Ag⁺‐Mediated Structural Reconstruction of a Metastable Cu 35 Cluster Toward Cu–Ag Heterometallic Architectures for Superior Electrocatalytic CO 2 ‐to‐Ethanol Conversion
Controlled structural transformations of metal nanoclusters (NCs) via dynamic bond reorganization provide fundamental insights into cluster reactivity and open avenues for functionality tuning. Here, we report a thiacalix[4]arene‐protected Cu(I)‐alkynide cluster, {NaCu 35 (TC4A) 4 (Ph‐C≡C) 20 } ( Cu...
Saved in:
Published in | Angewandte Chemie International Edition p. e202511232 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
15.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Controlled structural transformations of metal nanoclusters (NCs) via dynamic bond reorganization provide fundamental insights into cluster reactivity and open avenues for functionality tuning. Here, we report a thiacalix[4]arene‐protected Cu(I)‐alkynide cluster, {NaCu 35 (TC4A) 4 (Ph‐C≡C) 20 } ( Cu 35 ), which exhibits remarkable structural plasticity. This metastable cluster can grow into a Cu 36 species via ion substitution or undergo thermal‐induced fragmentation to form a smaller Cu 14 cluster. Under thermal etching by Ag + ion, structural reconstruction is triggered, leading to the formation of the bimetallic Cu 14 Ag 6 and Cu 40 Ag 16 clusters. The structural reorganization significantly alters the catalytic outcomes in electrocatalytic CO 2 reduction. Although the monometallic Cu 35 and Cu 14 favor gaseous CH 4 /C 2 H 4 production, the bimetallic Cu 14 Ag 6 demonstrates remarkable selectivity for ethanol synthesis. Notably, Cu 14 Ag 6 achieves an impressive Faradaic efficiency (FE) of 49.27% for ethanol production, alongside a high partial current density of −67.94 mA cm −2 . This marks the highest ethanol selectivity reported to date for atomically precise cluster catalysts. Mechanistic investigations reveal that, compared to homometallic Cu⋯Cu dual sites (which typically favor C 2 H 4 ), the unique Ag⋯Cu⋯Cu trimetallic microstructure in Cu 14 Ag 6 is more thermodynamically favorable for asymmetric C─C coupling between *CHO and *OCH 2 , facilitating the formation of the key *CHO−*OCH 2 intermediate, which drives the ethanol‐selective pathway. |
---|---|
AbstractList | Controlled structural transformations of metal nanoclusters (NCs) via dynamic bond reorganization provide fundamental insights into cluster reactivity and open avenues for functionality tuning. Here, we report a thiacalix[4]arene-protected Cu(I)-alkynide cluster, {NaCu
(TC4A)
(Ph-C≡C)
} (Cu
), which exhibits remarkable structural plasticity. This metastable cluster can grow into a Cu
species via ion substitution or undergo thermal-induced fragmentation to form a smaller Cu
cluster. Under thermal etching by Ag
ion, structural reconstruction is triggered, leading to the formation of the bimetallic Cu
Ag
and Cu
Ag
clusters. The structural reorganization significantly alters the catalytic outcomes in electrocatalytic CO
reduction. Although the monometallic Cu
and Cu
favor gaseous CH
/C
H
production, the bimetallic Cu
Ag
demonstrates remarkable selectivity for ethanol synthesis. Notably, Cu
Ag
achieves an impressive Faradaic efficiency (FE) of 49.27% for ethanol production, alongside a high partial current density of -67.94 mA cm
. This marks the highest ethanol selectivity reported to date for atomically precise cluster catalysts. Mechanistic investigations reveal that, compared to homometallic Cu⋯Cu dual sites (which typically favor C
H
), the unique Ag⋯Cu⋯Cu trimetallic microstructure in Cu
Ag
is more thermodynamically favorable for asymmetric C─C coupling between *CHO and *OCH
, facilitating the formation of the key *CHO-*OCH
intermediate, which drives the ethanol-selective pathway. Controlled structural transformations of metal nanoclusters (NCs) via dynamic bond reorganization provide fundamental insights into cluster reactivity and open avenues for functionality tuning. Here, we report a thiacalix[4]arene‐protected Cu(I)‐alkynide cluster, {NaCu 35 (TC4A) 4 (Ph‐C≡C) 20 } ( Cu 35 ), which exhibits remarkable structural plasticity. This metastable cluster can grow into a Cu 36 species via ion substitution or undergo thermal‐induced fragmentation to form a smaller Cu 14 cluster. Under thermal etching by Ag + ion, structural reconstruction is triggered, leading to the formation of the bimetallic Cu 14 Ag 6 and Cu 40 Ag 16 clusters. The structural reorganization significantly alters the catalytic outcomes in electrocatalytic CO 2 reduction. Although the monometallic Cu 35 and Cu 14 favor gaseous CH 4 /C 2 H 4 production, the bimetallic Cu 14 Ag 6 demonstrates remarkable selectivity for ethanol synthesis. Notably, Cu 14 Ag 6 achieves an impressive Faradaic efficiency (FE) of 49.27% for ethanol production, alongside a high partial current density of −67.94 mA cm −2 . This marks the highest ethanol selectivity reported to date for atomically precise cluster catalysts. Mechanistic investigations reveal that, compared to homometallic Cu⋯Cu dual sites (which typically favor C 2 H 4 ), the unique Ag⋯Cu⋯Cu trimetallic microstructure in Cu 14 Ag 6 is more thermodynamically favorable for asymmetric C─C coupling between *CHO and *OCH 2 , facilitating the formation of the key *CHO−*OCH 2 intermediate, which drives the ethanol‐selective pathway. |
Author | Li, Lan‐Yan Wang, Li‐Kai Liu, Chao Zhang, Li‐Li Mo, Hong‐Bing Zhao, Lan‐Cheng Ding, Dang‐Dang Yan, Jun Liu, Qing‐Yi Chen, Xin‐Yu Sun, Xiao‐Yan |
Author_xml | – sequence: 1 givenname: Xin‐Yu surname: Chen fullname: Chen, Xin‐Yu organization: College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 P.R. China – sequence: 2 givenname: Lan‐Yan surname: Li fullname: Li, Lan‐Yan organization: School of Resources and Environment Hunan University of Technology and Business Changsha 410205 China – sequence: 3 givenname: Lan‐Cheng surname: Zhao fullname: Zhao, Lan‐Cheng organization: College of Chemistry and Chemical Engineering Shandong University of Science and Technology Zibo Shandong 255000 P.R. China – sequence: 4 givenname: Qing‐Yi surname: Liu fullname: Liu, Qing‐Yi organization: College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 P.R. China – sequence: 5 givenname: Dang‐Dang surname: Ding fullname: Ding, Dang‐Dang organization: College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 P.R. China – sequence: 6 givenname: Li‐Li surname: Zhang fullname: Zhang, Li‐Li organization: Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266000 P.R. China – sequence: 7 givenname: Xiao‐Yan surname: Sun fullname: Sun, Xiao‐Yan organization: Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266000 P.R. China – sequence: 8 givenname: Li‐Kai surname: Wang fullname: Wang, Li‐Kai organization: College of Chemistry and Chemical Engineering Shandong University of Science and Technology Zibo Shandong 255000 P.R. China – sequence: 9 givenname: Hong‐Bing surname: Mo fullname: Mo, Hong‐Bing organization: College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 P.R. China – sequence: 10 givenname: Jun surname: Yan fullname: Yan, Jun organization: College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 P.R. China – sequence: 11 givenname: Chao orcidid: 0000-0002-2289-3095 surname: Liu fullname: Liu, Chao organization: College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 P.R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40626994$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kUlOwzAUhi1URMuwZYl8gRQPcZwsq6gMEggJuo8c-wWC0riyHVB3cAMkbsKS4_QkuEybN_z69PTr_fto1NseEDqmZEoJYaeqb2HKCBOUMs520IQKRhMuJR_FOeU8kbmgY7Tv_WPk85xke2ickoxlRZFO0MfsfvP6uXl5uwbTqgAG3wU36DA41eFb0Lb333tre2wbrPA1BOWDqjvA5YC5wGU3-AAOL-yzciaKm5f32T2-gCjaZaS7rtV45vRDG2B7GDxurMN3wwpcG4d5F2VntYroOkS2vMEMR0vBxjIPD6q3HS5t_wTORx-HaLdRnYej336AFmfzRXmRXN2cX5azq0RnLE0ETTUvDGlYwaQRIi20AJVDSkwtudJ51ggpmczrrAFFGCmMqZUGKKQuMp7zA3Tyc3Y11Esw1cq1S-XW1d_vIjD9AbSz3jto_hFKqm041Tac6j8c_gV1K4n6 |
Cites_doi | 10.1021/jacs.9b02124 10.1021/jacs.3c08438 10.1021/jacs.7b05591 10.1002/anie.201906538 10.1039/D1TA01115D 10.1002/anie.202412144 10.1021/jacs.3c08241 10.1039/D2SC04204E 10.1002/anie.201800877 10.1002/anie.202105343 10.1021/jacs.3c08974 10.1021/jacs.3c06543 10.1021/acsami.2c18553 10.1002/anie.201708760 10.1021/jacs.2c10338 10.1021/jacs.1c05568 10.1021/jacs.4c08094 10.1002/anie.202306822 10.1038/s41467-022-31427-9 10.1021/jacs.0c05199 10.1039/D1SC07178E 10.1021/acscatal.3c03755 10.1039/D3SC04682F 10.1016/j.esci.2023.100140 10.1126/science.adk6628 10.1002/anie.202111265 10.1021/jacs.3c02215 10.1002/anie.202413832 10.1021/acs.accounts.8b00380 10.1021/jacs.1c05618 10.1002/anie.202503417 10.1021/jacs.1c04002 10.1021/jacs.7b07926 10.1021/jacs.5c06660 10.1021/acs.chemrev.5b00703 10.1002/anie.202205626 10.1002/anie.202206742 10.1002/adfm.202500149 10.1021/jacs.3c04612 10.1126/science.adh2365 10.1021/acs.chemrev.8b00726 10.1021/jacs.7b11491 10.1002/asia.202300605 10.1039/C8CS00800K 10.1038/s44160-023-00467-4 10.1002/anie.201804481 10.1002/anie.202306849 10.1002/anie.202407214 10.1021/jacs.4c04294 10.1002/adma.202313032 10.1021/jacs.3c13965 10.1021/acs.chemrev.6b00769 10.1021/jacs.0c00541 10.1021/jacs.5b12103 10.1002/anie.202001185 10.1021/jacs.0c01053 10.1021/jacs.1c11643 10.1002/anie.202500191 10.1002/anie.201812236 10.1002/ange.202401206 10.1002/anie.201912845 10.1002/anie.202005087 10.1021/acs.accounts.8b00371 10.1021/jacs.8b02487 10.1038/nchem.2718 10.1038/s44160-024-00723-1 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM |
DOI | 10.1002/anie.202511232 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
ExternalDocumentID | 40626994 10_1002_anie_202511232 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province grantid: 2023JJ30650 – fundername: Innovation-Driven Project of Central South University grantid: 2023CXQD061 – fundername: National Natural Science Foundation of China grantid: 21901256 – fundername: the Fundamental Research Funds for the Central Universities of Central South University grantid: 2024ZZTS0614 – fundername: Natural Science Foundation of Hunan Province grantid: 2024JJ5419 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CITATION CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT NPM |
ID | FETCH-LOGICAL-c624-514c39d0f2927d5549c5ea8e40db73ac86f577278b6fea0209ddbacee97c96383 |
ISSN | 1433-7851 |
IngestDate | Wed Jul 16 06:55:09 EDT 2025 Wed Jul 16 16:47:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cluster transformation Cu nanoclusters Silver ion etching Ethanol Electrocatalytic CO2 reduction |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c624-514c39d0f2927d5549c5ea8e40db73ac86f577278b6fea0209ddbacee97c96383 |
ORCID | 0000-0002-2289-3095 |
PMID | 40626994 |
ParticipantIDs | pubmed_primary_40626994 crossref_primary_10_1002_anie_202511232 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-15 |
PublicationDateYYYYMMDD | 2025-07-15 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
References | Zhang L.‐M. (e_1_2_8_25_1) 2016; 138 Deng G. (e_1_2_8_46_1) 2023; 145 Han B.‐L. (e_1_2_8_49_1) 2025 Xia W. (e_1_2_8_60_1) 2023; 145 Jin R. (e_1_2_8_4_1) 2016; 116 Wong H. H. O. (e_1_2_8_66_1) 2024; 4 Shi W.‐Q. (e_1_2_8_3_1) 2024; 383 Zheng Y. (e_1_2_8_61_1) 2019; 141 Mu W. L. (e_1_2_8_44_1) 2024; 146 Zhang M.‐M. (e_1_2_8_39_1) 2023; 145 Wu Q.‐J. (e_1_2_8_51_1) 2023; 62 Tang Q. (e_1_2_8_52_1) 2017; 139 Wang P. (e_1_2_8_63_1) 2022; 13 Zheng L.‐M. (e_1_2_8_41_1) 2024; 146 Li Z. (e_1_2_8_64_1) 2025; 64 Zha J. (e_1_2_8_55_1) 2023; 15 Tang Q. (e_1_2_8_8_1) 2018; 51 Yan J. (e_1_2_8_1_1) 2018; 51 Wang X. (e_1_2_8_5_1) 2023; 381 Fang J.‐J. (e_1_2_8_59_1) 2023; 14 Li Q. (e_1_2_8_36_1) 2017; 139 Ma M.‐X. (e_1_2_8_18_1) 2021; 143 Jia T. (e_1_2_8_30_1) 2023; 145 Yang Q. Q. (e_1_2_8_67_1) 2025; 147 Li J.‐J. (e_1_2_8_11_1) 2022; 144 Wang R. (e_1_2_8_50_1) 2021; 60 Han B.‐L. (e_1_2_8_28_1) 2020; 142 Qin H.‐N. (e_1_2_8_43_1) 2024; 146 Huang R.‐W. (e_1_2_8_24_1) 2020; 142 Han C. (e_1_2_8_48_1) 2025; 64 Gao M.‐Y. (e_1_2_8_20_1) 2020; 142 Kang X. (e_1_2_8_6_1) 2019; 48 Liu X. (e_1_2_8_16_1) 2020; 59 Lei Z. (e_1_2_8_12_1) 2018; 57 Liu Z. (e_1_2_8_13_1) 2023; 145 Huang J.‐H. (e_1_2_8_33_1) 2021; 143 Yoo S. (e_1_2_8_10_1) 2024; 36 Luo X.‐M. (e_1_2_8_19_1) 2022; 13 Li J.‐K. (e_1_2_8_57_1) 2024; 63 Wang Z. (e_1_2_8_42_1) 2022; 61 Xu J. (e_1_2_8_15_1) 2022; 13 Deng G. (e_1_2_8_45_1) 2023; 145 Zhang L. L.‐M. (e_1_2_8_26_1) 2017; 56 Luo G.‐G. (e_1_2_8_23_1) 2023; 62 Yuan P. (e_1_2_8_21_1) 2019; 58 Lee S. (e_1_2_8_35_1) 2021; 143 Du Y. (e_1_2_8_7_1) 2020; 120 Chakraborty I. (e_1_2_8_2_1) 2017; 117 Zhao H. (e_1_2_8_27_1) 2024; 3 Yao Y. (e_1_2_8_40_1) 2024; 63 Ren L. (e_1_2_8_17_1) 2017; 139 Wang R. (e_1_2_8_56_1) 2024; 14 Nguyen T. N. (e_1_2_8_62_1) 2021; 9 Hu F. (e_1_2_8_32_1) 2023; 18 Zhu M. (e_1_2_8_37_1) 2018; 57 Qu M. (e_1_2_8_22_1) 2020; 59 Ma X. (e_1_2_8_58_1) 2025; 64 Zhao Z.‐H. (e_1_2_8_65_1) 2023; 145 Lu Y.‐F. (e_1_2_8_54_1) 2021; 60 Huang J.‐H. (e_1_2_8_29_1) 2024; 146 Zhuang S. (e_1_2_8_47_1) 2020; 59 Higaki T. (e_1_2_8_14_1) 2018; 140 Tang L. (e_1_2_8_34_1) 2025; 4 Liu L.‐J. (e_1_2_8_53_1) 2022; 61 Yang Y. (e_1_2_8_31_1) 2019; 58 Huang R.‐W. (e_1_2_8_9_1) 2017; 9 Fang J.‐J. (e_1_2_8_38_1) 2024; 136 |
References_xml | – volume: 141 start-page: 7646 year: 2019 ident: e_1_2_8_61_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02124 – volume: 145 start-page: 27407 year: 2023 ident: e_1_2_8_45_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c08438 – volume: 139 start-page: 9728 year: 2017 ident: e_1_2_8_52_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05591 – volume: 58 start-page: 12280 year: 2019 ident: e_1_2_8_31_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906538 – volume: 9 start-page: 12474 year: 2021 ident: e_1_2_8_62_1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA01115D – volume: 63 year: 2024 ident: e_1_2_8_57_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202412144 – volume: 145 start-page: 22310 year: 2023 ident: e_1_2_8_39_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c08241 – volume: 13 start-page: 11110 year: 2022 ident: e_1_2_8_19_1 publication-title: Chem. Sci. doi: 10.1039/D2SC04204E – volume: 57 start-page: 4500 year: 2018 ident: e_1_2_8_37_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201800877 – volume: 60 start-page: 19829 year: 2021 ident: e_1_2_8_50_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105343 – volume: 145 start-page: 26783 year: 2023 ident: e_1_2_8_65_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c08974 – volume: 145 start-page: 19969 year: 2023 ident: e_1_2_8_13_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c06543 – volume: 15 start-page: 3985 year: 2023 ident: e_1_2_8_55_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c18553 – volume: 56 start-page: 16228 year: 2017 ident: e_1_2_8_26_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708760 – volume: 145 start-page: 3401 year: 2023 ident: e_1_2_8_46_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c10338 – volume: 143 start-page: 12439 year: 2021 ident: e_1_2_8_33_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c05568 – volume: 146 start-page: 25101 year: 2024 ident: e_1_2_8_41_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c08094 – volume: 62 year: 2023 ident: e_1_2_8_51_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202306822 – volume: 13 start-page: 3754 year: 2022 ident: e_1_2_8_63_1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31427-9 – volume: 142 start-page: 12784 year: 2020 ident: e_1_2_8_20_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05199 – volume: 13 start-page: 2778 year: 2022 ident: e_1_2_8_15_1 publication-title: Chem. Sci. doi: 10.1039/D1SC07178E – volume: 14 start-page: 741 year: 2024 ident: e_1_2_8_56_1 publication-title: ACS Catal. doi: 10.1021/acscatal.3c03755 – volume: 14 start-page: 12637 year: 2023 ident: e_1_2_8_59_1 publication-title: Chem. Sci. doi: 10.1039/D3SC04682F – volume: 4 year: 2024 ident: e_1_2_8_66_1 publication-title: eScience. doi: 10.1016/j.esci.2023.100140 – volume: 383 start-page: 326 year: 2024 ident: e_1_2_8_3_1 publication-title: Science doi: 10.1126/science.adk6628 – volume: 60 start-page: 26210 year: 2021 ident: e_1_2_8_54_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202111265 – volume: 145 start-page: 10355 year: 2023 ident: e_1_2_8_30_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c02215 – volume: 64 year: 2025 ident: e_1_2_8_64_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202413832 – volume: 51 start-page: 2793 year: 2018 ident: e_1_2_8_8_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00380 – volume: 143 start-page: 13731 year: 2021 ident: e_1_2_8_18_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c05618 – volume: 64 year: 2025 ident: e_1_2_8_48_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202503417 – volume: 143 start-page: 12100 year: 2021 ident: e_1_2_8_35_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c04002 – volume: 139 start-page: 13288 year: 2017 ident: e_1_2_8_17_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07926 – volume: 147 start-page: 22132 year: 2025 ident: e_1_2_8_67_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5c06660 – volume: 116 start-page: 10346 year: 2016 ident: e_1_2_8_4_1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00703 – volume: 61 year: 2022 ident: e_1_2_8_53_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202205626 – volume: 61 year: 2022 ident: e_1_2_8_42_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202206742 – year: 2025 ident: e_1_2_8_49_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202500149 – volume: 145 start-page: 17253 year: 2023 ident: e_1_2_8_60_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c04612 – volume: 381 start-page: 784 year: 2023 ident: e_1_2_8_5_1 publication-title: Science doi: 10.1126/science.adh2365 – volume: 120 start-page: 526 year: 2020 ident: e_1_2_8_7_1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00726 – volume: 139 start-page: 17779 year: 2017 ident: e_1_2_8_36_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11491 – volume: 18 year: 2023 ident: e_1_2_8_32_1 publication-title: Chem. – Asian J. doi: 10.1002/asia.202300605 – volume: 48 start-page: 2422 year: 2019 ident: e_1_2_8_6_1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00800K – volume: 3 start-page: 517 year: 2024 ident: e_1_2_8_27_1 publication-title: Nat. Synth. doi: 10.1038/s44160-023-00467-4 – volume: 57 start-page: 8639 year: 2018 ident: e_1_2_8_12_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201804481 – volume: 62 year: 2023 ident: e_1_2_8_23_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202306849 – volume: 63 year: 2024 ident: e_1_2_8_40_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202407214 – volume: 146 start-page: 16729 year: 2024 ident: e_1_2_8_29_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c04294 – volume: 36 year: 2024 ident: e_1_2_8_10_1 publication-title: Adv. Mater. doi: 10.1002/adma.202313032 – volume: 146 start-page: 3545 year: 2024 ident: e_1_2_8_43_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c13965 – volume: 117 start-page: 8208 year: 2017 ident: e_1_2_8_2_1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00769 – volume: 142 start-page: 8696 year: 2020 ident: e_1_2_8_24_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00541 – volume: 138 start-page: 2909 year: 2016 ident: e_1_2_8_25_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12103 – volume: 59 start-page: 6507 year: 2020 ident: e_1_2_8_22_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202001185 – volume: 142 start-page: 5834 year: 2020 ident: e_1_2_8_28_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01053 – volume: 144 start-page: 690 year: 2022 ident: e_1_2_8_11_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c11643 – volume: 64 year: 2025 ident: e_1_2_8_58_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202500191 – volume: 58 start-page: 835 year: 2019 ident: e_1_2_8_21_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201812236 – volume: 136 year: 2024 ident: e_1_2_8_38_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202401206 – volume: 146 start-page: 28131 year: 2024 ident: e_1_2_8_44_1 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 3073 year: 2020 ident: e_1_2_8_47_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912845 – volume: 59 start-page: 13941 year: 2020 ident: e_1_2_8_16_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202005087 – volume: 51 start-page: 3084 year: 2018 ident: e_1_2_8_1_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00371 – volume: 140 start-page: 5691 year: 2018 ident: e_1_2_8_14_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02487 – volume: 9 start-page: 689 year: 2017 ident: e_1_2_8_9_1 publication-title: Nat. Chem. doi: 10.1038/nchem.2718 – volume: 4 start-page: 506 year: 2025 ident: e_1_2_8_34_1 publication-title: Nat. Syn. doi: 10.1038/s44160-024-00723-1 |
SSID | ssj0028806 |
Score | 2.4825683 |
SecondaryResourceType | online_first |
Snippet | Controlled structural transformations of metal nanoclusters (NCs) via dynamic bond reorganization provide fundamental insights into cluster reactivity and open... |
SourceID | pubmed crossref |
SourceType | Index Database |
StartPage | e202511232 |
Title | Ag⁺‐Mediated Structural Reconstruction of a Metastable Cu 35 Cluster Toward Cu–Ag Heterometallic Architectures for Superior Electrocatalytic CO 2 ‐to‐Ethanol Conversion |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40626994 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKcoAL4p9dfuQDiEOUpbWbNjmGULRCWlagIhUulZ042UpLwqFZBKflDZB4E448Tp-AR2DGdpyk7GHhEll2_aPMV3s8mfmGkMdwyPEojKQ_klmEITm5L0Mu_EwGQynGKmO5dpB9PTl4N361CBaDwe-O11K9lvvp13PjSv5HqlAHcsUo2X-QrBsUKqAM8oUnSBieF5JxXGhfhdGT57FzWjjUuTe0GonMsJpVA--YLVOsCYk8VGsBmiEGTiW1xwMvOamRNMGba0daqGyG5HEBpxM0VR-hzwmyYsedzw-a0AE2IKRMhsLM5NXRZqEvyAabHHnMc8tbV644Q6t9hbaL8tRY7bqaclwW6rPAYANPkxqoLePlLFt1fQgSG2WyWJVugve1czeyMeCdtvZf8eFYVNvNOFzR9q6x_Q3Ghrv-q669hAVoiDURo3aLB0D609DS3Cq77bMRbLUmqcpfh4ohqcWI_32mr2TMmmR77N1bp6rzdTS80GyJ_Zeu_yVymcHFBnNuvHjrCM8Y7KYmHs6usaEZHbJn_fl7alTvQqQVo_l1cs3eaGhs4HmDDFR5k1xJmkSCt8jPuNh8-7U5-95Ak7bQpH1o0iqngrbQpElNeUAtNKmBJlRuzn7EBe2DkvZASQGUtAEl3QYlTY4oo7CkdQUPC0TaAvE2mb-czZMD36YK8dMJG_ug9ac8yoY5i9g0Aw05SgMlQjUeZnLKRRpO8gDe9jSUk1wJuCFFWSYF6IfRNMUTiN8hO2VVqnuEZjzloFMLFQyRC5NLTM_NFMvQdAFT7JKnzYtffjKEMMvzRbxL7hq5uN-B8swmUTTeu_AY98nVFsMPyA6IQz0ELXgtH2ng_AGFqLCV |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ag%E2%81%BA%E2%80%90Mediated+Structural+Reconstruction+of+a+Metastable+Cu+35+Cluster+Toward+Cu%E2%80%93Ag+Heterometallic+Architectures+for+Superior+Electrocatalytic+CO+2+%E2%80%90to%E2%80%90Ethanol+Conversion&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Xin%E2%80%90Yu&rft.au=Li%2C+Lan%E2%80%90Yan&rft.au=Zhao%2C+Lan%E2%80%90Cheng&rft.au=Liu%2C+Qing%E2%80%90Yi&rft.date=2025-07-15&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002%2Fanie.202511232&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202511232 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |