Pyrethroid pesticide exposure during early pregnancy and birth outcomes in southwest China: a birth cohort study
Despite the developmental toxicity reported in animals, few epidemiologic studies have investigated the potential effects of prenatal exposure to pyrethroid pesticides (PYRs) on fetal growth. A birth cohort study was conducted to examine the association between prenatal exposure to PYRs and birth ou...
Saved in:
Published in | Journal of toxicological sciences Vol. 45; no. 5; pp. 281 - 291 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japanese Society of Toxicology
01.01.2020
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the developmental toxicity reported in animals, few epidemiologic studies have investigated the potential effects of prenatal exposure to pyrethroid pesticides (PYRs) on fetal growth. A birth cohort study was conducted to examine the association between prenatal exposure to PYRs and birth outcomes, and a nested case-control study was conducted in this cohort to evaluate the effects of PYR on congenital defects. The assessment of PYR exposure was based on self-reported household pesticide use and urinary PYR metabolite levels. We found that pregnant women in this region were ubiquitously exposed to low-level PYRs, although few reported household pesticide use. Women who often ate bananas or cantaloupes had a higher level of urinary 3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (DBCA), and the number of fruit types consumed by pregnant women was positively related to the concentrations of 3-phenoxybenzoic acid (3PBA) and total PYR metabolites (P < 0.05). Increased urinary 4-fluoro-3-phenoxybenzoic acid (4F3PBA), DBCA, and total PYR metabolites were associated with increased birth weight, length, and gestational age, and with decreased risk of small for gestational age (SGA) and/or premature birth. However, maternal household pesticides use was related to congenital anomalies. Thus, although prenatal exposure to low-dose PYRs promoted the fetal growth, the beneficial effects of fruit intake may outweigh the adverse effects of pesticide exposure. This study provided us an insight into the biological mechanisms for the effect of prenatal PYR exposure on fetal development, and suggested that further investigations in a larger study population with low-dose PYR exposure is needed. |
---|---|
AbstractList | Despite the developmental toxicity reported in animals, few epidemiologic studies have investigated the potential effects of prenatal exposure to pyrethroid pesticides (PYRs) on fetal growth. A birth cohort study was conducted to examine the association between prenatal exposure to PYRs and birth outcomes, and a nested case-control study was conducted in this cohort to evaluate the effects of PYR on congenital defects. The assessment of PYR exposure was based on self-reported household pesticide use and urinary PYR metabolite levels. We found that pregnant women in this region were ubiquitously exposed to low-level PYRs, although few reported household pesticide use. Women who often ate bananas or cantaloupes had a higher level of urinary 3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (DBCA), and the number of fruit types consumed by pregnant women was positively related to the concentrations of 3-phenoxybenzoic acid (3PBA) and total PYR metabolites (P < 0.05). Increased urinary 4-fluoro-3-phenoxybenzoic acid (4F3PBA), DBCA, and total PYR metabolites were associated with increased birth weight, length, and gestational age, and with decreased risk of small for gestational age (SGA) and/or premature birth. However, maternal household pesticides use was related to congenital anomalies. Thus, although prenatal exposure to low-dose PYRs promoted the fetal growth, the beneficial effects of fruit intake may outweigh the adverse effects of pesticide exposure. This study provided us an insight into the biological mechanisms for the effect of prenatal PYR exposure on fetal development, and suggested that further investigations in a larger study population with low-dose PYR exposure is needed. |
Author | Zhu, Baosheng Zhang, Chao Li, Yan Xu, Qinghua Song, Xiaoxiao Lv, Yan Li, Suyun Xiao, Xia Dong, Xudong Zhang, Xiong |
Author_xml | – sequence: 1 fullname: Xu, Qinghua organization: School of Public Health, Kunming Medical University, China – sequence: 2 fullname: Zhu, Baosheng organization: The First People’s Hospital of Yunnan Province, China – sequence: 3 fullname: Dong, Xudong organization: The First People’s Hospital of Yunnan Province, China – sequence: 4 fullname: Li, Suyun organization: The First People’s Hospital of Yunnan Province, China – sequence: 5 fullname: Song, Xiaoxiao organization: School of Public Health, Kunming Medical University, China – sequence: 6 fullname: Xiao, Xia organization: School of Public Health, Kunming Medical University, China – sequence: 7 fullname: Zhang, Chao organization: School of Public Health, Kunming Medical University, China – sequence: 8 fullname: Lv, Yan organization: School of Public Health, Kunming Medical University, China – sequence: 9 fullname: Zhang, Xiong organization: School of Public Health, Kunming Medical University, China – sequence: 10 fullname: Li, Yan organization: School of Public Health, Kunming Medical University, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32404560$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0UFrHCEYBmApKc0m7aU_IAi5lMBsdRwnTqCHsiRtIdAechdHP3dcZnWiDu38-xp2s4ecRHl4-fzeC3TmgweEPlOyrimjX3c5rRu-rgV9h1ZUCFKxTnRnaEWYEBVlnJyji5R2hNS3hDcf0DmrG9LwlqzQ9GeJkIcYnMETpOy0M4Dh3xTSHAGbOTq_xaDiuOApwtYrrxesvMG9i3nAYc467CFh53Eql-FvCcGbwXl1h9UR6TCEmHHKs1k-ovdWjQk-Hc9L9PRw_7T5WT3-_vFr8_2x0m3NcqV6AXUvOmsV47wWfflSzykRzAIFZjhrWWNUy63VirRt-VhnLDBqmSW2Z5foyyF2iuF5LjPJvUsaxlF5CHOSZQGM1KLrbgu9fkN3YY6-DPeiBOeN4E1RNwelY0gpgpVTdHsVF0mJfKlBlhpkw2WpoeCrY-Tc78Gc6OveC_h2ALuU1RZOQMXSwAivWfwYeHrXg4oSPPsPs9Oc8A |
CitedBy_id | crossref_primary_10_1080_10408444_2022_2122769 crossref_primary_10_1016_j_mce_2023_112070 crossref_primary_10_3390_toxics10110679 crossref_primary_10_3390_molecules26123688 crossref_primary_10_1016_j_tjnut_2023_11_031 crossref_primary_10_3390_plants12234022 crossref_primary_10_1016_j_envint_2023_108043 crossref_primary_10_1016_j_neuro_2022_08_002 crossref_primary_10_1007_s11356_023_29457_x crossref_primary_10_1186_s12884_022_04491_8 crossref_primary_10_1016_j_envpol_2021_118264 crossref_primary_10_3390_ijerph18189907 crossref_primary_10_1016_j_ecoenv_2022_113384 crossref_primary_10_1097_JOM_0000000000002877 crossref_primary_10_1016_j_envres_2021_111539 |
Cites_doi | 10.1016/j.envint.2015.05.009 10.1111/j.1471-0528.2007.01290.x 10.1016/j.foodchem.2016.08.115 10.1016/j.ecoenv.2019.01.054 10.1016/j.toxlet.2011.08.016 10.1016/j.envint.2017.04.007 10.1186/s10020-018-0061-2 10.1021/es103417j 10.1093/aje/kwy143 10.1016/j.talanta.2017.08.074 10.1016/j.reprotox.2017.12.008 10.1016/j.envint.2018.04.042 10.1093/mutage/5.3.229 10.1530/JOE-17-0023 10.3724/SP.J.1123.2017.01012 10.1016/j.chemosphere.2011.07.024 10.1007/s00128-012-0909-z 10.1016/j.neuro.2011.11.006 10.1093/toxsci/kfx052 10.1016/S0378-3782(00)00087-6 10.1289/ehp.6414 10.1016/j.aquatox.2018.12.001 10.1080/10408444.2017.1423463 10.1289/ehp.1206333 10.13075/ijomeh.1896.01183 10.1006/pmed.1994.1093 10.1186/1476-069X-13-97 10.1542/peds.2010-0133 10.1016/j.earlhumdev.2008.09.012 10.1191/0960327103ht381oa 10.1007/s00420-003-0471-4 10.1016/j.scitotenv.2013.03.085 10.1038/jes.2014.86 10.1016/j.ijheh.2011.12.003 10.1016/j.scitotenv.2017.09.172 10.1002/tox.22376 10.1186/s13048-015-0135-5 10.1289/ehp.1002775 10.1002/tox.20627 10.1007/978-3-319-03777-6_5 10.1001/jamainternmed.2017.5038 10.1016/j.scitotenv.2014.04.104 10.1055/s-2005-837736 10.1002/(SICI)1098-2280(1997)30:2<240::AID-EM17>3.0.CO;2-D |
ContentType | Journal Article |
Copyright | 2020 The Japanese Society of Toxicology Copyright Japan Science and Technology Agency 2020 |
Copyright_xml | – notice: 2020 The Japanese Society of Toxicology – notice: Copyright Japan Science and Technology Agency 2020 |
DBID | NPM AAYXX CITATION 7ST 7U7 C1K SOI 7X8 |
DOI | 10.2131/jts.45.281 |
DatabaseName | PubMed CrossRef Environment Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Toxicology Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | PubMed Toxicology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1880-3989 |
EndPage | 291 |
ExternalDocumentID | 10_2131_jts_45_281 32404560 article_jts_45_5_45_281_article_char_en |
Genre | Journal Article |
GroupedDBID | .55 123 29L 2WC 36B 3O- 53G AAUGY ABDBF ABPTK ACPRK ADBBV AEGXH AENEX AFRAH AL- ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN ESX F5P GX1 HH5 JSF JSH KQ8 M~E OK1 RJT RNS RYR RZJ SV3 TKC TR2 TUS X7M XSB ~8M NPM AAYXX CITATION 7ST 7U7 C1K SOI 7X8 |
ID | FETCH-LOGICAL-c623t-ab8e2b89ffa35528b398b51083fe1e3d53634da65ffca0667059dfe31f3f0fb3 |
ISSN | 0388-1350 |
IngestDate | Fri Jun 28 05:08:37 EDT 2024 Thu Oct 10 20:05:30 EDT 2024 Fri Aug 23 01:21:33 EDT 2024 Thu May 23 23:43:14 EDT 2024 Thu Aug 17 20:27:19 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | Pyrethroid pesticide Urinary metabolite Birth outcome Developmental toxicity Congenital defect Prenatal exposure |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c623t-ab8e2b89ffa35528b398b51083fe1e3d53634da65ffca0667059dfe31f3f0fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jts/45/5/45_281/_article/-char/en |
PMID | 32404560 |
PQID | 2408554854 |
PQPubID | 2029103 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2403028997 proquest_journals_2408554854 crossref_primary_10_2131_jts_45_281 pubmed_primary_32404560 jstage_primary_article_jts_45_5_45_281_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Suita |
PublicationTitle | Journal of toxicological sciences |
PublicationTitleAlternate | J Toxicol Sci |
PublicationYear | 2020 |
Publisher | The Japanese Society of Toxicology Japan Science and Technology Agency |
Publisher_xml | – name: The Japanese Society of Toxicology – name: Japan Science and Technology Agency |
References | Dereumeaux, C., Saoudi, A., Goria, S., Wagner, V., De Crouy-Chanel, P., Pecheux, M., Berat, B., Zaros, C. and Guldner, L. (2018): Urinary levels of pyrethroid pesticides and determinants in pregnant French women from the Elfe cohort. Environ. Int., 119, 89-99. Ernster, V.L. (1994): Nested case-control studies. Prev. Med., 23, 587-590. Shi, X., Gu, A., Ji, G., Li, Y., Di, J., Jin, J., Hu, F., Long, Y., Xia, Y., Lu, C., Song, L., Wang, S. and Wang, X. (2011): Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere, 85, 1010-1016. Dalsager, L., Christensen, L.E., Kongsholm, M.G., Kyhl, H.B., Nielsen, F., Schoeters, G., Jensen, T.K. and Andersen, H.R. (2018): Associations of maternal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-D with birth outcomes and anogenital distance at 3 months in the Odense Child Cohort. Reprod. Toxicol., 76, 53-62. Muranli, F.D. (2013): Genotoxic and cytotoxic evaluation of pyrethroid insecticides λ-cyhalothrin and α-cypermethrin on human blood lymphocyte culture. Bull. Environ. Contam. Toxicol., 90, 357-363. Neta, G., Goldman, L.R., Barr, D., Apelberg, B.J., Witter, F.R. and Halden, R.U. (2011): Fetal exposure to chlordane and permethrin mixtures in relation to inflammatory cytokines and birth outcomes. Environ. Sci. Technol., 45, 1680-1687. Czeizel, A.E. and Mosonyi, A. (1997): Monitoring of early human fetal development in women exposed to large doses of chemicals. Environ. Mol. Mutagen., 30, 240-244. Le Grand, R., Dulaurent, S., Gaulier, J.M., Saint-Marcoux, F., Moesch, C. and Lachâtre, G. (2012): Simultaneous determination of five synthetic pyrethroid metabolites in urine by liquid chromatography-tandem mass spectrometry: application to 39 persons without known exposure to pyrethroids. Toxicol. Lett., 210, 248-253. Chauhan, R., Kumari, B. and Rana, M.K. (2014): Effect of fruit and vegetable processing on reduction of synthetic pyrethroid residues. Rev. Environ. Contam. Toxicol., 229, 89-110. Chevrier, C., Limon, G., Monfort, C., Rouget, F., Garlantézec, R., Petit, C., Durand, G. and Cordier, S. (2011): Urinary biomarkers of prenatal atrazine exposure and adverse birth outcomes in the PELAGIE birth cohort. Environ. Health Perspect., 119, 1034-1041. Pesticide registration data on the China Pesticide Information Network [database online]. 2019 Nov. Available from: http://www.chinapesticide.org.cn/hysj/index.jhtml. Ratnasooriya, W.D., Ratnayake, S.S. and Jayatunga, Y.N. (2003): Effects of Icon, a pyrethroid insecticide on early pregnancy of rats. Hum. Exp. Toxicol., 22, 523-533. Torbati, M., Farajzadeh, M.A., Torbati, M., Nabil, A.A., Mohebbi, A. and Afshar Mogaddam, M.R. (2018): Development of salt and pH-induced solidified floating organic droplets homogeneous liquid-liquid microextraction for extraction of ten pyrethroid insecticides in fresh fruits and fruit juices followed by gas chromatography-mass spectrometry. Talanta, 176, 565-572. Ding, G., Cui, C., Chen, L., Gao, Y., Zhou, Y., Shi, R. and Tian, Y. (2015): Prenatal exposure to pyrethroid insecticides and birth outcomes in Rural Northern China. J. Expo. Sci. Environ. Epidemiol., 25, 264-270. Vääräsmäki, M.S., Hartikainen, A., Anttila, M., Pramila, S. and Koivisto, M. (2000): Factors predicting peri- and neonatal outcome in diabetic pregnancy. Early Hum. Dev., 59, 61-70. Seyom, E., Abera, M., Tesfaye, M. and Fentahun, N. (2015): Maternal and fetal outcome of pregnancy related hypertension in Mettu Karl Referral Hospital, Ethiopia. J. Ovarian Res., 8, 10. Viel, J.F., Warembourg, C., Le Maner-Idrissi, G., Lacroix, A., Limon, G., Rouget, F., Monfort, C., Durand, G., Cordier, S. and Chevrier, C. (2015): Pyrethroid insecticide exposure and cognitive developmental disabilities in children: the PELAGIE mother-child cohort. Environ. Int., 82, 69-75. Qu, L., Li, Y., Zeng, J., Sheng, Y., Yi, X. and Cheng, J. (2017): [Determination of 20 pyrethroid residues in vegetable foods by gas chromatography-tandem mass spectrometry]. Se Pu, 35, 778-784. Pristauz, G., Bader, A.A., Schwantzer, G., Kutschera, J. and Lang, U. (2009): Assessment of risk factors for survival of neonates born after second-trimester PPROM. Early Hum. Dev., 85, 177-180. Yang, H., Du, L., Wu, G., Wu, Z. and Keelan, J.A. (2018): Murine exposure to gold nanoparticles during early pregnancy promotes abortion by inhibiting ectodermal differentiation. Mol. Med., 24, 62. Yu, X. and Yang, H. (2017): Pyrethroid residue determination in organic and conventional vegetables using liquid-solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles. Food Chem., 217, 303-310. Radwan, M., Jurewicz, J., Wielgomas, B., Piskunowicz, M., Sobala, W., Radwan, P., Jakubowski, L., Hawuła, W. and Hanke, W. (2015): The association between environmental exposure to pyrethroids and sperm aneuploidy. Chemosphere, 128, 42-48. Guo, C., Yang, Y., Shi, M.X., Wang, B., Liu, J.J., Xu, D.X. and Meng, X.H. (2019): Critical time window of fenvalerate-induced fetal intrauterine growth restriction in mice. Ecotoxicol. Environ. Saf., 172, 186-193. Zhang, J., Yoshinaga, J., Hisada, A., Shiraishi, H., Shimodaira, K., Okai, T., Koyama, M., Watanabe, N., Suzuki, E., Shirakawa, M., Noda, Y., Komine, Y., Ariki, N. and Kato, N. (2014): Prenatal pyrethroid insecticide exposure and thyroid hormone levels and birth sizes of neonates. Sci. Total Environ., 488-489, 275-279. Chueh, T.C., Hsu, L.S., Kao, C.M., Hsu, T.W., Liao, H.Y., Wang, K.Y. and Chen, S.C. (2017): Transcriptome analysis of zebrafish embryos exposed to deltamethrin. Environ. Toxicol., 32, 1548-1557. Pedersen, M., Schoket, B., Godschalk, R.W., Wright, J., von Stedingk, H., Törnqvist, M., Sunyer, J., Nielsen, J.K., Merlo, D.F., Mendez, M.A., Meltzer, H.M., Lukács, V., Landström, A., Kyrtopoulos, S.A., Kovács, K., Knudsen, L.E., Haugen, M., Hardie, L.J., Gützkow, K.B., Fleming, S., Fthenou, E., Farmer, P.B., Espinosa, A., Chatzi, L., Brunborg, G., Brady, N.J., Botsivali, M., Arab, K., Anna, L., Alexander, J., Agramunt, S., Kleinjans, J.C., Segerbäck, D. and Kogevinas, M. (2013): Bulky dna adducts in cord blood, maternal fruit-and-vegetable consumption, and birth weight in a European mother-child study (NewGeneris). Environ. Health Perspect., 121, 1200-1206. Glorennec, P., Serrano, T., Fravallo, M., Warembourg, C., Monfort, C., Cordier, S., Viel, J.F., Le Gléau, F., Le Bot, B. and Chevrier, C. (2017): Determinants of children’s exposure to pyrethroid insecticides in western France. Environ. Int., 104, 76-82. Chiu, Y.H., Williams, P.L., Gillman, M.W., Gaskins, A.J., Mínguez-Alarcón, L., Souter, I., Toth, T.L., Ford, J.B., Hauser, R. and Chavarro, J.E.; EARTH Study Team. (2018): Association Between Pesticide Residue Intake From Consumption of Fruits and Vegetables and Pregnancy Outcomes Among Women Undergoing Infertility Treatment With Assisted Reproductive Technology. JAMA Intern. Med., 178, 17-26. Lewis, R.C., Cantonwine, D.E., Anzalota Del Toro, L.V., Calafat, A.M., Valentin-Blasini, L., Davis, M.D., Baker, S.E., Alshawabkeh, A.N., Cordero, J.F. and Meeker, J.D. (2014): Urinary biomarkers of exposure to insecticides, herbicides, and one insect repellent among pregnant women in Puerto Rico. Environ. Health, 13, 97. Barr, D.B., Olsson, A.O., Wong, L.Y., Udunka, S., Baker, S.E., Whitehead, R.D., Magsumbol, M.S., Williams, B.L. and Needham, L.L. (2010): Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S. population: National Health and Nutrition Examination Survey 1999-2002. Environ. Health Perspect., 118, 742-748. Rattan, S., Zhou, C., Chiang, C., Mahalingam, S., Brehm, E. and Flaws, J.A. (2017): Exposure to endocrine disruptors during adulthood: consequences for female fertility. J. Endocrinol., 233, R109-R129. Berkowitz, G.S., Wetmur, J.G., Birman-Deych, E., Obel, J., Lapinski, R.H., Godbold, J.H., Holzman, I.R. and Wolff, M.S. (2004): In utero pesticide exposure, maternal paraoxonase activity, and head circumference. Environ. Health Perspect., 112, 388-391. Chevrier, J., Rauch, S., Crause, M., Obida, M., Gaspar, F., Bornman, R. and Eskenazi, B. (2019): Associations of Maternal Exposure to Dichlorodiphenyltrichloroethane and Pyrethroids With Birth Outcomes Among Participants in the Venda Health Examination of Mothers, Babies and Their Environment Residing in an Area Sprayed for Malaria Control. Am. J. Epidemiol., 188, 130-140. Horton, M.K., Rundle, A., Camann, D.E., Boyd Barr, D., Rauh, V.A. and Whyatt, R.M. (2011): Impact of prenatal exposure to piperonyl butoxide and permethrin on 36-month neurodevelopment. Pediatrics, 127, e699-e706. Uggini, G.K., Patel, P.V. and Balakrishnan, S. (2012): Embryotoxic and teratogenic effects of pesticides in chick embryos: a comparative study using two commercial formulations. Environ. Toxicol., 27, 166-174. Bhunya, S.P. and Pati, P.C. (1990): Effect of deltamethrin, a synthetic pyrethroid, on the induction of chromosome aberrations, micronuclei and sperm abnormalities in mice. Mutagenesis, 5, 229-232. Dziewirska, E., Hanke, W. and Jurewicz, J. (2018): Environmental non-persistent endocrine-disrupting chemicals exposure and reproductive hormones levels in adult men. Int. J. Occup. Med. Environ. Health, 31, 551-573. Mytton, O.T., McGready, R., Lee, S.J., Roberts, C.H., Ashley, E.A., Carrara, V.I., Thwai, K.L., Jay, M.P., Wiangambun, T., Singhasivanon, P. and Nosten, F. (2007): Safety of benzyl benzoate lotion and permethrin in pregnancy: a retrospective matched cohort study. BJOG, 114, 582-587. Khatab, A.E., Hashem, N.M., El-Kodary, L.M., Lotfy, F.M. and Hassan, G.A. (2016): Evaluation of the Effects of Cypermethrin on Female Reproductive Function by Using Rabbit Model and of the Protective Role of Chinese Propolis. Biomed. Environ. Sci., 29, 762-766. Hanke, W., Romitti, P., Fuortes, L., Sobala, W. and Mikulski, M. (2003): The use of pesticides in a Polish rural population and its effect on birth weight. Int. Arch. Occup. 22 44 23 45 24 46 25 47 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – ident: 43 doi: 10.1016/j.envint.2015.05.009 – ident: 27 doi: 10.1111/j.1471-0528.2007.01290.x – ident: 46 doi: 10.1016/j.foodchem.2016.08.115 – ident: 17 doi: 10.1016/j.ecoenv.2019.01.054 – ident: 22 doi: 10.1016/j.toxlet.2011.08.016 – ident: 16 doi: 10.1016/j.envint.2017.04.007 – ident: 45 doi: 10.1186/s10020-018-0061-2 – ident: 28 doi: 10.1021/es103417j – ident: 31 – ident: 7 doi: 10.1093/aje/kwy143 – ident: 39 doi: 10.1016/j.talanta.2017.08.074 – ident: 11 doi: 10.1016/j.reprotox.2017.12.008 – ident: 12 doi: 10.1016/j.envint.2018.04.042 – ident: 3 doi: 10.1093/mutage/5.3.229 – ident: 36 doi: 10.1530/JOE-17-0023 – ident: 34 doi: 10.3724/SP.J.1123.2017.01012 – ident: 38 doi: 10.1016/j.chemosphere.2011.07.024 – ident: 26 doi: 10.1007/s00128-012-0909-z – ident: 29 doi: 10.1016/j.neuro.2011.11.006 – ident: 44 doi: 10.1093/toxsci/kfx052 – ident: 42 doi: 10.1016/S0378-3782(00)00087-6 – ident: 2 doi: 10.1289/ehp.6414 – ident: 24 doi: 10.1016/j.aquatox.2018.12.001 – ident: 1 – ident: 4 doi: 10.1080/10408444.2017.1423463 – ident: 30 doi: 10.1289/ehp.1206333 – ident: 14 doi: 10.13075/ijomeh.1896.01183 – ident: 15 doi: 10.1006/pmed.1994.1093 – ident: 23 doi: 10.1186/1476-069X-13-97 – ident: 19 doi: 10.1542/peds.2010-0133 – ident: 32 doi: 10.1016/j.earlhumdev.2008.09.012 – ident: 35 doi: 10.1191/0960327103ht381oa – ident: 18 doi: 10.1007/s00420-003-0471-4 – ident: 40 doi: 10.1016/j.scitotenv.2013.03.085 – ident: 13 doi: 10.1038/jes.2014.86 – ident: 33 doi: 10.1016/j.ijheh.2011.12.003 – ident: 25 doi: 10.1016/j.scitotenv.2017.09.172 – ident: 9 doi: 10.1002/tox.22376 – ident: 37 doi: 10.1186/s13048-015-0135-5 – ident: 6 doi: 10.1289/ehp.1002775 – ident: 41 doi: 10.1002/tox.20627 – ident: 5 doi: 10.1007/978-3-319-03777-6_5 – ident: 8 doi: 10.1001/jamainternmed.2017.5038 – ident: 21 – ident: 47 doi: 10.1016/j.scitotenv.2014.04.104 – ident: 20 doi: 10.1055/s-2005-837736 – ident: 10 doi: 10.1002/(SICI)1098-2280(1997)30:2<240::AID-EM17>3.0.CO;2-D |
SSID | ssj0027054 |
Score | 2.3278086 |
Snippet | Despite the developmental toxicity reported in animals, few epidemiologic studies have investigated the potential effects of prenatal exposure to pyrethroid... |
SourceID | proquest crossref pubmed jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 281 |
SubjectTerms | Bananas Birth outcome Birth weight Carboxylic acids Childbirth & labor Cohort analysis Congenital anomalies Congenital defect Congenital defects Developmental toxicity Epidemiology Exposure Fetuses Food intake Fruits Gestational age Health risk assessment Metabolites Pesticides Phenoxybenzoic acid Population studies Pregnancy Premature birth Prenatal experience Prenatal exposure Pyrethroid pesticide Small for gestational age Toxicity Urinary metabolite |
Title | Pyrethroid pesticide exposure during early pregnancy and birth outcomes in southwest China: a birth cohort study |
URI | https://www.jstage.jst.go.jp/article/jts/45/5/45_281/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/32404560 https://www.proquest.com/docview/2408554854 https://search.proquest.com/docview/2403028997 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Journal of Toxicological Sciences, 2020, Vol.45(5), pp.281-291 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqhQMSQrw3sCAjuK1SkjhuU24IgZaHEEhFqrhETmJvwyGp2kRi-R_8X2Y8jht2QVq4RJVrN2nm88zYnvmGsWdJqRNpkOgWplOYpqoIMyVUKDRYg7Kao9nGaIuPs5Mv6buVXE0mP0dRS31XTMsff8wr-R-pQhvIFbNk_0Gy_kehAT6DfOEKEobrpWT86Wyrsc5BXR1vkC2jrCuNnP0tbvsNGYjaUhhvtvoUuTWIbqmo8bSm7Tt4KhuRdbzDUnpIm0AVtSkHmrphDd1tNyKivejLdu33uvRq1FlV762vehTkZ3iYde-twNd1T-cd7W6tnflEh9qFCK_6qt23fqgpguisb8bbFEk02qZw6VkgvFgQy-xUk7YF5RGKBdUQGtQxsUs62MmxbqXaLs5MJ1Tk67wFSGJhLUC3m6Zy6oeMabbPmT8flAjLIRydw9g8lXmCCf1XEtBf9vT_7fv9Oj6SxErm_hGx3uLY5_v7_ubnXP0Grv6p_vsqxnozy5vshhMdf0mYusUmurnNrtMeLqfUtDtss8cX9_jiA7444YtbfHGPLw744hY4fMAXrxvu8cUtvl5w5ToRurhF1122fPN6-eokdBU6whLc5i5URaaTIlsYo8BvTbIChFmAls-E0bEWlRQzkVZqJo0pFYZTgzNfGS1iI0xkCnGPHTRtow8Zj2QlS6XjahZh7mWVzVWEJVkiAysEvRABezq8znxDPCz5RYEFbEZv2vdxc3PoI11H3465jaBKAnY0SCZ3E3yXW_Y_WNHLNGBP_NegfvFMTTW67W0fgYf1i3nA7pNE_b2R6xLWJ9GDSz37Q3ZtP2-O2EG37fUjcHi74rGF3y-Mx7Ir |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyrethroid+pesticide+exposure+during+early+pregnancy+and+birth+outcomes+in+southwest+China%3A+a+birth+cohort+study&rft.jtitle=Journal+of+toxicological+sciences&rft.au=Xu%2C+Qinghua&rft.au=Zhu%2C+Baosheng&rft.au=Dong%2C+Xudong&rft.au=Li%2C+Suyun&rft.date=2020-01-01&rft.issn=0388-1350&rft.eissn=1880-3989&rft.volume=45&rft.issue=5&rft.spage=281&rft.epage=291&rft_id=info:doi/10.2131%2Fjts.45.281&rft.externalDBID=n%2Fa&rft.externalDocID=10_2131_jts_45_281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0388-1350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0388-1350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0388-1350&client=summon |