Pyrethroid pesticide exposure during early pregnancy and birth outcomes in southwest China: a birth cohort study

Despite the developmental toxicity reported in animals, few epidemiologic studies have investigated the potential effects of prenatal exposure to pyrethroid pesticides (PYRs) on fetal growth. A birth cohort study was conducted to examine the association between prenatal exposure to PYRs and birth ou...

Full description

Saved in:
Bibliographic Details
Published inJournal of toxicological sciences Vol. 45; no. 5; pp. 281 - 291
Main Authors Xu, Qinghua, Zhu, Baosheng, Dong, Xudong, Li, Suyun, Song, Xiaoxiao, Xiao, Xia, Zhang, Chao, Lv, Yan, Zhang, Xiong, Li, Yan
Format Journal Article
LanguageEnglish
Published Japan The Japanese Society of Toxicology 01.01.2020
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the developmental toxicity reported in animals, few epidemiologic studies have investigated the potential effects of prenatal exposure to pyrethroid pesticides (PYRs) on fetal growth. A birth cohort study was conducted to examine the association between prenatal exposure to PYRs and birth outcomes, and a nested case-control study was conducted in this cohort to evaluate the effects of PYR on congenital defects. The assessment of PYR exposure was based on self-reported household pesticide use and urinary PYR metabolite levels. We found that pregnant women in this region were ubiquitously exposed to low-level PYRs, although few reported household pesticide use. Women who often ate bananas or cantaloupes had a higher level of urinary 3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (DBCA), and the number of fruit types consumed by pregnant women was positively related to the concentrations of 3-phenoxybenzoic acid (3PBA) and total PYR metabolites (P < 0.05). Increased urinary 4-fluoro-3-phenoxybenzoic acid (4F3PBA), DBCA, and total PYR metabolites were associated with increased birth weight, length, and gestational age, and with decreased risk of small for gestational age (SGA) and/or premature birth. However, maternal household pesticides use was related to congenital anomalies. Thus, although prenatal exposure to low-dose PYRs promoted the fetal growth, the beneficial effects of fruit intake may outweigh the adverse effects of pesticide exposure. This study provided us an insight into the biological mechanisms for the effect of prenatal PYR exposure on fetal development, and suggested that further investigations in a larger study population with low-dose PYR exposure is needed.
AbstractList Despite the developmental toxicity reported in animals, few epidemiologic studies have investigated the potential effects of prenatal exposure to pyrethroid pesticides (PYRs) on fetal growth. A birth cohort study was conducted to examine the association between prenatal exposure to PYRs and birth outcomes, and a nested case-control study was conducted in this cohort to evaluate the effects of PYR on congenital defects. The assessment of PYR exposure was based on self-reported household pesticide use and urinary PYR metabolite levels. We found that pregnant women in this region were ubiquitously exposed to low-level PYRs, although few reported household pesticide use. Women who often ate bananas or cantaloupes had a higher level of urinary 3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (DBCA), and the number of fruit types consumed by pregnant women was positively related to the concentrations of 3-phenoxybenzoic acid (3PBA) and total PYR metabolites (P < 0.05). Increased urinary 4-fluoro-3-phenoxybenzoic acid (4F3PBA), DBCA, and total PYR metabolites were associated with increased birth weight, length, and gestational age, and with decreased risk of small for gestational age (SGA) and/or premature birth. However, maternal household pesticides use was related to congenital anomalies. Thus, although prenatal exposure to low-dose PYRs promoted the fetal growth, the beneficial effects of fruit intake may outweigh the adverse effects of pesticide exposure. This study provided us an insight into the biological mechanisms for the effect of prenatal PYR exposure on fetal development, and suggested that further investigations in a larger study population with low-dose PYR exposure is needed.
Author Zhu, Baosheng
Zhang, Chao
Li, Yan
Xu, Qinghua
Song, Xiaoxiao
Lv, Yan
Li, Suyun
Xiao, Xia
Dong, Xudong
Zhang, Xiong
Author_xml – sequence: 1
  fullname: Xu, Qinghua
  organization: School of Public Health, Kunming Medical University, China
– sequence: 2
  fullname: Zhu, Baosheng
  organization: The First People’s Hospital of Yunnan Province, China
– sequence: 3
  fullname: Dong, Xudong
  organization: The First People’s Hospital of Yunnan Province, China
– sequence: 4
  fullname: Li, Suyun
  organization: The First People’s Hospital of Yunnan Province, China
– sequence: 5
  fullname: Song, Xiaoxiao
  organization: School of Public Health, Kunming Medical University, China
– sequence: 6
  fullname: Xiao, Xia
  organization: School of Public Health, Kunming Medical University, China
– sequence: 7
  fullname: Zhang, Chao
  organization: School of Public Health, Kunming Medical University, China
– sequence: 8
  fullname: Lv, Yan
  organization: School of Public Health, Kunming Medical University, China
– sequence: 9
  fullname: Zhang, Xiong
  organization: School of Public Health, Kunming Medical University, China
– sequence: 10
  fullname: Li, Yan
  organization: School of Public Health, Kunming Medical University, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32404560$$D View this record in MEDLINE/PubMed
BookMark eNpd0UFrHCEYBmApKc0m7aU_IAi5lMBsdRwnTqCHsiRtIdAechdHP3dcZnWiDu38-xp2s4ecRHl4-fzeC3TmgweEPlOyrimjX3c5rRu-rgV9h1ZUCFKxTnRnaEWYEBVlnJyji5R2hNS3hDcf0DmrG9LwlqzQ9GeJkIcYnMETpOy0M4Dh3xTSHAGbOTq_xaDiuOApwtYrrxesvMG9i3nAYc467CFh53Eql-FvCcGbwXl1h9UR6TCEmHHKs1k-ovdWjQk-Hc9L9PRw_7T5WT3-_vFr8_2x0m3NcqV6AXUvOmsV47wWfflSzykRzAIFZjhrWWNUy63VirRt-VhnLDBqmSW2Z5foyyF2iuF5LjPJvUsaxlF5CHOSZQGM1KLrbgu9fkN3YY6-DPeiBOeN4E1RNwelY0gpgpVTdHsVF0mJfKlBlhpkw2WpoeCrY-Tc78Gc6OveC_h2ALuU1RZOQMXSwAivWfwYeHrXg4oSPPsPs9Oc8A
CitedBy_id crossref_primary_10_1080_10408444_2022_2122769
crossref_primary_10_1016_j_mce_2023_112070
crossref_primary_10_3390_toxics10110679
crossref_primary_10_3390_molecules26123688
crossref_primary_10_1016_j_tjnut_2023_11_031
crossref_primary_10_3390_plants12234022
crossref_primary_10_1016_j_envint_2023_108043
crossref_primary_10_1016_j_neuro_2022_08_002
crossref_primary_10_1007_s11356_023_29457_x
crossref_primary_10_1186_s12884_022_04491_8
crossref_primary_10_1016_j_envpol_2021_118264
crossref_primary_10_3390_ijerph18189907
crossref_primary_10_1016_j_ecoenv_2022_113384
crossref_primary_10_1097_JOM_0000000000002877
crossref_primary_10_1016_j_envres_2021_111539
Cites_doi 10.1016/j.envint.2015.05.009
10.1111/j.1471-0528.2007.01290.x
10.1016/j.foodchem.2016.08.115
10.1016/j.ecoenv.2019.01.054
10.1016/j.toxlet.2011.08.016
10.1016/j.envint.2017.04.007
10.1186/s10020-018-0061-2
10.1021/es103417j
10.1093/aje/kwy143
10.1016/j.talanta.2017.08.074
10.1016/j.reprotox.2017.12.008
10.1016/j.envint.2018.04.042
10.1093/mutage/5.3.229
10.1530/JOE-17-0023
10.3724/SP.J.1123.2017.01012
10.1016/j.chemosphere.2011.07.024
10.1007/s00128-012-0909-z
10.1016/j.neuro.2011.11.006
10.1093/toxsci/kfx052
10.1016/S0378-3782(00)00087-6
10.1289/ehp.6414
10.1016/j.aquatox.2018.12.001
10.1080/10408444.2017.1423463
10.1289/ehp.1206333
10.13075/ijomeh.1896.01183
10.1006/pmed.1994.1093
10.1186/1476-069X-13-97
10.1542/peds.2010-0133
10.1016/j.earlhumdev.2008.09.012
10.1191/0960327103ht381oa
10.1007/s00420-003-0471-4
10.1016/j.scitotenv.2013.03.085
10.1038/jes.2014.86
10.1016/j.ijheh.2011.12.003
10.1016/j.scitotenv.2017.09.172
10.1002/tox.22376
10.1186/s13048-015-0135-5
10.1289/ehp.1002775
10.1002/tox.20627
10.1007/978-3-319-03777-6_5
10.1001/jamainternmed.2017.5038
10.1016/j.scitotenv.2014.04.104
10.1055/s-2005-837736
10.1002/(SICI)1098-2280(1997)30:2<240::AID-EM17>3.0.CO;2-D
ContentType Journal Article
Copyright 2020 The Japanese Society of Toxicology
Copyright Japan Science and Technology Agency 2020
Copyright_xml – notice: 2020 The Japanese Society of Toxicology
– notice: Copyright Japan Science and Technology Agency 2020
DBID NPM
AAYXX
CITATION
7ST
7U7
C1K
SOI
7X8
DOI 10.2131/jts.45.281
DatabaseName PubMed
CrossRef
Environment Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
Toxicology Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1880-3989
EndPage 291
ExternalDocumentID 10_2131_jts_45_281
32404560
article_jts_45_5_45_281_article_char_en
Genre Journal Article
GroupedDBID .55
123
29L
2WC
36B
3O-
53G
AAUGY
ABDBF
ABPTK
ACPRK
ADBBV
AEGXH
AENEX
AFRAH
AL-
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESX
F5P
GX1
HH5
JSF
JSH
KQ8
M~E
OK1
RJT
RNS
RYR
RZJ
SV3
TKC
TR2
TUS
X7M
XSB
~8M
NPM
AAYXX
CITATION
7ST
7U7
C1K
SOI
7X8
ID FETCH-LOGICAL-c623t-ab8e2b89ffa35528b398b51083fe1e3d53634da65ffca0667059dfe31f3f0fb3
ISSN 0388-1350
IngestDate Fri Jun 28 05:08:37 EDT 2024
Thu Oct 10 20:05:30 EDT 2024
Fri Aug 23 01:21:33 EDT 2024
Thu May 23 23:43:14 EDT 2024
Thu Aug 17 20:27:19 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Pyrethroid pesticide
Urinary metabolite
Birth outcome
Developmental toxicity
Congenital defect
Prenatal exposure
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c623t-ab8e2b89ffa35528b398b51083fe1e3d53634da65ffca0667059dfe31f3f0fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jts/45/5/45_281/_article/-char/en
PMID 32404560
PQID 2408554854
PQPubID 2029103
PageCount 11
ParticipantIDs proquest_miscellaneous_2403028997
proquest_journals_2408554854
crossref_primary_10_2131_jts_45_281
pubmed_primary_32404560
jstage_primary_article_jts_45_5_45_281_article_char_en
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Suita
PublicationTitle Journal of toxicological sciences
PublicationTitleAlternate J Toxicol Sci
PublicationYear 2020
Publisher The Japanese Society of Toxicology
Japan Science and Technology Agency
Publisher_xml – name: The Japanese Society of Toxicology
– name: Japan Science and Technology Agency
References Dereumeaux, C., Saoudi, A., Goria, S., Wagner, V., De Crouy-Chanel, P., Pecheux, M., Berat, B., Zaros, C. and Guldner, L. (2018): Urinary levels of pyrethroid pesticides and determinants in pregnant French women from the Elfe cohort. Environ. Int., 119, 89-99.
Ernster, V.L. (1994): Nested case-control studies. Prev. Med., 23, 587-590.
Shi, X., Gu, A., Ji, G., Li, Y., Di, J., Jin, J., Hu, F., Long, Y., Xia, Y., Lu, C., Song, L., Wang, S. and Wang, X. (2011): Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere, 85, 1010-1016.
Dalsager, L., Christensen, L.E., Kongsholm, M.G., Kyhl, H.B., Nielsen, F., Schoeters, G., Jensen, T.K. and Andersen, H.R. (2018): Associations of maternal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-D with birth outcomes and anogenital distance at 3 months in the Odense Child Cohort. Reprod. Toxicol., 76, 53-62.
Muranli, F.D. (2013): Genotoxic and cytotoxic evaluation of pyrethroid insecticides λ-cyhalothrin and α-cypermethrin on human blood lymphocyte culture. Bull. Environ. Contam. Toxicol., 90, 357-363.
Neta, G., Goldman, L.R., Barr, D., Apelberg, B.J., Witter, F.R. and Halden, R.U. (2011): Fetal exposure to chlordane and permethrin mixtures in relation to inflammatory cytokines and birth outcomes. Environ. Sci. Technol., 45, 1680-1687.
Czeizel, A.E. and Mosonyi, A. (1997): Monitoring of early human fetal development in women exposed to large doses of chemicals. Environ. Mol. Mutagen., 30, 240-244.
Le Grand, R., Dulaurent, S., Gaulier, J.M., Saint-Marcoux, F., Moesch, C. and Lachâtre, G. (2012): Simultaneous determination of five synthetic pyrethroid metabolites in urine by liquid chromatography-tandem mass spectrometry: application to 39 persons without known exposure to pyrethroids. Toxicol. Lett., 210, 248-253.
Chauhan, R., Kumari, B. and Rana, M.K. (2014): Effect of fruit and vegetable processing on reduction of synthetic pyrethroid residues. Rev. Environ. Contam. Toxicol., 229, 89-110.
Chevrier, C., Limon, G., Monfort, C., Rouget, F., Garlantézec, R., Petit, C., Durand, G. and Cordier, S. (2011): Urinary biomarkers of prenatal atrazine exposure and adverse birth outcomes in the PELAGIE birth cohort. Environ. Health Perspect., 119, 1034-1041.
Pesticide registration data on the China Pesticide Information Network [database online]. 2019 Nov. Available from: http://www.chinapesticide.org.cn/hysj/index.jhtml.
Ratnasooriya, W.D., Ratnayake, S.S. and Jayatunga, Y.N. (2003): Effects of Icon, a pyrethroid insecticide on early pregnancy of rats. Hum. Exp. Toxicol., 22, 523-533.
Torbati, M., Farajzadeh, M.A., Torbati, M., Nabil, A.A., Mohebbi, A. and Afshar Mogaddam, M.R. (2018): Development of salt and pH-induced solidified floating organic droplets homogeneous liquid-liquid microextraction for extraction of ten pyrethroid insecticides in fresh fruits and fruit juices followed by gas chromatography-mass spectrometry. Talanta, 176, 565-572.
Ding, G., Cui, C., Chen, L., Gao, Y., Zhou, Y., Shi, R. and Tian, Y. (2015): Prenatal exposure to pyrethroid insecticides and birth outcomes in Rural Northern China. J. Expo. Sci. Environ. Epidemiol., 25, 264-270.
Vääräsmäki, M.S., Hartikainen, A., Anttila, M., Pramila, S. and Koivisto, M. (2000): Factors predicting peri- and neonatal outcome in diabetic pregnancy. Early Hum. Dev., 59, 61-70.
Seyom, E., Abera, M., Tesfaye, M. and Fentahun, N. (2015): Maternal and fetal outcome of pregnancy related hypertension in Mettu Karl Referral Hospital, Ethiopia. J. Ovarian Res., 8, 10.
Viel, J.F., Warembourg, C., Le Maner-Idrissi, G., Lacroix, A., Limon, G., Rouget, F., Monfort, C., Durand, G., Cordier, S. and Chevrier, C. (2015): Pyrethroid insecticide exposure and cognitive developmental disabilities in children: the PELAGIE mother-child cohort. Environ. Int., 82, 69-75.
Qu, L., Li, Y., Zeng, J., Sheng, Y., Yi, X. and Cheng, J. (2017): [Determination of 20 pyrethroid residues in vegetable foods by gas chromatography-tandem mass spectrometry]. Se Pu, 35, 778-784.
Pristauz, G., Bader, A.A., Schwantzer, G., Kutschera, J. and Lang, U. (2009): Assessment of risk factors for survival of neonates born after second-trimester PPROM. Early Hum. Dev., 85, 177-180.
Yang, H., Du, L., Wu, G., Wu, Z. and Keelan, J.A. (2018): Murine exposure to gold nanoparticles during early pregnancy promotes abortion by inhibiting ectodermal differentiation. Mol. Med., 24, 62.
Yu, X. and Yang, H. (2017): Pyrethroid residue determination in organic and conventional vegetables using liquid-solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles. Food Chem., 217, 303-310.
Radwan, M., Jurewicz, J., Wielgomas, B., Piskunowicz, M., Sobala, W., Radwan, P., Jakubowski, L., Hawuła, W. and Hanke, W. (2015): The association between environmental exposure to pyrethroids and sperm aneuploidy. Chemosphere, 128, 42-48.
Guo, C., Yang, Y., Shi, M.X., Wang, B., Liu, J.J., Xu, D.X. and Meng, X.H. (2019): Critical time window of fenvalerate-induced fetal intrauterine growth restriction in mice. Ecotoxicol. Environ. Saf., 172, 186-193.
Zhang, J., Yoshinaga, J., Hisada, A., Shiraishi, H., Shimodaira, K., Okai, T., Koyama, M., Watanabe, N., Suzuki, E., Shirakawa, M., Noda, Y., Komine, Y., Ariki, N. and Kato, N. (2014): Prenatal pyrethroid insecticide exposure and thyroid hormone levels and birth sizes of neonates. Sci. Total Environ., 488-489, 275-279.
Chueh, T.C., Hsu, L.S., Kao, C.M., Hsu, T.W., Liao, H.Y., Wang, K.Y. and Chen, S.C. (2017): Transcriptome analysis of zebrafish embryos exposed to deltamethrin. Environ. Toxicol., 32, 1548-1557.
Pedersen, M., Schoket, B., Godschalk, R.W., Wright, J., von Stedingk, H., Törnqvist, M., Sunyer, J., Nielsen, J.K., Merlo, D.F., Mendez, M.A., Meltzer, H.M., Lukács, V., Landström, A., Kyrtopoulos, S.A., Kovács, K., Knudsen, L.E., Haugen, M., Hardie, L.J., Gützkow, K.B., Fleming, S., Fthenou, E., Farmer, P.B., Espinosa, A., Chatzi, L., Brunborg, G., Brady, N.J., Botsivali, M., Arab, K., Anna, L., Alexander, J., Agramunt, S., Kleinjans, J.C., Segerbäck, D. and Kogevinas, M. (2013): Bulky dna adducts in cord blood, maternal fruit-and-vegetable consumption, and birth weight in a European mother-child study (NewGeneris). Environ. Health Perspect., 121, 1200-1206.
Glorennec, P., Serrano, T., Fravallo, M., Warembourg, C., Monfort, C., Cordier, S., Viel, J.F., Le Gléau, F., Le Bot, B. and Chevrier, C. (2017): Determinants of children’s exposure to pyrethroid insecticides in western France. Environ. Int., 104, 76-82.
Chiu, Y.H., Williams, P.L., Gillman, M.W., Gaskins, A.J., Mínguez-Alarcón, L., Souter, I., Toth, T.L., Ford, J.B., Hauser, R. and Chavarro, J.E.; EARTH Study Team. (2018): Association Between Pesticide Residue Intake From Consumption of Fruits and Vegetables and Pregnancy Outcomes Among Women Undergoing Infertility Treatment With Assisted Reproductive Technology. JAMA Intern. Med., 178, 17-26.
Lewis, R.C., Cantonwine, D.E., Anzalota Del Toro, L.V., Calafat, A.M., Valentin-Blasini, L., Davis, M.D., Baker, S.E., Alshawabkeh, A.N., Cordero, J.F. and Meeker, J.D. (2014): Urinary biomarkers of exposure to insecticides, herbicides, and one insect repellent among pregnant women in Puerto Rico. Environ. Health, 13, 97.
Barr, D.B., Olsson, A.O., Wong, L.Y., Udunka, S., Baker, S.E., Whitehead, R.D., Magsumbol, M.S., Williams, B.L. and Needham, L.L. (2010): Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S. population: National Health and Nutrition Examination Survey 1999-2002. Environ. Health Perspect., 118, 742-748.
Rattan, S., Zhou, C., Chiang, C., Mahalingam, S., Brehm, E. and Flaws, J.A. (2017): Exposure to endocrine disruptors during adulthood: consequences for female fertility. J. Endocrinol., 233, R109-R129.
Berkowitz, G.S., Wetmur, J.G., Birman-Deych, E., Obel, J., Lapinski, R.H., Godbold, J.H., Holzman, I.R. and Wolff, M.S. (2004): In utero pesticide exposure, maternal paraoxonase activity, and head circumference. Environ. Health Perspect., 112, 388-391.
Chevrier, J., Rauch, S., Crause, M., Obida, M., Gaspar, F., Bornman, R. and Eskenazi, B. (2019): Associations of Maternal Exposure to Dichlorodiphenyltrichloroethane and Pyrethroids With Birth Outcomes Among Participants in the Venda Health Examination of Mothers, Babies and Their Environment Residing in an Area Sprayed for Malaria Control. Am. J. Epidemiol., 188, 130-140.
Horton, M.K., Rundle, A., Camann, D.E., Boyd Barr, D., Rauh, V.A. and Whyatt, R.M. (2011): Impact of prenatal exposure to piperonyl butoxide and permethrin on 36-month neurodevelopment. Pediatrics, 127, e699-e706.
Uggini, G.K., Patel, P.V. and Balakrishnan, S. (2012): Embryotoxic and teratogenic effects of pesticides in chick embryos: a comparative study using two commercial formulations. Environ. Toxicol., 27, 166-174.
Bhunya, S.P. and Pati, P.C. (1990): Effect of deltamethrin, a synthetic pyrethroid, on the induction of chromosome aberrations, micronuclei and sperm abnormalities in mice. Mutagenesis, 5, 229-232.
Dziewirska, E., Hanke, W. and Jurewicz, J. (2018): Environmental non-persistent endocrine-disrupting chemicals exposure and reproductive hormones levels in adult men. Int. J. Occup. Med. Environ. Health, 31, 551-573.
Mytton, O.T., McGready, R., Lee, S.J., Roberts, C.H., Ashley, E.A., Carrara, V.I., Thwai, K.L., Jay, M.P., Wiangambun, T., Singhasivanon, P. and Nosten, F. (2007): Safety of benzyl benzoate lotion and permethrin in pregnancy: a retrospective matched cohort study. BJOG, 114, 582-587.
Khatab, A.E., Hashem, N.M., El-Kodary, L.M., Lotfy, F.M. and Hassan, G.A. (2016): Evaluation of the Effects of Cypermethrin on Female Reproductive Function by Using Rabbit Model and of the Protective Role of Chinese Propolis. Biomed. Environ. Sci., 29, 762-766.
Hanke, W., Romitti, P., Fuortes, L., Sobala, W. and Mikulski, M. (2003): The use of pesticides in a Polish rural population and its effect on birth weight. Int. Arch. Occup.
22
44
23
45
24
46
25
47
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – ident: 43
  doi: 10.1016/j.envint.2015.05.009
– ident: 27
  doi: 10.1111/j.1471-0528.2007.01290.x
– ident: 46
  doi: 10.1016/j.foodchem.2016.08.115
– ident: 17
  doi: 10.1016/j.ecoenv.2019.01.054
– ident: 22
  doi: 10.1016/j.toxlet.2011.08.016
– ident: 16
  doi: 10.1016/j.envint.2017.04.007
– ident: 45
  doi: 10.1186/s10020-018-0061-2
– ident: 28
  doi: 10.1021/es103417j
– ident: 31
– ident: 7
  doi: 10.1093/aje/kwy143
– ident: 39
  doi: 10.1016/j.talanta.2017.08.074
– ident: 11
  doi: 10.1016/j.reprotox.2017.12.008
– ident: 12
  doi: 10.1016/j.envint.2018.04.042
– ident: 3
  doi: 10.1093/mutage/5.3.229
– ident: 36
  doi: 10.1530/JOE-17-0023
– ident: 34
  doi: 10.3724/SP.J.1123.2017.01012
– ident: 38
  doi: 10.1016/j.chemosphere.2011.07.024
– ident: 26
  doi: 10.1007/s00128-012-0909-z
– ident: 29
  doi: 10.1016/j.neuro.2011.11.006
– ident: 44
  doi: 10.1093/toxsci/kfx052
– ident: 42
  doi: 10.1016/S0378-3782(00)00087-6
– ident: 2
  doi: 10.1289/ehp.6414
– ident: 24
  doi: 10.1016/j.aquatox.2018.12.001
– ident: 1
– ident: 4
  doi: 10.1080/10408444.2017.1423463
– ident: 30
  doi: 10.1289/ehp.1206333
– ident: 14
  doi: 10.13075/ijomeh.1896.01183
– ident: 15
  doi: 10.1006/pmed.1994.1093
– ident: 23
  doi: 10.1186/1476-069X-13-97
– ident: 19
  doi: 10.1542/peds.2010-0133
– ident: 32
  doi: 10.1016/j.earlhumdev.2008.09.012
– ident: 35
  doi: 10.1191/0960327103ht381oa
– ident: 18
  doi: 10.1007/s00420-003-0471-4
– ident: 40
  doi: 10.1016/j.scitotenv.2013.03.085
– ident: 13
  doi: 10.1038/jes.2014.86
– ident: 33
  doi: 10.1016/j.ijheh.2011.12.003
– ident: 25
  doi: 10.1016/j.scitotenv.2017.09.172
– ident: 9
  doi: 10.1002/tox.22376
– ident: 37
  doi: 10.1186/s13048-015-0135-5
– ident: 6
  doi: 10.1289/ehp.1002775
– ident: 41
  doi: 10.1002/tox.20627
– ident: 5
  doi: 10.1007/978-3-319-03777-6_5
– ident: 8
  doi: 10.1001/jamainternmed.2017.5038
– ident: 21
– ident: 47
  doi: 10.1016/j.scitotenv.2014.04.104
– ident: 20
  doi: 10.1055/s-2005-837736
– ident: 10
  doi: 10.1002/(SICI)1098-2280(1997)30:2<240::AID-EM17>3.0.CO;2-D
SSID ssj0027054
Score 2.3278086
Snippet Despite the developmental toxicity reported in animals, few epidemiologic studies have investigated the potential effects of prenatal exposure to pyrethroid...
SourceID proquest
crossref
pubmed
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 281
SubjectTerms Bananas
Birth outcome
Birth weight
Carboxylic acids
Childbirth & labor
Cohort analysis
Congenital anomalies
Congenital defect
Congenital defects
Developmental toxicity
Epidemiology
Exposure
Fetuses
Food intake
Fruits
Gestational age
Health risk assessment
Metabolites
Pesticides
Phenoxybenzoic acid
Population studies
Pregnancy
Premature birth
Prenatal experience
Prenatal exposure
Pyrethroid pesticide
Small for gestational age
Toxicity
Urinary metabolite
Title Pyrethroid pesticide exposure during early pregnancy and birth outcomes in southwest China: a birth cohort study
URI https://www.jstage.jst.go.jp/article/jts/45/5/45_281/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/32404560
https://www.proquest.com/docview/2408554854
https://search.proquest.com/docview/2403028997
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Journal of Toxicological Sciences, 2020, Vol.45(5), pp.281-291
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqhQMSQrw3sCAjuK1SkjhuU24IgZaHEEhFqrhETmJvwyGp2kRi-R_8X2Y8jht2QVq4RJVrN2nm88zYnvmGsWdJqRNpkOgWplOYpqoIMyVUKDRYg7Kao9nGaIuPs5Mv6buVXE0mP0dRS31XTMsff8wr-R-pQhvIFbNk_0Gy_kehAT6DfOEKEobrpWT86Wyrsc5BXR1vkC2jrCuNnP0tbvsNGYjaUhhvtvoUuTWIbqmo8bSm7Tt4KhuRdbzDUnpIm0AVtSkHmrphDd1tNyKivejLdu33uvRq1FlV762vehTkZ3iYde-twNd1T-cd7W6tnflEh9qFCK_6qt23fqgpguisb8bbFEk02qZw6VkgvFgQy-xUk7YF5RGKBdUQGtQxsUs62MmxbqXaLs5MJ1Tk67wFSGJhLUC3m6Zy6oeMabbPmT8flAjLIRydw9g8lXmCCf1XEtBf9vT_7fv9Oj6SxErm_hGx3uLY5_v7_ubnXP0Grv6p_vsqxnozy5vshhMdf0mYusUmurnNrtMeLqfUtDtss8cX9_jiA7444YtbfHGPLw744hY4fMAXrxvu8cUtvl5w5ToRurhF1122fPN6-eokdBU6whLc5i5URaaTIlsYo8BvTbIChFmAls-E0bEWlRQzkVZqJo0pFYZTgzNfGS1iI0xkCnGPHTRtow8Zj2QlS6XjahZh7mWVzVWEJVkiAysEvRABezq8znxDPCz5RYEFbEZv2vdxc3PoI11H3465jaBKAnY0SCZ3E3yXW_Y_WNHLNGBP_NegfvFMTTW67W0fgYf1i3nA7pNE_b2R6xLWJ9GDSz37Q3ZtP2-O2EG37fUjcHi74rGF3y-Mx7Ir
link.rule.ids 315,783,787,27936,27937
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyrethroid+pesticide+exposure+during+early+pregnancy+and+birth+outcomes+in+southwest+China%3A+a+birth+cohort+study&rft.jtitle=Journal+of+toxicological+sciences&rft.au=Xu%2C+Qinghua&rft.au=Zhu%2C+Baosheng&rft.au=Dong%2C+Xudong&rft.au=Li%2C+Suyun&rft.date=2020-01-01&rft.issn=0388-1350&rft.eissn=1880-3989&rft.volume=45&rft.issue=5&rft.spage=281&rft.epage=291&rft_id=info:doi/10.2131%2Fjts.45.281&rft.externalDBID=n%2Fa&rft.externalDocID=10_2131_jts_45_281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0388-1350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0388-1350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0388-1350&client=summon