Correlations Between Serum Cholesterol and Vascular Lesions in Fabry Disease Patients

Background: Fabry disease is an X-linked lysosomal storage disorder and shows globotriosylceramide (Gb3) accumulation in multiple organs, resulting from a deficiency of α-galactosidase. In patients with Fabry disease, cardiovascular disease occurs at an early age. Previous studies have shown that se...

Full description

Saved in:
Bibliographic Details
Published inCirculation Journal Vol. 82; no. 12; pp. 3058 - 3063
Main Authors Katsuta, Hiroki, Tsuboi, Kazuya, Yamamoto, Hiroshi, Goto, Hiromi
Format Journal Article
LanguageEnglish
Published Japan The Japanese Circulation Society 24.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Fabry disease is an X-linked lysosomal storage disorder and shows globotriosylceramide (Gb3) accumulation in multiple organs, resulting from a deficiency of α-galactosidase. In patients with Fabry disease, cardiovascular disease occurs at an early age. Previous studies have shown that serum levels of high-density lipoprotein-cholesterol (HDL-C) increase in this disease, yet its clinical significance for cardiovascular disease remains unclear. Methods and Results: In order to determine why the serum HDL-cholesterol is high in various cardiovascular diseases of Fabry disease patients, we evaluated the serum lipid profiles, ocular vascular lesions, and levels of serum vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 in 69 patients with Fabry disease diagnosed by genetic examination. The serum HDL-C/total cholesterol (T-Chol) ratio was significantly high, especially in male patients (41.5±1.7%) regardless of body mass index. Ocular vascular lesions were more likely to occur in female patients with a high HDL-C/T-Chol ratio compared with most male patients. Female patients with a high HDL-C/T-Chol ratio also presented a high serum VEGF level, suggesting that vascular endothelium dysfunction and arteriosclerotic changes progress more severely than in patients with a normal HDL-C/T-Chol ratio. In most patients, enzyme replacement therapy improved serum Gb3 and lyso-Gb3 levels, but these Gb3 and lyso-Gb3 still remained higher than in healthy controls, which appears to result in continuous vascular arteriosclerotic changes. Conclusions: We concluded that increased low-density lipoprotein-cholesterol uptake to the vascular wall caused by endothelial dysfunction is likely to contribute to the high HDL-C/T-Chol ratio observed in Fabry disease patients.
AbstractList Fabry disease is an X-linked lysosomal storage disorder and shows globotriosylceramide (Gb3) accumulation in multiple organs, resulting from a deficiency of α-galactosidase. In patients with Fabry disease, cardiovascular disease occurs at an early age. Previous studies have shown that serum levels of high-density lipoprotein-cholesterol (HDL-C) increase in this disease, yet its clinical significance for cardiovascular disease remains unclear. In order to determine why the serum HDL-cholesterol is high in various cardiovascular diseases of Fabry disease patients, we evaluated the serum lipid profiles, ocular vascular lesions, and levels of serum vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 in 69 patients with Fabry disease diagnosed by genetic examination. The serum HDL-C/total cholesterol (T-Chol) ratio was significantly high, especially in male patients (41.5±1.7%) regardless of body mass index. Ocular vascular lesions were more likely to occur in female patients with a high HDL-C/T-Chol ratio compared with most male patients. Female patients with a high HDL-C/T-Chol ratio also presented a high serum VEGF level, suggesting that vascular endothelium dysfunction and arteriosclerotic changes progress more severely than in patients with a normal HDL-C/T-Chol ratio. In most patients, enzyme replacement therapy improved serum Gb3 and lyso-Gb3 levels, but these Gb3 and lyso-Gb3 still remained higher than in healthy controls, which appears to result in continuous vascular arteriosclerotic changes. We concluded that increased low-density lipoprotein-cholesterol uptake to the vascular wall caused by endothelial dysfunction is likely to contribute to the high HDL-C/T-Chol ratio observed in Fabry disease patients.
Fabry disease is an X-linked lysosomal storage disorder and shows globotriosylceramide (Gb3) accumulation in multiple organs, resulting from a deficiency of α-galactosidase. In patients with Fabry disease, cardiovascular disease occurs at an early age. Previous studies have shown that serum levels of high-density lipoprotein-cholesterol (HDL-C) increase in this disease, yet its clinical significance for cardiovascular disease remains unclear.BACKGROUNDFabry disease is an X-linked lysosomal storage disorder and shows globotriosylceramide (Gb3) accumulation in multiple organs, resulting from a deficiency of α-galactosidase. In patients with Fabry disease, cardiovascular disease occurs at an early age. Previous studies have shown that serum levels of high-density lipoprotein-cholesterol (HDL-C) increase in this disease, yet its clinical significance for cardiovascular disease remains unclear.In order to determine why the serum HDL-cholesterol is high in various cardiovascular diseases of Fabry disease patients, we evaluated the serum lipid profiles, ocular vascular lesions, and levels of serum vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 in 69 patients with Fabry disease diagnosed by genetic examination. The serum HDL-C/total cholesterol (T-Chol) ratio was significantly high, especially in male patients (41.5±1.7%) regardless of body mass index. Ocular vascular lesions were more likely to occur in female patients with a high HDL-C/T-Chol ratio compared with most male patients. Female patients with a high HDL-C/T-Chol ratio also presented a high serum VEGF level, suggesting that vascular endothelium dysfunction and arteriosclerotic changes progress more severely than in patients with a normal HDL-C/T-Chol ratio. In most patients, enzyme replacement therapy improved serum Gb3 and lyso-Gb3 levels, but these Gb3 and lyso-Gb3 still remained higher than in healthy controls, which appears to result in continuous vascular arteriosclerotic changes.METHODS AND RESULTSIn order to determine why the serum HDL-cholesterol is high in various cardiovascular diseases of Fabry disease patients, we evaluated the serum lipid profiles, ocular vascular lesions, and levels of serum vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 in 69 patients with Fabry disease diagnosed by genetic examination. The serum HDL-C/total cholesterol (T-Chol) ratio was significantly high, especially in male patients (41.5±1.7%) regardless of body mass index. Ocular vascular lesions were more likely to occur in female patients with a high HDL-C/T-Chol ratio compared with most male patients. Female patients with a high HDL-C/T-Chol ratio also presented a high serum VEGF level, suggesting that vascular endothelium dysfunction and arteriosclerotic changes progress more severely than in patients with a normal HDL-C/T-Chol ratio. In most patients, enzyme replacement therapy improved serum Gb3 and lyso-Gb3 levels, but these Gb3 and lyso-Gb3 still remained higher than in healthy controls, which appears to result in continuous vascular arteriosclerotic changes.We concluded that increased low-density lipoprotein-cholesterol uptake to the vascular wall caused by endothelial dysfunction is likely to contribute to the high HDL-C/T-Chol ratio observed in Fabry disease patients.CONCLUSIONSWe concluded that increased low-density lipoprotein-cholesterol uptake to the vascular wall caused by endothelial dysfunction is likely to contribute to the high HDL-C/T-Chol ratio observed in Fabry disease patients.
Background: Fabry disease is an X-linked lysosomal storage disorder and shows globotriosylceramide (Gb3) accumulation in multiple organs, resulting from a deficiency of α-galactosidase. In patients with Fabry disease, cardiovascular disease occurs at an early age. Previous studies have shown that serum levels of high-density lipoprotein-cholesterol (HDL-C) increase in this disease, yet its clinical significance for cardiovascular disease remains unclear. Methods and Results: In order to determine why the serum HDL-cholesterol is high in various cardiovascular diseases of Fabry disease patients, we evaluated the serum lipid profiles, ocular vascular lesions, and levels of serum vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 in 69 patients with Fabry disease diagnosed by genetic examination. The serum HDL-C/total cholesterol (T-Chol) ratio was significantly high, especially in male patients (41.5±1.7%) regardless of body mass index. Ocular vascular lesions were more likely to occur in female patients with a high HDL-C/T-Chol ratio compared with most male patients. Female patients with a high HDL-C/T-Chol ratio also presented a high serum VEGF level, suggesting that vascular endothelium dysfunction and arteriosclerotic changes progress more severely than in patients with a normal HDL-C/T-Chol ratio. In most patients, enzyme replacement therapy improved serum Gb3 and lyso-Gb3 levels, but these Gb3 and lyso-Gb3 still remained higher than in healthy controls, which appears to result in continuous vascular arteriosclerotic changes. Conclusions: We concluded that increased low-density lipoprotein-cholesterol uptake to the vascular wall caused by endothelial dysfunction is likely to contribute to the high HDL-C/T-Chol ratio observed in Fabry disease patients.
Author Katsuta, Hiroki
Yamamoto, Hiroshi
Tsuboi, Kazuya
Goto, Hiromi
Author_xml – sequence: 1
  fullname: Katsuta, Hiroki
  organization: LSD Center, Nagoya Central Hospital
– sequence: 2
  fullname: Tsuboi, Kazuya
  organization: LSD Center, Nagoya Central Hospital
– sequence: 3
  fullname: Yamamoto, Hiroshi
  organization: LSD Center, Nagoya Central Hospital
– sequence: 4
  fullname: Goto, Hiromi
  organization: LSD Center, Nagoya Central Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30282881$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtv1DAURi1URB-wZ4W8ZJPWryTOElJaWo3USlC21o1zQz3yOMV2hPrvyWSmrdQFG9uLcz5Z55gchDEgIR85O-WilGfWRbs-ba8Lrgsma_2GHHGp6kJpwQ6Wd1U0WslDcpzSmjHRsLJ5Rw4lE1pozY_IXTvGiB6yG0OiXzH_RQz0B8ZpQ9v70WPKGEdPIfT0FyQ7eYh0hWnBXaAX0MVHeu4SQkJ6O-9gyOk9eTuAT_hhf5-Qu4tvP9vvxerm8qr9sipsJWQuOgWqrJu6U02JCKovhcah54xBxaXoK7RMVGyoS14rGLi0oiutwlLMBPBKnpDPu92HOP6Z5r-ajUsWvYeA45SM4LzigusF_bRHp26DvXmIbgPx0TylmIFqB9g4phRxMNblpUuO4LzhzGybm6W5aa8N12bbfBbZK_Fp-z_K5U5Zpwy_8VmAmJ31uBe0mPXt-WK-EPcQDQb5Dw2wnrc
CitedBy_id crossref_primary_10_1253_circj_CJ_18_1355
crossref_primary_10_3390_ijms23084244
crossref_primary_10_3390_ijms25158273
crossref_primary_10_3390_jcm10194422
crossref_primary_10_1515_jpem_2023_0105
crossref_primary_10_3390_ijms20102384
crossref_primary_10_1016_j_ymgme_2023_107585
Cites_doi 10.1002/hep.1840020214
10.1001/archopht.1979.01020010327008
10.1371/journal.pone.0087054
10.1016/j.cyto.2012.12.011
10.1007/BF00296520
10.1016/j.ymgme.2008.06.016
10.1074/jbc.M300304200
10.1136/hrt.2006.104026
10.1042/CS20040307
10.1016/S0008-6363(96)00272-6
10.1076/opge.24.3.129.15609
10.3892/mmr.2016.4781
10.1038/jhg.2010.58
10.1161/HYPERTENSIONAHA.112.195685
10.1002/path.1711710311
10.1016/j.gene.2015.09.088
10.1161/ATVBAHA.113.302744
10.1136/hrt.2004.054015
10.1136/jmg.38.11.769
10.1093/cvr/cvq333
10.1073/pnas.0712309105
10.1074/jbc.M304553200
10.1023/B:BOLI.0000045841.27968.06
10.1016/j.ymgme.2013.10.010
10.1111/j.1365-2613.2007.00564.x
10.1001/jama.285.21.2743
10.1056/NEJM200107053450102
10.1681/ASN.2008111190
10.1161/01.STR.32.7.1559
10.1016/j.jpeds.2004.02.048
10.1016/S0140-6736(99)00188-9
10.1161/CIRCULATIONAHA.108.794529
10.1007/s00428-005-0089-x
10.1016/j.ymgmr.2017.06.010
10.1016/S0002-9149(02)02436-0
10.1001/archopht.1953.00920020122001
10.1016/S0021-9150(01)00587-1
10.1159/000322558
10.1111/j.1442-9071.2005.00990.x
ContentType Journal Article
Copyright 2018 THE JAPANESE CIRCULATION SOCIETY
Copyright_xml – notice: 2018 THE JAPANESE CIRCULATION SOCIETY
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1253/circj.CJ-18-0378
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1347-4820
EndPage 3063
ExternalDocumentID 30282881
10_1253_circj_CJ_18_0378
article_circj_82_12_82_CJ_18_0378_article_char_en
Genre Clinical Trial
Journal Article
GroupedDBID ---
.55
29B
2WC
53G
5GY
5RE
6J9
AAUGY
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
JSF
JSH
KQ8
M~E
OK1
P2P
RJT
RNS
RZJ
TR2
W2D
X7M
XSB
ZXP
AAYXX
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c623t-b4a45797b495eea4d528efd100a6132d6ec0260f75174af13c2b5c4e5200aa163
ISSN 1346-9843
1347-4820
IngestDate Thu Jul 10 18:59:11 EDT 2025
Mon Jul 21 06:07:31 EDT 2025
Tue Jul 01 02:01:25 EDT 2025
Thu Apr 24 23:00:05 EDT 2025
Thu Aug 17 20:29:17 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Fabry disease
Microvascular lesions
Sphingolipidosis
Enzyme replacement therapy
High-density lipoprotein-cholesterol
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c623t-b4a45797b495eea4d528efd100a6132d6ec0260f75174af13c2b5c4e5200aa163
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/circj/82/12/82_CJ-18-0378/_article/-char/en
PMID 30282881
PQID 2116121816
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2116121816
pubmed_primary_30282881
crossref_citationtrail_10_1253_circj_CJ_18_0378
crossref_primary_10_1253_circj_CJ_18_0378
jstage_primary_article_circj_82_12_82_CJ_18_0378_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-24
PublicationDateYYYYMMDD 2018-11-24
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-24
  day: 24
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Circulation Journal
PublicationTitleAlternate Circ J
PublicationYear 2018
Publisher The Japanese Circulation Society
Publisher_xml – name: The Japanese Circulation Society
References 29. Shu L, Park JL, Byun J, Pennathur S, Kollmeyer J, Shayman JA. Decreased nitric oxide bioavailability in a mouse model of Fabry disease. J Am Soc Nephrol 2009; 20: 1975–1985.
38. Prado CM, Ramos SG, Elias J, Rossi MA, Rossi MA. Turbulent blood flow plays an essential localizing role in the development of atherosclerotic lesions in experimentally induced hypercholesterolaemia in rats. Int J Exp Pathol 2008; 89: 72–80.
22. Zampetti A, Gnarra M, Borsini W, Giurdanella F, Antuzzi D, Piras A, et al. Vascular endothelial growth factor (VEGF-a) in Fabry disease: Association with cutaneous and systemic manifestations with vascular involvement. Cytokine 2013; 61: 933–939.
27. Sher NA, Letson RD, Desnick RJ. The ocular manifestations in Fabry’s disease. Arch Ophthalmol 1979; 97: 671–676.
31. Puri V, Jefferson JR, Singh RD, Wheatley CL, Marks DL, Pagano RE. Sphingolipid storage induces accumulation of intracellular cholesterol by stimulating SREBP-1 cleavage. J Biol Chem 2003; 278: 20961–20970.
33. Aerts JM, Groener JE, Kuiper S, Donker-Koopman WE, Strijland A, Ottenhoff R, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci USA 2008; 105: 2812–2817.
1. Zarate YA, Hopkin RJ. Fabry’s disease. Lancet 2017; 372: 1427–1435.
14. Schiffmann R, Rapkiewicz A, Abu-Asab M, Ries M, Askari H, Tsokos M, et al. Pathological findings in a patient with Fabry disease who died after 2.5 years of enzyme replacement. Virchows Arch 2006; 448: 337–343.
28. Orssaud C, Dufier J, Germain D. Ocular manifestations in Fabry disease: A survey of 32 hemizygous male patients. Ophthalmic Genet 2003; 24: 129–139.
26. Nguyen TT, Gin T, Nicholls K, Low M, Galanos J, Crawford A. Ophthalmological manifestations of Fabry disease: A survey of patients at the Royal Melbourne Fabry Disease Treatment Centre. Clin Exp Ophthalmol 2005; 33: 164–168.
4. Hůlková H, Ledvinová J, Poupĕtová H, Bultas J, Zeman J, Elleder M. Postmortem diagnosis of Fabry disease in a female heterozygote leading to the detection of undiagnosed manifest disease in the family. Cas Lek Cesk 1999; 138: 660–664.
32. Park S, Kim JA, Joo KY, Choi S, Choi EN, Shin JA, et al. Globotriaosylceramide leads to KCa3.1 channel dysfunction: A new insight into endothelial dysfunction in Fabry disease. Cardiovasc Res 2011; 89: 290–299.
9. Schiffmann R, Kopp JB, Austin III HA, Sabnis S, Moore DF, Weibel T, et al. Enzyme replacement therapy in Fabry disease. JAMA 2001; 285: 2743.
18. Tsai WC, Li YH, Huang YY, Lin CC, Chao TH, Chen JH. Plasma vascular endothelial growth factor as a marker for early vascular damage in hypertension. Clin Sci 2005; 109: 39.
21. Stehouwer C, Lambert J, Donker AJ, van Hinsbergh VW. Endothelial dysfunction and pathogenesis of diabetic angiopathy. Cardiovasc Res 1997; 34: 55–68.
3. MacDermot K, Holmes A, Miners A. Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J Med Genet 2001; 38: 769–775.
19. Kitagawa K, Matsumoto M, Sasaki T, Hashimoto H, Kuwabara K, Ohtsuki T, et al. Involvement of ICAM-1 in the progression of atherosclerosis in APOE-knockout mice. Atherosclerosis 2002; 160: 305–310.
36. Labilloy A, Youker RT, Bruns JR, Kukic I, Kiselyov K, Halfter W, et al. Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease. Mol Genet Metab 2014; 111: 184–192.
17. Sacks FM. The role of high-density lipoprotein (HDL) cholesterol in the prevention and treatment of coronary heart disease: Expert group recommendations. Am J Cardiol 2017; 90: 139–143.
24. Lee BH, Heo SH, Kim GH, Park JY, Kim WS, Kang DH, et al. Mutations of the GLA gene in Korean patients with Fabry disease and frequency of the E66Q allele as a functional variant in Korean newborns. J Hum Genet 2010; 55: 512–517.
20. Davies MJ, Gordon JL, Gearing AJH, Pigott R, Woolf N, Katz D, et al. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol 1993; 171: 223–229.
8. Rombach SM, van den Bogaard B, de Groot E, Groener JEM, Poorthuis BJ, Linthorst GE, et al. Vascular aspects of Fabry disease in relation to clinical manifestations and elevations in plasma globotriaosylsphingosine: Novelty and significance. Hypertension 2012; 60: 998–1005.
34. Üçeyler N, Homola GA, Guerrero González H, Kramer D, Wanner C, Weidemann F, et al. Increased arterial diameters in the posterior cerebral circulation in men with Fabry disease. PLoS One 2014; 9: e87054.
6. Satoh K. Globotriaosylceramide induces endothelial dysfunction in Fabry disease. Arterioscler Thromb Vasc Biol 2013; 34: 2–4.
23. Peng H, Xu X, Zhang L, Zhang X, Peng H, Zheng Y, et al. GLA variation p.E66Q identified as the genetic etiology of Fabry disease using exome sequencing. Gene 2016; 575: 363–367.
41. McGovern MM, Pohl-Worgall T, Deckelbaum RJ, Simpson W, Mendelson D, Desnick RJ, et al. Lipid abnormalities in children with types A and B Niemann Pick disease. J Pediatr 2004; 145: 77–81.
25. Scheie HG. Evaluation of ophthalmoscopic changes of hypertension and arteriolar sclerosis. AMA Arch Ophthalmol 1953; 49: 117–138.
10. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, et al. Safety and efficacy of recombinant human α-galactosidase: A replacement therapy in Fabry’s disease. N Engl J Med 2001; 345: 9–16.
35. Fellgiebel A, Keller I, Martus P, Ropele S, Yakushev I, Böttcher T, et al. Basilar artery diameter is a potential screening tool for Fabry disease in young stroke patients. Cerebrovasc Dis 2011; 31: 294–299.
40. Choi HY, Karten B, Chan T, Vance JE, Greer WL, Heidenreich RA, et al. Impaired ABCA1-dependent lipid efflux and hypoalphalipoproteinemia in human Niemann-Pick type C disease. J Biol Chem 2003; 278: 32569–32577.
2. Orssaud C, Dufier JL, Germain DP. Ocular manifestations in Fabry disease: A survey of 32 hemizygous male patients. Ophthalmic Genet 2003; 24: 129–139.
5. Uchino M, Uyama E, Kawano H, Hokamaki J, Kugiyama K, Murakami Y, et al. A histochemical and electron microscopic study of skeletal and cardiac muscle from a Fabry disease patient and carrier. Acta Neuropathol 1995; 90: 334–338.
30. Altarescu G, Moore DF, Pursley R, Campia U, Goldstein S, Bryant M, et al. Enhanced endothelium-dependent vasodilation in Fabry disease. Stroke 2001; 32: 1559–1562.
39. Cenarro A, Pocovi M, Giraldo P, Garcia-Otin AL, Ordovas JM. Plasma lipoprotein responses to enzyme-replacement in Gaucher’s disease. Lancet 1999; 353: 642–643.
7. Shen JS, Meng XL, Moore DF, Quirk JM, Shayman JA, Schiffmann R, et al. Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells. Mol Genet Metab 2008; 95: 163–168.
13. Elliott PM, Kindler H, Shah JS, Sachdev B, Rimoldi OE, Thaman R, et al. Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with α galactosidase A. Heart 2006; 92: 357.
16. Stepien KM, Hendriksz CJ. Lipid profile in adult patients with Fabry disease: Ten-year follow up. Mol Genet Metab Rep 2017; 13: 3–6.
37. Song J, Ping LY, Duong DM, Gao XY, He CY, Wei L, et al. Native low density lipoprotein promotes lipid raft formation in macrophages. Mol Med Rep 2016; 13: 2087–2093.
42. Meuwissen SGM, Dingemans KP, Strijland A, Tager JM, Ooms BCM. Ultrastructural and biochemical liver analyses in Fabry’s disease. Hepatology 2007; 2: 263S–268S.
11. Weidemann F, Niemann M, Breunig F, Herrmann S, Beer M, Störk S, et al. Long-term effects of enzyme replacement therapy on Fabry cardiomyopathy. Circulation 2009; 119: 524–529.
12. Hughes DA, Elliott PM, Shah J, Zuckerman J, Coghlan G, Brookes J, et al. Effects of enzyme replacement therapy on the cardiomyopathy of Anderson-Fabry disease: A randomised, double-blind, placebo-controlled clinical trial of agalsidase alfa. Heart 2008; 94: 153.
15. Cartwright DJ, Cole AL, Cousins AJ, Lee PJ. Raised HDL cholesterol in Fabry disease: Response to enzyme replacement therapy. J Inherit Metab Dis 2004; 27: 791–793.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
21
References_xml – reference: 25. Scheie HG. Evaluation of ophthalmoscopic changes of hypertension and arteriolar sclerosis. AMA Arch Ophthalmol 1953; 49: 117–138.
– reference: 1. Zarate YA, Hopkin RJ. Fabry’s disease. Lancet 2017; 372: 1427–1435.
– reference: 39. Cenarro A, Pocovi M, Giraldo P, Garcia-Otin AL, Ordovas JM. Plasma lipoprotein responses to enzyme-replacement in Gaucher’s disease. Lancet 1999; 353: 642–643.
– reference: 19. Kitagawa K, Matsumoto M, Sasaki T, Hashimoto H, Kuwabara K, Ohtsuki T, et al. Involvement of ICAM-1 in the progression of atherosclerosis in APOE-knockout mice. Atherosclerosis 2002; 160: 305–310.
– reference: 22. Zampetti A, Gnarra M, Borsini W, Giurdanella F, Antuzzi D, Piras A, et al. Vascular endothelial growth factor (VEGF-a) in Fabry disease: Association with cutaneous and systemic manifestations with vascular involvement. Cytokine 2013; 61: 933–939.
– reference: 11. Weidemann F, Niemann M, Breunig F, Herrmann S, Beer M, Störk S, et al. Long-term effects of enzyme replacement therapy on Fabry cardiomyopathy. Circulation 2009; 119: 524–529.
– reference: 17. Sacks FM. The role of high-density lipoprotein (HDL) cholesterol in the prevention and treatment of coronary heart disease: Expert group recommendations. Am J Cardiol 2017; 90: 139–143.
– reference: 4. Hůlková H, Ledvinová J, Poupĕtová H, Bultas J, Zeman J, Elleder M. Postmortem diagnosis of Fabry disease in a female heterozygote leading to the detection of undiagnosed manifest disease in the family. Cas Lek Cesk 1999; 138: 660–664.
– reference: 2. Orssaud C, Dufier JL, Germain DP. Ocular manifestations in Fabry disease: A survey of 32 hemizygous male patients. Ophthalmic Genet 2003; 24: 129–139.
– reference: 29. Shu L, Park JL, Byun J, Pennathur S, Kollmeyer J, Shayman JA. Decreased nitric oxide bioavailability in a mouse model of Fabry disease. J Am Soc Nephrol 2009; 20: 1975–1985.
– reference: 33. Aerts JM, Groener JE, Kuiper S, Donker-Koopman WE, Strijland A, Ottenhoff R, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci USA 2008; 105: 2812–2817.
– reference: 18. Tsai WC, Li YH, Huang YY, Lin CC, Chao TH, Chen JH. Plasma vascular endothelial growth factor as a marker for early vascular damage in hypertension. Clin Sci 2005; 109: 39.
– reference: 9. Schiffmann R, Kopp JB, Austin III HA, Sabnis S, Moore DF, Weibel T, et al. Enzyme replacement therapy in Fabry disease. JAMA 2001; 285: 2743.
– reference: 28. Orssaud C, Dufier J, Germain D. Ocular manifestations in Fabry disease: A survey of 32 hemizygous male patients. Ophthalmic Genet 2003; 24: 129–139.
– reference: 37. Song J, Ping LY, Duong DM, Gao XY, He CY, Wei L, et al. Native low density lipoprotein promotes lipid raft formation in macrophages. Mol Med Rep 2016; 13: 2087–2093.
– reference: 42. Meuwissen SGM, Dingemans KP, Strijland A, Tager JM, Ooms BCM. Ultrastructural and biochemical liver analyses in Fabry’s disease. Hepatology 2007; 2: 263S–268S.
– reference: 35. Fellgiebel A, Keller I, Martus P, Ropele S, Yakushev I, Böttcher T, et al. Basilar artery diameter is a potential screening tool for Fabry disease in young stroke patients. Cerebrovasc Dis 2011; 31: 294–299.
– reference: 10. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, et al. Safety and efficacy of recombinant human α-galactosidase: A replacement therapy in Fabry’s disease. N Engl J Med 2001; 345: 9–16.
– reference: 30. Altarescu G, Moore DF, Pursley R, Campia U, Goldstein S, Bryant M, et al. Enhanced endothelium-dependent vasodilation in Fabry disease. Stroke 2001; 32: 1559–1562.
– reference: 31. Puri V, Jefferson JR, Singh RD, Wheatley CL, Marks DL, Pagano RE. Sphingolipid storage induces accumulation of intracellular cholesterol by stimulating SREBP-1 cleavage. J Biol Chem 2003; 278: 20961–20970.
– reference: 3. MacDermot K, Holmes A, Miners A. Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J Med Genet 2001; 38: 769–775.
– reference: 23. Peng H, Xu X, Zhang L, Zhang X, Peng H, Zheng Y, et al. GLA variation p.E66Q identified as the genetic etiology of Fabry disease using exome sequencing. Gene 2016; 575: 363–367.
– reference: 14. Schiffmann R, Rapkiewicz A, Abu-Asab M, Ries M, Askari H, Tsokos M, et al. Pathological findings in a patient with Fabry disease who died after 2.5 years of enzyme replacement. Virchows Arch 2006; 448: 337–343.
– reference: 20. Davies MJ, Gordon JL, Gearing AJH, Pigott R, Woolf N, Katz D, et al. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol 1993; 171: 223–229.
– reference: 38. Prado CM, Ramos SG, Elias J, Rossi MA, Rossi MA. Turbulent blood flow plays an essential localizing role in the development of atherosclerotic lesions in experimentally induced hypercholesterolaemia in rats. Int J Exp Pathol 2008; 89: 72–80.
– reference: 7. Shen JS, Meng XL, Moore DF, Quirk JM, Shayman JA, Schiffmann R, et al. Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells. Mol Genet Metab 2008; 95: 163–168.
– reference: 8. Rombach SM, van den Bogaard B, de Groot E, Groener JEM, Poorthuis BJ, Linthorst GE, et al. Vascular aspects of Fabry disease in relation to clinical manifestations and elevations in plasma globotriaosylsphingosine: Novelty and significance. Hypertension 2012; 60: 998–1005.
– reference: 5. Uchino M, Uyama E, Kawano H, Hokamaki J, Kugiyama K, Murakami Y, et al. A histochemical and electron microscopic study of skeletal and cardiac muscle from a Fabry disease patient and carrier. Acta Neuropathol 1995; 90: 334–338.
– reference: 16. Stepien KM, Hendriksz CJ. Lipid profile in adult patients with Fabry disease: Ten-year follow up. Mol Genet Metab Rep 2017; 13: 3–6.
– reference: 34. Üçeyler N, Homola GA, Guerrero González H, Kramer D, Wanner C, Weidemann F, et al. Increased arterial diameters in the posterior cerebral circulation in men with Fabry disease. PLoS One 2014; 9: e87054.
– reference: 26. Nguyen TT, Gin T, Nicholls K, Low M, Galanos J, Crawford A. Ophthalmological manifestations of Fabry disease: A survey of patients at the Royal Melbourne Fabry Disease Treatment Centre. Clin Exp Ophthalmol 2005; 33: 164–168.
– reference: 13. Elliott PM, Kindler H, Shah JS, Sachdev B, Rimoldi OE, Thaman R, et al. Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with α galactosidase A. Heart 2006; 92: 357.
– reference: 15. Cartwright DJ, Cole AL, Cousins AJ, Lee PJ. Raised HDL cholesterol in Fabry disease: Response to enzyme replacement therapy. J Inherit Metab Dis 2004; 27: 791–793.
– reference: 36. Labilloy A, Youker RT, Bruns JR, Kukic I, Kiselyov K, Halfter W, et al. Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease. Mol Genet Metab 2014; 111: 184–192.
– reference: 41. McGovern MM, Pohl-Worgall T, Deckelbaum RJ, Simpson W, Mendelson D, Desnick RJ, et al. Lipid abnormalities in children with types A and B Niemann Pick disease. J Pediatr 2004; 145: 77–81.
– reference: 24. Lee BH, Heo SH, Kim GH, Park JY, Kim WS, Kang DH, et al. Mutations of the GLA gene in Korean patients with Fabry disease and frequency of the E66Q allele as a functional variant in Korean newborns. J Hum Genet 2010; 55: 512–517.
– reference: 27. Sher NA, Letson RD, Desnick RJ. The ocular manifestations in Fabry’s disease. Arch Ophthalmol 1979; 97: 671–676.
– reference: 6. Satoh K. Globotriaosylceramide induces endothelial dysfunction in Fabry disease. Arterioscler Thromb Vasc Biol 2013; 34: 2–4.
– reference: 32. Park S, Kim JA, Joo KY, Choi S, Choi EN, Shin JA, et al. Globotriaosylceramide leads to KCa3.1 channel dysfunction: A new insight into endothelial dysfunction in Fabry disease. Cardiovasc Res 2011; 89: 290–299.
– reference: 12. Hughes DA, Elliott PM, Shah J, Zuckerman J, Coghlan G, Brookes J, et al. Effects of enzyme replacement therapy on the cardiomyopathy of Anderson-Fabry disease: A randomised, double-blind, placebo-controlled clinical trial of agalsidase alfa. Heart 2008; 94: 153.
– reference: 21. Stehouwer C, Lambert J, Donker AJ, van Hinsbergh VW. Endothelial dysfunction and pathogenesis of diabetic angiopathy. Cardiovasc Res 1997; 34: 55–68.
– reference: 40. Choi HY, Karten B, Chan T, Vance JE, Greer WL, Heidenreich RA, et al. Impaired ABCA1-dependent lipid efflux and hypoalphalipoproteinemia in human Niemann-Pick type C disease. J Biol Chem 2003; 278: 32569–32577.
– ident: 41
  doi: 10.1002/hep.1840020214
– ident: 26
  doi: 10.1001/archopht.1979.01020010327008
– ident: 33
  doi: 10.1371/journal.pone.0087054
– ident: 21
  doi: 10.1016/j.cyto.2012.12.011
– ident: 4
  doi: 10.1007/BF00296520
– ident: 6
  doi: 10.1016/j.ymgme.2008.06.016
– ident: 30
  doi: 10.1074/jbc.M300304200
– ident: 11
  doi: 10.1136/hrt.2006.104026
– ident: 17
  doi: 10.1042/CS20040307
– ident: 20
  doi: 10.1016/S0008-6363(96)00272-6
– ident: 2
  doi: 10.1076/opge.24.3.129.15609
– ident: 36
  doi: 10.3892/mmr.2016.4781
– ident: 23
  doi: 10.1038/jhg.2010.58
– ident: 7
  doi: 10.1161/HYPERTENSIONAHA.112.195685
– ident: 19
  doi: 10.1002/path.1711710311
– ident: 22
  doi: 10.1016/j.gene.2015.09.088
– ident: 5
  doi: 10.1161/ATVBAHA.113.302744
– ident: 12
  doi: 10.1136/hrt.2004.054015
– ident: 1
– ident: 3
  doi: 10.1136/jmg.38.11.769
– ident: 31
  doi: 10.1093/cvr/cvq333
– ident: 32
  doi: 10.1073/pnas.0712309105
– ident: 39
  doi: 10.1074/jbc.M304553200
– ident: 14
  doi: 10.1023/B:BOLI.0000045841.27968.06
– ident: 35
  doi: 10.1016/j.ymgme.2013.10.010
– ident: 27
  doi: 10.1076/opge.24.3.129.15609
– ident: 37
  doi: 10.1111/j.1365-2613.2007.00564.x
– ident: 8
  doi: 10.1001/jama.285.21.2743
– ident: 9
  doi: 10.1056/NEJM200107053450102
– ident: 28
  doi: 10.1681/ASN.2008111190
– ident: 29
  doi: 10.1161/01.STR.32.7.1559
– ident: 40
  doi: 10.1016/j.jpeds.2004.02.048
– ident: 38
  doi: 10.1016/S0140-6736(99)00188-9
– ident: 10
  doi: 10.1161/CIRCULATIONAHA.108.794529
– ident: 13
  doi: 10.1007/s00428-005-0089-x
– ident: 15
  doi: 10.1016/j.ymgmr.2017.06.010
– ident: 16
  doi: 10.1016/S0002-9149(02)02436-0
– ident: 24
  doi: 10.1001/archopht.1953.00920020122001
– ident: 18
  doi: 10.1016/S0021-9150(01)00587-1
– ident: 34
  doi: 10.1159/000322558
– ident: 25
  doi: 10.1111/j.1442-9071.2005.00990.x
SSID ssj0029059
Score 2.2748442
Snippet Background: Fabry disease is an X-linked lysosomal storage disorder and shows globotriosylceramide (Gb3) accumulation in multiple organs, resulting from a...
Fabry disease is an X-linked lysosomal storage disorder and shows globotriosylceramide (Gb3) accumulation in multiple organs, resulting from a deficiency of...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3058
SubjectTerms Adolescent
Adult
Arteriosclerosis - blood
Arteriosclerosis - drug therapy
Child
Cholesterol, HDL - blood
Endothelium, Vascular - metabolism
Enzyme Replacement Therapy
Fabry disease
Fabry Disease - blood
Fabry Disease - drug therapy
Female
Glycolipids - therapeutic use
High-density lipoprotein-cholesterol
Humans
Male
Microvascular lesions
Middle Aged
Sex Factors
Sphingolipidosis
Sphingolipids - therapeutic use
Title Correlations Between Serum Cholesterol and Vascular Lesions in Fabry Disease Patients
URI https://www.jstage.jst.go.jp/article/circj/82/12/82_CJ-18-0378/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/30282881
https://www.proquest.com/docview/2116121816
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Circulation Journal, 2018/11/24, Vol.82(12), pp.3058-3063
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKghAXxJvykpG4oFW6sfNyb0DFUlUspy0qp8h2HDYLbVDbHHb_Ff-QsWO7Bi2IhUtUWXY7zfd5PGOPZxB6EcdVUsU1jXJZCO2g8IhnxTgqEkWzJBaMmK2Bow_5dJ7OFtliMPgeRC11WzGS5xfeK_kXVKENcNW3ZC-BrP9SaIDPgC88AWF4_hXGE11awwWzvbERVzD7u-X-RNe91UkQ2j4XwEcXcfpebVz0-CEX6zOdf1Mf0ehk_Y1L7ORzFzRraet7uYNrr6H5dtP1pue0WbdfGr8HsOlE28cI8PPuzKv9T3zJgRetG7E58UPeBc3LJtyIIEzfyKO7jUhzlQ0WeF04cz8Uz4afBko2SfNozPr0TCPl2oooZTQONTOjIQNpoGdBS7FgzQa_J7lwPaCmqIcEaU5Hk1lE9HXCgu3WPh-RaDEsTdeS0ZJQ_ZzMSsJKPab0PU74Gsh3BV2l4JmY--ULH1VEx7Gpz-f_oj0ZBzkOfpXiJ0vo2ik4A5_V7_0cY-8c30I3Ldr4dS_PbTRQqzvo-pENxbiL5iH5sCUfNuTDAfkwkA878mFLPtyssCEftuTDjnz30Pzw7fFkGtkaHZEEw3kbiZSnMLcLAY62UjytMspUXZE45mAo0ipXUmetqwudEZ3XJJFUZDJVOtsX5-AM3Ed7q3alHiJcF0wVYF5yWslUEMZZLThVlUyIGFeCD9GBe18AUx-oouuofC21Iwtv2IK3w2yIXvoR3_rkLX_o-6qHwPe8NCWG6LkDrwQlrU_eYDa03aakhOhMfYzkQ_SgR9X_TGJ2PRh59P8CPEY3dhPzCdrbrjv1FGzmrXhmWPoDZrnJPg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlations+Between+Serum+Cholesterol+and+Vascular+Lesions+in+Fabry+Disease+Patients&rft.jtitle=Circulation+Journal&rft.au=Katsuta%2C+Hiroki&rft.au=Tsuboi%2C+Kazuya&rft.au=Yamamoto%2C+Hiroshi&rft.au=Goto%2C+Hiromi&rft.date=2018-11-24&rft.pub=The+Japanese+Circulation+Society&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=82&rft.issue=12&rft.spage=3058&rft.epage=3063&rft_id=info:doi/10.1253%2Fcircj.CJ-18-0378&rft.externalDocID=article_circj_82_12_82_CJ_18_0378_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon