Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel

Stem cells of the Drosophila midgut sense mechanical signals in vivo through the stretch-activated ion channel Piezo, which is expressed on previously unidentified enteroendocrine precursor cells. Stretch-activated ion channel drives cell differentiation The effect of mechanical cues on the behaviou...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 555; no. 7694; pp. 103 - 106
Main Authors He, Li, Si, Guangwei, Huang, Jiuhong, Samuel, Aravinthan D. T., Perrimon, Norbert
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stem cells of the Drosophila midgut sense mechanical signals in vivo through the stretch-activated ion channel Piezo, which is expressed on previously unidentified enteroendocrine precursor cells. Stretch-activated ion channel drives cell differentiation The effect of mechanical cues on the behaviour of cells in culture is well documented, but such effects are more difficult to study in vivo . Norbert Perrimon and colleagues find that stem cells of the Drosophila gut sense mechanical signals in vivo through the stretch-activated ion channel Piezo. Piezo is expressed in a subset of enteroendocrine precursor cells. Loss of Piezo reduces the differentiation of the enteroendocrine lineage in adults, while the over expression of this gene in gut stem cells has the reverse effect. Further analysis shows that Piezo activates the calcium signalling pathway in response to mechanical stimuli. Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis. Although numerous chemical and biological signals have been identified that regulate stem-cell behaviour, whether stem cells can directly sense mechanical signals in vivo remains unclear 1 . Here we show that mechanical stress regulates stem-cell differentiation in the adult Drosophila midgut through the stretch-activated ion channel Piezo. We find that Piezo is specifically expressed in previously unidentified enteroendocrine precursor cells, which have reduced proliferation ability and are destined to become enteroendocrine cells. Loss of Piezo activity reduces the generation of enteroendocrine cells in the adult midgut. In addition, ectopic expression of Piezo in all stem cells triggers both cell proliferation and enteroendocrine cell differentiation. Both the Piezo mutant and overexpression phenotypes can be rescued by manipulation of cytosolic Ca 2+ levels, and increases in cytosolic Ca 2+ resemble the Piezo overexpression phenotype, suggesting that Piezo functions through Ca 2+ signalling. Further studies suggest that Ca 2+ signalling promotes stem-cell proliferation and differentiation through separate pathways. Finally, Piezo is required for both mechanical activation of stem cells in a gut expansion assay and the increase of cytosolic Ca 2+ in response to direct mechanical stimulus in a gut compression assay. Thus, our study demonstrates the existence of a specific group of stem cells in the fly midgut that can directly sense mechanical signals through Piezo.
AbstractList Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis. Although numerous chemical and biological signals have been identified that regulate stem-cell behaviour, whether stem cells can directly sense mechanical signals in vivo remains unclear. Here we show that mechanical stress regulates stem-cell differentiation in the adult Drosophila midgut through the stretch-activated ion channel Piezo. We find that Piezo is specifically expressed in previously unidentified enteroendocrine precursor cells, which have reduced proliferation ability and are destined to become enteroendocrine cells. Loss of Piezo activity reduces the generation of enteroendocrine cells in the adult midgut. In addition, ectopic expression of Piezo in all stem cells triggers both cell proliferation and enteroendocrine cell differentiation. Both the Piezo mutant and overexpression phenotypes can be rescued by manipulation of cytosolic Ca levels, and increases in cytosolic Ca resemble the Piezo overexpression phenotype, suggesting that Piezo functions through Ca signalling. Further studies suggest that Ca signalling promotes stem-cell proliferation and differentiation through separate pathways. Finally, Piezo is required for both mechanical activation of stem cells in a gut expansion assay and the increase of cytosolic Ca in response to direct mechanical stimulus in a gut compression assay. Thus, our study demonstrates the existence of a specific group of stem cells in the fly midgut that can directly sense mechanical signals through Piezo.
Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis. Although numerous chemical and biological signals have been identified that regulate stem-cell behaviour, whether stem cells can directly sense mechanical signals in vivo remains unclear. Here we show that mechanical stress regulates stem-cell differentiation in the adult Drosophila midgut through the stretch-activated ion channel Piezo. We find that Piezo is specifically expressed in previously unidentified enteroendocrine precursor cells, which have reduced proliferation ability and are destined to become enteroendocrine cells. Loss of Piezo activity reduces the generation of enteroendocrine cells in the adult midgut. In addition, ectopic expression of Piezo in all stem cells triggers both cell proliferation and enteroendocrine cell differentiation. Both the Piezo mutant and overexpression phenotypes can be rescued by manipulation of cytosolic Ca2+ levels, and increases in cytosolic Ca2+ resemble the Piezo overexpression phenotype, suggesting that Piezo functions through Ca2+ signalling. Further studies suggest that Ca2+ signalling promotes stem-cell proliferation and differentiation through separate pathways. Finally, Piezo is required for both mechanical activation of stem cells in a gut expansion assay and the increase of cytosolic Ca2+ in response to direct mechanical stimulus in a gut compression assay. Thus, our study demonstrates the existence of a specific group of stem cells in the fly midgut that can directly sense mechanical signals through Piezo.Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis. Although numerous chemical and biological signals have been identified that regulate stem-cell behaviour, whether stem cells can directly sense mechanical signals in vivo remains unclear. Here we show that mechanical stress regulates stem-cell differentiation in the adult Drosophila midgut through the stretch-activated ion channel Piezo. We find that Piezo is specifically expressed in previously unidentified enteroendocrine precursor cells, which have reduced proliferation ability and are destined to become enteroendocrine cells. Loss of Piezo activity reduces the generation of enteroendocrine cells in the adult midgut. In addition, ectopic expression of Piezo in all stem cells triggers both cell proliferation and enteroendocrine cell differentiation. Both the Piezo mutant and overexpression phenotypes can be rescued by manipulation of cytosolic Ca2+ levels, and increases in cytosolic Ca2+ resemble the Piezo overexpression phenotype, suggesting that Piezo functions through Ca2+ signalling. Further studies suggest that Ca2+ signalling promotes stem-cell proliferation and differentiation through separate pathways. Finally, Piezo is required for both mechanical activation of stem cells in a gut expansion assay and the increase of cytosolic Ca2+ in response to direct mechanical stimulus in a gut compression assay. Thus, our study demonstrates the existence of a specific group of stem cells in the fly midgut that can directly sense mechanical signals through Piezo.
Stem cells of the Drosophila midgut sense mechanical signals in vivo through the stretch-activated ion channel Piezo, which is expressed on previously unidentified enteroendocrine precursor cells. Stretch-activated ion channel drives cell differentiation The effect of mechanical cues on the behaviour of cells in culture is well documented, but such effects are more difficult to study in vivo . Norbert Perrimon and colleagues find that stem cells of the Drosophila gut sense mechanical signals in vivo through the stretch-activated ion channel Piezo. Piezo is expressed in a subset of enteroendocrine precursor cells. Loss of Piezo reduces the differentiation of the enteroendocrine lineage in adults, while the over expression of this gene in gut stem cells has the reverse effect. Further analysis shows that Piezo activates the calcium signalling pathway in response to mechanical stimuli. Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis. Although numerous chemical and biological signals have been identified that regulate stem-cell behaviour, whether stem cells can directly sense mechanical signals in vivo remains unclear 1 . Here we show that mechanical stress regulates stem-cell differentiation in the adult Drosophila midgut through the stretch-activated ion channel Piezo. We find that Piezo is specifically expressed in previously unidentified enteroendocrine precursor cells, which have reduced proliferation ability and are destined to become enteroendocrine cells. Loss of Piezo activity reduces the generation of enteroendocrine cells in the adult midgut. In addition, ectopic expression of Piezo in all stem cells triggers both cell proliferation and enteroendocrine cell differentiation. Both the Piezo mutant and overexpression phenotypes can be rescued by manipulation of cytosolic Ca 2+ levels, and increases in cytosolic Ca 2+ resemble the Piezo overexpression phenotype, suggesting that Piezo functions through Ca 2+ signalling. Further studies suggest that Ca 2+ signalling promotes stem-cell proliferation and differentiation through separate pathways. Finally, Piezo is required for both mechanical activation of stem cells in a gut expansion assay and the increase of cytosolic Ca 2+ in response to direct mechanical stimulus in a gut compression assay. Thus, our study demonstrates the existence of a specific group of stem cells in the fly midgut that can directly sense mechanical signals through Piezo.
Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis. Although numerous chemical and biological signals have been identified that regulate stem-cell behaviour, whether stem cells can directly sense mechanical signals in vivo remains unclear1. Here we show that mechanical stress regulates stem-cell differentiation in the adult Drosophila midgut through the stretch-activated ion channel Piezo. We find that Piezo is specifically expressed in previously unidentified enteroendocrine precursor cells, which have reduced proliferation ability and are destined to become enteroendocrine cells. Loss of Piezo activity reduces the generation of enteroendocrine cells in the adult midgut. In addition, ectopic expression of Piezo in all stem cells triggers both cell proliferation and enteroendocrine cell differentiation. Both the Piezo mutant and overexpression phenotypes can be rescued by manipulation of cytosolic Ca2+ levels, and increases in cytosolic Ca2+ resemble the Piezo overexpression phenotype, suggesting that Piezo functions through Ca2+ signalling. Further studies suggest that Ca2+ signalling promotes stem-cell proliferation and differentiation through separate pathways. Finally, Piezo is required for both mechanical activation of stem cells in a gut expansion assay and the increase of cytosolic Ca2+ in response to direct mechanical stimulus in a gut compression assay. Thus, our study demonstrates the existence of a specific group of stem cells in the fly midgut that can directly sense mechanical signals through Piezo.
Audience Academic
Author Samuel, Aravinthan D. T.
Perrimon, Norbert
Si, Guangwei
Huang, Jiuhong
He, Li
Author_xml – sequence: 1
  givenname: Li
  surname: He
  fullname: He, Li
  email: lihe@genetics.med.harvard.edu
  organization: Department of Genetics, Harvard Medical School
– sequence: 2
  givenname: Guangwei
  surname: Si
  fullname: Si, Guangwei
  organization: Department of Physics, Center for Brain Science, Harvard University
– sequence: 3
  givenname: Jiuhong
  surname: Huang
  fullname: Huang, Jiuhong
  organization: School of Life Science and Technology, Tongji University
– sequence: 4
  givenname: Aravinthan D. T.
  surname: Samuel
  fullname: Samuel, Aravinthan D. T.
  organization: Department of Physics, Center for Brain Science, Harvard University
– sequence: 5
  givenname: Norbert
  surname: Perrimon
  fullname: Perrimon, Norbert
  email: perrimon@rascal.med.harvard.edu
  organization: Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29414942$$D View this record in MEDLINE/PubMed
BookMark eNp10k1v1DAQBmALFdFt4cQdRfQCKim24yT2saqgrVQE4uPAyXKcSdZVYm9tB1F-Pd5ugd0qyIdIzjOvJpk5QHvWWUDoOcEnBBf8rVVx8kDLmrFHaEFYXeWs4vUeWmBMeY55Ue2jgxCuMcYlqdkTtE8FI0wwukDfP4BeKmu0GjIP_TSoaJzNXJeFCGOuYRiy1nQdeLDRbF42t1lcQgIeol7mSkfzQ0Vos08GfrlsnWdheIoed2oI8Oz-eYi-vX_39ewiv_p4fnl2epXrihYxB4IxbxiQTmOmeAVlQxglghY1I2WpNVG6LXnTUCF0QTtQwBrR1E1bCK7KtjhErza5K-9uJghRjias-1YW3BQkEUJUnBJKEj16QK_d5G3qTlKc_mUyfEv1agBpbOeiV3odKk9LKooSp9aSymdUDxa8GtKAOpOud_zLGa9X5kZuo5MZlE4Lo9Gzqa93CpKJ8DP2agpBXn75vGtf3H_91IzQypU3o_K38s8yJHC8Adq7EDx0fwnBcr1qcmvVkiYPtDbxbkFSz2b4T82bTU1IybYH_28Ac_w3-o_i4Q
CitedBy_id crossref_primary_10_1021_acsbiomaterials_2c00373
crossref_primary_10_1016_j_biomaterials_2019_01_010
crossref_primary_10_3390_jvd2010006
crossref_primary_10_1242_jcs_226076
crossref_primary_10_1016_j_devcel_2020_03_002
crossref_primary_10_1016_j_yjmcc_2022_02_002
crossref_primary_10_1016_j_neuron_2022_08_007
crossref_primary_10_3389_fbioe_2020_608569
crossref_primary_10_1152_ajpcell_00288_2022
crossref_primary_10_1002_dvdy_401
crossref_primary_10_1016_j_jhazmat_2022_128411
crossref_primary_10_1073_pnas_1905730117
crossref_primary_10_1126_sciadv_adf2664
crossref_primary_10_1146_annurev_cellbio_012820_103850
crossref_primary_10_1016_j_ceca_2021_102367
crossref_primary_10_1016_j_devcel_2018_05_004
crossref_primary_10_1016_j_semcdb_2022_05_010
crossref_primary_10_1093_genetics_iyab031
crossref_primary_10_1007_s10856_020_06465_8
crossref_primary_10_1016_j_neuron_2022_08_015
crossref_primary_10_1016_j_lfs_2020_118667
crossref_primary_10_1016_j_ceb_2020_07_002
crossref_primary_10_1039_D4BM01109K
crossref_primary_10_7554_eLife_53603
crossref_primary_10_1016_j_devcel_2023_08_007
crossref_primary_10_1111_cpr_12912
crossref_primary_10_1186_s12933_025_02625_8
crossref_primary_10_7554_eLife_50684
crossref_primary_10_1089_ten_teb_2022_0052
crossref_primary_10_1016_j_exer_2019_107900
crossref_primary_10_1016_j_xcrp_2025_102498
crossref_primary_10_3389_fcell_2022_886773
crossref_primary_10_1016_j_semcancer_2019_05_004
crossref_primary_10_1042_BSR20181679
crossref_primary_10_1053_j_gastro_2019_03_013
crossref_primary_10_1096_fj_202401323R
crossref_primary_10_3390_ijms21176362
crossref_primary_10_1016_j_biopha_2021_111692
crossref_primary_10_1177_14644207241241406
crossref_primary_10_1038_s41598_021_84427_y
crossref_primary_10_1002_advs_202302327
crossref_primary_10_12688_f1000research_18779_1
crossref_primary_10_1016_j_bioactmat_2024_05_023
crossref_primary_10_1016_j_devcel_2025_02_011
crossref_primary_10_1016_j_medntd_2024_100301
crossref_primary_10_7554_eLife_72836
crossref_primary_10_1016_j_tibs_2021_01_008
crossref_primary_10_1007_s00418_023_02181_w
crossref_primary_10_1126_sciadv_adc9660
crossref_primary_10_1038_s42255_022_00679_6
crossref_primary_10_1016_j_yexcr_2018_11_016
crossref_primary_10_1146_annurev_bioeng_050423_054647
crossref_primary_10_3389_fmolb_2023_1270979
crossref_primary_10_1242_dev_163550
crossref_primary_10_1016_j_isci_2021_102396
crossref_primary_10_3389_fcell_2023_1220694
crossref_primary_10_1016_j_celrep_2024_114398
crossref_primary_10_2174_1574888X15666200129154747
crossref_primary_10_1101_gad_330597_119
crossref_primary_10_4252_wjsc_v11_i10_803
crossref_primary_10_1002_smll_202104328
crossref_primary_10_1016_j_freeradbiomed_2021_02_015
crossref_primary_10_1016_j_stem_2018_04_016
crossref_primary_10_1146_annurev_pharmtox_010919_023703
crossref_primary_10_1210_endrev_bnaa018
crossref_primary_10_7554_eLife_46181
crossref_primary_10_4103_1673_5374_375306
crossref_primary_10_1063_5_0077014
crossref_primary_10_1152_ajpgi_00353_2018
crossref_primary_10_1039_D1CS00572C
crossref_primary_10_1016_j_ajpath_2020_09_008
crossref_primary_10_1021_acs_nanolett_4c01101
crossref_primary_10_1007_s11010_024_05000_5
crossref_primary_10_1038_d41586_018_01460_0
crossref_primary_10_1002_smsc_202300255
crossref_primary_10_1089_ten_tea_2023_0148
crossref_primary_10_1038_s41467_024_47465_4
crossref_primary_10_1016_j_semcdb_2022_12_007
crossref_primary_10_1038_s41556_021_00700_2
crossref_primary_10_31083_j_fbl2810274
crossref_primary_10_1016_j_jphs_2021_06_005
crossref_primary_10_1080_19490976_2021_1916376
crossref_primary_10_1016_j_mad_2020_111285
crossref_primary_10_3390_pharmaceutics14071437
crossref_primary_10_7554_eLife_63049
crossref_primary_10_1016_j_biocel_2023_106490
crossref_primary_10_1101_cshperspect_a040915
crossref_primary_10_1002_sctm_20_0201
crossref_primary_10_1111_febs_16289
crossref_primary_10_3389_fbioe_2020_589590
crossref_primary_10_1016_j_ceb_2020_08_004
crossref_primary_10_1016_j_tcb_2022_10_003
crossref_primary_10_1002_jcp_29455
crossref_primary_10_1093_abbs_gmaa112
crossref_primary_10_3390_cancers16234107
crossref_primary_10_1038_s42003_023_04411_2
crossref_primary_10_1007_s11706_022_0617_5
crossref_primary_10_1186_s12943_025_02265_2
crossref_primary_10_1073_pnas_2213030120
crossref_primary_10_1016_j_isci_2025_111967
crossref_primary_10_1016_j_ijbiomac_2020_02_311
crossref_primary_10_1038_s41575_018_0012_y
crossref_primary_10_1093_nsr_nwz008
crossref_primary_10_1155_2018_6531216
crossref_primary_10_1038_s41392_022_01233_2
crossref_primary_10_1016_j_ceb_2021_05_007
crossref_primary_10_1007_s10071_023_01776_z
crossref_primary_10_12688_f1000research_18856_1
crossref_primary_10_1242_dmm_049332
crossref_primary_10_11569_wcjd_v29_i14_758
crossref_primary_10_1073_pnas_2220635120
crossref_primary_10_1177_10738584221088575
crossref_primary_10_1016_j_pneurobio_2021_102111
crossref_primary_10_15252_embr_202050028
crossref_primary_10_1016_j_cdev_2023_203862
crossref_primary_10_1016_j_tins_2020_11_001
crossref_primary_10_3390_cells13211784
crossref_primary_10_1089_bioe_2021_0037
crossref_primary_10_1016_j_celrep_2022_111173
crossref_primary_10_1146_annurev_neuro_070918_050509
crossref_primary_10_1002_cbin_11851
crossref_primary_10_1016_j_coisb_2018_07_003
crossref_primary_10_1016_j_jsxm_2019_08_020
crossref_primary_10_3389_fendo_2018_00804
crossref_primary_10_1016_j_heliyon_2024_e29923
crossref_primary_10_3389_fmed_2021_655123
crossref_primary_10_1088_1478_3975_aabb18
crossref_primary_10_3389_fphys_2020_577717
crossref_primary_10_3389_fcell_2020_573455
crossref_primary_10_1016_j_ceb_2019_05_007
crossref_primary_10_1002_adma_202105923
crossref_primary_10_1002_adma_201901607
crossref_primary_10_1016_j_jare_2022_08_019
crossref_primary_10_1172_JCI171955
crossref_primary_10_1002_adhm_202101318
crossref_primary_10_1016_j_ceb_2020_05_004
crossref_primary_10_1038_s41586_019_1484_9
crossref_primary_10_7554_eLife_54096
crossref_primary_10_1073_pnas_1916820117
crossref_primary_10_1038_s42003_021_02757_z
crossref_primary_10_1002_ctm2_1321
crossref_primary_10_1002_ece3_70877
crossref_primary_10_1002_adfm_202010626
crossref_primary_10_1126_science_adj7615
crossref_primary_10_1016_j_celrep_2018_12_079
crossref_primary_10_1016_j_stem_2025_01_001
crossref_primary_10_1038_s41467_024_45942_4
crossref_primary_10_1016_j_arr_2023_102026
crossref_primary_10_1016_j_devcel_2018_04_014
crossref_primary_10_1007_s11930_020_00289_x
crossref_primary_10_1016_j_celrep_2024_114693
crossref_primary_10_1021_acsnano_9b00587
crossref_primary_10_1038_s41368_020_00110_4
crossref_primary_10_3390_cancers14082036
crossref_primary_10_1080_09687688_2018_1503742
crossref_primary_10_1002_advs_202200053
crossref_primary_10_14336_AD_2023_0201
crossref_primary_10_1016_j_celrep_2020_108423
crossref_primary_10_1038_s41586_020_2933_1
crossref_primary_10_1021_acsnano_9b04837
crossref_primary_10_1371_journal_pgen_1007773
crossref_primary_10_1080_19336950_2021_1893453
crossref_primary_10_1039_D3MH01049J
crossref_primary_10_1016_j_biomaterials_2021_121059
crossref_primary_10_1186_s13287_023_03452_y
crossref_primary_10_1016_j_biomaterials_2020_120128
crossref_primary_10_1002_adbi_202000247
crossref_primary_10_1002_advs_202003074
crossref_primary_10_1038_s41556_023_01234_5
crossref_primary_10_7554_eLife_76366
crossref_primary_10_1016_j_cub_2022_06_041
crossref_primary_10_1016_j_ceca_2023_102782
crossref_primary_10_3390_ijms241612953
crossref_primary_10_3233_BMR_220440
crossref_primary_10_1096_fj_201900799RR
crossref_primary_10_59717_j_xinn_med_2023_100037
crossref_primary_10_7554_eLife_62250
crossref_primary_10_1038_s12276_023_00960_y
crossref_primary_10_1038_s41467_023_39058_4
crossref_primary_10_3390_cells10092280
crossref_primary_10_1111_febs_16067
crossref_primary_10_1073_pnas_2217862120
crossref_primary_10_1016_j_nanoen_2019_104411
crossref_primary_10_1002_jcp_30184
crossref_primary_10_3390_cells11223543
crossref_primary_10_1016_j_devcel_2023_08_022
crossref_primary_10_1016_j_molmet_2020_01_012
crossref_primary_10_1242_jcs_243451
crossref_primary_10_1186_s12915_024_01916_y
crossref_primary_10_3389_fncel_2021_653367
crossref_primary_10_7554_eLife_76010
crossref_primary_10_1016_j_tins_2020_10_012
crossref_primary_10_3389_fnut_2022_842198
crossref_primary_10_1111_andr_12779
crossref_primary_10_1038_s41598_024_60269_2
crossref_primary_10_1158_0008_5472_CAN_24_0788
crossref_primary_10_1016_j_stemcr_2018_10_010
crossref_primary_10_1038_s41580_020_0278_0
crossref_primary_10_3390_cells8090942
crossref_primary_10_1016_j_cell_2020_12_026
crossref_primary_10_1038_s41467_022_30814_6
crossref_primary_10_1534_genetics_118_300224
crossref_primary_10_7554_eLife_44706
crossref_primary_10_1016_j_reth_2019_03_001
crossref_primary_10_1016_j_bioadv_2023_213431
crossref_primary_10_1371_journal_pone_0281931
crossref_primary_10_1242_dev_165399
crossref_primary_10_3390_bioengineering8120209
crossref_primary_10_3389_fcell_2022_789841
crossref_primary_10_1371_journal_pgen_1009649
crossref_primary_10_1002_adma_202003087
crossref_primary_10_1007_s13577_022_00853_8
crossref_primary_10_1146_annurev_cellbio_120420_114855
crossref_primary_10_17116_hirurgia202404116
crossref_primary_10_1016_j_cub_2021_06_002
crossref_primary_10_1016_j_supmat_2023_100036
crossref_primary_10_18632_aging_202244
crossref_primary_10_3892_ijo_2019_4839
crossref_primary_10_1016_j_neuron_2020_07_025
crossref_primary_10_1021_acsnano_0c10468
crossref_primary_10_1002_cbin_11911
crossref_primary_10_1371_journal_pgen_1008789
crossref_primary_10_1007_s00441_020_03191_z
crossref_primary_10_1016_j_ceb_2019_04_009
crossref_primary_10_1016_j_molstruc_2022_133656
crossref_primary_10_1039_D0CS00333F
crossref_primary_10_1016_j_neuron_2018_09_046
crossref_primary_10_1016_j_stem_2018_05_015
crossref_primary_10_37349_etat_2022_00094
crossref_primary_10_1016_j_bbrc_2024_150144
crossref_primary_10_1016_j_cub_2022_05_041
crossref_primary_10_1016_j_lfs_2020_118602
crossref_primary_10_3390_cells13131080
crossref_primary_10_1038_s41467_020_17341_y
crossref_primary_10_1007_s12551_018_0466_8
crossref_primary_10_1242_jcs_260249
crossref_primary_10_3389_fncel_2024_1441806
crossref_primary_10_1038_s41598_021_97900_5
Cites_doi 10.1073/pnas.1507309112
10.1242/dev.060483
10.7554/eLife.22441
10.1016/j.coph.2013.09.012
10.1038/nature04333
10.1038/nrm.2017.108
10.1038/nature04371
10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
10.1038/nature10812
10.1038/nature16170
10.1007/978-1-4939-3480-5_12
10.1126/science.1208592
10.1242/dev.123208
10.1038/cddis.2015.413
10.1016/j.celrep.2013.04.001
10.1038/nature12354
10.1073/pnas.1318481110
10.1038/nmeth.1356
10.1038/nature21407
10.1016/j.celrep.2014.08.052
10.1371/journal.pone.0130969
10.1126/science.aab0988
10.1073/pnas.1409802111
10.1016/j.neuron.2012.08.039
10.1007/s00441-008-0708-3
10.1126/science.1136606
10.1038/nmeth.2836
10.1126/scisignal.aab3729
10.1016/B978-0-12-801185-0.00019-2
10.1007/s00424-014-1578-z
10.1038/nature10801
10.1126/science.1193270
10.1016/j.ccr.2013.01.015
10.1146/annurev-genet-111212-133343
10.1016/j.stem.2008.10.016
10.1002/dvg.20661
10.1038/nature13701
10.15252/embj.201695622
10.1016/S0166-2236(00)01791-4
10.1111/j.1474-9726.2008.00380.x
10.1101/pdb.prot090779
ContentType Journal Article
Copyright Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Mar 1, 2018
Copyright_xml – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Mar 1, 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/nature25744
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
ProQuest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 106
ExternalDocumentID A529350374
29414942
10_1038_nature25744
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P01 GM103770
– fundername: Howard Hughes Medical Institute
– fundername: NIDA NIH HHS
  grantid: R21 DA039582
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c623t-e1008b4e1fc04a86e5b142192374155cc1acd58bb299c32feae4b9b7bd398a5d3
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Fri Jul 11 08:43:00 EDT 2025
Fri Jul 25 09:01:51 EDT 2025
Tue Jun 17 21:32:34 EDT 2025
Thu Jun 12 23:37:41 EDT 2025
Tue Jun 10 15:34:12 EDT 2025
Tue Jun 10 20:40:54 EDT 2025
Fri Jun 27 05:09:13 EDT 2025
Mon Jul 21 06:05:37 EDT 2025
Thu Apr 24 23:06:25 EDT 2025
Tue Jul 01 00:57:11 EDT 2025
Fri Feb 21 02:37:00 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7694
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c623t-e1008b4e1fc04a86e5b142192374155cc1acd58bb299c32feae4b9b7bd398a5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6101000
PMID 29414942
PQID 2010312181
PQPubID 40569
PageCount 4
ParticipantIDs proquest_miscellaneous_1999682121
proquest_journals_2010312181
gale_infotracmisc_A529350374
gale_infotracgeneralonefile_A529350374
gale_infotraccpiq_529350374
gale_infotracacademiconefile_A529350374
gale_incontextgauss_ISR_A529350374
pubmed_primary_29414942
crossref_primary_10_1038_nature25744
crossref_citationtrail_10_1038_nature25744
springer_journals_10_1038_nature25744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Zeng, Chauhan, Hou (CR28) 2010; 48
Kim, Coste, Chadha, Cook, Patapoutian (CR6) 2012; 483
Choi, Kim, Yang, Kim, Yoo (CR15) 2008; 7
McDonald (CR40) 2000; 21
De Ford (CR23) 2016; 7
Wen (CR39) 2012; 76
Klapoetke (CR36) 2014; 11
Vining, Mooney (CR1) 2017; 18
CR33
Dai, Montell (CR38) 2016; 1407
Micchelli, Perrimon (CR2) 2006; 439
Xu, Luo, He, Montell, Perrimon (CR27) 2017; 6
Karpowicz, Perez, Perrimon (CR30) 2010; 137
Evans (CR12) 2009; 6
Ohlstein, Spradling (CR14) 2007; 315
Pathak (CR17) 2014; 111
Sallé (CR22) 2017; 36
Amcheslavsky (CR25) 2014; 9
Zhao (CR37) 2011; 333
Micchelli, Sudmeier, Perrimon, Tang, Beehler-Evans (CR42) 2011; 11
Deng, Gerencser, Jasper (CR20) 2015; 528
Suslak (CR10) 2015; 10
Veenstra, Agricola, Sellami (CR31) 2008; 334
Chen (CR41) 2013; 499
Coste (CR8) 2010; 330
Roti (CR24) 2013; 23
Volkers, Mechioukhi, Coste (CR9) 2015; 467
Housden, Lin, Perrimon (CR34) 2014; 546
Ren (CR35) 2013; 110
Buchon (CR11) 2013; 3
Lee, Luo (CR29) 2001; 24
Coste (CR7) 2012; 483
Amcheslavsky, Jiang, Ip (CR13) 2009; 4
Housden (CR32) 2015; 8
Li, Jasper (CR4) 2016; 9
Cinar (CR16) 2015; 112
Gudipaty (CR19) 2017; 543
Harrison, Lal, McLaughlin (CR26) 2013; 13
Li (CR18) 2014; 515
Wang, Guo, Dou, Chen, Xi (CR43) 2015; 142
Ohlstein, Spradling (CR3) 2006; 439
Lemaitre, Miguel-Aliaga (CR5) 2013; 47
Guo, Ohlstein (CR21) 2015; 350
SE Kim (BFnature25744_CR6) 2012; 483
G Roti (BFnature25744_CR24) 2013; 23
E Cinar (BFnature25744_CR16) 2015; 112
A Amcheslavsky (BFnature25744_CR25) 2014; 9
J Li (BFnature25744_CR18) 2014; 515
BE Housden (BFnature25744_CR32) 2015; 8
Z Guo (BFnature25744_CR21) 2015; 350
KH Vining (BFnature25744_CR1) 2017; 18
MM Pathak (BFnature25744_CR17) 2014; 111
B Ohlstein (BFnature25744_CR14) 2007; 315
E Harrison (BFnature25744_CR26) 2013; 13
B Coste (BFnature25744_CR7) 2012; 483
BFnature25744_CR33
X Zeng (BFnature25744_CR28) 2010; 48
CA Micchelli (BFnature25744_CR2) 2006; 439
SA Gudipaty (BFnature25744_CR19) 2017; 543
Q Wen (BFnature25744_CR39) 2012; 76
B Coste (BFnature25744_CR8) 2010; 330
C Xu (BFnature25744_CR27) 2017; 6
H Deng (BFnature25744_CR20) 2015; 528
T Lee (BFnature25744_CR29) 2001; 24
JA Veenstra (BFnature25744_CR31) 2008; 334
N Buchon (BFnature25744_CR11) 2013; 3
J Sallé (BFnature25744_CR22) 2017; 36
P Karpowicz (BFnature25744_CR30) 2010; 137
B Ohlstein (BFnature25744_CR3) 2006; 439
X Ren (BFnature25744_CR35) 2013; 110
C Wang (BFnature25744_CR43) 2015; 142
H Li (BFnature25744_CR4) 2016; 9
CJ Evans (BFnature25744_CR12) 2009; 6
C De Ford (BFnature25744_CR23) 2016; 7
L Volkers (BFnature25744_CR9) 2015; 467
A Amcheslavsky (BFnature25744_CR13) 2009; 4
TJ Suslak (BFnature25744_CR10) 2015; 10
W Dai (BFnature25744_CR38) 2016; 1407
CA Micchelli (BFnature25744_CR42) 2011; 11
B Lemaitre (BFnature25744_CR5) 2013; 47
NH Choi (BFnature25744_CR15) 2008; 7
NC Klapoetke (BFnature25744_CR36) 2014; 11
Y Zhao (BFnature25744_CR37) 2011; 333
JC McDonald (BFnature25744_CR40) 2000; 21
BE Housden (BFnature25744_CR34) 2014; 546
TW Chen (BFnature25744_CR41) 2013; 499
29493601 - Nature. 2018 Mar 1;555(7694):34-36. doi: 10.1038/d41586-018-01460-0.
29679065 - Nat Rev Gastroenterol Hepatol. 2018 Jul;15(7):394-395. doi: 10.1038/s41575-018-0012-y.
References_xml – volume: 112
  start-page: 11783
  year: 2015
  end-page: 11788
  ident: CR16
  article-title: Piezo1 regulates mechanotransductive release of ATP from human RBCs
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1507309112
– volume: 137
  start-page: 4135
  year: 2010
  end-page: 4145
  ident: CR30
  article-title: The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration
  publication-title: Development
  doi: 10.1242/dev.060483
– volume: 6
  start-page: e22441
  year: 2017
  ident: CR27
  article-title: Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca signaling in the midgut
  publication-title: eLife
  doi: 10.7554/eLife.22441
– volume: 9
  start-page: 487
  year: 2016
  end-page: 499
  ident: CR4
  article-title: Gastrointestinal stem cells in health and disease: from flies to humans. Dis. Model
  publication-title: Mech.
– volume: 13
  start-page: 941
  year: 2013
  end-page: 945
  ident: CR26
  article-title: Enteroendocrine cells in gastrointestinal pathophysiology
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2013.09.012
– volume: 439
  start-page: 470
  year: 2006
  end-page: 474
  ident: CR3
  article-title: The adult posterior midgut is maintained by pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature04333
– volume: 18
  start-page: 728
  year: 2017
  end-page: 742
  ident: CR1
  article-title: Mechanical forces direct stem cell behaviour in development and regeneration
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.108
– volume: 439
  start-page: 475
  year: 2006
  end-page: 479
  ident: CR2
  article-title: Evidence that stem cells reside in the adult midgut epithelium
  publication-title: Nature
  doi: 10.1038/nature04371
– volume: 21
  start-page: 27
  year: 2000
  end-page: 40
  ident: CR40
  article-title: Fabrication of microfluidic systems in poly(dimethylsiloxane)
  publication-title: Electrophoresis
  doi: 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
– volume: 483
  start-page: 176
  year: 2012
  end-page: 181
  ident: CR7
  article-title: Piezo proteins are pore-forming subunits of mechanically activated channels
  publication-title: Nature
  doi: 10.1038/nature10812
– volume: 528
  start-page: 212
  year: 2015
  end-page: 217
  ident: CR20
  article-title: Signal integration by Ca regulates intestinal stem-cell activity
  publication-title: Nature
  doi: 10.1038/nature16170
– ident: CR33
– volume: 1407
  start-page: 153
  year: 2016
  end-page: 168
  ident: CR38
  article-title: Live imaging of border cell migration in
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-3480-5_12
– volume: 333
  start-page: 1888
  year: 2011
  end-page: 1891
  ident: CR37
  article-title: An expanded palette of genetically encoded Ca indicators
  publication-title: Science
  doi: 10.1126/science.1208592
– volume: 142
  start-page: 3321
  year: 2015
  end-page: 3331
  ident: CR43
  article-title: Ttk69 acts as a master repressor of enteroendocrine cell specification in intestinal stem cell lineages
  publication-title: Development
  doi: 10.1242/dev.123208
– volume: 7
  start-page: e2070
  year: 2016
  ident: CR23
  article-title: The clerodane diterpene casearin J induces apoptosis of T-ALL cells through SERCA inhibition, oxidative stress, and interference with Notch1 signaling
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2015.413
– volume: 3
  start-page: 1725
  year: 2013
  end-page: 1738
  ident: CR11
  article-title: Morphological and molecular characterization of adult midgut compartmentalization in
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2013.04.001
– volume: 499
  start-page: 295
  year: 2013
  end-page: 300
  ident: CR41
  article-title: Ultrasensitive fluorescent proteins for imaging neuronal activity
  publication-title: Nature
  doi: 10.1038/nature12354
– volume: 110
  start-page: 19012
  year: 2013
  end-page: 19017
  ident: CR35
  article-title: Optimized gene editing technology for using germ line-specific Cas9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1318481110
– volume: 6
  start-page: 603
  year: 2009
  end-page: 605
  ident: CR12
  article-title: G-TRACE: rapid GAL4-based cell lineage analysis in
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1356
– volume: 543
  start-page: 118
  year: 2017
  end-page: 121
  ident: CR19
  article-title: Mechanical stretch triggers rapid epithelial cell division through Piezo1
  publication-title: Nature
  doi: 10.1038/nature21407
– volume: 9
  start-page: 32
  year: 2014
  end-page: 39
  ident: CR25
  article-title: Enteroendocrine cells support intestinal stem-cell-mediated homeostasis in
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2014.08.052
– volume: 10
  start-page: e0130969
  year: 2015
  ident: CR10
  article-title: Piezo is essential for amiloride-sensitive stretch-activated mechanotransduction in larval dorsal bipolar dendritic sensory neurons
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0130969
– volume: 350
  start-page: aab0988
  year: 2015
  ident: CR21
  article-title: Stem cell regulation. Bidirectional Notch signaling regulates intestinal stem cell multipotency
  publication-title: Science
  doi: 10.1126/science.aab0988
– volume: 111
  start-page: 16148
  year: 2014
  end-page: 16153
  ident: CR17
  article-title: Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1409802111
– volume: 76
  start-page: 750
  year: 2012
  end-page: 761
  ident: CR39
  article-title: Proprioceptive coupling within motor neurons drives forward locomotion
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.08.039
– volume: 334
  start-page: 499
  year: 2008
  end-page: 516
  ident: CR31
  article-title: Regulatory peptides in fruit fly midgut
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-008-0708-3
– volume: 315
  start-page: 988
  year: 2007
  end-page: 992
  ident: CR14
  article-title: Multipotent intestinal stem cells specify daughter cell fates by differential notch signaling
  publication-title: Science
  doi: 10.1126/science.1136606
– volume: 11
  start-page: 338
  year: 2014
  end-page: 346
  ident: CR36
  article-title: Independent optical excitation of distinct neural populations
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2836
– volume: 8
  start-page: rs9
  year: 2015
  ident: CR32
  article-title: Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aab3729
– volume: 546
  start-page: 415
  year: 2014
  end-page: 439
  ident: CR34
  article-title: Cas9-based genome editing in
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-801185-0.00019-2
– volume: 467
  start-page: 95
  year: 2015
  end-page: 99
  ident: CR9
  article-title: Piezo channels: from structure to function
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-014-1578-z
– volume: 483
  start-page: 209
  year: 2012
  end-page: 212
  ident: CR6
  article-title: The role of Piezo in mechanical nociception
  publication-title: Nature
  doi: 10.1038/nature10801
– volume: 330
  start-page: 55
  year: 2010
  end-page: 60
  ident: CR8
  article-title: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels
  publication-title: Science
  doi: 10.1126/science.1193270
– volume: 23
  start-page: 390
  year: 2013
  end-page: 405
  ident: CR24
  article-title: Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.01.015
– volume: 47
  start-page: 377
  year: 2013
  end-page: 404
  ident: CR5
  article-title: The digestive tract of
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-111212-133343
– volume: 11
  start-page: 12
  year: 2011
  end-page: 21
  ident: CR42
  article-title: Identification of adult midgut precursors in
  publication-title: GEP
– volume: 4
  start-page: 49
  year: 2009
  end-page: 61
  ident: CR13
  article-title: Tissue damage-induced intestinal stem cell division in
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.10.016
– volume: 48
  start-page: 607
  year: 2010
  end-page: 611
  ident: CR28
  article-title: Characterization of midgut stem cell- and enteroblast-specific GAL4 lines in
  publication-title: Genesis
  doi: 10.1002/dvg.20661
– volume: 515
  start-page: 279
  year: 2014
  end-page: 282
  ident: CR18
  article-title: Piezo1 integration of vascular architecture with physiological force
  publication-title: Nature
  doi: 10.1038/nature13701
– volume: 36
  start-page: 1928
  year: 2017
  end-page: 1945
  ident: CR22
  article-title: Intrinsic regulation of enteroendocrine fate by Numb
  publication-title: EMBO J.
  doi: 10.15252/embj.201695622
– volume: 24
  start-page: 251
  year: 2001
  end-page: 254
  ident: CR29
  article-title: Mosaic analysis with a repressible cell marker (MARCM) for neural development
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(00)01791-4
– volume: 7
  start-page: 318
  year: 2008
  end-page: 334
  ident: CR15
  article-title: Age-related changes in midgut are associated with PVF2, a PDGF/VEGF-like growth factor
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2008.00380.x
– volume: 10
  start-page: e0130969
  year: 2015
  ident: BFnature25744_CR10
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0130969
– volume: 515
  start-page: 279
  year: 2014
  ident: BFnature25744_CR18
  publication-title: Nature
  doi: 10.1038/nature13701
– volume: 112
  start-page: 11783
  year: 2015
  ident: BFnature25744_CR16
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1507309112
– volume: 439
  start-page: 470
  year: 2006
  ident: BFnature25744_CR3
  publication-title: Nature
  doi: 10.1038/nature04333
– volume: 48
  start-page: 607
  year: 2010
  ident: BFnature25744_CR28
  publication-title: Genesis
  doi: 10.1002/dvg.20661
– volume: 23
  start-page: 390
  year: 2013
  ident: BFnature25744_CR24
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.01.015
– volume: 543
  start-page: 118
  year: 2017
  ident: BFnature25744_CR19
  publication-title: Nature
  doi: 10.1038/nature21407
– volume: 9
  start-page: 32
  year: 2014
  ident: BFnature25744_CR25
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2014.08.052
– volume: 333
  start-page: 1888
  year: 2011
  ident: BFnature25744_CR37
  publication-title: Science
  doi: 10.1126/science.1208592
– volume: 142
  start-page: 3321
  year: 2015
  ident: BFnature25744_CR43
  publication-title: Development
  doi: 10.1242/dev.123208
– volume: 315
  start-page: 988
  year: 2007
  ident: BFnature25744_CR14
  publication-title: Science
  doi: 10.1126/science.1136606
– volume: 350
  start-page: aab0988
  year: 2015
  ident: BFnature25744_CR21
  publication-title: Science
  doi: 10.1126/science.aab0988
– volume: 6
  start-page: 603
  year: 2009
  ident: BFnature25744_CR12
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1356
– volume: 4
  start-page: 49
  year: 2009
  ident: BFnature25744_CR13
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.10.016
– volume: 9
  start-page: 487
  year: 2016
  ident: BFnature25744_CR4
  publication-title: Mech.
– volume: 11
  start-page: 338
  year: 2014
  ident: BFnature25744_CR36
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2836
– volume: 47
  start-page: 377
  year: 2013
  ident: BFnature25744_CR5
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-111212-133343
– volume: 11
  start-page: 12
  year: 2011
  ident: BFnature25744_CR42
  publication-title: GEP
– volume: 18
  start-page: 728
  year: 2017
  ident: BFnature25744_CR1
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.108
– volume: 528
  start-page: 212
  year: 2015
  ident: BFnature25744_CR20
  publication-title: Nature
  doi: 10.1038/nature16170
– volume: 1407
  start-page: 153
  year: 2016
  ident: BFnature25744_CR38
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-3480-5_12
– volume: 6
  start-page: e22441
  year: 2017
  ident: BFnature25744_CR27
  publication-title: eLife
  doi: 10.7554/eLife.22441
– volume: 467
  start-page: 95
  year: 2015
  ident: BFnature25744_CR9
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-014-1578-z
– volume: 76
  start-page: 750
  year: 2012
  ident: BFnature25744_CR39
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.08.039
– volume: 546
  start-page: 415
  year: 2014
  ident: BFnature25744_CR34
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-801185-0.00019-2
– volume: 21
  start-page: 27
  year: 2000
  ident: BFnature25744_CR40
  publication-title: Electrophoresis
  doi: 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
– volume: 3
  start-page: 1725
  year: 2013
  ident: BFnature25744_CR11
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2013.04.001
– volume: 439
  start-page: 475
  year: 2006
  ident: BFnature25744_CR2
  publication-title: Nature
  doi: 10.1038/nature04371
– volume: 111
  start-page: 16148
  year: 2014
  ident: BFnature25744_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1409802111
– volume: 499
  start-page: 295
  year: 2013
  ident: BFnature25744_CR41
  publication-title: Nature
  doi: 10.1038/nature12354
– volume: 330
  start-page: 55
  year: 2010
  ident: BFnature25744_CR8
  publication-title: Science
  doi: 10.1126/science.1193270
– volume: 7
  start-page: 318
  year: 2008
  ident: BFnature25744_CR15
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2008.00380.x
– volume: 334
  start-page: 499
  year: 2008
  ident: BFnature25744_CR31
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-008-0708-3
– volume: 7
  start-page: e2070
  year: 2016
  ident: BFnature25744_CR23
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2015.413
– volume: 483
  start-page: 209
  year: 2012
  ident: BFnature25744_CR6
  publication-title: Nature
  doi: 10.1038/nature10801
– volume: 483
  start-page: 176
  year: 2012
  ident: BFnature25744_CR7
  publication-title: Nature
  doi: 10.1038/nature10812
– volume: 8
  start-page: rs9
  year: 2015
  ident: BFnature25744_CR32
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aab3729
– ident: BFnature25744_CR33
  doi: 10.1101/pdb.prot090779
– volume: 13
  start-page: 941
  year: 2013
  ident: BFnature25744_CR26
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2013.09.012
– volume: 24
  start-page: 251
  year: 2001
  ident: BFnature25744_CR29
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(00)01791-4
– volume: 137
  start-page: 4135
  year: 2010
  ident: BFnature25744_CR30
  publication-title: Development
  doi: 10.1242/dev.060483
– volume: 36
  start-page: 1928
  year: 2017
  ident: BFnature25744_CR22
  publication-title: EMBO J.
  doi: 10.15252/embj.201695622
– volume: 110
  start-page: 19012
  year: 2013
  ident: BFnature25744_CR35
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1318481110
– reference: 29679065 - Nat Rev Gastroenterol Hepatol. 2018 Jul;15(7):394-395. doi: 10.1038/s41575-018-0012-y.
– reference: 29493601 - Nature. 2018 Mar 1;555(7694):34-36. doi: 10.1038/d41586-018-01460-0.
SSID ssj0005174
Score 2.6401079
Snippet Stem cells of the Drosophila midgut sense mechanical signals in vivo through the stretch-activated ion channel Piezo, which is expressed on previously...
Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis....
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103
SubjectTerms 14/19
631/136/142
631/136/532/2437
631/532/2118/2437
631/532/2437
64/24
Animals
Calcium - metabolism
Calcium ions
Calcium Signaling
Calcium signalling
Cell Differentiation
Cell growth
Cell Lineage
Cell Proliferation
Cell self-renewal
Compression
Cytological research
Cytosol - metabolism
Differentiation (biology)
Digestive System - cytology
Digestive System - metabolism
Drosophila
Drosophila melanogaster - cytology
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Ectopic expression
Enteroendocrine Cells - cytology
Enteroendocrine Cells - metabolism
Female
Genomes
Homeostasis
Humanities and Social Sciences
Insects
Ion channels
Ion Channels - genetics
Ion Channels - metabolism
letter
Mechanical stimuli
Midgut
multidisciplinary
Mutation
Oxidative stress
Phenotypes
Proteins
Science
Signal transduction
Stem cells
Stem Cells - cytology
Stress, Mechanical
Title Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel
URI https://link.springer.com/article/10.1038/nature25744
https://www.ncbi.nlm.nih.gov/pubmed/29414942
https://www.proquest.com/docview/2010312181
https://www.proquest.com/docview/1999682121
Volume 555
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9swEBdry2Bfxtq9vHZBG92rIOqH7MifRleadYOW0q2QfRJ6uRSKndbJYPvrd2fLSRzCvhiMzrLR76Q7S3e_I2RfuTwVWhcsFiZk3IqQKcMzpsH6aVUYY1PMRj47z06v-PdxOvYbbrUPq-zWxGahtpXBPfLDuClIgAbp8-SOYdUoPF31JTQ2yFYElgZDusTo6yLEY4WF2efnhYk4bGkzQV8571mk1XV5yTCtnJQ2Bmj0hDz2niM9aqHeJg9cuUMeNhGcpt4h236W1vSjp5L-9JT8OnOY2YtA0Pu26jzgQKuCIn8zw1172pVImbYgUf2HglNIMYkEEGWY-PAbHFJLL27c34pif6W7fUauRic_j0-ZL6bADHg4U-aQxUdzFxUm5EpkLsXtH_TvGp_CmEgBLgAb2CeTxIVTjutcD7VNcqFSmzwnm2VVupeEWme0SRKdW2t54WAORy5UQ-TtyXikTUAOugGVxjONY8GLW9mceCdCLo1-QPbnwpOWYGO92FtERiJlRYkxMddqVtfy249LeZSCy5Iij05APnihooIXGuVTDOCzkeWqJ7nbkzSTmzu51Pq-13rdwraum72eIExN02_u9Ej6paGWC0UOyJt5Mz6J4W6lq2a1RG6ITIBXATIvWv2bD06cc_ir5XFA3nUKueh8zci9-v9H7JJHcCPasLo9sjm9n7nX4GdN9YBsDMdDuIrjaNBMrAHZ-nJyfnH5DxwJKj0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLfGEIIXxMZX2IADbXxMOi1NLlnygNAElJatE2KbNJ5uuY9Mk6akW1rQ-KP4G7Hz0TZVxdue7VxOts92cvbPABuJjYNIqZR7kXa5MJHLEy1CrjD6qSTV2gTUjTw4CHvH4ttJcLIEf5teGCqrbHxi6ahNrukf-bZXDiSggPRxeMlpahTdrjYjNCqz2LPXv_GTrfjQ_4z63fS87pejTz1eTxXgGkP9iFuCs1HCdlLtiiQKbUD_QSjRKYOr1p0EN4j7R0etfS-1iRUqVjvK-HGUBMbHdW_BbeFjJKfO9O7XaUnJHOpz3Q_o-tF2BdOJ50OIVgScjwMzgXDuZrYMeN0HcL_OVNluZVorsGSzVbhTVozqYhVWaq9QsHc1dPX7h_BzYKmTmBTPrqop96h3lqeM8KI53RKwZiTLqDIKpq4ZJqGMmlbQgjg1WvzCBNiw7-f2T85ovcxePILjGxHzY1jO8sw-BWasVtr3VWyMEalFn9GxbrJDOEGh6CjtwFYjUKlrZHMasHEhyxt2P5Iz0ndgY8I8rAA9FrO9Js1IgsjIqAbnLBkXhewf_pC7AaZIAeH2OPC2ZkpzfKFO6pYG3DaharU411qcenh-KWeob1rUs0pti5ZZbzGiK9BtcmNHsnZFhZweHAdeTcj0JJXXZTYfF5KwKMIIsxjkeVLZ30Q4XizwK1p4Dmw2BjldfIHknv1_Ey_hbu9osC_3-wd7a3APCVFV0rcOy6OrsX2OOd5IvSgPFoPTmz7J_wCD5GQ9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhAXRMvLtMCCWl6SFcdeJ-sDQlVL1FBaVdBK5bR4H64qVXZaJ6Dy0_h1zNjrNI4ibr1mJ5vN7jcPe2e-AdhIbRILpTI_FDrwuRGBn2re8xV6P5VmWpuYqpH3D3q7x_zLSXyyBH-bWhhKq2xsYmWoTaHpHXknrBoSkEPqZC4t4nBn8Gl04VMHKbppbdpp1BDZs1e_8fGt_DjcwbPeDMPB56PtXd91GPA1uv2xb4naRnHbzXTAU9GzMb0ToaCncrRad1NcLP4XNNo6CjObWq4S1VcmSkQamwjnvQW3-1FfkI6J7Zn0kjkGaFcbGESiU1N2oq5w3vKG8z5hxinO3dJWzm_wAO67qJVt1TBbgSWbr8KdKntUl6uw4ixEyd45Guv3D-HHvqWqYgIBu6w73iMGWJEx4o726caANe1ZxjVAmLpiGJAyKmBBNPlUdPELg2HDDs_sn4LRfLk9fwTHN7LNj2E5L3L7FJixWukoUokxhmcW7UfXBmmfOIN6vKu0Bx-aDZXasZxTs41zWd22R0LO7L4HG1PhUU3usVjsNZ2MJLqMnIB3mk7KUg6_f5NbMYZLMXH4ePDWCWUF_qBOXXkDLpsYtlqSay1JPTq7kDOjb1qjp_WxLZpmvSWIZkG3hxscSWeWSnmtRB68mg7TNynVLrfFpJTES9ETGNGgzJMaf9PNCROOT9Q89GCzAeT15At27tn_F_ES7qIOy6_Dg701uIefizq7bx2Wx5cT-xzDvbF6UekVg583rcj_ALfxaD4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+regulation+of+stem-cell+differentiation+by+the+stretch-activated+Piezo+channel&rft.jtitle=Nature+%28London%29&rft.au=He%2C+Li&rft.au=Si%2C+Guangwei&rft.au=Huang%2C+Jiuhong&rft.au=Samuel%2C+Aravinthan+D.+T.&rft.date=2018-03-01&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=555&rft.issue=7694&rft.spage=103&rft.epage=106&rft_id=info:doi/10.1038%2Fnature25744&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nature25744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon