RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection
Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understan...
Saved in:
Published in | PLoS neglected tropical diseases Vol. 5; no. 1; p. e926 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
04.01.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus. |
---|---|
AbstractList | Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus. Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN- beta was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus. Dengue fever, dengue haemmorhagic fever and dengue shock syndrome, which are caused by dengue virus infection, are a major public health problem in many parts of the world, especially South East Asia. The investigation of host cell transcriptional changes in response to virus infection using DNA microarray technology has been an area of great interest. In our previous study, we used microarray technology to study expression of individual human genes in relation to dengue virus infection. Most of the genes that were upregulated were type 1 interferon related genes. To gain a better understanding of the innate immune response to dengue virus, we knocked down RIG-I, MDA5 and TLR3 genes in HUH-7 cells. Silencing these genes using siRNA technology resulted in significant increase in viral replication. This increase in viral load induced ER stress leading to apoptosis. This study demonstrates a synergistic role for RIG-I, MDA5 and TLR3 in restricting dengue virus infection. Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus. Dengue fever, dengue haemmorhagic fever and dengue shock syndrome, which are caused by dengue virus infection, are a major public health problem in many parts of the world, especially South East Asia. The investigation of host cell transcriptional changes in response to virus infection using DNA microarray technology has been an area of great interest. In our previous study, we used microarray technology to study expression of individual human genes in relation to dengue virus infection. Most of the genes that were upregulated were type 1 interferon related genes. To gain a better understanding of the innate immune response to dengue virus, we knocked down RIG-I, MDA5 and TLR3 genes in HUH-7 cells. Silencing these genes using siRNA technology resulted in significant increase in viral replication. This increase in viral load induced ER stress leading to apoptosis. This study demonstrates a synergistic role for RIG-I, MDA5 and TLR3 in restricting dengue virus infection. Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus. |
Author | Xu, Shengli Liu, Ding Xiang Wong, Hui Hui Thien, Peiling Nasirudeen, A M A Lam, Kong-Peng |
AuthorAffiliation | University of California, Berkeley, United States of America 1 Institute of Molecular and Cell Biology, Singapore, Singapore 2 School of Biological Sciences, Nanyang Technological University, Singapore, Singapore 3 Immunology Group, Bioprocessing Technology Institute, Singapore, Singapore |
AuthorAffiliation_xml | – name: 1 Institute of Molecular and Cell Biology, Singapore, Singapore – name: 2 School of Biological Sciences, Nanyang Technological University, Singapore, Singapore – name: 3 Immunology Group, Bioprocessing Technology Institute, Singapore, Singapore – name: University of California, Berkeley, United States of America |
Author_xml | – sequence: 1 givenname: A M A surname: Nasirudeen fullname: Nasirudeen, A M A email: nasir@alumni.nus.edu.sg organization: Institute of Molecular and Cell Biology, Singapore, Singapore. nasir@alumni.nus.edu.sg – sequence: 2 givenname: Hui Hui surname: Wong fullname: Wong, Hui Hui – sequence: 3 givenname: Peiling surname: Thien fullname: Thien, Peiling – sequence: 4 givenname: Shengli surname: Xu fullname: Xu, Shengli – sequence: 5 givenname: Kong-Peng surname: Lam fullname: Lam, Kong-Peng – sequence: 6 givenname: Ding Xiang surname: Liu fullname: Liu, Ding Xiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21245912$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1rFDEUDVKx7eo_EA344Iu7Tr5mJi9CqVoXVoRSn8OdfKwp2WRNZgr7702729KKYF4Scs49N_fknKKjmKJF6DVpFoR15ON1mnKEsNjG0SyauiRtn6ETIpmY046Jo0fnY3RaynXTCCl68gIdU0K5kISeIHO5vJgvP-Dvn88Ehmjw1eqS4bKLNq99Gb2GEHZ4G2BXUew325RHiCPOKVjsI862jNnr0aeIk8PGxvVk8Y3PU6mws3fIS_TcQSj21WGfoZ9fv1ydf5uvflwsz89Wc91SNs6lG4Qxw0DcYFsJQw9cSnDaWSm56EynRcsbxknDwIC1nDFOJesBhG0H3bEZervX3YZU1MGgogjte9J0RDaVsdwzTIJrtc1-A3mnEnh1d5HyWkGuUwerur6XoAGMY5oPTg7Ucc6o6Ds9aEt11fp06DYNG2u0jWOG8ET0KRL9L7VON4o1hNeBqsD7g0BOv6dqpNr4om0IEG2aiuq7ltbfk_z_zGpPK2R1cYbe_cX8tw18z9I5lZKte3g1adRtuu6r1G261CFdtezN44kfiu7jxP4AlR_QSQ |
CitedBy_id | crossref_primary_10_1371_journal_ppat_1010100 crossref_primary_10_1186_s12974_023_02898_4 crossref_primary_10_3390_v14112575 crossref_primary_10_4103_jfmpc_jfmpc_1785_23 crossref_primary_10_1016_j_jns_2016_11_034 crossref_primary_10_3390_vaccines7040145 crossref_primary_10_1111_cei_12701 crossref_primary_10_1128_JVI_00050_14 crossref_primary_10_1189_jlb_0311166 crossref_primary_10_3389_fimmu_2020_01055 crossref_primary_10_1016_j_virol_2018_10_015 crossref_primary_10_1155_2018_6106582 crossref_primary_10_3390_molecules29091945 crossref_primary_10_1007_s12275_017_6494_4 crossref_primary_10_1007_s11010_021_04326_8 crossref_primary_10_1155_2020_1372494 crossref_primary_10_1016_j_onehlt_2023_100565 crossref_primary_10_1097_MRM_0000000000000112 crossref_primary_10_1155_2016_1016840 crossref_primary_10_1016_j_isci_2023_108620 crossref_primary_10_1128_JVI_00221_16 crossref_primary_10_1016_j_csbj_2022_08_001 crossref_primary_10_1016_j_it_2015_12_003 crossref_primary_10_4161_jkst_27715 crossref_primary_10_4236_health_2013_59206 crossref_primary_10_1016_j_antiviral_2017_09_017 crossref_primary_10_1038_s41467_020_16768_7 crossref_primary_10_3390_vaccines8010039 crossref_primary_10_3389_fimmu_2018_02147 crossref_primary_10_1016_j_intimp_2023_110988 crossref_primary_10_3389_fimmu_2023_1272393 crossref_primary_10_1371_journal_pntd_0009575 crossref_primary_10_1098_rsob_180087 crossref_primary_10_1007_s00705_018_3784_z crossref_primary_10_1158_2326_6066_CIR_18_0014 crossref_primary_10_1637_0005_2086_65_3_419 crossref_primary_10_3389_fmicb_2020_00725 crossref_primary_10_1016_j_jdermsci_2018_01_007 crossref_primary_10_1016_S2221_1691_13_60057_X crossref_primary_10_3390_genes11010086 crossref_primary_10_1371_journal_ppat_1004566 crossref_primary_10_1016_j_actatropica_2024_107146 crossref_primary_10_1002_cbin_10354 crossref_primary_10_1111_jnc_15679 crossref_primary_10_1155_2017_5649214 crossref_primary_10_3892_etm_2019_7178 crossref_primary_10_1016_j_jneuroim_2016_12_002 crossref_primary_10_3389_fmicb_2022_847588 crossref_primary_10_3390_pathogens12050635 crossref_primary_10_1007_s00005_018_0525_7 crossref_primary_10_1186_1743_422X_10_127 crossref_primary_10_3390_v6020683 crossref_primary_10_1371_journal_pone_0235422 crossref_primary_10_1016_j_antiviral_2013_10_002 crossref_primary_10_2217_fvl_2017_0146 crossref_primary_10_1016_j_antiviral_2018_12_016 crossref_primary_10_1371_journal_ppat_1006738 crossref_primary_10_3390_v10120712 crossref_primary_10_1111_j_1600_065X_2011_01049_x crossref_primary_10_3389_fmicb_2014_00222 crossref_primary_10_1074_jbc_M112_421438 crossref_primary_10_1128_JVI_03114_13 crossref_primary_10_1016_j_meegid_2011_06_009 crossref_primary_10_4014_jmb_2010_10047 crossref_primary_10_1080_20477724_2022_2101840 crossref_primary_10_1371_journal_pntd_0003468 crossref_primary_10_1016_j_virol_2012_09_038 crossref_primary_10_1182_blood_2012_05_430090 crossref_primary_10_1186_s12929_019_0614_x crossref_primary_10_3389_fcimb_2020_588168 crossref_primary_10_3390_pathogens13040306 crossref_primary_10_1371_journal_ppat_1009438 crossref_primary_10_3389_fmicb_2023_1257024 crossref_primary_10_1099_vir_0_064121_0 crossref_primary_10_1128_JVI_03083_12 crossref_primary_10_1128_JVI_01050_20 crossref_primary_10_1146_annurev_immunol_042617_053142 crossref_primary_10_1016_j_virusres_2014_03_013 crossref_primary_10_3390_v9120383 crossref_primary_10_1007_s12275_023_00047_3 crossref_primary_10_1007_s11010_019_03658_w crossref_primary_10_1016_j_fsi_2013_02_017 crossref_primary_10_1128_JVI_01360_15 crossref_primary_10_3389_fimmu_2020_00678 crossref_primary_10_1093_jpids_piac136 crossref_primary_10_1159_000494034 crossref_primary_10_3389_fimmu_2016_00662 crossref_primary_10_12688_f1000research_9118_2 crossref_primary_10_12688_f1000research_9118_1 crossref_primary_10_1139_cjas_2017_0046 crossref_primary_10_3389_fcimb_2022_1004608 crossref_primary_10_1261_rna_079016_121 crossref_primary_10_4161_viru_25569 crossref_primary_10_3389_fimmu_2014_00647 crossref_primary_10_1002_mbo3_701 crossref_primary_10_1128_CVI_00500_13 crossref_primary_10_3389_fcimb_2018_00113 crossref_primary_10_1016_j_dci_2016_03_029 crossref_primary_10_1186_s12920_017_0304_z crossref_primary_10_1016_j_jmb_2016_04_024 crossref_primary_10_3390_v11100970 crossref_primary_10_1371_journal_pntd_0002060 crossref_primary_10_1016_j_virol_2014_04_036 crossref_primary_10_1007_s00705_015_2417_z crossref_primary_10_3389_fcimb_2020_00489 crossref_primary_10_1016_j_virusres_2016_07_001 crossref_primary_10_1093_abbs_gms122 crossref_primary_10_1371_journal_pone_0092240 crossref_primary_10_1007_s11262_022_01958_w crossref_primary_10_1371_journal_pone_0034055 crossref_primary_10_1371_journal_pone_0070251 crossref_primary_10_1042_BJ20140456 crossref_primary_10_3390_v14050992 crossref_primary_10_3389_fmicb_2020_00531 crossref_primary_10_1016_j_psj_2020_09_029 crossref_primary_10_1186_s13104_018_3620_2 crossref_primary_10_3389_fmicb_2021_682380 crossref_primary_10_1080_15476286_2023_2291610 crossref_primary_10_1007_s10989_019_09861_z crossref_primary_10_1016_j_coviro_2016_09_013 crossref_primary_10_4236_jbm_2021_91010 crossref_primary_10_1371_journal_ppat_1003541 crossref_primary_10_1371_journal_pntd_0002178 crossref_primary_10_1016_j_chom_2014_06_001 crossref_primary_10_1038_srep45171 crossref_primary_10_1099_jgv_0_000769 crossref_primary_10_1128_JVI_01997_12 crossref_primary_10_5858_arpa_2016_0409_RA crossref_primary_10_1016_j_coviro_2020_07_015 crossref_primary_10_1126_scitranslmed_aad8657 crossref_primary_10_1007_s00441_014_1841_9 crossref_primary_10_3389_fcimb_2023_1251204 crossref_primary_10_1074_jbc_M115_654855 crossref_primary_10_3389_fcimb_2022_887729 crossref_primary_10_3389_fimmu_2021_801811 crossref_primary_10_1016_j_virol_2015_02_017 crossref_primary_10_1016_j_fsi_2015_01_012 crossref_primary_10_15252_emmm_201404459 crossref_primary_10_1038_s41426_018_0168_0 crossref_primary_10_1186_s12864_017_4330_1 crossref_primary_10_3390_v12010094 crossref_primary_10_1016_j_jid_2018_07_038 crossref_primary_10_1038_s41418_018_0215_3 crossref_primary_10_3389_fcimb_2022_975222 crossref_primary_10_3389_fmicb_2016_01233 crossref_primary_10_1007_s11481_017_9736_7 crossref_primary_10_3389_fimmu_2022_829433 crossref_primary_10_1016_j_virol_2016_07_005 crossref_primary_10_1016_j_coviro_2016_10_001 crossref_primary_10_4049_jimmunol_1303343 crossref_primary_10_1016_j_dci_2015_03_001 crossref_primary_10_1128_JVI_02234_16 crossref_primary_10_1093_femspd_ftac014 crossref_primary_10_18632_oncotarget_15352 crossref_primary_10_1016_j_intimp_2018_07_019 crossref_primary_10_1155_2017_1734151 crossref_primary_10_1371_journal_pone_0055108 crossref_primary_10_1038_jid_2014_36 crossref_primary_10_4014_jmb_2210_10006 crossref_primary_10_3389_fimmu_2019_01586 crossref_primary_10_1099_jgv_0_000867 crossref_primary_10_1016_j_antiviral_2019_03_011 crossref_primary_10_1016_j_imlet_2021_06_001 crossref_primary_10_3390_v13061060 crossref_primary_10_1016_j_virol_2018_07_014 crossref_primary_10_1038_s41401_019_0316_7 crossref_primary_10_1016_j_ajpath_2013_02_027 crossref_primary_10_3390_v13101967 crossref_primary_10_1371_journal_ppat_1011241 crossref_primary_10_2222_jsv_61_221 crossref_primary_10_3390_ijms222413360 crossref_primary_10_3389_fmicb_2021_744233 crossref_primary_10_1089_jir_2019_0097 crossref_primary_10_1073_pnas_1119238109 crossref_primary_10_1016_j_coviro_2014_09_011 crossref_primary_10_1007_s00705_019_04406_7 crossref_primary_10_3390_microorganisms7090296 crossref_primary_10_1007_s12026_012_8293_7 crossref_primary_10_3390_v4030397 crossref_primary_10_1080_21505594_2021_1996059 crossref_primary_10_1002_jnr_24923 crossref_primary_10_1371_journal_ppat_1005357 crossref_primary_10_1016_j_celrep_2018_06_047 crossref_primary_10_1128_JVI_01643_15 crossref_primary_10_1186_s12929_018_0482_9 crossref_primary_10_1016_j_molmed_2024_03_006 crossref_primary_10_1016_j_antiviral_2016_11_010 crossref_primary_10_1371_journal_ppat_1010499 crossref_primary_10_1016_j_cytogfr_2014_08_005 crossref_primary_10_1186_s13567_016_0358_5 crossref_primary_10_1159_000355217 crossref_primary_10_3389_fimmu_2020_593901 crossref_primary_10_3389_fnins_2016_00193 crossref_primary_10_3389_fimmu_2018_02860 crossref_primary_10_1016_j_virusres_2014_01_019 crossref_primary_10_1089_jir_2014_0129 crossref_primary_10_1016_j_celrep_2024_114370 crossref_primary_10_1111_cmi_12734 crossref_primary_10_1161_CIRCHEARTFAILURE_112_969402 crossref_primary_10_1128_JVI_06277_11 crossref_primary_10_1371_journal_ppat_1005345 crossref_primary_10_1371_journal_pone_0035654 crossref_primary_10_1146_annurev_cellbio_100617_062903 crossref_primary_10_3389_fmicb_2021_714409 crossref_primary_10_1089_jir_2014_0038 crossref_primary_10_3390_ijms22042108 crossref_primary_10_1093_bib_bbab199 crossref_primary_10_3390_vaccines8030530 crossref_primary_10_1038_s41598_017_03932_1 crossref_primary_10_1016_j_jmb_2013_11_023 crossref_primary_10_1016_j_vaccine_2011_06_094 crossref_primary_10_1111_imr_12367 crossref_primary_10_4049_jimmunol_1602121 crossref_primary_10_1016_j_jid_2018_09_003 crossref_primary_10_1371_journal_ppat_1004242 crossref_primary_10_3390_cells13030226 crossref_primary_10_3389_fimmu_2021_707287 crossref_primary_10_1016_S0140_6736_14_60572_9 crossref_primary_10_1371_journal_pone_0023346 crossref_primary_10_1016_j_mib_2011_07_012 crossref_primary_10_1038_srep32000 crossref_primary_10_1016_j_micinf_2016_03_009 crossref_primary_10_1128_mbio_03363_21 crossref_primary_10_3389_fgene_2018_00595 crossref_primary_10_1186_s12967_014_0349_0 crossref_primary_10_3389_fimmu_2023_1257192 |
Cites_doi | 10.1073/pnas.2335168100 10.1074/jbc.M702112200 10.1016/j.cytogfr.2007.06.023 10.1128/JVI.01305-07 10.1093/jb/mvm032 10.1038/ni1243 10.1002/jmv.21486 10.1016/j.molcel.2006.05.012 10.1099/vir.0.011486-0 10.1038/ni907 10.1128/MMBR.65.1.131-150.2001 10.1073/pnas.0603082103 10.1038/35099560 10.4049/jimmunol.175.5.2851 10.1189/jlb.69.6.912 10.1038/nature07106 10.1016/j.cell.2006.02.015 10.1038/nature04734 10.1073/pnas.95.3.1085 10.1128/JVI.74.11.4957-4966.2000 10.1074/jbc.M414139200 10.1128/JVI.73.1.783-786.1999 10.1016/S0952-7915(97)80152-5 10.1128/JVI.02188-08 10.1128/MCB.18.5.2986 10.1073/pnas.1934678100 10.1128/JVI.79.5.2689-2699.2005 10.1128/JVI.00879-06 10.1016/j.micinf.2005.06.014 10.1186/1743-422X-4-91 10.1128/JVI.01080-07 10.1016/j.micinf.2008.06.005 10.1002/rmv.357 10.1073/pnas.0703285104 10.1038/cr.2009.1 10.1126/science.1132505 10.1016/j.molcel.2005.08.014 10.1111/j.1462-5822.2008.01277.x 10.1128/JVI.02449-08 10.1016/S1074-7613(00)80652-4 10.1016/j.cell.2005.08.012 10.1128/JVI.76.21.11166-11171.2002 |
ContentType | Journal Article |
Copyright | 2011 Nasirudeen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nasirudeen AMA, Wong HH, Thien P, Xu S, Lam K-P, et al. (2011) RIG-I, MDA5 and TLR3 Synergistically Play an Important Role in Restriction of Dengue Virus Infection. PLoS Negl Trop Dis 5(1): e926. doi:10.1371/journal.pntd.0000926 Nasirudeen et al. 2011 |
Copyright_xml | – notice: 2011 Nasirudeen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nasirudeen AMA, Wong HH, Thien P, Xu S, Lam K-P, et al. (2011) RIG-I, MDA5 and TLR3 Synergistically Play an Important Role in Restriction of Dengue Virus Infection. PLoS Negl Trop Dis 5(1): e926. doi:10.1371/journal.pntd.0000926 – notice: Nasirudeen et al. 2011 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7SS 7T2 7T7 7U9 7X7 7XB 88E 8C1 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO F1W FR3 FYUFA GHDGH H94 H95 H97 K9. L.G M0S M1P M7N P64 PIMPY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.1371/journal.pntd.0000926 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Entomology Abstracts (Full archive) Health and Safety Science Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Health & Safety Science Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) ProQuest Public Health Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals(OpenAccess) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Dengue Virus Signaling through RIG-I, MDA5, TLR3 |
EISSN | 1935-2735 |
Editor | Harris, Eva |
Editor_xml | – sequence: 1 givenname: Eva surname: Harris fullname: Harris, Eva |
EndPage | e926 |
ExternalDocumentID | 1288107190 oai_doaj_org_article_7889acaadf3c4bf9b2f4432587cbce2c 2893327341 10_1371_journal_pntd_0000926 21245912 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Singapore Asia |
GeographicLocations_xml | – name: Singapore – name: Asia |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7X7 88E 8C1 8FI 8FJ AAFWJ ABDBF ABUWG ACGFO ACIHN ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI BWKFM CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EAP EAS EBD ECGQY ECM EIF EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR KQ8 M1P M48 M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ PROAC PSQYO RNS RPM SV3 TR2 TUS UKHRP AAYXX CITATION 7QL 7SS 7T2 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO F1W FR3 H94 H95 H97 K9. L.G M7N P64 PQEST PQUKI 7X8 5PM AFPKN AAPBV ABPTK |
ID | FETCH-LOGICAL-c623t-9fb5ddbb1fbe69ab8a499afcfe99457d7c564034103adaee43342938aa5e6bc73 |
IEDL.DBID | RPM |
ISSN | 1935-2735 1935-2727 |
IngestDate | Sun Oct 01 00:20:28 EDT 2023 Tue Oct 22 14:57:26 EDT 2024 Tue Sep 17 21:26:42 EDT 2024 Fri Oct 25 08:23:21 EDT 2024 Fri Oct 25 08:02:49 EDT 2024 Sat Nov 09 14:10:51 EST 2024 Thu Nov 21 22:29:24 EST 2024 Sat Nov 02 12:29:07 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Toll-Like Receptor 3 DEAD-box RNA Helicases Interferons Dengue Humans Mice, Inbred C57BL Cells, Cultured Gene Silencing Macrophages Reverse Transcriptase Polymerase Chain Reaction Dengue Virus Animals Hepatocytes Mice Apoptosis |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c623t-9fb5ddbb1fbe69ab8a499afcfe99457d7c564034103adaee43342938aa5e6bc73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: AMAN DXL. Performed the experiments: AMAN HHW PT. Analyzed the data: AMAN HHW DXL. Contributed reagents/materials/analysis tools: AMAN HHW PT SX KPL. Wrote the paper: AMAN DXL. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014945/ |
PMID | 21245912 |
PQID | 1288107190 |
PQPubID | 1436337 |
ParticipantIDs | plos_journals_1288107190 doaj_primary_oai_doaj_org_article_7889acaadf3c4bf9b2f4432587cbce2c pubmedcentral_primary_oai_pubmedcentral_nih_gov_3014945 proquest_miscellaneous_876227394 proquest_miscellaneous_845765962 proquest_journals_1288107190 crossref_primary_10_1371_journal_pntd_0000926 pubmed_primary_21245912 |
PublicationCentury | 2000 |
PublicationDate | 20110104 |
PublicationDateYYYYMMDD | 2011-01-04 |
PublicationDate_xml | – month: 1 year: 2011 text: 20110104 day: 4 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS neglected tropical diseases |
PublicationTitleAlternate | PLoS Negl Trop Dis |
PublicationYear | 2011 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | X Weihua (ref39) 1998; 95 MS Diamond (ref43) 2000; 74 L Gitlin (ref33) 2006; 103 I Umareddy (ref22) 2007; 4 H Kato (ref32) 2006; 441 R Sumpter Jr (ref11) 2005; 79 B Gotoh (ref37) 2002; 12 TH Mogensen (ref19) 2001; 65 S Akira (ref29) 2006; 124 JL Munoz-Jordan (ref36) 2003; 100 NN Iwakoshi (ref21) 2003; 4 T Kawai (ref17) 2005; 6 DC Look (ref38) 1998; 9 M Yoneyama (ref4) 2007; 18 T Kawai (ref5) 2007; 141 MJ de Veer (ref3) 2001; 69 R Lin (ref7) 1998; 18 T Tsuchida (ref28) 2009; 19 H Kroschewski (ref24) 2009; 90 G Cheng (ref41) 2007; 104 YM Loo (ref8) 2008; 82 L Alexopoulou (ref27) 2001; 413 YT Tsai (ref30) 2009; 11 RB Seth (ref44) 2005; 122 LG Xu (ref18) 2005; 19 JR Peterson (ref23) 1995; 6 R Medzhitov (ref1) 1997; 9 TH Chang (ref10) 2006; 8 AMA Nasirudeen (ref14) 2009; 81 J Ashour (ref13) 2009; 83 M Yoneyama (ref6) 2005; 175 T Saito (ref34) 2008; 454 E Meylan (ref2) 2006; 22 AJ Johnson (ref42) 1999; 73 BL Fredericksen (ref9) 2008; 82 LJ Reed (ref45) 1938; 27 V Hornung (ref31) 2006; 314 CY Yu (ref20) 2006; 80 JL Muñoz-Jordán (ref12) 2010; 2010 K Honda (ref16) 2003; 100 AMA Nasirudeen (ref25) 2008; 10 GH Holm (ref26) 2007; 282 D Uzri (ref35) 2009; 83 K Li (ref15) 2005; 280 S Ludwig (ref40) 2002; 76 |
References_xml | – volume: 100 start-page: 14333 year: 2003 ident: ref36 article-title: Inhibition of interferon signaling by dengue virus. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2335168100 contributor: fullname: JL Munoz-Jordan – volume: 2010 start-page: 35 year: 2010 ident: ref12 article-title: Subversion of interferon by dengue virus. l publication-title: Curr Top Microbiol Immuno contributor: fullname: JL Muñoz-Jordán – volume: 282 start-page: 21953 year: 2007 ident: ref26 article-title: Retinoic acid-inducible gene-I and interferon-beta promoter stimulator-1 augment proapoptotic responses following mammalian reovirus infection via interferon regulatory factor-3. publication-title: J Biol Chem doi: 10.1074/jbc.M702112200 contributor: fullname: GH Holm – volume: 18 start-page: 545 year: 2007 ident: ref4 article-title: RIG-I family RNA helicases: Cytoplasmic sensor for antiviral innate immunity. publication-title: Cytokine & Growth Factor Reviews doi: 10.1016/j.cytogfr.2007.06.023 contributor: fullname: M Yoneyama – volume: 82 start-page: 609 year: 2008 ident: ref9 article-title: Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. publication-title: J Virol doi: 10.1128/JVI.01305-07 contributor: fullname: BL Fredericksen – volume: 141 start-page: 137 year: 2007 ident: ref5 article-title: Antiviral signaling through pattern recognition receptors. publication-title: J Biochem doi: 10.1093/jb/mvm032 contributor: fullname: T Kawai – volume: 6 start-page: 981 year: 2005 ident: ref17 article-title: IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. publication-title: Nat Immunol doi: 10.1038/ni1243 contributor: fullname: T Kawai – volume: 81 start-page: 1069 year: 2009 ident: ref14 article-title: Gene expression profiling by microarray analysis reveals an important role for caspase-1 in dengue virus-induced p53-mediated apoptosis. publication-title: J Med Virol doi: 10.1002/jmv.21486 contributor: fullname: AMA Nasirudeen – volume: 22 start-page: 561 year: 2006 ident: ref2 article-title: Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. publication-title: Mol Cell doi: 10.1016/j.molcel.2006.05.012 contributor: fullname: E Meylan – volume: 90 start-page: 2457 year: 2009 ident: ref24 article-title: Identification of amino acids in the dengue virus type 2 envelope glycoprotein critical to virus infectivity. publication-title: J Gen Virol doi: 10.1099/vir.0.011486-0 contributor: fullname: H Kroschewski – volume: 4 start-page: 321 year: 2003 ident: ref21 article-title: “Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1”. publication-title: Nat. Immunol doi: 10.1038/ni907 contributor: fullname: NN Iwakoshi – volume: 65 start-page: 131 year: 2001 ident: ref19 article-title: Molecular pathways in virus-induced cytokine production. publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.65.1.131-150.2001 contributor: fullname: TH Mogensen – volume: 103 start-page: 8459 year: 2006 ident: ref33 article-title: Essential role of MDA-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0603082103 contributor: fullname: L Gitlin – volume: 413 start-page: 732 year: 2001 ident: ref27 article-title: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. publication-title: Nature doi: 10.1038/35099560 contributor: fullname: L Alexopoulou – volume: 175 start-page: 2851 year: 2005 ident: ref6 article-title: Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. publication-title: J Immunol. doi: 10.4049/jimmunol.175.5.2851 contributor: fullname: M Yoneyama – volume: 69 start-page: 912 year: 2001 ident: ref3 article-title: Functional classification of interferon-stimulated genes identified using microarrays. publication-title: J Leukoc Biol doi: 10.1189/jlb.69.6.912 contributor: fullname: MJ de Veer – volume: 454 start-page: 523 year: 2008 ident: ref34 article-title: Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. publication-title: Nature doi: 10.1038/nature07106 contributor: fullname: T Saito – volume: 124 start-page: 783 year: 2006 ident: ref29 article-title: Pathogen recognition and innate immunity. publication-title: Cell doi: 10.1016/j.cell.2006.02.015 contributor: fullname: S Akira – volume: 441 start-page: 101 year: 2006 ident: ref32 article-title: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. publication-title: Nature doi: 10.1038/nature04734 contributor: fullname: H Kato – volume: 95 start-page: 1085 year: 1998 ident: ref39 article-title: The polyoma virus T antigen interferes with interferon-inducible gene expression. . publication-title: Proc. Natl. Acad. Sci USA doi: 10.1073/pnas.95.3.1085 contributor: fullname: X Weihua – volume: 74 start-page: 4957 year: 2000 ident: ref43 article-title: Modulation of Dengue virus infection in human cells by alpha, beta, and gamma interferons. publication-title: J Virol doi: 10.1128/JVI.74.11.4957-4966.2000 contributor: fullname: MS Diamond – volume: 280 start-page: 16739 year: 2005 ident: ref15 article-title: Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. publication-title: J Biol Chem doi: 10.1074/jbc.M414139200 contributor: fullname: K Li – volume: 6 start-page: 1173 year: 1995 ident: ref23 article-title: Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoprotein. publication-title: Mol Biol contributor: fullname: JR Peterson – volume: 73 start-page: 783 year: 1999 ident: ref42 article-title: New mouse model for dengue virus vaccine testing. publication-title: J Virol doi: 10.1128/JVI.73.1.783-786.1999 contributor: fullname: AJ Johnson – volume: 9 start-page: 4 year: 1997 ident: ref1 article-title: Innate immunity: impact on the adaptive immune response. publication-title: Curr Opin Immunol doi: 10.1016/S0952-7915(97)80152-5 contributor: fullname: R Medzhitov – volume: 83 start-page: 5408 year: 2009 ident: ref13 article-title: NS5 of dengue virus mediates STAT2 binding and degradation. publication-title: J Virol doi: 10.1128/JVI.02188-08 contributor: fullname: J Ashour – volume: 18 start-page: 2986 year: 1998 ident: ref7 article-title: Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. publication-title: Mol Cell Biol doi: 10.1128/MCB.18.5.2986 contributor: fullname: R Lin – volume: 100 start-page: 10872 year: 2003 ident: ref16 article-title: Selective contribution of IFN-alpha/beta signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1934678100 contributor: fullname: K Honda – volume: 79 start-page: 2689 year: 2005 ident: ref11 article-title: Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. publication-title: J Virol doi: 10.1128/JVI.79.5.2689-2699.2005 contributor: fullname: R Sumpter Jr – volume: 80 start-page: 11868 year: 2006 ident: ref20 article-title: Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress. publication-title: J Virol doi: 10.1128/JVI.00879-06 contributor: fullname: CY Yu – volume: 8 start-page: 157 year: 2006 ident: ref10 article-title: Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-κB activation. publication-title: Microbes Infect doi: 10.1016/j.micinf.2005.06.014 contributor: fullname: TH Chang – volume: 27 start-page: 493 year: 1938 ident: ref45 article-title: A simple method of estimating fifty percent endpoints. publication-title: Am J Hyg contributor: fullname: LJ Reed – volume: 4 start-page: 91 year: 2007 ident: ref22 article-title: Dengue virus serotype infection specifies the activation of the unfolded protein response. publication-title: Virol J doi: 10.1186/1743-422X-4-91 contributor: fullname: I Umareddy – volume: 82 start-page: 335 year: 2008 ident: ref8 article-title: Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. publication-title: J Virol doi: 10.1128/JVI.01080-07 contributor: fullname: YM Loo – volume: 10 start-page: 1124 year: 2008 ident: ref25 article-title: Induction of p53-dependent and mitochondria-mediated cell death pathway by dengue virus infection of human and animal cells. publication-title: Microbes Infect doi: 10.1016/j.micinf.2008.06.005 contributor: fullname: AMA Nasirudeen – volume: 12 start-page: 337 year: 2002 ident: ref37 article-title: Paramyxovirus strategies for evading the interferon response. publication-title: Rev Med Virol doi: 10.1002/rmv.357 contributor: fullname: B Gotoh – volume: 104 start-page: 9035 year: 2007 ident: ref41 article-title: Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0703285104 contributor: fullname: G Cheng – volume: 19 start-page: 3 year: 2009 ident: ref28 article-title: Inhibition of IRF3-dependent antiviral responses by cellular and viral proteins. publication-title: Cell Res doi: 10.1038/cr.2009.1 contributor: fullname: T Tsuchida – volume: 314 start-page: 994 year: 2006 ident: ref31 article-title: 5′-Triphosphate RNA is the ligand for RIG-I. publication-title: Science doi: 10.1126/science.1132505 contributor: fullname: V Hornung – volume: 19 start-page: 727 year: 2005 ident: ref18 article-title: VISA is an adapter protein required for virus-triggered IFN-βeta signaling. publication-title: Mol Cell doi: 10.1016/j.molcel.2005.08.014 contributor: fullname: LG Xu – volume: 11 start-page: 604 year: 2009 ident: ref30 article-title: Human TLR3 recognizes dengue virus and modulates viral replication in vitro publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2008.01277.x contributor: fullname: YT Tsai – volume: 83 start-page: 4174 year: 2009 ident: ref35 article-title: Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities. publication-title: J Virol doi: 10.1128/JVI.02449-08 contributor: fullname: D Uzri – volume: 9 start-page: 871 year: 1998 ident: ref38 article-title: Direct suppression of Stat1 function during adenoviral infection. publication-title: Immunity doi: 10.1016/S1074-7613(00)80652-4 contributor: fullname: DC Look – volume: 122 start-page: 669 year: 2005 ident: ref44 article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. publication-title: Cell doi: 10.1016/j.cell.2005.08.012 contributor: fullname: RB Seth – volume: 76 start-page: 11166 year: 2002 ident: ref40 article-title: The influenza A virus NS1 protein inhibits activation of Jun N-terminal kinase and AP-1 transcription factors. publication-title: J Virol doi: 10.1128/JVI.76.21.11166-11171.2002 contributor: fullname: S Ludwig |
SSID | ssj0059581 |
Score | 2.476352 |
Snippet | Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection... Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early... |
SourceID | plos doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e926 |
SubjectTerms | Animals Apoptosis Cells, Cultured Cytokines DEAD Box Protein 58 DEAD-box RNA Helicases - immunology DEAD-box RNA Helicases - metabolism Dengue - immunology Dengue - pathology Dengue fever Dengue virus Dengue Virus - immunology Dengue Virus - pathogenicity Dengue virus type 1 Gene Silencing Genes Genetic engineering Hepatitis Hepatocytes - virology Humans Immune response Immune system Immunology/Cellular Microbiology and Pathogenesis Immunology/Immune Response Immunology/Immunity to Infections Immunology/Innate Immunity Infections Interferon Interferon-Induced Helicase, IFIH1 Interferons - immunology Interferons - metabolism Macrophages - virology Melanoma Mice Mice, Inbred C57BL Microbiology/Cellular Microbiology and Pathogenesis Microbiology/Innate Immunity Pattern recognition Receptors, Immunologic Reverse Transcriptase Polymerase Chain Reaction Sensors Toll-Like Receptor 3 - immunology Toll-Like Receptor 3 - metabolism Tropical diseases Vector-borne diseases Viral diseases Viral infections Viruses West Nile virus |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4t1AQT5wJHQ3fh9boLSI5VC1Um-RnxBp611tskj77zt2ktUuquCClFPsKPLMxPNNxvMNQu9Zqgvh0pUp51TS4CalCgDkNHfeTZm0IjMxzX7w82v67Ybd7LT6SmfCenrgXnDHEKIpbbV2gVhqgjJVoJRUTAprrK9s3n0n1RhM9XswUyy3JwV0kiquKjEUzRExPR509HEZO5fZC1UiVthxSpm7P3Gdzhftfbjzz-OTO_7o7Al6PABJfNIv4Cl64OMz9HA2pMqfI3d58bW8-IBnn08Y1tHhq--XBLebVOuXyZn1fL7By7newChubjMOjx1Oxw1xE3Hq2bFqctUDXgQM29PPtce_m9W6xeMJrvgCXZ99ufp0Xg4tFUoLOKcDPRjmnDHTYDxX2kgNEY8ONnilKBNOWMbpBDzbhGinvaeEgMMiUmvmubGCvEQHcRH9IcIBQjWrpZM-YS4qjeCagnq9514SzgpUjjKtlz1zRp3TZwIijl5GddJBPeigQKdJ8Nu5ifc63wBrqAdrqP9lDQU6TGobX9DW4H4lRLgAewp0NKry_mG8HYYvLKVNdPSLdVtLEAxPTYr-MgVcCuBARQv0qreN7TIAGlCmpvCw2LOavXXuj8TmV-b5TtEuaOX1_xDMG_So_xsOFz1CB91q7d8CnOrMu_zl3AFwex-B priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyEuFe8GCvKBI6GbtZ04J9TSli5iqyq0qLfIr5SVgrPdZA_77xk7ztJFVaWc4kSJPWPPNx7PNwh9ZC4vJOU6djGnmFZ6HOcVADmRaqMTxlXmmZhm5-nZFf1-za7DhlsbjlUOa6JfqHWj3B75AayjHFwVsF9fFrexqxrloquhhMZjtDNJCOcjtHN0cn5RDGsxy5kvUwooxWVeTbKQPEey5CDI6vPCdtqzGOaOYOGOcfIc_o7ztG7a-_Dn_8co79il02doNwBKfNhrwHP0yNgX6MkshMxfIl1Mv8XTT3h2fMiwsBpf_igI_rl2OX-epFnU9Rpf1GINrXj6x-Nx2-GiqQ2eW1wYV9nDZz_gpsLHxt6sDP41X65aPA0nuewrdHV6cvn1LA6lFWIFeKcDeUimtZRJJU2aC8kFeD6iUpXJc8oynSmW0jFYuDERWhhDCQHDRbgQzKRSZeQ1GtnGmj2EK3DZlOCaG4e9KJdZKiiI2ZjUcJKyCMXDmJaLnkGj9GG0DDyPfoxKJ4MyyCBCR27gN886_mt_o1nelGE6leC450IJoSuiqKxyOakoJRPGMyWVmagI7TmxDR9oy3_qE6H9QZT3N-NNM8w0Fz4R1jSrtuQwMKkrVvTAI2BaAA_mNEJvet3YdAMgAmV5Ai9nW1qz1c_tFjv_7fm-ndcLUnn78I-_Q0_7_W646D4adcuVeQ-AqZMfwqz4C9D_FcE priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKkRAXxLspBfnAkVSbxHbsA0LlUVrEcqi6Um-RX2kjBWebZBH77xk7yYpFW6ScYjuRZ8aZmczMNwi9pb4uhHET-5hTTEozi0UJhpxkxpqEcp0HJKb5D3a2IN-u6NUemnq2jgTsdrp2vp_Uoq2Pf9-uP8CBfx-6NuTJtOh46XoT8AhFyu6h-ynoRp_kNSebuAIVlCdjAd1dKwM8cEqoSNItXRUg_T0Eat10u8zRf7Mq_1JTp4_Ro9G-xCeDQDxBe9Y9RQ_mYwT9GTIX51_j83d4_vmEYukMvvx-keFu7UsAA2azrOs1XtZyDaO4-hko43rssxBx5bBv5dFWoRgCNyWGr9b1yuJfVbvq8JTY5Z6jxemXy09n8dhpIdZg_vTAHkWNUSoplWVCKi7BEZKlLq0QhOYm15SRGSi8WSaNtJZkGeixjEtJLVM6z16gfdc4e4BwCR6cltxw600xwlXOJAGuW8sszxiNUDzRtFgOgBpFiKrl4IgMNCo8O4qRHRH66Am_mevhsMONpr0uxtNVgB8vpJbSlJkmqhQqLQnJUspzrbRNdYQOPNumF3QFaGUOji9YQxE6mli5exhvhuHg-WiKdLZZdQUHwjDfu-g_U0DTgHkoSIReDrKx2cYkYhHKt6Rma5_bI666CfDf3gkGrhze-cxX6OHw5xsucoT2-3ZlX4Pp1Ks34TT8AWp7GR0 priority: 102 providerName: Scholars Portal |
Title | RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21245912 https://www.proquest.com/docview/1288107190 https://search.proquest.com/docview/845765962 https://search.proquest.com/docview/876227394 https://pubmed.ncbi.nlm.nih.gov/PMC3014945 https://doaj.org/article/7889acaadf3c4bf9b2f4432587cbce2c http://dx.doi.org/10.1371/journal.pntd.0000926 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWSFCh6KbpHbWrw0GPlReKmY-IkjYs6MNyk8E3gpsSATBleDv77DinJqIughwICDyIFSTNDzRtx5hGhL9TXhTBhYr_mFJPC9OOsACAnmbFmQIXmgYlpfMtu7sn3GZ0dIdrWwoSkfa3mXVcuum7-GHIrlwvda_PEepPx0IcBGaG9Y3QM7rcN0evPL81o2JkUgIkvtkp4Uy-X8kGvUU936TYmEBdmCQtswAmh2SA5cE2Bwd8znpbV-in0-XcS5R9e6foVetnASXxeP_ZrdGTdG_R83CyYv0VmOvoWj77i8eU5xdIZfPdjmuKfO1_xFyiaZVnu8KSUO-jFo0VA426Dp1Vp8dzhqfX7eoTaB1wV-NK6h63Fv-ar7RqPmjwu9w7dX1_dDW_iZmOFWAPa2YA2FDVGqUGhLMukEhLiHlnowmYgVm64poz0wb_1U2mktSRNwW2lQkpqmdI8fY9OXOXsKcIFBGxaCiOsR15EKM4kASVby6xIGY1Q3Mo0X9b8GXlYROMQd9Qyyr068kYdEbrwgt-P9ezX4US1esgbG8ghbM-kltIUqSaqyFRSEJImVHCttE10hE692tobrHNwwgLiXAA_ETprVfl0N953wzzziyfS2Wq7zgUIhvmtiv4xBBwLoMGMROhDbRv712hNLEL8wGoO3vOwB4w_sH03xv7xv6_8hF7UP8LhIGfoZLPa2s-ApDaqA_NnxqEVw0EHPbu4up1MO-GvBLRjIjphZv0Gy9IiZg |
link.rule.ids | 230,314,727,780,784,864,885,2102,2221,12056,12223,21388,24318,27924,27925,31719,31720,33266,33267,33744,33745,43310,43579,43805,53791,53793,73745,74014,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgSMAF8XMLDPCBI2FtY8f2CY2N0UA7odKh3SL_yqhUnNKkh_73PDtuWdE0qac4URp_tt_3_Py-h9A76vNCcm5SH3NKSWV6qaiAyMncWNOnXLOgxDQ-z4cX5OslvYwbbk08VrlZE8NCbWrt98iPYB3l4KqA_fq4-JP6qlE-uhpLaNxF98DsMz-q-cn2iAcVNBQpBY7i864GLKbOZax_FJH6sHCtCRqGwssrXDNNQcHfK57O6-Ym9vn_IcprVunsMXoU6SQ-7vB_gu5Y9xTdH8eA-TNkJsWXtHiPx6fHFEtn8HQ0yfCPtc_4CxLNcj5f4-9zuYZWXPwObNy1eFLPLZ45PLG-rkfIfcB1hU-tu1pZ_HO2XDW4iOe43HN0cfZ5ejJMY2GFVAPbaQENRY1Rql8pmwupuAS_R1a6skIQygzTNCc9sG-9TBppLckyMFsZl5LaXGmWvUB7rnb2AOEKHDYtueHWMy_CFcslAZCtzS3PcpqgdNOn5aLTzyhDEI2B39H1UekxKCMGCfrkO357r1e_Dhfq5VUZJ1MJbruQWkpTZZqoSqhBRUg2oJxppe1AJ-jAw7Z5QVP-GzwJOtxAeXMz3jbDPPPBE-lsvWpKDh2T-1JFt9wChgXYoCAJ2u_GxvYzgCAQKvrwMNsZNTvfudviZr-C2rf3eQGVl7f_8bfowXA6HpWj4vzbK_Sw2_mGHzlEe-1yZV8DdWrVmzA__gIMxxcX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgSBMviO8FBviBR0I_YjvOExorZYF1msqG9hb5c1QKTmnTh_73nB23rGialKc4UWKf7fud7-53CL2nPi-EcZ16n1NKrO6nhQUgJ5g2ekC5ygMT0-SMnVySb1f0KsY_LWNY5WZPDBu1bpQ_I-_BPsrBVAH91bMxLOJ8NP40_5P6ClLe0xrLadxHD3yVOc-jz4-34R60oKFgKeAVn4M1zGMaXZYPelFqH-eu1YHPsPBUCzfUVGDz9-yndbO8DYn-H1B5Q0ONH6NHEVrio24uPEH3jHuK9ifRef4M6Wn5NS0_4MnoiGLhNL44nWb4x9pn_wW6ZlHXa3xeizW04vJ3QOauxdOmNnjm8NT4Gh8hDwI3Fo-Mu14Z_HO2WC1xGWO63HN0Of5ycXySxiILqQLk04JkJNVayoGVhhVCcgE2kLDKmqIgNNe5ooz0Qdf1M6GFMSTLQIVlXAhqmFR59gLtucaZA4QtGG9KcM2NR2GEy5wJAgI3hhmeMZqgdDOm1bzj0qiCQy0HG6Qbo8rLoIoySNBnP_DbZz0TdrjRLK6ruLAqMOELoYTQNlNE2kIOLSHZkPJcSWWGKkEHXmybDyyrfxMpQYcbUd7ejLfNsOa8I0U406yWFYeBYb5s0R2PgJIBZFiQBL3s5sa2GwAWCC0G8HK-M2t2-rnb4ma_AvO3t39BKq_u_vF3aB-WRnVann1_jR52h-BwkUO01y5W5g2gqFa-DcvjL_fyGzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RIG-I%2C+MDA5+and+TLR3+synergistically+play+an+important+role+in+restriction+of+dengue+virus+infection&rft.jtitle=PLoS+neglected+tropical+diseases&rft.au=Nasirudeen%2C+A+M+A&rft.au=Wong%2C+Hui+Hui&rft.au=Thien%2C+Peiling&rft.au=Xu%2C+Shengli&rft.date=2011-01-04&rft.eissn=1935-2735&rft.volume=5&rft.issue=1&rft.spage=e926&rft_id=info:doi/10.1371%2Fjournal.pntd.0000926&rft_id=info%3Apmid%2F21245912&rft.externalDocID=21245912 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-2735&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-2735&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-2735&client=summon |