RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection

Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understan...

Full description

Saved in:
Bibliographic Details
Published inPLoS neglected tropical diseases Vol. 5; no. 1; p. e926
Main Authors Nasirudeen, A M A, Wong, Hui Hui, Thien, Peiling, Xu, Shengli, Lam, Kong-Peng, Liu, Ding Xiang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 04.01.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus.
AbstractList Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus.
Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN- beta was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus. Dengue fever, dengue haemmorhagic fever and dengue shock syndrome, which are caused by dengue virus infection, are a major public health problem in many parts of the world, especially South East Asia. The investigation of host cell transcriptional changes in response to virus infection using DNA microarray technology has been an area of great interest. In our previous study, we used microarray technology to study expression of individual human genes in relation to dengue virus infection. Most of the genes that were upregulated were type 1 interferon related genes. To gain a better understanding of the innate immune response to dengue virus, we knocked down RIG-I, MDA5 and TLR3 genes in HUH-7 cells. Silencing these genes using siRNA technology resulted in significant increase in viral replication. This increase in viral load induced ER stress leading to apoptosis. This study demonstrates a synergistic role for RIG-I, MDA5 and TLR3 in restricting dengue virus infection.
Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus. Dengue fever, dengue haemmorhagic fever and dengue shock syndrome, which are caused by dengue virus infection, are a major public health problem in many parts of the world, especially South East Asia. The investigation of host cell transcriptional changes in response to virus infection using DNA microarray technology has been an area of great interest. In our previous study, we used microarray technology to study expression of individual human genes in relation to dengue virus infection. Most of the genes that were upregulated were type 1 interferon related genes. To gain a better understanding of the innate immune response to dengue virus, we knocked down RIG-I, MDA5 and TLR3 genes in HUH-7 cells. Silencing these genes using siRNA technology resulted in significant increase in viral replication. This increase in viral load induced ER stress leading to apoptosis. This study demonstrates a synergistic role for RIG-I, MDA5 and TLR3 in restricting dengue virus infection.
  Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus.
Author Xu, Shengli
Liu, Ding Xiang
Wong, Hui Hui
Thien, Peiling
Nasirudeen, A M A
Lam, Kong-Peng
AuthorAffiliation University of California, Berkeley, United States of America
1 Institute of Molecular and Cell Biology, Singapore, Singapore
2 School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
3 Immunology Group, Bioprocessing Technology Institute, Singapore, Singapore
AuthorAffiliation_xml – name: 1 Institute of Molecular and Cell Biology, Singapore, Singapore
– name: 2 School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
– name: 3 Immunology Group, Bioprocessing Technology Institute, Singapore, Singapore
– name: University of California, Berkeley, United States of America
Author_xml – sequence: 1
  givenname: A M A
  surname: Nasirudeen
  fullname: Nasirudeen, A M A
  email: nasir@alumni.nus.edu.sg
  organization: Institute of Molecular and Cell Biology, Singapore, Singapore. nasir@alumni.nus.edu.sg
– sequence: 2
  givenname: Hui Hui
  surname: Wong
  fullname: Wong, Hui Hui
– sequence: 3
  givenname: Peiling
  surname: Thien
  fullname: Thien, Peiling
– sequence: 4
  givenname: Shengli
  surname: Xu
  fullname: Xu, Shengli
– sequence: 5
  givenname: Kong-Peng
  surname: Lam
  fullname: Lam, Kong-Peng
– sequence: 6
  givenname: Ding Xiang
  surname: Liu
  fullname: Liu, Ding Xiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21245912$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1rFDEUDVKx7eo_EA344Iu7Tr5mJi9CqVoXVoRSn8OdfKwp2WRNZgr7702729KKYF4Scs49N_fknKKjmKJF6DVpFoR15ON1mnKEsNjG0SyauiRtn6ETIpmY046Jo0fnY3RaynXTCCl68gIdU0K5kISeIHO5vJgvP-Dvn88Ehmjw1eqS4bKLNq99Gb2GEHZ4G2BXUew325RHiCPOKVjsI862jNnr0aeIk8PGxvVk8Y3PU6mws3fIS_TcQSj21WGfoZ9fv1ydf5uvflwsz89Wc91SNs6lG4Qxw0DcYFsJQw9cSnDaWSm56EynRcsbxknDwIC1nDFOJesBhG0H3bEZervX3YZU1MGgogjte9J0RDaVsdwzTIJrtc1-A3mnEnh1d5HyWkGuUwerur6XoAGMY5oPTg7Ucc6o6Ds9aEt11fp06DYNG2u0jWOG8ET0KRL9L7VON4o1hNeBqsD7g0BOv6dqpNr4om0IEG2aiuq7ltbfk_z_zGpPK2R1cYbe_cX8tw18z9I5lZKte3g1adRtuu6r1G261CFdtezN44kfiu7jxP4AlR_QSQ
CitedBy_id crossref_primary_10_1371_journal_ppat_1010100
crossref_primary_10_1186_s12974_023_02898_4
crossref_primary_10_3390_v14112575
crossref_primary_10_4103_jfmpc_jfmpc_1785_23
crossref_primary_10_1016_j_jns_2016_11_034
crossref_primary_10_3390_vaccines7040145
crossref_primary_10_1111_cei_12701
crossref_primary_10_1128_JVI_00050_14
crossref_primary_10_1189_jlb_0311166
crossref_primary_10_3389_fimmu_2020_01055
crossref_primary_10_1016_j_virol_2018_10_015
crossref_primary_10_1155_2018_6106582
crossref_primary_10_3390_molecules29091945
crossref_primary_10_1007_s12275_017_6494_4
crossref_primary_10_1007_s11010_021_04326_8
crossref_primary_10_1155_2020_1372494
crossref_primary_10_1016_j_onehlt_2023_100565
crossref_primary_10_1097_MRM_0000000000000112
crossref_primary_10_1155_2016_1016840
crossref_primary_10_1016_j_isci_2023_108620
crossref_primary_10_1128_JVI_00221_16
crossref_primary_10_1016_j_csbj_2022_08_001
crossref_primary_10_1016_j_it_2015_12_003
crossref_primary_10_4161_jkst_27715
crossref_primary_10_4236_health_2013_59206
crossref_primary_10_1016_j_antiviral_2017_09_017
crossref_primary_10_1038_s41467_020_16768_7
crossref_primary_10_3390_vaccines8010039
crossref_primary_10_3389_fimmu_2018_02147
crossref_primary_10_1016_j_intimp_2023_110988
crossref_primary_10_3389_fimmu_2023_1272393
crossref_primary_10_1371_journal_pntd_0009575
crossref_primary_10_1098_rsob_180087
crossref_primary_10_1007_s00705_018_3784_z
crossref_primary_10_1158_2326_6066_CIR_18_0014
crossref_primary_10_1637_0005_2086_65_3_419
crossref_primary_10_3389_fmicb_2020_00725
crossref_primary_10_1016_j_jdermsci_2018_01_007
crossref_primary_10_1016_S2221_1691_13_60057_X
crossref_primary_10_3390_genes11010086
crossref_primary_10_1371_journal_ppat_1004566
crossref_primary_10_1016_j_actatropica_2024_107146
crossref_primary_10_1002_cbin_10354
crossref_primary_10_1111_jnc_15679
crossref_primary_10_1155_2017_5649214
crossref_primary_10_3892_etm_2019_7178
crossref_primary_10_1016_j_jneuroim_2016_12_002
crossref_primary_10_3389_fmicb_2022_847588
crossref_primary_10_3390_pathogens12050635
crossref_primary_10_1007_s00005_018_0525_7
crossref_primary_10_1186_1743_422X_10_127
crossref_primary_10_3390_v6020683
crossref_primary_10_1371_journal_pone_0235422
crossref_primary_10_1016_j_antiviral_2013_10_002
crossref_primary_10_2217_fvl_2017_0146
crossref_primary_10_1016_j_antiviral_2018_12_016
crossref_primary_10_1371_journal_ppat_1006738
crossref_primary_10_3390_v10120712
crossref_primary_10_1111_j_1600_065X_2011_01049_x
crossref_primary_10_3389_fmicb_2014_00222
crossref_primary_10_1074_jbc_M112_421438
crossref_primary_10_1128_JVI_03114_13
crossref_primary_10_1016_j_meegid_2011_06_009
crossref_primary_10_4014_jmb_2010_10047
crossref_primary_10_1080_20477724_2022_2101840
crossref_primary_10_1371_journal_pntd_0003468
crossref_primary_10_1016_j_virol_2012_09_038
crossref_primary_10_1182_blood_2012_05_430090
crossref_primary_10_1186_s12929_019_0614_x
crossref_primary_10_3389_fcimb_2020_588168
crossref_primary_10_3390_pathogens13040306
crossref_primary_10_1371_journal_ppat_1009438
crossref_primary_10_3389_fmicb_2023_1257024
crossref_primary_10_1099_vir_0_064121_0
crossref_primary_10_1128_JVI_03083_12
crossref_primary_10_1128_JVI_01050_20
crossref_primary_10_1146_annurev_immunol_042617_053142
crossref_primary_10_1016_j_virusres_2014_03_013
crossref_primary_10_3390_v9120383
crossref_primary_10_1007_s12275_023_00047_3
crossref_primary_10_1007_s11010_019_03658_w
crossref_primary_10_1016_j_fsi_2013_02_017
crossref_primary_10_1128_JVI_01360_15
crossref_primary_10_3389_fimmu_2020_00678
crossref_primary_10_1093_jpids_piac136
crossref_primary_10_1159_000494034
crossref_primary_10_3389_fimmu_2016_00662
crossref_primary_10_12688_f1000research_9118_2
crossref_primary_10_12688_f1000research_9118_1
crossref_primary_10_1139_cjas_2017_0046
crossref_primary_10_3389_fcimb_2022_1004608
crossref_primary_10_1261_rna_079016_121
crossref_primary_10_4161_viru_25569
crossref_primary_10_3389_fimmu_2014_00647
crossref_primary_10_1002_mbo3_701
crossref_primary_10_1128_CVI_00500_13
crossref_primary_10_3389_fcimb_2018_00113
crossref_primary_10_1016_j_dci_2016_03_029
crossref_primary_10_1186_s12920_017_0304_z
crossref_primary_10_1016_j_jmb_2016_04_024
crossref_primary_10_3390_v11100970
crossref_primary_10_1371_journal_pntd_0002060
crossref_primary_10_1016_j_virol_2014_04_036
crossref_primary_10_1007_s00705_015_2417_z
crossref_primary_10_3389_fcimb_2020_00489
crossref_primary_10_1016_j_virusres_2016_07_001
crossref_primary_10_1093_abbs_gms122
crossref_primary_10_1371_journal_pone_0092240
crossref_primary_10_1007_s11262_022_01958_w
crossref_primary_10_1371_journal_pone_0034055
crossref_primary_10_1371_journal_pone_0070251
crossref_primary_10_1042_BJ20140456
crossref_primary_10_3390_v14050992
crossref_primary_10_3389_fmicb_2020_00531
crossref_primary_10_1016_j_psj_2020_09_029
crossref_primary_10_1186_s13104_018_3620_2
crossref_primary_10_3389_fmicb_2021_682380
crossref_primary_10_1080_15476286_2023_2291610
crossref_primary_10_1007_s10989_019_09861_z
crossref_primary_10_1016_j_coviro_2016_09_013
crossref_primary_10_4236_jbm_2021_91010
crossref_primary_10_1371_journal_ppat_1003541
crossref_primary_10_1371_journal_pntd_0002178
crossref_primary_10_1016_j_chom_2014_06_001
crossref_primary_10_1038_srep45171
crossref_primary_10_1099_jgv_0_000769
crossref_primary_10_1128_JVI_01997_12
crossref_primary_10_5858_arpa_2016_0409_RA
crossref_primary_10_1016_j_coviro_2020_07_015
crossref_primary_10_1126_scitranslmed_aad8657
crossref_primary_10_1007_s00441_014_1841_9
crossref_primary_10_3389_fcimb_2023_1251204
crossref_primary_10_1074_jbc_M115_654855
crossref_primary_10_3389_fcimb_2022_887729
crossref_primary_10_3389_fimmu_2021_801811
crossref_primary_10_1016_j_virol_2015_02_017
crossref_primary_10_1016_j_fsi_2015_01_012
crossref_primary_10_15252_emmm_201404459
crossref_primary_10_1038_s41426_018_0168_0
crossref_primary_10_1186_s12864_017_4330_1
crossref_primary_10_3390_v12010094
crossref_primary_10_1016_j_jid_2018_07_038
crossref_primary_10_1038_s41418_018_0215_3
crossref_primary_10_3389_fcimb_2022_975222
crossref_primary_10_3389_fmicb_2016_01233
crossref_primary_10_1007_s11481_017_9736_7
crossref_primary_10_3389_fimmu_2022_829433
crossref_primary_10_1016_j_virol_2016_07_005
crossref_primary_10_1016_j_coviro_2016_10_001
crossref_primary_10_4049_jimmunol_1303343
crossref_primary_10_1016_j_dci_2015_03_001
crossref_primary_10_1128_JVI_02234_16
crossref_primary_10_1093_femspd_ftac014
crossref_primary_10_18632_oncotarget_15352
crossref_primary_10_1016_j_intimp_2018_07_019
crossref_primary_10_1155_2017_1734151
crossref_primary_10_1371_journal_pone_0055108
crossref_primary_10_1038_jid_2014_36
crossref_primary_10_4014_jmb_2210_10006
crossref_primary_10_3389_fimmu_2019_01586
crossref_primary_10_1099_jgv_0_000867
crossref_primary_10_1016_j_antiviral_2019_03_011
crossref_primary_10_1016_j_imlet_2021_06_001
crossref_primary_10_3390_v13061060
crossref_primary_10_1016_j_virol_2018_07_014
crossref_primary_10_1038_s41401_019_0316_7
crossref_primary_10_1016_j_ajpath_2013_02_027
crossref_primary_10_3390_v13101967
crossref_primary_10_1371_journal_ppat_1011241
crossref_primary_10_2222_jsv_61_221
crossref_primary_10_3390_ijms222413360
crossref_primary_10_3389_fmicb_2021_744233
crossref_primary_10_1089_jir_2019_0097
crossref_primary_10_1073_pnas_1119238109
crossref_primary_10_1016_j_coviro_2014_09_011
crossref_primary_10_1007_s00705_019_04406_7
crossref_primary_10_3390_microorganisms7090296
crossref_primary_10_1007_s12026_012_8293_7
crossref_primary_10_3390_v4030397
crossref_primary_10_1080_21505594_2021_1996059
crossref_primary_10_1002_jnr_24923
crossref_primary_10_1371_journal_ppat_1005357
crossref_primary_10_1016_j_celrep_2018_06_047
crossref_primary_10_1128_JVI_01643_15
crossref_primary_10_1186_s12929_018_0482_9
crossref_primary_10_1016_j_molmed_2024_03_006
crossref_primary_10_1016_j_antiviral_2016_11_010
crossref_primary_10_1371_journal_ppat_1010499
crossref_primary_10_1016_j_cytogfr_2014_08_005
crossref_primary_10_1186_s13567_016_0358_5
crossref_primary_10_1159_000355217
crossref_primary_10_3389_fimmu_2020_593901
crossref_primary_10_3389_fnins_2016_00193
crossref_primary_10_3389_fimmu_2018_02860
crossref_primary_10_1016_j_virusres_2014_01_019
crossref_primary_10_1089_jir_2014_0129
crossref_primary_10_1016_j_celrep_2024_114370
crossref_primary_10_1111_cmi_12734
crossref_primary_10_1161_CIRCHEARTFAILURE_112_969402
crossref_primary_10_1128_JVI_06277_11
crossref_primary_10_1371_journal_ppat_1005345
crossref_primary_10_1371_journal_pone_0035654
crossref_primary_10_1146_annurev_cellbio_100617_062903
crossref_primary_10_3389_fmicb_2021_714409
crossref_primary_10_1089_jir_2014_0038
crossref_primary_10_3390_ijms22042108
crossref_primary_10_1093_bib_bbab199
crossref_primary_10_3390_vaccines8030530
crossref_primary_10_1038_s41598_017_03932_1
crossref_primary_10_1016_j_jmb_2013_11_023
crossref_primary_10_1016_j_vaccine_2011_06_094
crossref_primary_10_1111_imr_12367
crossref_primary_10_4049_jimmunol_1602121
crossref_primary_10_1016_j_jid_2018_09_003
crossref_primary_10_1371_journal_ppat_1004242
crossref_primary_10_3390_cells13030226
crossref_primary_10_3389_fimmu_2021_707287
crossref_primary_10_1016_S0140_6736_14_60572_9
crossref_primary_10_1371_journal_pone_0023346
crossref_primary_10_1016_j_mib_2011_07_012
crossref_primary_10_1038_srep32000
crossref_primary_10_1016_j_micinf_2016_03_009
crossref_primary_10_1128_mbio_03363_21
crossref_primary_10_3389_fgene_2018_00595
crossref_primary_10_1186_s12967_014_0349_0
crossref_primary_10_3389_fimmu_2023_1257192
Cites_doi 10.1073/pnas.2335168100
10.1074/jbc.M702112200
10.1016/j.cytogfr.2007.06.023
10.1128/JVI.01305-07
10.1093/jb/mvm032
10.1038/ni1243
10.1002/jmv.21486
10.1016/j.molcel.2006.05.012
10.1099/vir.0.011486-0
10.1038/ni907
10.1128/MMBR.65.1.131-150.2001
10.1073/pnas.0603082103
10.1038/35099560
10.4049/jimmunol.175.5.2851
10.1189/jlb.69.6.912
10.1038/nature07106
10.1016/j.cell.2006.02.015
10.1038/nature04734
10.1073/pnas.95.3.1085
10.1128/JVI.74.11.4957-4966.2000
10.1074/jbc.M414139200
10.1128/JVI.73.1.783-786.1999
10.1016/S0952-7915(97)80152-5
10.1128/JVI.02188-08
10.1128/MCB.18.5.2986
10.1073/pnas.1934678100
10.1128/JVI.79.5.2689-2699.2005
10.1128/JVI.00879-06
10.1016/j.micinf.2005.06.014
10.1186/1743-422X-4-91
10.1128/JVI.01080-07
10.1016/j.micinf.2008.06.005
10.1002/rmv.357
10.1073/pnas.0703285104
10.1038/cr.2009.1
10.1126/science.1132505
10.1016/j.molcel.2005.08.014
10.1111/j.1462-5822.2008.01277.x
10.1128/JVI.02449-08
10.1016/S1074-7613(00)80652-4
10.1016/j.cell.2005.08.012
10.1128/JVI.76.21.11166-11171.2002
ContentType Journal Article
Copyright 2011 Nasirudeen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nasirudeen AMA, Wong HH, Thien P, Xu S, Lam K-P, et al. (2011) RIG-I, MDA5 and TLR3 Synergistically Play an Important Role in Restriction of Dengue Virus Infection. PLoS Negl Trop Dis 5(1): e926. doi:10.1371/journal.pntd.0000926
Nasirudeen et al. 2011
Copyright_xml – notice: 2011 Nasirudeen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nasirudeen AMA, Wong HH, Thien P, Xu S, Lam K-P, et al. (2011) RIG-I, MDA5 and TLR3 Synergistically Play an Important Role in Restriction of Dengue Virus Infection. PLoS Negl Trop Dis 5(1): e926. doi:10.1371/journal.pntd.0000926
– notice: Nasirudeen et al. 2011
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7SS
7T2
7T7
7U9
7X7
7XB
88E
8C1
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
F1W
FR3
FYUFA
GHDGH
H94
H95
H97
K9.
L.G
M0S
M1P
M7N
P64
PIMPY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1371/journal.pntd.0000926
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Entomology Abstracts (Full archive)
Health and Safety Science Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Health & Safety Science Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic

Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals(OpenAccess)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Dengue Virus Signaling through RIG-I, MDA5, TLR3
EISSN 1935-2735
Editor Harris, Eva
Editor_xml – sequence: 1
  givenname: Eva
  surname: Harris
  fullname: Harris, Eva
EndPage e926
ExternalDocumentID 1288107190
oai_doaj_org_article_7889acaadf3c4bf9b2f4432587cbce2c
2893327341
10_1371_journal_pntd_0000926
21245912
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Singapore
Asia
GeographicLocations_xml – name: Singapore
– name: Asia
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7X7
88E
8C1
8FI
8FJ
AAFWJ
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
BWKFM
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAP
EAS
EBD
ECGQY
ECM
EIF
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
KQ8
M1P
M48
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
SV3
TR2
TUS
UKHRP
AAYXX
CITATION
7QL
7SS
7T2
7T7
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
F1W
FR3
H94
H95
H97
K9.
L.G
M7N
P64
PQEST
PQUKI
7X8
5PM
AFPKN
AAPBV
ABPTK
ID FETCH-LOGICAL-c623t-9fb5ddbb1fbe69ab8a499afcfe99457d7c564034103adaee43342938aa5e6bc73
IEDL.DBID RPM
ISSN 1935-2735
1935-2727
IngestDate Sun Oct 01 00:20:28 EDT 2023
Tue Oct 22 14:57:26 EDT 2024
Tue Sep 17 21:26:42 EDT 2024
Fri Oct 25 08:23:21 EDT 2024
Fri Oct 25 08:02:49 EDT 2024
Sat Nov 09 14:10:51 EST 2024
Thu Nov 21 22:29:24 EST 2024
Sat Nov 02 12:29:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Toll-Like Receptor 3
DEAD-box RNA Helicases
Interferons
Dengue
Humans
Mice, Inbred C57BL
Cells, Cultured
Gene Silencing
Macrophages
Reverse Transcriptase Polymerase Chain Reaction
Dengue Virus
Animals
Hepatocytes
Mice
Apoptosis
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c623t-9fb5ddbb1fbe69ab8a499afcfe99457d7c564034103adaee43342938aa5e6bc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: AMAN DXL. Performed the experiments: AMAN HHW PT. Analyzed the data: AMAN HHW DXL. Contributed reagents/materials/analysis tools: AMAN HHW PT SX KPL. Wrote the paper: AMAN DXL.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014945/
PMID 21245912
PQID 1288107190
PQPubID 1436337
ParticipantIDs plos_journals_1288107190
doaj_primary_oai_doaj_org_article_7889acaadf3c4bf9b2f4432587cbce2c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3014945
proquest_miscellaneous_876227394
proquest_miscellaneous_845765962
proquest_journals_1288107190
crossref_primary_10_1371_journal_pntd_0000926
pubmed_primary_21245912
PublicationCentury 2000
PublicationDate 20110104
PublicationDateYYYYMMDD 2011-01-04
PublicationDate_xml – month: 1
  year: 2011
  text: 20110104
  day: 4
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PLoS neglected tropical diseases
PublicationTitleAlternate PLoS Negl Trop Dis
PublicationYear 2011
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References X Weihua (ref39) 1998; 95
MS Diamond (ref43) 2000; 74
L Gitlin (ref33) 2006; 103
I Umareddy (ref22) 2007; 4
H Kato (ref32) 2006; 441
R Sumpter Jr (ref11) 2005; 79
B Gotoh (ref37) 2002; 12
TH Mogensen (ref19) 2001; 65
S Akira (ref29) 2006; 124
JL Munoz-Jordan (ref36) 2003; 100
NN Iwakoshi (ref21) 2003; 4
T Kawai (ref17) 2005; 6
DC Look (ref38) 1998; 9
M Yoneyama (ref4) 2007; 18
T Kawai (ref5) 2007; 141
MJ de Veer (ref3) 2001; 69
R Lin (ref7) 1998; 18
T Tsuchida (ref28) 2009; 19
H Kroschewski (ref24) 2009; 90
G Cheng (ref41) 2007; 104
YM Loo (ref8) 2008; 82
L Alexopoulou (ref27) 2001; 413
YT Tsai (ref30) 2009; 11
RB Seth (ref44) 2005; 122
LG Xu (ref18) 2005; 19
JR Peterson (ref23) 1995; 6
R Medzhitov (ref1) 1997; 9
TH Chang (ref10) 2006; 8
AMA Nasirudeen (ref14) 2009; 81
J Ashour (ref13) 2009; 83
M Yoneyama (ref6) 2005; 175
T Saito (ref34) 2008; 454
E Meylan (ref2) 2006; 22
AJ Johnson (ref42) 1999; 73
BL Fredericksen (ref9) 2008; 82
LJ Reed (ref45) 1938; 27
V Hornung (ref31) 2006; 314
CY Yu (ref20) 2006; 80
JL Muñoz-Jordán (ref12) 2010; 2010
K Honda (ref16) 2003; 100
AMA Nasirudeen (ref25) 2008; 10
GH Holm (ref26) 2007; 282
D Uzri (ref35) 2009; 83
K Li (ref15) 2005; 280
S Ludwig (ref40) 2002; 76
References_xml – volume: 100
  start-page: 14333
  year: 2003
  ident: ref36
  article-title: Inhibition of interferon signaling by dengue virus.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2335168100
  contributor:
    fullname: JL Munoz-Jordan
– volume: 2010
  start-page: 35
  year: 2010
  ident: ref12
  article-title: Subversion of interferon by dengue virus. l
  publication-title: Curr Top Microbiol Immuno
  contributor:
    fullname: JL Muñoz-Jordán
– volume: 282
  start-page: 21953
  year: 2007
  ident: ref26
  article-title: Retinoic acid-inducible gene-I and interferon-beta promoter stimulator-1 augment proapoptotic responses following mammalian reovirus infection via interferon regulatory factor-3.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M702112200
  contributor:
    fullname: GH Holm
– volume: 18
  start-page: 545
  year: 2007
  ident: ref4
  article-title: RIG-I family RNA helicases: Cytoplasmic sensor for antiviral innate immunity.
  publication-title: Cytokine & Growth Factor Reviews
  doi: 10.1016/j.cytogfr.2007.06.023
  contributor:
    fullname: M Yoneyama
– volume: 82
  start-page: 609
  year: 2008
  ident: ref9
  article-title: Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1.
  publication-title: J Virol
  doi: 10.1128/JVI.01305-07
  contributor:
    fullname: BL Fredericksen
– volume: 141
  start-page: 137
  year: 2007
  ident: ref5
  article-title: Antiviral signaling through pattern recognition receptors.
  publication-title: J Biochem
  doi: 10.1093/jb/mvm032
  contributor:
    fullname: T Kawai
– volume: 6
  start-page: 981
  year: 2005
  ident: ref17
  article-title: IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction.
  publication-title: Nat Immunol
  doi: 10.1038/ni1243
  contributor:
    fullname: T Kawai
– volume: 81
  start-page: 1069
  year: 2009
  ident: ref14
  article-title: Gene expression profiling by microarray analysis reveals an important role for caspase-1 in dengue virus-induced p53-mediated apoptosis.
  publication-title: J Med Virol
  doi: 10.1002/jmv.21486
  contributor:
    fullname: AMA Nasirudeen
– volume: 22
  start-page: 561
  year: 2006
  ident: ref2
  article-title: Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.05.012
  contributor:
    fullname: E Meylan
– volume: 90
  start-page: 2457
  year: 2009
  ident: ref24
  article-title: Identification of amino acids in the dengue virus type 2 envelope glycoprotein critical to virus infectivity.
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.011486-0
  contributor:
    fullname: H Kroschewski
– volume: 4
  start-page: 321
  year: 2003
  ident: ref21
  article-title: “Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1”.
  publication-title: Nat. Immunol
  doi: 10.1038/ni907
  contributor:
    fullname: NN Iwakoshi
– volume: 65
  start-page: 131
  year: 2001
  ident: ref19
  article-title: Molecular pathways in virus-induced cytokine production.
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.65.1.131-150.2001
  contributor:
    fullname: TH Mogensen
– volume: 103
  start-page: 8459
  year: 2006
  ident: ref33
  article-title: Essential role of MDA-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0603082103
  contributor:
    fullname: L Gitlin
– volume: 413
  start-page: 732
  year: 2001
  ident: ref27
  article-title: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3.
  publication-title: Nature
  doi: 10.1038/35099560
  contributor:
    fullname: L Alexopoulou
– volume: 175
  start-page: 2851
  year: 2005
  ident: ref6
  article-title: Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity.
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.175.5.2851
  contributor:
    fullname: M Yoneyama
– volume: 69
  start-page: 912
  year: 2001
  ident: ref3
  article-title: Functional classification of interferon-stimulated genes identified using microarrays.
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.69.6.912
  contributor:
    fullname: MJ de Veer
– volume: 454
  start-page: 523
  year: 2008
  ident: ref34
  article-title: Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA.
  publication-title: Nature
  doi: 10.1038/nature07106
  contributor:
    fullname: T Saito
– volume: 124
  start-page: 783
  year: 2006
  ident: ref29
  article-title: Pathogen recognition and innate immunity.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.015
  contributor:
    fullname: S Akira
– volume: 441
  start-page: 101
  year: 2006
  ident: ref32
  article-title: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.
  publication-title: Nature
  doi: 10.1038/nature04734
  contributor:
    fullname: H Kato
– volume: 95
  start-page: 1085
  year: 1998
  ident: ref39
  article-title: The polyoma virus T antigen interferes with interferon-inducible gene expression. .
  publication-title: Proc. Natl. Acad. Sci USA
  doi: 10.1073/pnas.95.3.1085
  contributor:
    fullname: X Weihua
– volume: 74
  start-page: 4957
  year: 2000
  ident: ref43
  article-title: Modulation of Dengue virus infection in human cells by alpha, beta, and gamma interferons.
  publication-title: J Virol
  doi: 10.1128/JVI.74.11.4957-4966.2000
  contributor:
    fullname: MS Diamond
– volume: 280
  start-page: 16739
  year: 2005
  ident: ref15
  article-title: Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M414139200
  contributor:
    fullname: K Li
– volume: 6
  start-page: 1173
  year: 1995
  ident: ref23
  article-title: Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoprotein.
  publication-title: Mol Biol
  contributor:
    fullname: JR Peterson
– volume: 73
  start-page: 783
  year: 1999
  ident: ref42
  article-title: New mouse model for dengue virus vaccine testing.
  publication-title: J Virol
  doi: 10.1128/JVI.73.1.783-786.1999
  contributor:
    fullname: AJ Johnson
– volume: 9
  start-page: 4
  year: 1997
  ident: ref1
  article-title: Innate immunity: impact on the adaptive immune response.
  publication-title: Curr Opin Immunol
  doi: 10.1016/S0952-7915(97)80152-5
  contributor:
    fullname: R Medzhitov
– volume: 83
  start-page: 5408
  year: 2009
  ident: ref13
  article-title: NS5 of dengue virus mediates STAT2 binding and degradation.
  publication-title: J Virol
  doi: 10.1128/JVI.02188-08
  contributor:
    fullname: J Ashour
– volume: 18
  start-page: 2986
  year: 1998
  ident: ref7
  article-title: Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.18.5.2986
  contributor:
    fullname: R Lin
– volume: 100
  start-page: 10872
  year: 2003
  ident: ref16
  article-title: Selective contribution of IFN-alpha/beta signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1934678100
  contributor:
    fullname: K Honda
– volume: 79
  start-page: 2689
  year: 2005
  ident: ref11
  article-title: Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I.
  publication-title: J Virol
  doi: 10.1128/JVI.79.5.2689-2699.2005
  contributor:
    fullname: R Sumpter Jr
– volume: 80
  start-page: 11868
  year: 2006
  ident: ref20
  article-title: Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress.
  publication-title: J Virol
  doi: 10.1128/JVI.00879-06
  contributor:
    fullname: CY Yu
– volume: 8
  start-page: 157
  year: 2006
  ident: ref10
  article-title: Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-κB activation.
  publication-title: Microbes Infect
  doi: 10.1016/j.micinf.2005.06.014
  contributor:
    fullname: TH Chang
– volume: 27
  start-page: 493
  year: 1938
  ident: ref45
  article-title: A simple method of estimating fifty percent endpoints.
  publication-title: Am J Hyg
  contributor:
    fullname: LJ Reed
– volume: 4
  start-page: 91
  year: 2007
  ident: ref22
  article-title: Dengue virus serotype infection specifies the activation of the unfolded protein response.
  publication-title: Virol J
  doi: 10.1186/1743-422X-4-91
  contributor:
    fullname: I Umareddy
– volume: 82
  start-page: 335
  year: 2008
  ident: ref8
  article-title: Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity.
  publication-title: J Virol
  doi: 10.1128/JVI.01080-07
  contributor:
    fullname: YM Loo
– volume: 10
  start-page: 1124
  year: 2008
  ident: ref25
  article-title: Induction of p53-dependent and mitochondria-mediated cell death pathway by dengue virus infection of human and animal cells.
  publication-title: Microbes Infect
  doi: 10.1016/j.micinf.2008.06.005
  contributor:
    fullname: AMA Nasirudeen
– volume: 12
  start-page: 337
  year: 2002
  ident: ref37
  article-title: Paramyxovirus strategies for evading the interferon response.
  publication-title: Rev Med Virol
  doi: 10.1002/rmv.357
  contributor:
    fullname: B Gotoh
– volume: 104
  start-page: 9035
  year: 2007
  ident: ref41
  article-title: Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0703285104
  contributor:
    fullname: G Cheng
– volume: 19
  start-page: 3
  year: 2009
  ident: ref28
  article-title: Inhibition of IRF3-dependent antiviral responses by cellular and viral proteins.
  publication-title: Cell Res
  doi: 10.1038/cr.2009.1
  contributor:
    fullname: T Tsuchida
– volume: 314
  start-page: 994
  year: 2006
  ident: ref31
  article-title: 5′-Triphosphate RNA is the ligand for RIG-I.
  publication-title: Science
  doi: 10.1126/science.1132505
  contributor:
    fullname: V Hornung
– volume: 19
  start-page: 727
  year: 2005
  ident: ref18
  article-title: VISA is an adapter protein required for virus-triggered IFN-βeta signaling.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2005.08.014
  contributor:
    fullname: LG Xu
– volume: 11
  start-page: 604
  year: 2009
  ident: ref30
  article-title: Human TLR3 recognizes dengue virus and modulates viral replication in vitro
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2008.01277.x
  contributor:
    fullname: YT Tsai
– volume: 83
  start-page: 4174
  year: 2009
  ident: ref35
  article-title: Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities.
  publication-title: J Virol
  doi: 10.1128/JVI.02449-08
  contributor:
    fullname: D Uzri
– volume: 9
  start-page: 871
  year: 1998
  ident: ref38
  article-title: Direct suppression of Stat1 function during adenoviral infection.
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80652-4
  contributor:
    fullname: DC Look
– volume: 122
  start-page: 669
  year: 2005
  ident: ref44
  article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.012
  contributor:
    fullname: RB Seth
– volume: 76
  start-page: 11166
  year: 2002
  ident: ref40
  article-title: The influenza A virus NS1 protein inhibits activation of Jun N-terminal kinase and AP-1 transcription factors.
  publication-title: J Virol
  doi: 10.1128/JVI.76.21.11166-11171.2002
  contributor:
    fullname: S Ludwig
SSID ssj0059581
Score 2.476352
Snippet Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection...
  Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early...
SourceID plos
doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e926
SubjectTerms Animals
Apoptosis
Cells, Cultured
Cytokines
DEAD Box Protein 58
DEAD-box RNA Helicases - immunology
DEAD-box RNA Helicases - metabolism
Dengue - immunology
Dengue - pathology
Dengue fever
Dengue virus
Dengue Virus - immunology
Dengue Virus - pathogenicity
Dengue virus type 1
Gene Silencing
Genes
Genetic engineering
Hepatitis
Hepatocytes - virology
Humans
Immune response
Immune system
Immunology/Cellular Microbiology and Pathogenesis
Immunology/Immune Response
Immunology/Immunity to Infections
Immunology/Innate Immunity
Infections
Interferon
Interferon-Induced Helicase, IFIH1
Interferons - immunology
Interferons - metabolism
Macrophages - virology
Melanoma
Mice
Mice, Inbred C57BL
Microbiology/Cellular Microbiology and Pathogenesis
Microbiology/Innate Immunity
Pattern recognition
Receptors, Immunologic
Reverse Transcriptase Polymerase Chain Reaction
Sensors
Toll-Like Receptor 3 - immunology
Toll-Like Receptor 3 - metabolism
Tropical diseases
Vector-borne diseases
Viral diseases
Viral infections
Viruses
West Nile virus
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4t1AQT5wJHQ3fh9boLSI5VC1Um-RnxBp611tskj77zt2ktUuquCClFPsKPLMxPNNxvMNQu9Zqgvh0pUp51TS4CalCgDkNHfeTZm0IjMxzX7w82v67Ybd7LT6SmfCenrgXnDHEKIpbbV2gVhqgjJVoJRUTAprrK9s3n0n1RhM9XswUyy3JwV0kiquKjEUzRExPR509HEZO5fZC1UiVthxSpm7P3Gdzhftfbjzz-OTO_7o7Al6PABJfNIv4Cl64OMz9HA2pMqfI3d58bW8-IBnn08Y1tHhq--XBLebVOuXyZn1fL7By7newChubjMOjx1Oxw1xE3Hq2bFqctUDXgQM29PPtce_m9W6xeMJrvgCXZ99ufp0Xg4tFUoLOKcDPRjmnDHTYDxX2kgNEY8ONnilKBNOWMbpBDzbhGinvaeEgMMiUmvmubGCvEQHcRH9IcIBQjWrpZM-YS4qjeCagnq9514SzgpUjjKtlz1zRp3TZwIijl5GddJBPeigQKdJ8Nu5ifc63wBrqAdrqP9lDQU6TGobX9DW4H4lRLgAewp0NKry_mG8HYYvLKVNdPSLdVtLEAxPTYr-MgVcCuBARQv0qreN7TIAGlCmpvCw2LOavXXuj8TmV-b5TtEuaOX1_xDMG_So_xsOFz1CB91q7d8CnOrMu_zl3AFwex-B
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyEuFe8GCvKBI6GbtZ04J9TSli5iqyq0qLfIr5SVgrPdZA_77xk7ztJFVaWc4kSJPWPPNx7PNwh9ZC4vJOU6djGnmFZ6HOcVADmRaqMTxlXmmZhm5-nZFf1-za7DhlsbjlUOa6JfqHWj3B75AayjHFwVsF9fFrexqxrloquhhMZjtDNJCOcjtHN0cn5RDGsxy5kvUwooxWVeTbKQPEey5CDI6vPCdtqzGOaOYOGOcfIc_o7ztG7a-_Dn_8co79il02doNwBKfNhrwHP0yNgX6MkshMxfIl1Mv8XTT3h2fMiwsBpf_igI_rl2OX-epFnU9Rpf1GINrXj6x-Nx2-GiqQ2eW1wYV9nDZz_gpsLHxt6sDP41X65aPA0nuewrdHV6cvn1LA6lFWIFeKcDeUimtZRJJU2aC8kFeD6iUpXJc8oynSmW0jFYuDERWhhDCQHDRbgQzKRSZeQ1GtnGmj2EK3DZlOCaG4e9KJdZKiiI2ZjUcJKyCMXDmJaLnkGj9GG0DDyPfoxKJ4MyyCBCR27gN886_mt_o1nelGE6leC450IJoSuiqKxyOakoJRPGMyWVmagI7TmxDR9oy3_qE6H9QZT3N-NNM8w0Fz4R1jSrtuQwMKkrVvTAI2BaAA_mNEJvet3YdAMgAmV5Ai9nW1qz1c_tFjv_7fm-ndcLUnn78I-_Q0_7_W646D4adcuVeQ-AqZMfwqz4C9D_FcE
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKkRAXxLspBfnAkVSbxHbsA0LlUVrEcqi6Um-RX2kjBWebZBH77xk7yYpFW6ScYjuRZ8aZmczMNwi9pb4uhHET-5hTTEozi0UJhpxkxpqEcp0HJKb5D3a2IN-u6NUemnq2jgTsdrp2vp_Uoq2Pf9-uP8CBfx-6NuTJtOh46XoT8AhFyu6h-ynoRp_kNSebuAIVlCdjAd1dKwM8cEqoSNItXRUg_T0Eat10u8zRf7Mq_1JTp4_Ro9G-xCeDQDxBe9Y9RQ_mYwT9GTIX51_j83d4_vmEYukMvvx-keFu7UsAA2azrOs1XtZyDaO4-hko43rssxBx5bBv5dFWoRgCNyWGr9b1yuJfVbvq8JTY5Z6jxemXy09n8dhpIdZg_vTAHkWNUSoplWVCKi7BEZKlLq0QhOYm15SRGSi8WSaNtJZkGeixjEtJLVM6z16gfdc4e4BwCR6cltxw600xwlXOJAGuW8sszxiNUDzRtFgOgBpFiKrl4IgMNCo8O4qRHRH66Am_mevhsMONpr0uxtNVgB8vpJbSlJkmqhQqLQnJUspzrbRNdYQOPNumF3QFaGUOji9YQxE6mli5exhvhuHg-WiKdLZZdQUHwjDfu-g_U0DTgHkoSIReDrKx2cYkYhHKt6Rma5_bI666CfDf3gkGrhze-cxX6OHw5xsucoT2-3ZlX4Pp1Ks34TT8AWp7GR0
  priority: 102
  providerName: Scholars Portal
Title RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection
URI https://www.ncbi.nlm.nih.gov/pubmed/21245912
https://www.proquest.com/docview/1288107190
https://search.proquest.com/docview/845765962
https://search.proquest.com/docview/876227394
https://pubmed.ncbi.nlm.nih.gov/PMC3014945
https://doaj.org/article/7889acaadf3c4bf9b2f4432587cbce2c
http://dx.doi.org/10.1371/journal.pntd.0000926
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWSFCh6KbpHbWrw0GPlReKmY-IkjYs6MNyk8E3gpsSATBleDv77DinJqIughwICDyIFSTNDzRtx5hGhL9TXhTBhYr_mFJPC9OOsACAnmbFmQIXmgYlpfMtu7sn3GZ0dIdrWwoSkfa3mXVcuum7-GHIrlwvda_PEepPx0IcBGaG9Y3QM7rcN0evPL81o2JkUgIkvtkp4Uy-X8kGvUU936TYmEBdmCQtswAmh2SA5cE2Bwd8znpbV-in0-XcS5R9e6foVetnASXxeP_ZrdGTdG_R83CyYv0VmOvoWj77i8eU5xdIZfPdjmuKfO1_xFyiaZVnu8KSUO-jFo0VA426Dp1Vp8dzhqfX7eoTaB1wV-NK6h63Fv-ar7RqPmjwu9w7dX1_dDW_iZmOFWAPa2YA2FDVGqUGhLMukEhLiHlnowmYgVm64poz0wb_1U2mktSRNwW2lQkpqmdI8fY9OXOXsKcIFBGxaCiOsR15EKM4kASVby6xIGY1Q3Mo0X9b8GXlYROMQd9Qyyr068kYdEbrwgt-P9ezX4US1esgbG8ghbM-kltIUqSaqyFRSEJImVHCttE10hE692tobrHNwwgLiXAA_ETprVfl0N953wzzziyfS2Wq7zgUIhvmtiv4xBBwLoMGMROhDbRv712hNLEL8wGoO3vOwB4w_sH03xv7xv6_8hF7UP8LhIGfoZLPa2s-ApDaqA_NnxqEVw0EHPbu4up1MO-GvBLRjIjphZv0Gy9IiZg
link.rule.ids 230,314,727,780,784,864,885,2102,2221,12056,12223,21388,24318,27924,27925,31719,31720,33266,33267,33744,33745,43310,43579,43805,53791,53793,73745,74014,74302
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgSMAF8XMLDPCBI2FtY8f2CY2N0UA7odKh3SL_yqhUnNKkh_73PDtuWdE0qac4URp_tt_3_Py-h9A76vNCcm5SH3NKSWV6qaiAyMncWNOnXLOgxDQ-z4cX5OslvYwbbk08VrlZE8NCbWrt98iPYB3l4KqA_fq4-JP6qlE-uhpLaNxF98DsMz-q-cn2iAcVNBQpBY7i864GLKbOZax_FJH6sHCtCRqGwssrXDNNQcHfK57O6-Ym9vn_IcprVunsMXoU6SQ-7vB_gu5Y9xTdH8eA-TNkJsWXtHiPx6fHFEtn8HQ0yfCPtc_4CxLNcj5f4-9zuYZWXPwObNy1eFLPLZ45PLG-rkfIfcB1hU-tu1pZ_HO2XDW4iOe43HN0cfZ5ejJMY2GFVAPbaQENRY1Rql8pmwupuAS_R1a6skIQygzTNCc9sG-9TBppLckyMFsZl5LaXGmWvUB7rnb2AOEKHDYtueHWMy_CFcslAZCtzS3PcpqgdNOn5aLTzyhDEI2B39H1UekxKCMGCfrkO357r1e_Dhfq5VUZJ1MJbruQWkpTZZqoSqhBRUg2oJxppe1AJ-jAw7Z5QVP-GzwJOtxAeXMz3jbDPPPBE-lsvWpKDh2T-1JFt9wChgXYoCAJ2u_GxvYzgCAQKvrwMNsZNTvfudviZr-C2rf3eQGVl7f_8bfowXA6HpWj4vzbK_Sw2_mGHzlEe-1yZV8DdWrVmzA__gIMxxcX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgSBMviO8FBviBR0I_YjvOExorZYF1msqG9hb5c1QKTmnTh_73nB23rGialKc4UWKf7fud7-53CL2nPi-EcZ16n1NKrO6nhQUgJ5g2ekC5ygMT0-SMnVySb1f0KsY_LWNY5WZPDBu1bpQ_I-_BPsrBVAH91bMxLOJ8NP40_5P6ClLe0xrLadxHD3yVOc-jz4-34R60oKFgKeAVn4M1zGMaXZYPelFqH-eu1YHPsPBUCzfUVGDz9-yndbO8DYn-H1B5Q0ONH6NHEVrio24uPEH3jHuK9ifRef4M6Wn5NS0_4MnoiGLhNL44nWb4x9pn_wW6ZlHXa3xeizW04vJ3QOauxdOmNnjm8NT4Gh8hDwI3Fo-Mu14Z_HO2WC1xGWO63HN0Of5ycXySxiILqQLk04JkJNVayoGVhhVCcgE2kLDKmqIgNNe5ooz0Qdf1M6GFMSTLQIVlXAhqmFR59gLtucaZA4QtGG9KcM2NR2GEy5wJAgI3hhmeMZqgdDOm1bzj0qiCQy0HG6Qbo8rLoIoySNBnP_DbZz0TdrjRLK6ruLAqMOELoYTQNlNE2kIOLSHZkPJcSWWGKkEHXmybDyyrfxMpQYcbUd7ejLfNsOa8I0U406yWFYeBYb5s0R2PgJIBZFiQBL3s5sa2GwAWCC0G8HK-M2t2-rnb4ma_AvO3t39BKq_u_vF3aB-WRnVann1_jR52h-BwkUO01y5W5g2gqFa-DcvjL_fyGzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RIG-I%2C+MDA5+and+TLR3+synergistically+play+an+important+role+in+restriction+of+dengue+virus+infection&rft.jtitle=PLoS+neglected+tropical+diseases&rft.au=Nasirudeen%2C+A+M+A&rft.au=Wong%2C+Hui+Hui&rft.au=Thien%2C+Peiling&rft.au=Xu%2C+Shengli&rft.date=2011-01-04&rft.eissn=1935-2735&rft.volume=5&rft.issue=1&rft.spage=e926&rft_id=info:doi/10.1371%2Fjournal.pntd.0000926&rft_id=info%3Apmid%2F21245912&rft.externalDocID=21245912
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-2735&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-2735&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-2735&client=summon