Ag⁺‐Mediated Structural Reconstruction of a Metastable Cu 35 Cluster Toward Cu–Ag Heterometallic Architectures for Superior Electrocatalytic CO 2 ‐to‐Ethanol Conversion

Controlled structural transformations of metal nanoclusters (NCs) via dynamic bond reorganization provide fundamental insights into cluster reactivity and open avenues for functionality tuning. Here, we report a thiacalix[4]arene‐protected Cu(I)‐alkynide cluster, {NaCu 35 (TC4A) 4 (Ph‐C≡C) 20 } ( Cu...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition p. e202511232
Main Authors Chen, Xin‐Yu, Li, Lan‐Yan, Zhao, Lan‐Cheng, Liu, Qing‐Yi, Ding, Dang‐Dang, Zhang, Li‐Li, Sun, Xiao‐Yan, Wang, Li‐Kai, Mo, Hong‐Bing, Yan, Jun, Liu, Chao
Format Journal Article
LanguageEnglish
Published Germany 15.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Controlled structural transformations of metal nanoclusters (NCs) via dynamic bond reorganization provide fundamental insights into cluster reactivity and open avenues for functionality tuning. Here, we report a thiacalix[4]arene‐protected Cu(I)‐alkynide cluster, {NaCu 35 (TC4A) 4 (Ph‐C≡C) 20 } ( Cu 35 ), which exhibits remarkable structural plasticity. This metastable cluster can grow into a Cu 36 species via ion substitution or undergo thermal‐induced fragmentation to form a smaller Cu 14 cluster. Under thermal etching by Ag + ion, structural reconstruction is triggered, leading to the formation of the bimetallic Cu 14 Ag 6 and Cu 40 Ag 16 clusters. The structural reorganization significantly alters the catalytic outcomes in electrocatalytic CO 2 reduction. Although the monometallic Cu 35 and Cu 14 favor gaseous CH 4 /C 2 H 4 production, the bimetallic Cu 14 Ag 6 demonstrates remarkable selectivity for ethanol synthesis. Notably, Cu 14 Ag 6 achieves an impressive Faradaic efficiency (FE) of 49.27% for ethanol production, alongside a high partial current density of −67.94 mA cm −2 . This marks the highest ethanol selectivity reported to date for atomically precise cluster catalysts. Mechanistic investigations reveal that, compared to homometallic Cu⋯Cu dual sites (which typically favor C 2 H 4 ), the unique Ag⋯Cu⋯Cu trimetallic microstructure in Cu 14 Ag 6 is more thermodynamically favorable for asymmetric C─C coupling between *CHO and *OCH 2 , facilitating the formation of the key *CHO−*OCH 2 intermediate, which drives the ethanol‐selective pathway.
AbstractList Controlled structural transformations of metal nanoclusters (NCs) via dynamic bond reorganization provide fundamental insights into cluster reactivity and open avenues for functionality tuning. Here, we report a thiacalix[4]arene-protected Cu(I)-alkynide cluster, {NaCu (TC4A) (Ph-C≡C) } (Cu ), which exhibits remarkable structural plasticity. This metastable cluster can grow into a Cu species via ion substitution or undergo thermal-induced fragmentation to form a smaller Cu cluster. Under thermal etching by Ag ion, structural reconstruction is triggered, leading to the formation of the bimetallic Cu Ag and Cu Ag clusters. The structural reorganization significantly alters the catalytic outcomes in electrocatalytic CO reduction. Although the monometallic Cu and Cu favor gaseous CH /C H production, the bimetallic Cu Ag demonstrates remarkable selectivity for ethanol synthesis. Notably, Cu Ag achieves an impressive Faradaic efficiency (FE) of 49.27% for ethanol production, alongside a high partial current density of -67.94 mA cm . This marks the highest ethanol selectivity reported to date for atomically precise cluster catalysts. Mechanistic investigations reveal that, compared to homometallic Cu⋯Cu dual sites (which typically favor C H ), the unique Ag⋯Cu⋯Cu trimetallic microstructure in Cu Ag is more thermodynamically favorable for asymmetric C─C coupling between *CHO and *OCH , facilitating the formation of the key *CHO-*OCH intermediate, which drives the ethanol-selective pathway.
Controlled structural transformations of metal nanoclusters (NCs) via dynamic bond reorganization provide fundamental insights into cluster reactivity and open avenues for functionality tuning. Here, we report a thiacalix[4]arene‐protected Cu(I)‐alkynide cluster, {NaCu 35 (TC4A) 4 (Ph‐C≡C) 20 } ( Cu 35 ), which exhibits remarkable structural plasticity. This metastable cluster can grow into a Cu 36 species via ion substitution or undergo thermal‐induced fragmentation to form a smaller Cu 14 cluster. Under thermal etching by Ag + ion, structural reconstruction is triggered, leading to the formation of the bimetallic Cu 14 Ag 6 and Cu 40 Ag 16 clusters. The structural reorganization significantly alters the catalytic outcomes in electrocatalytic CO 2 reduction. Although the monometallic Cu 35 and Cu 14 favor gaseous CH 4 /C 2 H 4 production, the bimetallic Cu 14 Ag 6 demonstrates remarkable selectivity for ethanol synthesis. Notably, Cu 14 Ag 6 achieves an impressive Faradaic efficiency (FE) of 49.27% for ethanol production, alongside a high partial current density of −67.94 mA cm −2 . This marks the highest ethanol selectivity reported to date for atomically precise cluster catalysts. Mechanistic investigations reveal that, compared to homometallic Cu⋯Cu dual sites (which typically favor C 2 H 4 ), the unique Ag⋯Cu⋯Cu trimetallic microstructure in Cu 14 Ag 6 is more thermodynamically favorable for asymmetric C─C coupling between *CHO and *OCH 2 , facilitating the formation of the key *CHO−*OCH 2 intermediate, which drives the ethanol‐selective pathway.
Author Li, Lan‐Yan
Wang, Li‐Kai
Liu, Chao
Zhang, Li‐Li
Mo, Hong‐Bing
Zhao, Lan‐Cheng
Ding, Dang‐Dang
Yan, Jun
Liu, Qing‐Yi
Chen, Xin‐Yu
Sun, Xiao‐Yan
Author_xml – sequence: 1
  givenname: Xin‐Yu
  surname: Chen
  fullname: Chen, Xin‐Yu
  organization: College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 P.R. China
– sequence: 2
  givenname: Lan‐Yan
  surname: Li
  fullname: Li, Lan‐Yan
  organization: School of Resources and Environment Hunan University of Technology and Business Changsha 410205 China
– sequence: 3
  givenname: Lan‐Cheng
  surname: Zhao
  fullname: Zhao, Lan‐Cheng
  organization: College of Chemistry and Chemical Engineering Shandong University of Science and Technology Zibo Shandong 255000 P.R. China
– sequence: 4
  givenname: Qing‐Yi
  surname: Liu
  fullname: Liu, Qing‐Yi
  organization: College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 P.R. China
– sequence: 5
  givenname: Dang‐Dang
  surname: Ding
  fullname: Ding, Dang‐Dang
  organization: College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 P.R. China
– sequence: 6
  givenname: Li‐Li
  surname: Zhang
  fullname: Zhang, Li‐Li
  organization: Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266000 P.R. China
– sequence: 7
  givenname: Xiao‐Yan
  surname: Sun
  fullname: Sun, Xiao‐Yan
  organization: Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266000 P.R. China
– sequence: 8
  givenname: Li‐Kai
  surname: Wang
  fullname: Wang, Li‐Kai
  organization: College of Chemistry and Chemical Engineering Shandong University of Science and Technology Zibo Shandong 255000 P.R. China
– sequence: 9
  givenname: Hong‐Bing
  surname: Mo
  fullname: Mo, Hong‐Bing
  organization: College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 P.R. China
– sequence: 10
  givenname: Jun
  surname: Yan
  fullname: Yan, Jun
  organization: College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 P.R. China
– sequence: 11
  givenname: Chao
  orcidid: 0000-0002-2289-3095
  surname: Liu
  fullname: Liu, Chao
  organization: College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 P.R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40626994$$D View this record in MEDLINE/PubMed
BookMark eNo9kUlOwzAUhi1URMuwZYl8gRQPcZwsq6gMEggJuo8c-wWC0riyHVB3cAMkbsKS4_QkuEybN_z69PTr_fto1NseEDqmZEoJYaeqb2HKCBOUMs520IQKRhMuJR_FOeU8kbmgY7Tv_WPk85xke2ickoxlRZFO0MfsfvP6uXl5uwbTqgAG3wU36DA41eFb0Lb333tre2wbrPA1BOWDqjvA5YC5wGU3-AAOL-yzciaKm5f32T2-gCjaZaS7rtV45vRDG2B7GDxurMN3wwpcG4d5F2VntYroOkS2vMEMR0vBxjIPD6q3HS5t_wTORx-HaLdRnYej336AFmfzRXmRXN2cX5azq0RnLE0ETTUvDGlYwaQRIi20AJVDSkwtudJ51ggpmczrrAFFGCmMqZUGKKQuMp7zA3Tyc3Y11Esw1cq1S-XW1d_vIjD9AbSz3jto_hFKqm041Tac6j8c_gV1K4n6
Cites_doi 10.1021/jacs.9b02124
10.1021/jacs.3c08438
10.1021/jacs.7b05591
10.1002/anie.201906538
10.1039/D1TA01115D
10.1002/anie.202412144
10.1021/jacs.3c08241
10.1039/D2SC04204E
10.1002/anie.201800877
10.1002/anie.202105343
10.1021/jacs.3c08974
10.1021/jacs.3c06543
10.1021/acsami.2c18553
10.1002/anie.201708760
10.1021/jacs.2c10338
10.1021/jacs.1c05568
10.1021/jacs.4c08094
10.1002/anie.202306822
10.1038/s41467-022-31427-9
10.1021/jacs.0c05199
10.1039/D1SC07178E
10.1021/acscatal.3c03755
10.1039/D3SC04682F
10.1016/j.esci.2023.100140
10.1126/science.adk6628
10.1002/anie.202111265
10.1021/jacs.3c02215
10.1002/anie.202413832
10.1021/acs.accounts.8b00380
10.1021/jacs.1c05618
10.1002/anie.202503417
10.1021/jacs.1c04002
10.1021/jacs.7b07926
10.1021/jacs.5c06660
10.1021/acs.chemrev.5b00703
10.1002/anie.202205626
10.1002/anie.202206742
10.1002/adfm.202500149
10.1021/jacs.3c04612
10.1126/science.adh2365
10.1021/acs.chemrev.8b00726
10.1021/jacs.7b11491
10.1002/asia.202300605
10.1039/C8CS00800K
10.1038/s44160-023-00467-4
10.1002/anie.201804481
10.1002/anie.202306849
10.1002/anie.202407214
10.1021/jacs.4c04294
10.1002/adma.202313032
10.1021/jacs.3c13965
10.1021/acs.chemrev.6b00769
10.1021/jacs.0c00541
10.1021/jacs.5b12103
10.1002/anie.202001185
10.1021/jacs.0c01053
10.1021/jacs.1c11643
10.1002/anie.202500191
10.1002/anie.201812236
10.1002/ange.202401206
10.1002/anie.201912845
10.1002/anie.202005087
10.1021/acs.accounts.8b00371
10.1021/jacs.8b02487
10.1038/nchem.2718
10.1038/s44160-024-00723-1
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
DOI 10.1002/anie.202511232
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
ExternalDocumentID 40626994
10_1002_anie_202511232
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province
  grantid: 2023JJ30650
– fundername: Innovation-Driven Project of Central South University
  grantid: 2023CXQD061
– fundername: National Natural Science Foundation of China
  grantid: 21901256
– fundername: the Fundamental Research Funds for the Central Universities of Central South University
  grantid: 2024ZZTS0614
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2024JJ5419
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CITATION
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
NPM
ID FETCH-LOGICAL-c624-514c39d0f2927d5549c5ea8e40db73ac86f577278b6fea0209ddbacee97c96383
ISSN 1433-7851
IngestDate Wed Jul 16 06:55:09 EDT 2025
Wed Jul 16 16:47:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Cluster transformation
Cu nanoclusters
Silver ion etching
Ethanol
Electrocatalytic CO2 reduction
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c624-514c39d0f2927d5549c5ea8e40db73ac86f577278b6fea0209ddbacee97c96383
ORCID 0000-0002-2289-3095
PMID 40626994
ParticipantIDs pubmed_primary_40626994
crossref_primary_10_1002_anie_202511232
PublicationCentury 2000
PublicationDate 2025-07-15
PublicationDateYYYYMMDD 2025-07-15
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-15
  day: 15
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2025
References Zhang L.‐M. (e_1_2_8_25_1) 2016; 138
Deng G. (e_1_2_8_46_1) 2023; 145
Han B.‐L. (e_1_2_8_49_1) 2025
Xia W. (e_1_2_8_60_1) 2023; 145
Jin R. (e_1_2_8_4_1) 2016; 116
Wong H. H. O. (e_1_2_8_66_1) 2024; 4
Shi W.‐Q. (e_1_2_8_3_1) 2024; 383
Zheng Y. (e_1_2_8_61_1) 2019; 141
Mu W. L. (e_1_2_8_44_1) 2024; 146
Zhang M.‐M. (e_1_2_8_39_1) 2023; 145
Wu Q.‐J. (e_1_2_8_51_1) 2023; 62
Tang Q. (e_1_2_8_52_1) 2017; 139
Wang P. (e_1_2_8_63_1) 2022; 13
Zheng L.‐M. (e_1_2_8_41_1) 2024; 146
Li Z. (e_1_2_8_64_1) 2025; 64
Zha J. (e_1_2_8_55_1) 2023; 15
Tang Q. (e_1_2_8_8_1) 2018; 51
Yan J. (e_1_2_8_1_1) 2018; 51
Wang X. (e_1_2_8_5_1) 2023; 381
Fang J.‐J. (e_1_2_8_59_1) 2023; 14
Li Q. (e_1_2_8_36_1) 2017; 139
Ma M.‐X. (e_1_2_8_18_1) 2021; 143
Jia T. (e_1_2_8_30_1) 2023; 145
Yang Q. Q. (e_1_2_8_67_1) 2025; 147
Li J.‐J. (e_1_2_8_11_1) 2022; 144
Wang R. (e_1_2_8_50_1) 2021; 60
Han B.‐L. (e_1_2_8_28_1) 2020; 142
Qin H.‐N. (e_1_2_8_43_1) 2024; 146
Huang R.‐W. (e_1_2_8_24_1) 2020; 142
Han C. (e_1_2_8_48_1) 2025; 64
Gao M.‐Y. (e_1_2_8_20_1) 2020; 142
Kang X. (e_1_2_8_6_1) 2019; 48
Liu X. (e_1_2_8_16_1) 2020; 59
Lei Z. (e_1_2_8_12_1) 2018; 57
Liu Z. (e_1_2_8_13_1) 2023; 145
Huang J.‐H. (e_1_2_8_33_1) 2021; 143
Yoo S. (e_1_2_8_10_1) 2024; 36
Luo X.‐M. (e_1_2_8_19_1) 2022; 13
Li J.‐K. (e_1_2_8_57_1) 2024; 63
Wang Z. (e_1_2_8_42_1) 2022; 61
Xu J. (e_1_2_8_15_1) 2022; 13
Deng G. (e_1_2_8_45_1) 2023; 145
Zhang L. L.‐M. (e_1_2_8_26_1) 2017; 56
Luo G.‐G. (e_1_2_8_23_1) 2023; 62
Yuan P. (e_1_2_8_21_1) 2019; 58
Lee S. (e_1_2_8_35_1) 2021; 143
Du Y. (e_1_2_8_7_1) 2020; 120
Chakraborty I. (e_1_2_8_2_1) 2017; 117
Zhao H. (e_1_2_8_27_1) 2024; 3
Yao Y. (e_1_2_8_40_1) 2024; 63
Ren L. (e_1_2_8_17_1) 2017; 139
Wang R. (e_1_2_8_56_1) 2024; 14
Nguyen T. N. (e_1_2_8_62_1) 2021; 9
Hu F. (e_1_2_8_32_1) 2023; 18
Zhu M. (e_1_2_8_37_1) 2018; 57
Qu M. (e_1_2_8_22_1) 2020; 59
Ma X. (e_1_2_8_58_1) 2025; 64
Zhao Z.‐H. (e_1_2_8_65_1) 2023; 145
Lu Y.‐F. (e_1_2_8_54_1) 2021; 60
Huang J.‐H. (e_1_2_8_29_1) 2024; 146
Zhuang S. (e_1_2_8_47_1) 2020; 59
Higaki T. (e_1_2_8_14_1) 2018; 140
Tang L. (e_1_2_8_34_1) 2025; 4
Liu L.‐J. (e_1_2_8_53_1) 2022; 61
Yang Y. (e_1_2_8_31_1) 2019; 58
Huang R.‐W. (e_1_2_8_9_1) 2017; 9
Fang J.‐J. (e_1_2_8_38_1) 2024; 136
References_xml – volume: 141
  start-page: 7646
  year: 2019
  ident: e_1_2_8_61_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02124
– volume: 145
  start-page: 27407
  year: 2023
  ident: e_1_2_8_45_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c08438
– volume: 139
  start-page: 9728
  year: 2017
  ident: e_1_2_8_52_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05591
– volume: 58
  start-page: 12280
  year: 2019
  ident: e_1_2_8_31_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201906538
– volume: 9
  start-page: 12474
  year: 2021
  ident: e_1_2_8_62_1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA01115D
– volume: 63
  year: 2024
  ident: e_1_2_8_57_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202412144
– volume: 145
  start-page: 22310
  year: 2023
  ident: e_1_2_8_39_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c08241
– volume: 13
  start-page: 11110
  year: 2022
  ident: e_1_2_8_19_1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC04204E
– volume: 57
  start-page: 4500
  year: 2018
  ident: e_1_2_8_37_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201800877
– volume: 60
  start-page: 19829
  year: 2021
  ident: e_1_2_8_50_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105343
– volume: 145
  start-page: 26783
  year: 2023
  ident: e_1_2_8_65_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c08974
– volume: 145
  start-page: 19969
  year: 2023
  ident: e_1_2_8_13_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c06543
– volume: 15
  start-page: 3985
  year: 2023
  ident: e_1_2_8_55_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c18553
– volume: 56
  start-page: 16228
  year: 2017
  ident: e_1_2_8_26_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708760
– volume: 145
  start-page: 3401
  year: 2023
  ident: e_1_2_8_46_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c10338
– volume: 143
  start-page: 12439
  year: 2021
  ident: e_1_2_8_33_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c05568
– volume: 146
  start-page: 25101
  year: 2024
  ident: e_1_2_8_41_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c08094
– volume: 62
  year: 2023
  ident: e_1_2_8_51_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202306822
– volume: 13
  start-page: 3754
  year: 2022
  ident: e_1_2_8_63_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31427-9
– volume: 142
  start-page: 12784
  year: 2020
  ident: e_1_2_8_20_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05199
– volume: 13
  start-page: 2778
  year: 2022
  ident: e_1_2_8_15_1
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC07178E
– volume: 14
  start-page: 741
  year: 2024
  ident: e_1_2_8_56_1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c03755
– volume: 14
  start-page: 12637
  year: 2023
  ident: e_1_2_8_59_1
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC04682F
– volume: 4
  year: 2024
  ident: e_1_2_8_66_1
  publication-title: eScience.
  doi: 10.1016/j.esci.2023.100140
– volume: 383
  start-page: 326
  year: 2024
  ident: e_1_2_8_3_1
  publication-title: Science
  doi: 10.1126/science.adk6628
– volume: 60
  start-page: 26210
  year: 2021
  ident: e_1_2_8_54_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202111265
– volume: 145
  start-page: 10355
  year: 2023
  ident: e_1_2_8_30_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c02215
– volume: 64
  year: 2025
  ident: e_1_2_8_64_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202413832
– volume: 51
  start-page: 2793
  year: 2018
  ident: e_1_2_8_8_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00380
– volume: 143
  start-page: 13731
  year: 2021
  ident: e_1_2_8_18_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c05618
– volume: 64
  year: 2025
  ident: e_1_2_8_48_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202503417
– volume: 143
  start-page: 12100
  year: 2021
  ident: e_1_2_8_35_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c04002
– volume: 139
  start-page: 13288
  year: 2017
  ident: e_1_2_8_17_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07926
– volume: 147
  start-page: 22132
  year: 2025
  ident: e_1_2_8_67_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5c06660
– volume: 116
  start-page: 10346
  year: 2016
  ident: e_1_2_8_4_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00703
– volume: 61
  year: 2022
  ident: e_1_2_8_53_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202205626
– volume: 61
  year: 2022
  ident: e_1_2_8_42_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202206742
– year: 2025
  ident: e_1_2_8_49_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202500149
– volume: 145
  start-page: 17253
  year: 2023
  ident: e_1_2_8_60_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c04612
– volume: 381
  start-page: 784
  year: 2023
  ident: e_1_2_8_5_1
  publication-title: Science
  doi: 10.1126/science.adh2365
– volume: 120
  start-page: 526
  year: 2020
  ident: e_1_2_8_7_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00726
– volume: 139
  start-page: 17779
  year: 2017
  ident: e_1_2_8_36_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11491
– volume: 18
  year: 2023
  ident: e_1_2_8_32_1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.202300605
– volume: 48
  start-page: 2422
  year: 2019
  ident: e_1_2_8_6_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00800K
– volume: 3
  start-page: 517
  year: 2024
  ident: e_1_2_8_27_1
  publication-title: Nat. Synth.
  doi: 10.1038/s44160-023-00467-4
– volume: 57
  start-page: 8639
  year: 2018
  ident: e_1_2_8_12_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201804481
– volume: 62
  year: 2023
  ident: e_1_2_8_23_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202306849
– volume: 63
  year: 2024
  ident: e_1_2_8_40_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202407214
– volume: 146
  start-page: 16729
  year: 2024
  ident: e_1_2_8_29_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c04294
– volume: 36
  year: 2024
  ident: e_1_2_8_10_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202313032
– volume: 146
  start-page: 3545
  year: 2024
  ident: e_1_2_8_43_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c13965
– volume: 117
  start-page: 8208
  year: 2017
  ident: e_1_2_8_2_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00769
– volume: 142
  start-page: 8696
  year: 2020
  ident: e_1_2_8_24_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00541
– volume: 138
  start-page: 2909
  year: 2016
  ident: e_1_2_8_25_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12103
– volume: 59
  start-page: 6507
  year: 2020
  ident: e_1_2_8_22_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202001185
– volume: 142
  start-page: 5834
  year: 2020
  ident: e_1_2_8_28_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01053
– volume: 144
  start-page: 690
  year: 2022
  ident: e_1_2_8_11_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c11643
– volume: 64
  year: 2025
  ident: e_1_2_8_58_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202500191
– volume: 58
  start-page: 835
  year: 2019
  ident: e_1_2_8_21_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201812236
– volume: 136
  year: 2024
  ident: e_1_2_8_38_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202401206
– volume: 146
  start-page: 28131
  year: 2024
  ident: e_1_2_8_44_1
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 3073
  year: 2020
  ident: e_1_2_8_47_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912845
– volume: 59
  start-page: 13941
  year: 2020
  ident: e_1_2_8_16_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202005087
– volume: 51
  start-page: 3084
  year: 2018
  ident: e_1_2_8_1_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00371
– volume: 140
  start-page: 5691
  year: 2018
  ident: e_1_2_8_14_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02487
– volume: 9
  start-page: 689
  year: 2017
  ident: e_1_2_8_9_1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2718
– volume: 4
  start-page: 506
  year: 2025
  ident: e_1_2_8_34_1
  publication-title: Nat. Syn.
  doi: 10.1038/s44160-024-00723-1
SSID ssj0028806
Score 2.4825683
SecondaryResourceType online_first
Snippet Controlled structural transformations of metal nanoclusters (NCs) via dynamic bond reorganization provide fundamental insights into cluster reactivity and open...
SourceID pubmed
crossref
SourceType Index Database
StartPage e202511232
Title Ag⁺‐Mediated Structural Reconstruction of a Metastable Cu 35 Cluster Toward Cu–Ag Heterometallic Architectures for Superior Electrocatalytic CO 2 ‐to‐Ethanol Conversion
URI https://www.ncbi.nlm.nih.gov/pubmed/40626994
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKcoAL4p9dfuQDiEOUpbWbNjmGULRCWlagIhUulZ042UpLwqFZBKflDZB4E448Tp-AR2DGdpyk7GHhEll2_aPMV3s8mfmGkMdwyPEojKQ_klmEITm5L0Mu_EwGQynGKmO5dpB9PTl4N361CBaDwe-O11K9lvvp13PjSv5HqlAHcsUo2X-QrBsUKqAM8oUnSBieF5JxXGhfhdGT57FzWjjUuTe0GonMsJpVA--YLVOsCYk8VGsBmiEGTiW1xwMvOamRNMGba0daqGyG5HEBpxM0VR-hzwmyYsedzw-a0AE2IKRMhsLM5NXRZqEvyAabHHnMc8tbV644Q6t9hbaL8tRY7bqaclwW6rPAYANPkxqoLePlLFt1fQgSG2WyWJVugve1czeyMeCdtvZf8eFYVNvNOFzR9q6x_Q3Ghrv-q669hAVoiDURo3aLB0D609DS3Cq77bMRbLUmqcpfh4ohqcWI_32mr2TMmmR77N1bp6rzdTS80GyJ_Zeu_yVymcHFBnNuvHjrCM8Y7KYmHs6usaEZHbJn_fl7alTvQqQVo_l1cs3eaGhs4HmDDFR5k1xJmkSCt8jPuNh8-7U5-95Ak7bQpH1o0iqngrbQpElNeUAtNKmBJlRuzn7EBe2DkvZASQGUtAEl3QYlTY4oo7CkdQUPC0TaAvE2mb-czZMD36YK8dMJG_ug9ac8yoY5i9g0Aw05SgMlQjUeZnLKRRpO8gDe9jSUk1wJuCFFWSYF6IfRNMUTiN8hO2VVqnuEZjzloFMLFQyRC5NLTM_NFMvQdAFT7JKnzYtffjKEMMvzRbxL7hq5uN-B8swmUTTeu_AY98nVFsMPyA6IQz0ELXgtH2ng_AGFqLCV
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ag%E2%81%BA%E2%80%90Mediated+Structural+Reconstruction+of+a+Metastable+Cu+35+Cluster+Toward+Cu%E2%80%93Ag+Heterometallic+Architectures+for+Superior+Electrocatalytic+CO+2+%E2%80%90to%E2%80%90Ethanol+Conversion&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Xin%E2%80%90Yu&rft.au=Li%2C+Lan%E2%80%90Yan&rft.au=Zhao%2C+Lan%E2%80%90Cheng&rft.au=Liu%2C+Qing%E2%80%90Yi&rft.date=2025-07-15&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002%2Fanie.202511232&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202511232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon