
crossref_primary_10_3389_fpsyt_2024_1355998
crossref_primary_10_1371_journal_pone_0165545
crossref_primary_10_1126_scitranslmed_aad5651
crossref_primary_10_1016_j_eplepsyres_2023_107131
crossref_primary_10_1016_j_neuroimage_2016_05_068
crossref_primary_10_1111_epi_17258
crossref_primary_10_3390_ani10040730
crossref_primary_10_1016_j_nicl_2023_103468
crossref_primary_10_3389_fnagi_2017_00097
crossref_primary_10_1002_hbm_23617
crossref_primary_10_1002_hbm_23739
crossref_primary_10_1038_s41467_023_41686_9
crossref_primary_10_1093_schizbullopen_sgab026
crossref_primary_10_1016_j_cell_2020_10_052
crossref_primary_10_1093_sleep_zsz290
crossref_primary_10_1016_j_neuroimage_2021_118225
crossref_primary_10_1016_j_neuroimage_2017_12_035
crossref_primary_10_1038_s41467_023_44358_w
crossref_primary_10_1038_s41598_022_05145_7
crossref_primary_10_1002_hbm_24704
crossref_primary_10_1007_s10021_023_00867_9
crossref_primary_10_1016_j_cnp_2019_01_003
crossref_primary_10_1177_10870547231222261
Cites_doi 10.1111/j.1467-842X.1961.tb00058.x
10.1002/pst.210
10.1214/aoms/1177729029
10.1016/j.neuroimage.2013.09.071
10.1016/j.neuroimage.2005.03.041
10.1016/j.csda.2003.11.020
10.1016/j.neuroimage.2005.01.013
10.2307/2529826
10.1007/BF02294069
10.2307/3001913
10.1186/1471-2105-14-368
10.1111/j.1541-0420.2007.00984.x
10.1159/000288391
10.1093/biostatistics/kxj009
10.1002/sim.3569
10.1093/biomet/63.3.655
10.1191/0962280203sm341ra
10.1016/j.neuroimage.2004.04.035
10.1214/aoms/1177732979
10.1080/00223980.1972.9924813
10.1214/aoms/1177728599
10.2307/2281130
10.1111/j.1420-9101.2011.02297.x
10.1038/jcbfm.1988.111
10.1016/j.neuroimage.2014.01.060
10.1016/j.neuroimage.2013.12.058
10.1214/10-AOAS393
10.1080/10485250902807407
10.1002/9780470743386
10.1080/01621459.1986.10478341
10.1037/0033-2909.85.1.185
10.1111/j.2517-6161.1995.tb02031.x
10.1080/01621459.1986.10478364
10.1007/978-1-4757-3847-6
10.1126/science.164.3878.444
10.2307/2532163
10.1093/biomet/24.3-4.471
10.1111/j.1420-9101.2005.00917.x
10.1111/j.1420-9101.2010.02226.x
10.1002/9780470689516
10.1007/978-1-4899-7180-7
10.1002/gepi.0042
10.1002/9780470316672
10.1016/S0167-7152(02)00310-3
10.1093/biomet/30.1-2.180
10.1126/science.1067176
10.1016/j.neuroimage.2015.10.090
10.1016/j.neuroimage.2014.06.027
10.1080/01621459.1927.10502953
10.1093/biomet/25.3-4.379
10.1038/nn.3832
10.1016/j.neuroimage.2012.12.055
10.1016/j.jtbi.2011.01.029
10.1016/j.neuroimage.2004.09.040
10.1006/nimg.2001.1037
10.1037/h0059111
10.1002/bimj.200710456
10.1214/aoms/1177698861
10.22237/jmasm/1320120240
10.1016/j.neuroimage.2014.05.018
10.1007/BF02589052
10.1080/01621459.1979.10481035
10.1198/016214504000000089
10.1037/11774-000
10.1207/s15327906mbr2902_2
10.1016/S0140-6736(86)90837-8
10.1214/09-AOS697
10.1038/jcbfm.1991.122
10.1016/j.neuroimage.2005.10.052
10.1177/0962280211403659
10.1037/1082-989X.5.4.496
10.1523/JNEUROSCI.22-07-02748.2002
10.1002/gepi.10264
10.1016/j.neuroimage.2008.03.061
10.2307/1267823
10.2307/2283989
10.1016/j.neuroimage.2012.04.014
10.1080/03610920600694496
10.2307/2987655
10.1016/j.neuroimage.2004.12.005
10.1006/nimg.2002.1107
10.1002/hbm.22164
ContentType Journal Article
Web Resource
Copyright 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
– notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
Q33
5PM
DOI 10.1002/hbm.23115
DatabaseName Istex
Wiley_OA刊
Wiley-Blackwell Backfiles (Open access)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Technology Research Database

Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate NPC and Related Permutation Tests for Neuroimaging
EISSN 1097-0193
EndPage 1511
ExternalDocumentID oai_orbi_ulg_ac_be_2268_210170
3973769621
10_1002_hbm_23115
26848101
HBM23115
ark_67375_WNG_PGD94B07_M
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: R01 EB015611‐01, NS41287
– fundername: Marie Curie Initial Training Network
  funderid: MC‐ITN‐238593
– fundername: Wellcome Trust
  funderid: 100309/Z/12/Z, 098369/Z/12/Z
– fundername: MRC
  funderid: G0900908
– fundername: GlaxoSmithKline plc, The Dr. Hadwen Trust for Humane Research, and the Barrow Neurological Institute.
– fundername: Brazilian National Research Council (CNPq)
  funderid: 211534/2013‐7
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: G0700399
– fundername: Wellcome Trust
  grantid: 098369/Z/12/Z
– fundername: NINDS NIH HHS
  grantid: NS41287
– fundername: NINDS NIH HHS
  grantid: R01 NS041287
– fundername: Medical Research Council
  grantid: G0900908
– fundername: Medical Research Council
  grantid: G0700238
– fundername: NIBIB NIH HHS
  grantid: R01 EB015611-01
– fundername: NIBIB NIH HHS
  grantid: R01 EB015611
– fundername: Wellcome Trust
  grantid: 100309/Z/12/Z
– fundername: ;
  grantid: G0900908
– fundername: ;
  grantid: 211534/2013‐7
– fundername: ;
  grantid: R01 EB015611‐01, NS41287
– fundername: Marie Curie Initial Training Network
  grantid: MC‐ITN‐238593
– fundername: ;
  grantid: 100309/Z/12/Z, 098369/Z/12/Z
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
Q33
5PM
ID FETCH-LOGICAL-c6245-7b4d9131aa8dffea8c3a36b039757f0bb14c444f22965c4d5008f0f04b832dd03
IEDL.DBID RPM
ISSN 1065-9471
1097-0193
IngestDate Tue Sep 17 21:28:33 EDT 2024
Fri Nov 08 14:54:48 EST 2024
Sat Aug 17 00:01:01 EDT 2024
Fri Aug 16 04:46:56 EDT 2024
Thu Oct 10 22:12:12 EDT 2024
Thu Sep 26 16:09:19 EDT 2024
Sat Sep 28 08:29:50 EDT 2024
Sat Aug 24 00:54:14 EDT 2024
Wed Oct 30 09:49:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords non-parametric combination
conjunctions
multiple testing
general linear model
permutation tests
Language English
License Attribution
2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6245-7b4d9131aa8dffea8c3a36b039757f0bb14c444f22965c4d5008f0f04b832dd03
Notes MRC - No. G0900908
Marie Curie Initial Training Network - No. MC-ITN-238593
Brazilian National Research Council (CNPq) - No. 211534/2013-7
ark:/67375/WNG-PGD94B07-M
NIH - No. R01 EB015611-01, NS41287
istex:5FA9C4B19B1C829868EF3282974A252840E3D5BE
ArticleID:HBM23115
Wellcome Trust - No. 100309/Z/12/Z, 098369/Z/12/Z
GlaxoSmithKline plc, The Dr. Hadwen Trust for Humane Research, and the Barrow Neurological Institute.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-84959020010
ORCID 0000-0002-4169-9781
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783210/
PMID 26848101
PQID 1771229349
PQPubID 996345
PageCount 26
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4783210
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_210170
proquest_miscellaneous_1776663642
proquest_miscellaneous_1772147076
proquest_journals_1771229349
crossref_primary_10_1002_hbm_23115
pubmed_primary_26848101
wiley_primary_10_1002_hbm_23115_HBM23115
istex_primary_ark_67375_WNG_PGD94B07_M
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
John Wiley & Sons
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: John Wiley & Sons
– name: John Wiley and Sons Inc
References Hochberg Y, Tamhane AC (1987): Multiple Comparison Procedures. New York, NY: Wiley.
Owen AB (2009): Karl Pearson's meta-analysis revisited. Ann Stat 37:3867-3892.
Chen Z (2011): Is the weighted z-test the best method for combining probabilities from independent tests? J Evol Biol 24:926-930.
Marcus R, Peritz E, Gabriel KR (1976): On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63:655.
Brombin C, Midena E, Salmaso L (2013): Robust non-parametric tests for complex-repeated measures problems in ophthalmology. Stat Meth Med Res 22:643-660.
Good IJ (1955): On the weighted combination of significance tests. J R Stat Soc Series B 17:264-265.
Pillai KCS (1955): Some new test criteria in multivariate analysis. The Annals of Mathematical Statistics 26:117-121.
Berger RL (1982): Multiparameter hypothesis testing and acceptance sampling. Technometrics 24:295-300.
Hsu JC (1996): Multiple Comparison: Theory and Methods. Boca Raton, FL: Chapman & Hall/CRC.
Hayasaka S, Du A-T, Duarte A, Kornak J, Jahng G-H, Weiner MW, Schuff N (2006): A non-parametric approach for co-analysis of multi-modal brain imaging data: Application to alzheimer's disease. NeuroImage 30:768-779.
Dudbridge F, Koeleman BPC (2003): Rank truncated product of P-values, with application to genomewide association scans. Gene Epidemiol 25:360-366.
Oosterhoff J (1969): Combination of One-Sided Statistical Tests. Amsterdam, The Netherlands: Mathematisch Centrum.
Chang L-C, Lin H-M, Sibille E, Tseng GC (2013): Meta-analysis methods for combining multiple expression profiles: Comparisons, statistical characterization and an application guideline. BMC Bioinformatics 14:368.
Bland JM, Altman DG (1986): Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307-310.
Lehmann EL, Romano JP (2005): Testing Statistical Hypotheses, 3rd ed. New York, NY: Springer.
Pesarin F (1992): A resampling procedure for nonparametric combination of several dependent tests. J Italian Stat Soc 1:87-101.
Jiang B, Zhang X, Zuo Y, Kang G (2011): A powerful truncated tail strength method for testing multiple null hypotheses in one dataset. J Theoretical Biol 277:67-73.
Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1991): Comparing functional (PET) images: The assessment of significant change. J Cereb Blood Flow Metab 11:690-699.
Tippett LHC (1931): The Methods of Statistics. London: Williams; Northgate.
Edgington ES (1972): An additive method for combining probability values from independent experiments. J Psychol 80:351-363.
Efron B (2004): Large-scale simultaneous hypothesis testing. J Am Stat Assoc 99:96-104.
Blair RC, Higgins JJ, Karniski W, Kromrey JD (1994): A study of multivariate permutation tests which may replace Hotelling's T2 test in prescribed circumstances. Multivariate Behav Res 29:141-163.
Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE (2014): Permutation inference for the general linear model. NeuroImage 92:381-397.
Pantazis D, Nichols TE, Baillet S, Leahy RM (2005): A comparison of random field theory and permutation methods for the statistical analysis of MEG data. Neuroimage 25:383-394.
Rosenthal R (1978): Combining results of independent studies. Psychol Bull 85:185-193.
Li J, Tseng GC (2011): An adaptively weighted statistic for detecting differential gene expression when combining multiple transcriptomic studies. Ann Appl Stat 5:994-1019.
Wilkinson B (1951): A statistical consideration in psychological research. Psychol Bull 48:156-158.
Westfall PH, Troendle JF (2008): Multiple testing with minimal assumptions. Biom J 50:745-755.
Berk RH, Cohen A (1979): Asymptotically optimal methods of combining tests. J Am Stat Assoc 74:812-814.
Brown MB (1975): A method for combining non-independent, one-sided tests of significance. Biometrics 31:987-992.
Smith SM, Nichols TE (2009): Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44:83-98.
Lipták T (1958): On the combination of independent tests. A Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közlémenyei 3:171-197.
Roy M, Shohamy D, Daw N, Jepma M, Wimmer GE, Wager TD (2014): Representation of aversive prediction errors in the human periaqueductal gray. Nat Neurosci 17:1607-1612.
Kost JT, McDermott MP (2002): Combining dependent p-values. Stat Probab Lett 60:183-190.
Šidák Z (1967): Rectangular confidence regions for the means of multivariate normal distributions. J Am Stat Assoc 62:626-633.
Taylor J, Tibshirani R (2006): A tail strength measure for assessing the overall univariate significance in a dataset. Biostatistics 7:167-181.
Won S, Morris N, Lu Q, Elston RC (2009): Choosing an optimal method to combine p-values. Stat Med 28:1537-1553.
Petrovic P, Kalso E, Petersson KM, Ingvar M (2002): Placebo and opioid analgesia-Imaging a shared neuronal network. Science 295:1737-1740.
Calhoun VD, Sui J (2016): Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging (in press). doi:10.1016/j.bpsc.2015.12.005.
Nichols T, Hayasaka S (2003): Controlling the familywise error rate in functional neuroimaging: A comparative review. Stat Meth Med Res 12:419-446.
Wilks SS (1932): Certain generalizations in the analysis of variance. Biometrika 24:471-494.
Uludağ K, Roebroeck A (2014): General overview on the merits of multimodal neuroimaging data fusion. NeuroImage 102:3-10.
Brooks JCW, Zambreanu L, Godinez A, Craig ADB, Tracey I (2005): Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. NeuroImage 27:201-209.
Wu SS (2006): Combining univariate tests for multivariate location problem. Commun Stat 35:1483-1494.
Timm NH (2002): Applied Multivariate Analysis. New York: Springer.
Christensen R (2001): Advanced Linear Modelling, 2nd ed. New York, USA: Springer.
Friston KJ, Penny WD, Glaser DE (2005): Conjunction revisited. NeuroImage 25:661-667.
Pearson K (1933): On a method of determining whether a sample of size n supposed to have been drawn from a parent population having a known probability integral has probably been drawn at random. Biometrika 25:379-410.
Anderson TW (2003): An Introduction to Multivariate Statistical Analysis. Hoboken, NJ: Wiley.
Scheffé H (1959): The Analysis of Variance. New York: Wiley.
Holm S (1979): A simple sequentially rejective multiple test procedure. Scand J Stat 6:65-70.
Westberg M (1985): Combining independent statistical tests. Statistician 34:287-296.
Wilson EB (1927): Probable inference, the law of succession, and statistical inference. J Am Stat Assoc 22:209-212.
Roy SN (1953): On a heuristic method of test construction and its use in multivariate analysis. Ann Math Stat 24:220-238.
Zhu D, Zhang T, Jiang X, Hu X, Chen H, Yang N, Lv J, Han J, Guo L, Liu T (2014): Fusing DTI and fMRI data: A survey of methods and applications. NeuroImage 102:184-191.
Hayasaka S, Nichols TE (2004): Combining voxel intensity and cluster extent with permutation test framework. NeuroImage 23:54-63.
Benjamini Y, Hochberg Y (1995): Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289-300.
David FN (1934): On the Pλn test for randomness: Remarks, further illustration, and table of Pλn for given values of -log10λn. Biometrika 26:1. 1−11.
Nichols T, Brett M, Andersson J, Wager T, Poline J-B (2005): Valid conjunction inference with the minimum statistic. NeuroImage 25:653-660.
Winer BJ (1962): Statistical Principles in Experimental Design. New York: McGraw-Hill.
Lazar NA, Luna B, Sweeney JA, Eddy WF (2002): Combining brains: A survey of methods for statistical pooling of information. NeuroImage 16:538-550.
Johnson RA, Wichern DW (2007): Applied Multivariate Statistical Analysis, 6th ed. Upper Sadle River, NJ: Pearson Prentice Hall.
Pesarin F (1990): On a nonparametric combination method for dependent permutation tests with applications. Psychother Psychosom 54:172-179.
Tukey JW (1949): Comparing individual means in the analysis of variance. Biometrics 5:99-114.
Genovese CR, Lazar NA, Nichols T (2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15:870-878.
Lancaster HO (1961): The combination of probabilities: An application of orthonormal functions. Aus J Stat 3:20-33.
Pesarin F (2001): Multivariate Permutation Tests, with Applications in Biostatistics. West Sussex, England, UK: Wiley.
Licata SC, Nickerson LD, Lowen SB, Trksak GH, MacLean RR, Lukas SE (2013): The hypnotic zolpidem increases the synchrony of BOLD signal fluctuations in widespread brain networks during a resting paradigm. NeuroImage 70:211-222.
Pesarin F, Salmaso L (2010b): Finite-sample consistency of combination-based permutation tests with application to repeated measures designs. J Nonparametr Stat 22:669-684.
Stouffer SA, Suchman EA, DeVinney LC, Star SA Jr, Robin MW (1949): The American Soldier: Adjustment During Army Life (Vol. 1). Princeton, NJ: Princeton University Press.
Draper D, Gaver DP, Goel PK, Greenhouse JB, Hedges LV, Morris CN, Waternaux C (1992): Combining information: Statistical issues and opportunities for research. Washington, DC: National Academy Press.
Hall P, Wilson SR (1991): Two guidelines for bootstrap hypothesis testing. Biometrics 47:757-762.
Hotelling H (1931): The generalization of Student's ratio. Ann Math Stat 2:360-378.
Fox PT, Mintun MA, Reiman EM, Raichle ME (1988): Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images. J Cerebral Blood Flow Metab 8:642-653.
Chen G, Adleman NE, Saad ZS, Leibenluft E, Cox RW (2014): Applications of multivariate modeling to neuroimaging group analysis: A comprehensive alternative to univariate general linear model. NeuroImage 99:571-588.
Tracey I, Ploghaus A, Gati JS, Clare S, Smith S, Menon RS, Matthews PM
2002; 16
2009; 44
1976; 63
2002; 15
1990; 54
2006; 30
2013; 22
2000; 5
2006; 35
1991; 11
1934; 26
2004; 23
1967; 62
1949; 5
1932
1931
2011; 10
1972; 80
2013; 70
1954; 49
2002; 60
1994; 29
1979; 74
2005; 27
2011; 277
1979
1933; 25
2005; 25
2003; 12
1955; 17
1982; 24
1986; 81
2013; 14
1991; 47
2001
1961; 3
1987
1979; 6
2011; 24
2008; 64
2014; 17
1958; 3
1953; 24
1949
1992; 1
2014; 99
2012; 62
1955; 26
2014; 92
2014; 91
1986; 51
2002; 295
1995; 57
2004; 47
2009
2006; 7
1996
2007
2006; 5
1951
1975; 31
2005
1993
2003
1992
1951; 48
2002
2008; 50
2011; 5
1959
2009; 28
1986; 327
1969; 164
2004; 99
1927; 22
1978; 85
1988; 8
2002; 22
2003; 25
1932; 24
2014; 35
2010a
1962
2016
2015
2013
1967; 38
1985; 34
2010b; 22
1938; 30
2005; 18
1931; 2
1969
2009; 37
2014; 102
e_1_2_13_24_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_66_1
e_1_2_13_101_1
e_1_2_13_43_1
e_1_2_13_62_1
e_1_2_13_81_1
e_1_2_13_92_1
e_1_2_13_96_1
e_1_2_13_17_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_78_1
e_1_2_13_51_1
e_1_2_13_74_1
David FN (e_1_2_13_22_1) 1934; 26
Oosterhoff J (e_1_2_13_61_1) 1969
e_1_2_13_70_1
Johnson RA (e_1_2_13_44_1) 2007
Lehmann EL (e_1_2_13_50_1) 2005
e_1_2_13_4_1
e_1_2_13_88_1
e_1_2_13_29_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_100_1
e_1_2_13_21_1
e_1_2_13_104_1
e_1_2_13_86_1
e_1_2_13_9_1
e_1_2_13_63_1
e_1_2_13_82_1
Timm NH (e_1_2_13_84_1) 2002
Holm S (e_1_2_13_39_1) 1979; 6
Tippett LHC (e_1_2_13_85_1) 1931
e_1_2_13_95_1
Mudholkar GS (e_1_2_13_57_1) 1979
e_1_2_13_99_1
e_1_2_13_18_1
e_1_2_13_14_1
e_1_2_13_37_1
e_1_2_13_10_1
e_1_2_13_56_1
Pesarin F (e_1_2_13_67_1) 2001
e_1_2_13_75_1
e_1_2_13_52_1
e_1_2_13_71_1
e_1_2_13_5_1
Westfall PH (e_1_2_13_91_1) 1993
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_68_1
Hotelling H (e_1_2_13_40_1) 1951
e_1_2_13_45_1
e_1_2_13_87_1
e_1_2_13_64_1
e_1_2_13_103_1
e_1_2_13_41_1
e_1_2_13_60_1
e_1_2_13_83_1
e_1_2_13_6_1
Fisher RA (e_1_2_13_28_1) 1932
e_1_2_13_90_1
e_1_2_13_94_1
Good IJ (e_1_2_13_33_1) 1955; 17
e_1_2_13_98_1
e_1_2_13_19_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_30_1
e_1_2_13_72_1
e_1_2_13_2_1
Calhoun VD (e_1_2_13_16_1) 2016
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_102_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_7_1
Anderson TW (e_1_2_13_3_1) 2003
e_1_2_13_80_1
Stouffer SA (e_1_2_13_79_1) 1949
Bhandary M (e_1_2_13_8_1) 2011; 10
e_1_2_13_93_1
Scheffé H (e_1_2_13_76_1) 1959
e_1_2_13_97_1
e_1_2_13_35_1
e_1_2_13_58_1
e_1_2_13_31_1
e_1_2_13_77_1
e_1_2_13_12_1
e_1_2_13_54_1
Lipták T (e_1_2_13_53_1) 1958; 3
e_1_2_13_73_1
Draper D (e_1_2_13_23_1) 1992
e_1_2_13_89_1
References_xml – volume: 295
  start-page: 1737
  year: 2002
  end-page: 1740
  article-title: Placebo and opioid analgesia—Imaging a shared neuronal network
  publication-title: Science
– volume: 24
  start-page: 926
  year: 2011
  end-page: 930
  article-title: Is the weighted z‐test the best method for combining probabilities from independent tests?
  publication-title: J Evol Biol
– volume: 327
  start-page: 307
  year: 1986
  end-page: 310
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
– year: 2005
– volume: 3
  start-page: 171
  year: 1958
  end-page: 197
  article-title: On the combination of independent tests
  publication-title: A Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közlémenyei
– volume: 81
  start-page: 1000
  year: 1986
  end-page: 1004
  article-title: The maximum familywise error rate of Fisher's least significant difference test
  publication-title: J Am Stat Assoc
– volume: 5
  start-page: 253
  year: 2006
  end-page: 263
  article-title: A note on the power of Fisher's least significant difference procedure
  publication-title: Pharm Stat
– volume: 23
  start-page: 54
  year: 2004
  end-page: 63
  article-title: Combining voxel intensity and cluster extent with permutation test framework
  publication-title: NeuroImage
– volume: 7
  start-page: 167
  year: 2006
  end-page: 181
  article-title: A tail strength measure for assessing the overall univariate significance in a dataset
  publication-title: Biostatistics
– volume: 62
  start-page: 811
  year: 2012
  end-page: 815
  article-title: Multiple testing corrections, nonparametric methods, and random field theory
  publication-title: NeuroImage
– volume: 22
  start-page: 643
  year: 2013
  end-page: 660
  article-title: Robust non‐parametric tests for complex‐repeated measures problems in ophthalmology
  publication-title: Stat Meth Med Res
– volume: 38
  start-page: 659
  year: 1967
  end-page: 680
  article-title: On the combination of independent test statistics
  publication-title: Ann Math Stat
– volume: 64
  start-page: 1215
  year: 2008
  end-page: 1222
  article-title: Screening for partial conjunction hypotheses
  publication-title: Biometrics
– volume: 47
  start-page: 757
  year: 1991
  end-page: 762
  article-title: Two guidelines for bootstrap hypothesis testing
  publication-title: Biometrics
– volume: 22
  start-page: 170
  year: 2002
  end-page: 185
  article-title: Truncated product method for combining p‐values
  publication-title: Genetic Epidemiol
– year: 1969
– volume: 51
  start-page: 479
  year: 1986
  end-page: 481
  article-title: A note on Roy's largest root
  publication-title: Psychometrika
– volume: 80
  start-page: 351
  year: 1972
  end-page: 363
  article-title: An additive method for combining probability values from independent experiments
  publication-title: J Psychol
– volume: 15
  start-page: 870
  year: 2002
  end-page: 878
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: NeuroImage
– volume: 102
  start-page: 3
  year: 2014
  end-page: 10
  article-title: General overview on the merits of multimodal neuroimaging data fusion
  publication-title: NeuroImage
– year: 1949
– volume: 24
  start-page: 295
  year: 1982
  end-page: 300
  article-title: Multiparameter hypothesis testing and acceptance sampling
  publication-title: Technometrics
– volume: 85
  start-page: 185
  year: 1978
  end-page: 193
  article-title: Combining results of independent studies
  publication-title: Psychol Bull
– volume: 24
  start-page: 220
  year: 1953
  end-page: 238
  article-title: On a heuristic method of test construction and its use in multivariate analysis
  publication-title: Ann Math Stat
– year: 1993
– volume: 81
  start-page: 826
  year: 1986
  end-page: 831
  article-title: Modified sequentially rejective multiple test procedures
  publication-title: J Am Stat Assoc
– year: 2016
  article-title: Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness
  publication-title: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
– volume: 5
  start-page: 496
  year: 2000
  end-page: 515
  article-title: Combining independent p values: Extensions of the stouffer and binomial methods
  publication-title: Psychol Meth
– volume: 99
  start-page: 96
  year: 2004
  end-page: 104
  article-title: Large‐scale simultaneous hypothesis testing
  publication-title: J Am Stat Assoc
– volume: 1
  start-page: 87
  year: 1992
  end-page: 101
  article-title: A resampling procedure for nonparametric combination of several dependent tests
  publication-title: J Italian Stat Soc
– year: 1931
– volume: 92
  start-page: 381
  year: 2014
  end-page: 397
  article-title: Permutation inference for the general linear model
  publication-title: NeuroImage
– year: 1987
– year: 2007
– volume: 5
  start-page: 994
  year: 2011
  end-page: 1019
  article-title: An adaptively weighted statistic for detecting differential gene expression when combining multiple transcriptomic studies
  publication-title: Ann Appl Stat
– volume: 6
  start-page: 65
  year: 1979
  end-page: 70
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand J Stat
– volume: 60
  start-page: 183
  year: 2002
  end-page: 190
  article-title: Combining dependent p‐values
  publication-title: Stat Probab Lett
– volume: 44
  start-page: 83
  year: 2009
  end-page: 98
  article-title: Threshold‐free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: Neuroimage
– volume: 277
  start-page: 67
  year: 2011
  end-page: 73
  article-title: A powerful truncated tail strength method for testing multiple null hypotheses in one dataset
  publication-title: J Theoretical Biol
– volume: 12
  start-page: 419
  year: 2003
  end-page: 446
  article-title: Controlling the familywise error rate in functional neuroimaging: A comparative review
  publication-title: Stat Meth Med Res
– volume: 31
  start-page: 987
  year: 1975
  end-page: 992
  article-title: A method for combining non‐independent, one‐sided tests of significance
  publication-title: Biometrics
– year: 1992
– volume: 10
  start-page: 436
  year: 2011
  end-page: 446
  article-title: Comparison of several tests for combining several independent tests
  publication-title: J Modern Appl Stat Meth
– volume: 99
  start-page: 571
  year: 2014
  end-page: 588
  article-title: Applications of multivariate modeling to neuroimaging group analysis: A comprehensive alternative to univariate general linear model
  publication-title: NeuroImage
– year: 2002
– volume: 35
  start-page: 161
  year: 2014
  end-page: 172
  article-title: Altered resting‐state activity in seasonal affective disorder
  publication-title: Hum Brain Mapp
– volume: 34
  start-page: 287
  year: 1985
  end-page: 296
  article-title: Combining independent statistical tests
  publication-title: Statistician
– volume: 5
  start-page: 99
  year: 1949
  end-page: 114
  article-title: Comparing individual means in the analysis of variance
  publication-title: Biometrics
– volume: 164
  start-page: 444
  year: 1969
  end-page: 445
  article-title: Surgery in the rat during electrical analgesia induced by focal brain stimulation
  publication-title: Science
– volume: 70
  start-page: 211
  year: 2013
  end-page: 222
  article-title: The hypnotic zolpidem increases the synchrony of BOLD signal fluctuations in widespread brain networks during a resting paradigm
  publication-title: NeuroImage
– year: 2013
– volume: 54
  start-page: 172
  year: 1990
  end-page: 179
  article-title: On a nonparametric combination method for dependent permutation tests with applications
  publication-title: Psychother Psychosom
– year: 2009
– volume: 50
  start-page: 745
  year: 2008
  end-page: 755
  article-title: Multiple testing with minimal assumptions
  publication-title: Biom J
– year: 1962
– volume: 25
  start-page: 360
  year: 2003
  end-page: 366
  article-title: Rank truncated product of P‐values, with application to genomewide association scans
  publication-title: Gene Epidemiol
– year: 2001
– volume: 25
  start-page: 383
  year: 2005
  end-page: 394
  article-title: A comparison of random field theory and permutation methods for the statistical analysis of MEG data
  publication-title: Neuroimage
– year: 2010a
– volume: 47
  start-page: 467
  year: 2004
  end-page: 485
  article-title: A systematic comparison of methods for combining p‐values from independent tests
  publication-title: Comput Stat Data Anal
– year: 1959
– volume: 24
  start-page: 471
  year: 1932
  end-page: 494
  article-title: Certain generalizations in the analysis of variance
  publication-title: Biometrika
– volume: 17
  start-page: 264
  year: 1955
  end-page: 265
  article-title: On the weighted combination of significance tests
  publication-title: J R Stat Soc Series B
– volume: 91
  start-page: 412
  year: 2014
  end-page: 419
  article-title: Cluster‐extent based thresholding in fMRI analyses: Pitfalls and recommendations
  publication-title: NeuroImage
– volume: 26
  start-page: 117
  year: 1955
  end-page: 121
  article-title: Some new test criteria in multivariate analysis
  publication-title: The Annals of Mathematical Statistics
– volume: 22
  start-page: 209
  year: 1927
  end-page: 212
  article-title: Probable inference, the law of succession, and statistical inference
  publication-title: J Am Stat Assoc
– volume: 18
  start-page: 1368
  year: 2005
  end-page: 1373
  article-title: Combining probability from independent tests: The weighted z‐method is superior to Fisher's approach
  publication-title: J Evol Biol
– volume: 17
  start-page: 1607
  year: 2014
  end-page: 1612
  article-title: Representation of aversive prediction errors in the human periaqueductal gray
  publication-title: Nat Neurosci
– volume: 63
  start-page: 655
  year: 1976
  article-title: On closed testing procedures with special reference to ordered analysis of variance
  publication-title: Biometrika
– volume: 11
  start-page: 690
  year: 1991
  end-page: 699
  article-title: Comparing functional (PET) images: The assessment of significant change
  publication-title: J Cereb Blood Flow Metab
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J R Stat Soc Ser B
– year: 2015
– volume: 25
  start-page: 661
  year: 2005
  end-page: 667
  article-title: Conjunction revisited
  publication-title: NeuroImage
– volume: 25
  start-page: 653
  year: 2005
  end-page: 660
  article-title: Valid conjunction inference with the minimum statistic
  publication-title: NeuroImage
– volume: 24
  start-page: 1836
  year: 2011
  end-page: 1841
  article-title: Optimally weighted z‐test is a powerful method for combining probabilities in meta‐analysis
  publication-title: J Evol Biol
– volume: 74
  start-page: 812
  year: 1979
  end-page: 814
  article-title: Asymptotically optimal methods of combining tests
  publication-title: J Am Stat Assoc
– volume: 28
  start-page: 1537
  year: 2009
  end-page: 1553
  article-title: Choosing an optimal method to combine p‐values
  publication-title: Stat Med
– volume: 35
  start-page: 1483
  year: 2006
  end-page: 1494
  article-title: Combining univariate tests for multivariate location problem
  publication-title: Commun Stat
– volume: 2
  start-page: 360
  year: 1931
  end-page: 378
  article-title: The generalization of Student's ratio
  publication-title: Ann Math Stat
– volume: 16
  start-page: 538
  year: 2002
  end-page: 550
  article-title: Combining brains: A survey of methods for statistical pooling of information
  publication-title: NeuroImage
– year: 2003
– start-page: 23
  year: 1951
  end-page: 41
– volume: 102
  start-page: 184
  year: 2014
  end-page: 191
  article-title: Fusing DTI and fMRI data: A survey of methods and applications
  publication-title: NeuroImage
– year: 1996
– volume: 25
  start-page: 379
  year: 1933
  end-page: 410
  article-title: On a method of determining whether a sample of size n supposed to have been drawn from a parent population having a known probability integral has probably been drawn at random
  publication-title: Biometrika
– volume: 3
  start-page: 20
  year: 1961
  end-page: 33
  article-title: The combination of probabilities: An application of orthonormal functions
  publication-title: Aus J Stat
– volume: 30
  start-page: 180
  year: 1938
  end-page: 187
  article-title: A generalization of Fisher's z test
  publication-title: Biometrika
– volume: 27
  start-page: 201
  year: 2005
  end-page: 209
  article-title: Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging
  publication-title: NeuroImage
– volume: 8
  start-page: 642
  year: 1988
  end-page: 653
  article-title: Enhanced detection of focal brain responses using intersubject averaging and change‐distribution analysis of subtracted PET images
  publication-title: J Cerebral Blood Flow Metab
– volume: 49
  start-page: 559
  year: 1954
  end-page: 574
  article-title: Combining independent tests of significance
  publication-title: J Am Stat Assoc
– volume: 14
  start-page: 368
  year: 2013
  article-title: Meta‐analysis methods for combining multiple expression profiles: Comparisons, statistical characterization and an application guideline
  publication-title: BMC Bioinformatics
– year: 1932
– volume: 48
  start-page: 156
  year: 1951
  end-page: 158
  article-title: A statistical consideration in psychological research
  publication-title: Psychol Bull
– start-page: 345
  year: 1979
  end-page: 366
– volume: 22
  start-page: 2748
  year: 2002
  end-page: 2752
  article-title: Imaging attentional modulation of pain in the periaqueductal gray in humans
  publication-title: J Neurosci
– volume: 37
  start-page: 3867
  year: 2009
  end-page: 3892
  article-title: Karl Pearson's meta‐analysis revisited
  publication-title: Ann Stat
– volume: 62
  start-page: 626
  year: 1967
  end-page: 633
  article-title: Rectangular confidence regions for the means of multivariate normal distributions
  publication-title: J Am Stat Assoc
– volume: 26
  start-page: 1
  year: 1934
  end-page: 1
  article-title: On the test for randomness: Remarks, further illustration, and table of for given values of
  publication-title: Biometrika
– volume: 22
  start-page: 669
  year: 2010b
  end-page: 684
  article-title: Finite‐sample consistency of combination‐based permutation tests with application to repeated measures designs
  publication-title: J Nonparametr Stat
– volume: 29
  start-page: 141
  year: 1994
  end-page: 163
  article-title: A study of multivariate permutation tests which may replace Hotelling's test in prescribed circumstances
  publication-title: Multivariate Behav Res
– volume: 30
  start-page: 768
  year: 2006
  end-page: 779
  article-title: A non‐parametric approach for co‐analysis of multi‐modal brain imaging data: Application to alzheimer's disease
  publication-title: NeuroImage
– ident: e_1_2_13_47_1
  doi: 10.1111/j.1467-842X.1961.tb00058.x
– ident: e_1_2_13_56_1
  doi: 10.1002/pst.210
– ident: e_1_2_13_75_1
  doi: 10.1214/aoms/1177729029
– ident: e_1_2_13_103_1
  doi: 10.1016/j.neuroimage.2013.09.071
– volume-title: Multivariate Permutation Tests, with Applications in Biostatistics
  year: 2001
  ident: e_1_2_13_67_1
  contributor:
    fullname: Pesarin F
– ident: e_1_2_13_14_1
  doi: 10.1016/j.neuroimage.2005.03.041
– ident: e_1_2_13_54_1
  doi: 10.1016/j.csda.2003.11.020
– ident: e_1_2_13_31_1
  doi: 10.1016/j.neuroimage.2005.01.013
– ident: e_1_2_13_15_1
  doi: 10.2307/2529826
– ident: e_1_2_13_46_1
  doi: 10.1007/BF02294069
– ident: e_1_2_13_87_1
  doi: 10.2307/3001913
– ident: e_1_2_13_17_1
  doi: 10.1186/1471-2105-14-368
– ident: e_1_2_13_5_1
  doi: 10.1111/j.1541-0420.2007.00984.x
– ident: e_1_2_13_65_1
  doi: 10.1159/000288391
– ident: e_1_2_13_81_1
  doi: 10.1093/biostatistics/kxj009
– ident: e_1_2_13_98_1
  doi: 10.1002/sim.3569
– ident: e_1_2_13_55_1
  doi: 10.1093/biomet/63.3.655
– ident: e_1_2_13_60_1
  doi: 10.1191/0962280203sm341ra
– ident: e_1_2_13_36_1
  doi: 10.1016/j.neuroimage.2004.04.035
– ident: e_1_2_13_41_1
  doi: 10.1214/aoms/1177732979
– ident: e_1_2_13_26_1
  doi: 10.1080/00223980.1972.9924813
– ident: e_1_2_13_82_1
– ident: e_1_2_13_71_1
  doi: 10.1214/aoms/1177728599
– ident: e_1_2_13_9_1
  doi: 10.2307/2281130
– ident: e_1_2_13_102_1
  doi: 10.1111/j.1420-9101.2011.02297.x
– volume-title: Applied Multivariate Analysis
  year: 2002
  ident: e_1_2_13_84_1
  contributor:
    fullname: Timm NH
– volume-title: Testing Statistical Hypotheses
  year: 2005
  ident: e_1_2_13_50_1
  contributor:
    fullname: Lehmann EL
– volume-title: The Methods of Statistics
  year: 1931
  ident: e_1_2_13_85_1
  contributor:
    fullname: Tippett LHC
– ident: e_1_2_13_29_1
  doi: 10.1038/jcbfm.1988.111
– ident: e_1_2_13_97_1
  doi: 10.1016/j.neuroimage.2014.01.060
– ident: e_1_2_13_99_1
  doi: 10.1016/j.neuroimage.2013.12.058
– ident: e_1_2_13_51_1
  doi: 10.1214/10-AOAS393
– ident: e_1_2_13_69_1
  doi: 10.1080/10485250902807407
– ident: e_1_2_13_12_1
  doi: 10.1002/9780470743386
– ident: e_1_2_13_77_1
  doi: 10.1080/01621459.1986.10478341
– ident: e_1_2_13_73_1
  doi: 10.1037/0033-2909.85.1.185
– ident: e_1_2_13_4_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– start-page: 345
  volume-title: Symposium on Optimizing Methods in Statistics
  year: 1979
  ident: e_1_2_13_57_1
  contributor:
    fullname: Mudholkar GS
– ident: e_1_2_13_37_1
  doi: 10.1080/01621459.1986.10478364
– ident: e_1_2_13_20_1
  doi: 10.1007/978-1-4757-3847-6
– ident: e_1_2_13_72_1
  doi: 10.1126/science.164.3878.444
– ident: e_1_2_13_34_1
  doi: 10.2307/2532163
– ident: e_1_2_13_94_1
  doi: 10.1093/biomet/24.3-4.471
– ident: e_1_2_13_92_1
  doi: 10.1111/j.1420-9101.2005.00917.x
– start-page: 23
  volume-title: Proceedings of the second berkeley symposium on mathematical statistics and probability
  year: 1951
  ident: e_1_2_13_40_1
  contributor:
    fullname: Hotelling H
– ident: e_1_2_13_19_1
  doi: 10.1111/j.1420-9101.2010.02226.x
– ident: e_1_2_13_68_1
  doi: 10.1002/9780470689516
– ident: e_1_2_13_42_1
  doi: 10.1007/978-1-4899-7180-7
– ident: e_1_2_13_101_1
  doi: 10.1002/gepi.0042
– ident: e_1_2_13_38_1
  doi: 10.1002/9780470316672
– ident: e_1_2_13_45_1
  doi: 10.1016/S0167-7152(02)00310-3
– ident: e_1_2_13_48_1
  doi: 10.1093/biomet/30.1-2.180
– ident: e_1_2_13_70_1
  doi: 10.1126/science.1067176
– ident: e_1_2_13_83_1
  doi: 10.1016/j.neuroimage.2015.10.090
– ident: e_1_2_13_18_1
  doi: 10.1016/j.neuroimage.2014.06.027
– ident: e_1_2_13_95_1
  doi: 10.1080/01621459.1927.10502953
– volume-title: Statistical Methods for Research Workers
  year: 1932
  ident: e_1_2_13_28_1
  contributor:
    fullname: Fisher RA
– ident: e_1_2_13_64_1
  doi: 10.1093/biomet/25.3-4.379
– ident: e_1_2_13_74_1
  doi: 10.1038/nn.3832
– ident: e_1_2_13_52_1
  doi: 10.1016/j.neuroimage.2012.12.055
– ident: e_1_2_13_43_1
  doi: 10.1016/j.jtbi.2011.01.029
– ident: e_1_2_13_63_1
  doi: 10.1016/j.neuroimage.2004.09.040
– volume-title: The Analysis of Variance
  year: 1959
  ident: e_1_2_13_76_1
  contributor:
    fullname: Scheffé H
– ident: e_1_2_13_32_1
  doi: 10.1006/nimg.2001.1037
– ident: e_1_2_13_93_1
  doi: 10.1037/h0059111
– ident: e_1_2_13_90_1
  doi: 10.1002/bimj.200710456
– year: 2016
  ident: e_1_2_13_16_1
  article-title: Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness
  publication-title: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
  contributor:
    fullname: Calhoun VD
– ident: e_1_2_13_104_1
  doi: 10.1214/aoms/1177698861
– volume: 10
  start-page: 436
  year: 2011
  ident: e_1_2_13_8_1
  article-title: Comparison of several tests for combining several independent tests
  publication-title: J Modern Appl Stat Meth
  doi: 10.22237/jmasm/1320120240
  contributor:
    fullname: Bhandary M
– ident: e_1_2_13_88_1
  doi: 10.1016/j.neuroimage.2014.05.018
– ident: e_1_2_13_66_1
  doi: 10.1007/BF02589052
– volume: 3
  start-page: 171
  year: 1958
  ident: e_1_2_13_53_1
  article-title: On the combination of independent tests
  publication-title: A Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közlémenyei
  contributor:
    fullname: Lipták T
– volume-title: Combining information: Statistical issues and opportunities for research
  year: 1992
  ident: e_1_2_13_23_1
  contributor:
    fullname: Draper D
– ident: e_1_2_13_7_1
  doi: 10.1080/01621459.1979.10481035
– ident: e_1_2_13_27_1
  doi: 10.1198/016214504000000089
– ident: e_1_2_13_25_1
– ident: e_1_2_13_96_1
  doi: 10.1037/11774-000
– ident: e_1_2_13_10_1
  doi: 10.1207/s15327906mbr2902_2
– volume-title: An Introduction to Multivariate Statistical Analysis
  year: 2003
  ident: e_1_2_13_3_1
  contributor:
    fullname: Anderson TW
– ident: e_1_2_13_11_1
  doi: 10.1016/S0140-6736(86)90837-8
– volume-title: Resampling‐Based Multiple Testing: Examples and Methods for P‐Value Adjustment
  year: 1993
  ident: e_1_2_13_91_1
  contributor:
    fullname: Westfall PH
– ident: e_1_2_13_62_1
  doi: 10.1214/09-AOS697
– ident: e_1_2_13_30_1
  doi: 10.1038/jcbfm.1991.122
– volume-title: Applied Multivariate Statistical Analysis
  year: 2007
  ident: e_1_2_13_44_1
  contributor:
    fullname: Johnson RA
– ident: e_1_2_13_35_1
  doi: 10.1016/j.neuroimage.2005.10.052
– ident: e_1_2_13_13_1
  doi: 10.1177/0962280211403659
– ident: e_1_2_13_21_1
  doi: 10.1037/1082-989X.5.4.496
– ident: e_1_2_13_86_1
  doi: 10.1523/JNEUROSCI.22-07-02748.2002
– volume-title: Combination of One‐Sided Statistical Tests
  year: 1969
  ident: e_1_2_13_61_1
  contributor:
    fullname: Oosterhoff J
– volume: 6
  start-page: 65
  year: 1979
  ident: e_1_2_13_39_1
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand J Stat
  contributor:
    fullname: Holm S
– volume: 26
  start-page: 1
  year: 1934
  ident: e_1_2_13_22_1
  article-title: On the test for randomness: Remarks, further illustration, and table of for given values of
  publication-title: Biometrika
  contributor:
    fullname: David FN
– ident: e_1_2_13_24_1
  doi: 10.1002/gepi.10264
– ident: e_1_2_13_78_1
  doi: 10.1016/j.neuroimage.2008.03.061
– volume: 17
  start-page: 264
  year: 1955
  ident: e_1_2_13_33_1
  article-title: On the weighted combination of significance tests
  publication-title: J R Stat Soc Series B
  contributor:
    fullname: Good IJ
– ident: e_1_2_13_6_1
  doi: 10.2307/1267823
– ident: e_1_2_13_80_1
  doi: 10.2307/2283989
– ident: e_1_2_13_58_1
  doi: 10.1016/j.neuroimage.2012.04.014
– ident: e_1_2_13_100_1
  doi: 10.1080/03610920600694496
– ident: e_1_2_13_89_1
  doi: 10.2307/2987655
– ident: e_1_2_13_59_1
  doi: 10.1016/j.neuroimage.2004.12.005
– ident: e_1_2_13_49_1
  doi: 10.1006/nimg.2002.1107
– ident: e_1_2_13_2_1
  doi: 10.1002/hbm.22164
– volume-title: The American Soldier: Adjustment During Army Life (Vol. 1)
  year: 1949
  ident: e_1_2_13_79_1
  contributor:
    fullname: Stouffer SA
RestrictionsOnAccess open access
SSID ssj0011501
Score 2.602625
Snippet In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data...
Abstract In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple...
SourceID pubmedcentral
liege
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1486
SubjectTerms Algorithms
Cerebral Cortex - physiology
Cerebral Cortex - physiopathology
Cerebral Cortex/physiology/physiopathology
conjunctions
general linear model
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
multiple testing
Neuroimaging - methods
non-parametric combination
Pain Measurement - methods
permutation tests
Physical, chemical, mathematical & earth Sciences
Physique, chimie, mathématiques & sciences de la terre
Statistics, Nonparametric
SummonAdditionalLinks – databaseName: Wiley_OA刊
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVkJcELQ8AgUZhCoOhCbOOE7EqQXaFWhXPVDRm2UnNl3RzVb7QHDrT-hv7C_p2NkNrHiIUyx5Itkej_2Nx_4G4IWr0CCvbCzQmRhlJWItrI41Lwvud2kM6d76g7x3jB9OxMkavFm-hWn5IboDN28ZYb32Bq7NdPcnaeipGb3mnivmBmx4xhhPnM_xqAshENIJ3hbtsXFJS_CSVijhu92vK5vRhh_X7_Q98-HqPyHO3y9O_gpow450cAduL6Ak22t1fxfWbLMJW3sNudGjH2yHhcud4dR8E272FzH0Lfg4GDdXF5ee83vk02lVjHpO_nFQEdNNzcL7Fluzc1q1522onhEinU0ZIVwWGDCHo5Dd6B4cH7z_9LYXL1IqxFXOUcTSYF2mWap1UTtndVFlOstNQqhESJcYk2KFiI7zMhcV1oIggktcgoYsv66T7D6sN-PGPgRmcitcWhnNuUaHhSHgpXMU2hlXyExG8Hw5tuq8Zc5QLUcyV6QAFRQQwU4Y9U5CT776q2ZSqM-DQ3V0-K7E_USqfgSvglrUeGKG6htXnhY7lOdnX5SulLGKkGShuF9jkgi2l9pTC6OcqlTKlDqWYRnBs66azMnHSHRjx_Mg4zM3JTL_pww5fRl5bhE8aCdE135PnuM50yKQK1OlE_DtXq1phqeB1hulzxpFTX8ZJtXfB0319vuh8Oj_RR_DLYJ6eXvnaBvWZ5O5fUJwamaeBrO5Bp5gG08
  priority: 102
  providerName: Wiley-Blackwell
Title Non-parametric combination and related permutation tests for neuroimaging
URI https://api.istex.fr/ark:/67375/WNG-PGD94B07-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23115
https://www.ncbi.nlm.nih.gov/pubmed/26848101
https://www.proquest.com/docview/1771229349
https://search.proquest.com/docview/1772147076
https://search.proquest.com/docview/1776663642
http://orbi.ulg.ac.be/handle/2268/210170
https://pubmed.ncbi.nlm.nih.gov/PMC4783210
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-tQ0K8INiABcZkEJp4IG3i2HHyuD9sFahVhZjYm2U7Mato0qprEbzxEfiMfBLOTlIx8eeBlySSLcW5O9u_y51_B_DCGqYZNWXImdUhE4aHipcqVDTPqNulmS_3Nhqnwwv25pJfbgHvzsL4pH2jp_16VvXr6ZXPrVxUZtDliQ0moxMmMn_0pAc9NNDORW9DB4hwvJeFe2uY49Lb0QlFdHClqz519DKOAjh1RPJtLZhuP7rlRPsF7zMXsf4T6Pw9d_JXTOs3pbN7cLdFk-SoGfV92CrrHdg9qtGTrr6SQ-LzO_2P8x24PWrD6Lvwdjyvf3z77mi_K1dRyxC0O3SRvZaIqgvij7iUBVngwr1uovUEQenqmiDIJZ4Ec1r5AkcP4OLs9fuTYdhWVQhNShkPhWZFHiexUllhbakyk6gk1RECEy5spHXMDGPMUpqn3LCCI0qwkY2YRqEXRZQ8hO16Xpd7QHRachsbrShVzLJMI_ZSKePKapuJRATwvJOtXDTkGbKhSaYSdSG9LgI49FLf9FDLTy7bTHD5YXwuJ-enOTuOhBwF8MqrRc6Xeio_U-mYsf3zevZRKiN1KRFMZpK6ZSYKYL_Tnmzn5bWMhYjxwxKWB_Bs04wzyoVJVF3O176PK94UifSffdDvS9B5C-BRYxCb8XeWFYC4YSqbDm7cN1vQ0D2zd2vYAbz0RvV3ocnh8cg_PP7vlzyBOwj-0iYLaR-2V8t1-RQB1kofQI-yCV5P39EDP7l-AuODJg4
link.rule.ids 230,315,730,783,787,888,1378,11574,27936,27937,46064,46306,46488,46730,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuPFoegQIBoYoD2U0cO06ObaFdaLPqoaW9WbYT01U32VW7i4ATP4HfyC9h7CQrykuCUyLZUmLP58w38fgbgOdGU0WJLgNGjQoo1yyQrJSBJFlKrJemrtxbPkwGR_TtCTtZAtadhXFJ-1qNevW46tWjU5dbOa10v8sT6x_k25Sn7ujJFVjB9RrSLkhvNw-Q47g4C71rkOHHtxMUCkn_VFU9YgVmrAhwYqXk22ownUdasZP7Ea9ju2f9O9r5a_bkj6zWuaWdm_CuG1CTjXLWm89UT3_-Sevxn0d8C260RNXfbJpvw1JZr8LaZo1BevXJ3_Bd6qj7J78KV_N2h34N9oaT-tuXr1ZRvLLFurSPkMbo2wHAl3Xhu9MzZeFP0SfMm0QAH_nu7MJH_uw7fc1R5Won3YGjndeH24OgLdgQ6IRQFnBFiyyKIynTwphSpjqWcaJC5DyMm1CpiGpKqSEkS5imBUMCYkITUoWjK4owvgvL9aQu74OvkpKZSCtJiKSGpgppnUwok0aZlMfcg2ed0cS00eUQjQIzEWhk4YzswYYz56KHPD-ziWyciePhrjjYfZXRrZCL3IOXzt5icq5G4gMRVnTb3c_H74XUQpUCeWoqiP2ChR6sd7AQ7ZK_EBHnEQ4sppkHTxfNuFjtDoysy8nc9bF1oUKe_LUPhpQxxoUe3GuQtnj_DrIe8EsYXHSw7325BRHlRMNbBHnwwqH1z5MmBlu5u3nw3w95AtcGh_m-2H8z3HsI15FjJk2y0zosz87n5SPkcTP12K3a70PnRj0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BK1VceLQ8AgUCQhUHsps4dpwc-2C7UHa1ByoqLpbtxHTVTXa13UXAiZ_Ab-SXMHaSVcvr0FMiZaTEnnHmm_jLNwAvjKaKEl0EjBoVUK5ZIFkhA0mylNgsTV27t8Ew6R_Ttyfs5EKrL0fa12rcqSZlpxqfOm7lrNTdlifWHQ32KU_dryez3HSvwzqu2TBpC_VmAwFxjqu1MMMGGb6AW1GhkHRPVdkhVmTGCgEnVk6-6QjTZqV1O8Ff8Dix-9Z_g55_MigvIluXmnq34GM7qJqRctZZLlRHf_tN7_FKo74NNxvA6u_WJnfgWlFtwtZuhcV6-dXf8R2F1H2b34SNQbNTvwVHw2n18_sPqyxe2qZd2sfQxircBYIvq9x3f9EUuT_D3LCsCQE-4t7FuY842nc6m-PS9VC6C8e91-_3-0HTuCHQCaEs4IrmWRRHUqa5MYVMdSzjRIWIfRg3oVIR1ZRSQ0iWME1zhkDEhCakCkeY52F8D9aqaVU8AF8lBTORVpIQSQ1NFcI7mVAmjTIpj7kHz1vHiVmtzyFqJWYi0NHCOdqDHefSlYWcn1lCG2fiw_BQjA4PMroXcjHw4JXzuZjO1Vh8JsKKb7vz5eSTkFqoQiBeTQWxb7LQg-02NESz9M9FxHmEA4tp5sGz1WVctHYnRlbFdOlsbH-okCf_tcHSMsb60IP7dbStnr8NWw_4pThcGdjnvnwFo8qJhzdR5MFLF7H_njTR3xu4k4dXvslT2Bgd9MS7N8OjR3ADoWZSc562YW0xXxaPEc4t1BO3cH8BbH9IvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%90parametric+combination+and+related+permutation+tests+for+neuroimaging&rft.jtitle=Human+brain+mapping&rft.au=Winkler%2C+Anderson+M.&rft.au=Webster%2C+Matthew+A.&rft.au=Brooks%2C+Jonathan+C.&rft.au=Tracey%2C+Irene&rft.date=2016-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=37&rft.issue=4&rft.spage=1486&rft.epage=1511&rft_id=info:doi/10.1002%2Fhbm.23115&rft_id=info%3Apmid%2F26848101&rft.externalDBID=PMC4783210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon