Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition

Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 22; pp. 6955 - 6960
Main Authors Yen, Hsin-Yung, Liu, Ying-Chih, Chen, Nai-Yu, Tsai, Chia-Feng, Wang, Yi-Ting, Chen, Yu-Ju, Hsu, Tsui-Ling, Yang, Pan-Chyr, Wong, Chi-Huey
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.06.2015
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation. Significance This report reveals the influence of sialylation on the activation of epidermal growth factor receptor (EGFR) and sensitivity to tyrosine kinase inhibitors (TKIs) against EGFR phosphorylation. By utilizing biochemical approaches, we demonstrated that EGFR sialylation suppresses EGFR phosphorylation by inhibiting EGF binding and EGFR dimerization. In the TKI-resistant lung cancer cell line with L858R/T790M mutations on EGFR, the levels of phosphorylation at Y1068, Y1086, and Y1173 are upregulated, and sialylation can partially suppress the phosphorylation of EGFR at these sites and enhance EGFR sensitivity to TKI. These findings suggest that sialylation has an important role in tumorigenesis and sensitivity to TKIs by modulating EGFR phosphorylation and the associated signaling network and provide insights for therapeutic intervention.
AbstractList Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation.Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation.
Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation.
This report reveals the influence of sialylation on the activation of epidermal growth factor receptor (EGFR) and sensitivity to tyrosine kinase inhibitors (TKIs) against EGFR phosphorylation. By utilizing biochemical approaches, we demonstrated that EGFR sialylation suppresses EGFR phosphorylation by inhibiting EGF binding and EGFR dimerization. In the TKI-resistant lung cancer cell line with L858R/T790M mutations on EGFR, the levels of phosphorylation at Y1068, Y1086, and Y1173 are upregulated, and sialylation can partially suppress the phosphorylation of EGFR at these sites and enhance EGFR sensitivity to TKI. These findings suggest that sialylation has an important role in tumorigenesis and sensitivity to TKIs by modulating EGFR phosphorylation and the associated signaling network and provide insights for therapeutic intervention. Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation.
Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation. Significance This report reveals the influence of sialylation on the activation of epidermal growth factor receptor (EGFR) and sensitivity to tyrosine kinase inhibitors (TKIs) against EGFR phosphorylation. By utilizing biochemical approaches, we demonstrated that EGFR sialylation suppresses EGFR phosphorylation by inhibiting EGF binding and EGFR dimerization. In the TKI-resistant lung cancer cell line with L858R/T790M mutations on EGFR, the levels of phosphorylation at Y1068, Y1086, and Y1173 are upregulated, and sialylation can partially suppress the phosphorylation of EGFR at these sites and enhance EGFR sensitivity to TKI. These findings suggest that sialylation has an important role in tumorigenesis and sensitivity to TKIs by modulating EGFR phosphorylation and the associated signaling network and provide insights for therapeutic intervention.
Author Yen, Hsin-Yung
Chen, Nai-Yu
Chen, Yu-Ju
Yang, Pan-Chyr
Wong, Chi-Huey
Hsu, Tsui-Ling
Wang, Yi-Ting
Liu, Ying-Chih
Tsai, Chia-Feng
Author_xml – sequence: 1
  givenname: Hsin-Yung
  surname: Yen
  fullname: Yen, Hsin-Yung
  organization: Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan; Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 2
  givenname: Ying-Chih
  surname: Liu
  fullname: Liu, Ying-Chih
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 3
  givenname: Nai-Yu
  surname: Chen
  fullname: Chen, Nai-Yu
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
– sequence: 4
  givenname: Chia-Feng
  surname: Tsai
  fullname: Tsai, Chia-Feng
  organization: Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
– sequence: 5
  givenname: Yi-Ting
  surname: Wang
  fullname: Wang, Yi-Ting
  organization: Institute of Biochemical Sciences and National Taiwan University, Taipei 106, Taiwan; Institute of Chemistry and Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
– sequence: 6
  givenname: Yu-Ju
  surname: Chen
  fullname: Chen, Yu-Ju
  organization: Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
– sequence: 7
  givenname: Tsui-Ling
  surname: Hsu
  fullname: Hsu, Tsui-Ling
  organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
– sequence: 8
  givenname: Pan-Chyr
  surname: Yang
  fullname: Yang, Pan-Chyr
  organization: Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
– sequence: 9
  givenname: Chi-Huey
  surname: Wong
  fullname: Wong, Chi-Huey
  organization: Institute of Biochemical Sciences and National Taiwan University, Taipei 106, Taiwan Genomics Research Center,Taipei 115, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25971727$$D View this record in MEDLINE/PubMed
BookMark eNqNks-LUzEQx4OsuD_07El94MVLd2fy6yUXQZbuKiwI6l68hDTN26a-JjV5Ffrfm9p2qwuikJCQ-cyXmcz3lBzFFD0hzxHOEVp2sYy2nKOoV6oR6SNygqBxJLmGI3ICQNuR4pQfk9NS5gCghYIn5JgK3WJL2xPyddx13g1N6poSbL_u7RBSbOoaX199apazVOrO-3cbp032JZTBRuebITXDOqcSom--hVqLb0KchUnYwE_J4872xT_bnWfk9mr85fL96Obj9YfLdzcjJykbRtprpyQqaR2XHcJECyYtdxbY1DNqmbYta1ln3VSCkJYyp1XXMeGgRYXAzsjbre5yNVn4qfNxyLY3yxwWNq9NssH8GYlhZu7SD8N5FURWBd7sBHL6vvJlMItQnO97G31aFYMKGCKnDP-NtiBAUK3_A5VKgpRSyIq-foDO0yrH-mkbSknJkapKvfy9z_sG98OsgNgCro6kZN8ZF4Zfc6tth94gmI1pzMY05mCamnfxIG8v_feMV7tSNoF7Gqmh1EgtRCVebIl5GVI-1Cq5ZFzhQaGzydi7HIq5_UwBJQBW80pgPwHuGeBt
CitedBy_id crossref_primary_10_1007_s10719_022_10041_3
crossref_primary_10_1039_D1SC00814E
crossref_primary_10_1038_s41388_024_03180_4
crossref_primary_10_1038_s41598_021_03197_9
crossref_primary_10_3390_ijms19020580
crossref_primary_10_1093_glycob_cwae030
crossref_primary_10_3389_fcell_2022_931132
crossref_primary_10_1093_glycob_cww086
crossref_primary_10_1242_jcs_244020
crossref_primary_10_18632_oncotarget_8396
crossref_primary_10_3390_molecules25112632
crossref_primary_10_1074_jbc_RA119_008643
crossref_primary_10_3390_molecules28176257
crossref_primary_10_1038_s41598_018_25510_9
crossref_primary_10_3390_biomedicines9121804
crossref_primary_10_3390_ijms21030722
crossref_primary_10_3892_ol_2021_12907
crossref_primary_10_1016_j_ijms_2017_09_002
crossref_primary_10_1186_s12906_017_1956_0
crossref_primary_10_1242_jcs_185447
crossref_primary_10_3389_fbioe_2022_1011851
crossref_primary_10_1016_j_ejmech_2019_111607
crossref_primary_10_1038_srep26145
crossref_primary_10_2478_fco_2021_0006
crossref_primary_10_1186_s13048_018_0385_0
crossref_primary_10_1002_ijch_201800139
crossref_primary_10_1016_j_carbpol_2024_122471
crossref_primary_10_1101_cshperspect_a041419
crossref_primary_10_1002_acn3_50980
crossref_primary_10_3390_cancers11040437
crossref_primary_10_1016_j_jcis_2022_07_027
crossref_primary_10_3390_cancers16172953
crossref_primary_10_1042_CS20160273
crossref_primary_10_1111_cas_14872
crossref_primary_10_1016_j_cca_2019_05_015
crossref_primary_10_1016_j_mam_2016_05_003
crossref_primary_10_1016_j_mam_2022_101112
crossref_primary_10_1021_jacs_9b01991
crossref_primary_10_18632_oncotarget_15994
crossref_primary_10_1038_s41576_024_00725_x
crossref_primary_10_3390_cancers14174248
crossref_primary_10_1016_j_bbrc_2017_03_167
crossref_primary_10_1039_D0MO00009D
crossref_primary_10_1038_s41419_018_1101_0
crossref_primary_10_1016_j_jbc_2023_105217
crossref_primary_10_1016_j_ccell_2019_06_006
crossref_primary_10_1093_glycob_cwz053
crossref_primary_10_3934_medsci_2016_4_386
crossref_primary_10_3390_cells9020273
crossref_primary_10_1021_acs_chemrev_1c01032
crossref_primary_10_1038_s41416_019_0400_2
crossref_primary_10_1042_BST20200763
crossref_primary_10_3390_ijms23136922
crossref_primary_10_1021_acs_jpcb_4c00873
crossref_primary_10_3390_ijms252413258
crossref_primary_10_3390_ijms23158754
crossref_primary_10_1039_D3AY00982C
crossref_primary_10_1007_s12032_019_1270_4
crossref_primary_10_1016_j_mcpro_2023_100624
crossref_primary_10_1189_jlb_3A1216_538RR
crossref_primary_10_1016_j_canlet_2021_04_006
crossref_primary_10_1111_pbi_14260
crossref_primary_10_1186_s13046_018_0935_8
crossref_primary_10_18632_oncotarget_11582
crossref_primary_10_1016_j_drup_2017_02_002
crossref_primary_10_1093_glycob_cwab131
crossref_primary_10_3390_proteomes5040028
crossref_primary_10_3390_ijms22189794
crossref_primary_10_1074_jbc_RA120_014126
crossref_primary_10_3389_fimmu_2018_00743
crossref_primary_10_3390_ijms19030715
crossref_primary_10_1016_j_cytogfr_2021_03_004
crossref_primary_10_3389_fcell_2024_1436033
crossref_primary_10_1002_elps_201500552
crossref_primary_10_1016_j_trecan_2022_02_003
crossref_primary_10_3390_ijms24054827
crossref_primary_10_3390_cancers15205103
crossref_primary_10_3390_cancers10030080
crossref_primary_10_1080_07391102_2020_1841027
crossref_primary_10_3390_cells8040316
crossref_primary_10_1016_j_ijbiomac_2023_123855
crossref_primary_10_1016_j_bbagen_2016_03_012
crossref_primary_10_1038_s41467_021_22759_z
crossref_primary_10_1021_acs_jproteome_8b00433
crossref_primary_10_3390_cells10051252
crossref_primary_10_1016_j_bbrc_2016_11_107
crossref_primary_10_1021_acs_analchem_1c03224
Cites_doi 10.1038/nsmb.2168
10.1111/j.1742-4658.2009.07448.x
10.1021/bi300476v
10.1093/glycob/cwl023
10.1016/j.lungcan.2011.12.014
10.1016/j.cell.2012.02.063
10.1186/1756-9966-31-65
10.1016/S0092-8674(02)00940-6
10.1074/jbc.R110.191429
10.1128/MCB.25.17.7734-7742.2005
10.1073/pnas.0709662105
10.1093/oxfordjournals.jbchem.a021718
10.1016/j.yexcr.2008.07.026
10.1016/j.cell.2007.01.049
10.1093/emboj/19.17.4632
10.1210/en.2004-0401
10.1016/S1097-2765(03)00047-9
10.1074/jbc.M003400200
10.1074/jbc.M510893200
10.1073/pnas.1107385108
10.1158/0008-5472.CAN-09-2719
10.1021/bi3013142
10.1056/NEJMoa040938
10.1126/science.1099314
10.1016/S0021-9258(18)90787-8
10.1146/annurev.biophys.37.032807.125829
10.1093/nar/gku1267
10.1371/journal.pmed.0020073
10.1016/j.yexcr.2008.10.024
10.1371/journal.pone.0054136
10.1038/360689a0
10.1073/pnas.1105666108
10.1007/s00432-008-0509-9
10.1021/bi050751j
10.1002/jcp.21260
10.1165/ajrcmb.17.3.2837
10.1038/nrc2088
10.1016/j.ccr.2006.12.017
10.1038/nrm1962
10.1158/0008-5472.CAN-06-3023
10.1128/mcb.14.8.5192-5201.1994
10.1016/S0092-8674(02)00963-7
10.1038/onc.2010.631
10.1016/j.str.2012.11.014
10.1038/nchembio.999
10.1002/pmic.200800204
10.1073/pnas.0405220101
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jun 2, 2015
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jun 2, 2015
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7ST
SOI
7S9
L.6
5PM
DOI 10.1073/pnas.1507329112
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Environment Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef
AGRICOLA


MEDLINE

Environment Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate EGFR phosphorylation and resistance to gefitinib
EISSN 1091-6490
EndPage 6960
ExternalDocumentID PMC4460513
3716526921
25971727
10_1073_pnas_1507329112
112_22_6955
26463481
US201600149060
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7ST
SOI
7S9
L.6
5PM
ID FETCH-LOGICAL-c623t-9e9c86186ac46f10b9536a4ca03de32a39a7373facd6056a23c98ff35c0718103
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:47:25 EDT 2025
Thu Jul 10 18:11:02 EDT 2025
Fri Jul 11 11:07:58 EDT 2025
Thu Jul 10 18:46:55 EDT 2025
Mon Jun 30 07:50:59 EDT 2025
Wed Feb 19 02:00:30 EST 2025
Tue Jul 01 01:53:27 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Wed Nov 11 00:29:43 EST 2020
Fri May 30 12:01:28 EDT 2025
Thu Apr 03 09:44:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords lung cancer
dimerization
glycosylation
gefitinib
tyrosin kinase inhibitor
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c623t-9e9c86186ac46f10b9536a4ca03de32a39a7373facd6056a23c98ff35c0718103
Notes http://dx.doi.org/10.1073/pnas.1507329112
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Contributed by Chi-Huey Wong, April 15, 2015 (sent for review April 18, 2014)
Author contributions: H.-Y.Y., Y.-C.L., Y.-J.C., T.-L.H., P.-C.Y., and C.-H.W. designed research; H.-Y.Y., Y.-C.L., N.-Y.C., C.-F.T., and Y.-T.W. performed research; H.-Y.Y., Y.-C.L., C.-F.T., Y.-T.W., and T.-L.H. analyzed data; and H.-Y.Y., T.-L.H., and C.-H.W. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/112/22/6955.full.pdf
PMID 25971727
PQID 1688664128
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_112_22_6955
jstor_primary_26463481
pubmed_primary_25971727
proquest_miscellaneous_1686066656
proquest_miscellaneous_1803114231
proquest_miscellaneous_1705052991
crossref_citationtrail_10_1073_pnas_1507329112
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4460513
crossref_primary_10_1073_pnas_1507329112
fao_agris_US201600149060
proquest_journals_1688664128
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-02
PublicationDateYYYYMMDD 2015-06-02
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
18846509 - Proteomics. 2008 Nov;8(21):4383-401
1465135 - Nature. 1992 Dec 17;360(6405):689-92
22683610 - Nat Chem Biol. 2012 Jul;8(7):661-8
10970856 - EMBO J. 2000 Sep 1;19(17):4632-43
18721806 - Exp Cell Res. 2009 Feb 15;315(4):557-71
12620237 - Mol Cell. 2003 Feb;11(2):507-17
23382875 - PLoS One. 2013;8(1):e54136
22579287 - Cell. 2012 May 11;149(4):860-70
19002495 - J Cancer Res Clin Oncol. 2009 May;135(5):723-30
18573086 - Annu Rev Biophys. 2008;37:353-73
18227510 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2070-5
17318210 - Nat Rev Cancer. 2007 Mar;7(3):169-81
17418791 - Cell. 2007 Apr 6;129(1):123-34
22101934 - Nat Struct Mol Biol. 2011 Dec;18(12):1388-93
21173156 - J Biol Chem. 2011 Feb 25;286(8):5935-41
12297050 - Cell. 2002 Sep 20;110(6):775-87
21258405 - Oncogene. 2011 Jun 2;30(22):2514-25
16274239 - Biochemistry. 2005 Nov 15;44(45):14920-31
15737014 - PLoS Med. 2005 Mar;2(3):e73
21709263 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11332-7
22901364 - J Exp Clin Cancer Res. 2012;31:65
16316986 - J Biol Chem. 2006 Feb 3;281(5):2572-7
7518560 - Mol Cell Biol. 1994 Aug;14(8):5192-201
16861703 - Glycobiology. 2006 Oct;16(10):1007-19
9276679 - J Biochem. 1997 Jul;122(1):116-21
19038249 - Exp Cell Res. 2009 Feb 15;315(4):638-48
22281074 - Lung Cancer. 2012 Jul;77(1):2-8
17332320 - Cancer Res. 2007 Mar 1;67(5):1935-42
15192046 - Endocrinology. 2004 Sep;145(9):4232-43
17349580 - Cancer Cell. 2007 Mar;11(3):217-27
19922469 - FEBS J. 2010 Jan;277(2):301-8
20395209 - Cancer Res. 2010 Apr 15;70(8):3361-71
23273428 - Structure. 2013 Feb 5;21(2):209-19
15329413 - Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13306-11
17894407 - J Cell Physiol. 2008 Mar;214(3):559-67
12297049 - Cell. 2002 Sep 20;110(6):763-73
22657099 - Biochemistry. 2012 Jun 26;51(25):5212-22
25514926 - Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20
16829981 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):505-16
23259747 - Biochemistry. 2013 Jan 15;52(2):402-14
15118073 - N Engl J Med. 2004 May 20;350(21):2129-39
9308922 - Am J Respir Cell Mol Biol. 1997 Sep;17(3):353-60
6092339 - J Biol Chem. 1984 Oct 25;259(20):12586-94
10801876 - J Biol Chem. 2000 Jul 21;275(29):21988-94
21571640 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9044-8
15118125 - Science. 2004 Jun 4;304(5676):1497-500
16107719 - Mol Cell Biol. 2005 Sep;25(17):7734-42
References_xml – ident: e_1_3_3_30_2
  doi: 10.1038/nsmb.2168
– ident: e_1_3_3_10_2
  doi: 10.1111/j.1742-4658.2009.07448.x
– ident: e_1_3_3_34_2
  doi: 10.1021/bi300476v
– ident: e_1_3_3_22_2
  doi: 10.1093/glycob/cwl023
– ident: e_1_3_3_46_2
  doi: 10.1016/j.lungcan.2011.12.014
– ident: e_1_3_3_31_2
  doi: 10.1016/j.cell.2012.02.063
– ident: e_1_3_3_44_2
  doi: 10.1186/1756-9966-31-65
– ident: e_1_3_3_4_2
  doi: 10.1016/S0092-8674(02)00940-6
– ident: e_1_3_3_39_2
  doi: 10.1074/jbc.R110.191429
– ident: e_1_3_3_2_2
  doi: 10.1128/MCB.25.17.7734-7742.2005
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.0709662105
– ident: e_1_3_3_25_2
  doi: 10.1093/oxfordjournals.jbchem.a021718
– ident: e_1_3_3_11_2
  doi: 10.1016/j.yexcr.2008.07.026
– ident: e_1_3_3_18_2
  doi: 10.1016/j.cell.2007.01.049
– ident: e_1_3_3_26_2
  doi: 10.1093/emboj/19.17.4632
– ident: e_1_3_3_40_2
  doi: 10.1210/en.2004-0401
– ident: e_1_3_3_3_2
  doi: 10.1016/S1097-2765(03)00047-9
– ident: e_1_3_3_21_2
  doi: 10.1074/jbc.M003400200
– ident: e_1_3_3_23_2
  doi: 10.1074/jbc.M510893200
– ident: e_1_3_3_24_2
  doi: 10.1073/pnas.1107385108
– ident: e_1_3_3_45_2
  doi: 10.1158/0008-5472.CAN-09-2719
– ident: e_1_3_3_35_2
  doi: 10.1021/bi3013142
– ident: e_1_3_3_12_2
  doi: 10.1056/NEJMoa040938
– ident: e_1_3_3_13_2
  doi: 10.1126/science.1099314
– ident: e_1_3_3_27_2
  doi: 10.1016/S0021-9258(18)90787-8
– ident: e_1_3_3_7_2
  doi: 10.1146/annurev.biophys.37.032807.125829
– ident: e_1_3_3_36_2
  doi: 10.1093/nar/gku1267
– ident: e_1_3_3_17_2
  doi: 10.1371/journal.pmed.0020073
– ident: e_1_3_3_5_2
  doi: 10.1016/j.yexcr.2008.10.024
– ident: e_1_3_3_28_2
  doi: 10.1371/journal.pone.0054136
– ident: e_1_3_3_42_2
  doi: 10.1038/360689a0
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.1105666108
– ident: e_1_3_3_43_2
  doi: 10.1007/s00432-008-0509-9
– ident: e_1_3_3_20_2
  doi: 10.1021/bi050751j
– ident: e_1_3_3_1_2
  doi: 10.1002/jcp.21260
– ident: e_1_3_3_47_2
  doi: 10.1165/ajrcmb.17.3.2837
– ident: e_1_3_3_16_2
  doi: 10.1038/nrc2088
– ident: e_1_3_3_29_2
  doi: 10.1016/j.ccr.2006.12.017
– ident: e_1_3_3_8_2
  doi: 10.1038/nrm1962
– ident: e_1_3_3_19_2
  doi: 10.1158/0008-5472.CAN-06-3023
– ident: e_1_3_3_41_2
  doi: 10.1128/mcb.14.8.5192-5201.1994
– ident: e_1_3_3_6_2
  doi: 10.1016/S0092-8674(02)00963-7
– ident: e_1_3_3_38_2
  doi: 10.1038/onc.2010.631
– ident: e_1_3_3_33_2
  doi: 10.1016/j.str.2012.11.014
– ident: e_1_3_3_32_2
  doi: 10.1038/nchembio.999
– ident: e_1_3_3_9_2
  doi: 10.1002/pmic.200800204
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.0405220101
– reference: 21173156 - J Biol Chem. 2011 Feb 25;286(8):5935-41
– reference: 21258405 - Oncogene. 2011 Jun 2;30(22):2514-25
– reference: 23273428 - Structure. 2013 Feb 5;21(2):209-19
– reference: 19038249 - Exp Cell Res. 2009 Feb 15;315(4):638-48
– reference: 20395209 - Cancer Res. 2010 Apr 15;70(8):3361-71
– reference: 15737014 - PLoS Med. 2005 Mar;2(3):e73
– reference: 16829981 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):505-16
– reference: 22101934 - Nat Struct Mol Biol. 2011 Dec;18(12):1388-93
– reference: 19922469 - FEBS J. 2010 Jan;277(2):301-8
– reference: 23382875 - PLoS One. 2013;8(1):e54136
– reference: 9276679 - J Biochem. 1997 Jul;122(1):116-21
– reference: 12620237 - Mol Cell. 2003 Feb;11(2):507-17
– reference: 18573086 - Annu Rev Biophys. 2008;37:353-73
– reference: 6092339 - J Biol Chem. 1984 Oct 25;259(20):12586-94
– reference: 16274239 - Biochemistry. 2005 Nov 15;44(45):14920-31
– reference: 1465135 - Nature. 1992 Dec 17;360(6405):689-92
– reference: 17894407 - J Cell Physiol. 2008 Mar;214(3):559-67
– reference: 17349580 - Cancer Cell. 2007 Mar;11(3):217-27
– reference: 22901364 - J Exp Clin Cancer Res. 2012;31:65
– reference: 15118125 - Science. 2004 Jun 4;304(5676):1497-500
– reference: 16861703 - Glycobiology. 2006 Oct;16(10):1007-19
– reference: 10970856 - EMBO J. 2000 Sep 1;19(17):4632-43
– reference: 22657099 - Biochemistry. 2012 Jun 26;51(25):5212-22
– reference: 16316986 - J Biol Chem. 2006 Feb 3;281(5):2572-7
– reference: 21709263 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11332-7
– reference: 12297049 - Cell. 2002 Sep 20;110(6):763-73
– reference: 17318210 - Nat Rev Cancer. 2007 Mar;7(3):169-81
– reference: 12297050 - Cell. 2002 Sep 20;110(6):775-87
– reference: 9308922 - Am J Respir Cell Mol Biol. 1997 Sep;17(3):353-60
– reference: 22579287 - Cell. 2012 May 11;149(4):860-70
– reference: 15118073 - N Engl J Med. 2004 May 20;350(21):2129-39
– reference: 15329413 - Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13306-11
– reference: 7518560 - Mol Cell Biol. 1994 Aug;14(8):5192-201
– reference: 18227510 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2070-5
– reference: 21571640 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9044-8
– reference: 23259747 - Biochemistry. 2013 Jan 15;52(2):402-14
– reference: 22683610 - Nat Chem Biol. 2012 Jul;8(7):661-8
– reference: 16107719 - Mol Cell Biol. 2005 Sep;25(17):7734-42
– reference: 19002495 - J Cancer Res Clin Oncol. 2009 May;135(5):723-30
– reference: 25514926 - Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20
– reference: 15192046 - Endocrinology. 2004 Sep;145(9):4232-43
– reference: 17418791 - Cell. 2007 Apr 6;129(1):123-34
– reference: 18721806 - Exp Cell Res. 2009 Feb 15;315(4):557-71
– reference: 10801876 - J Biol Chem. 2000 Jul 21;275(29):21988-94
– reference: 22281074 - Lung Cancer. 2012 Jul;77(1):2-8
– reference: 17332320 - Cancer Res. 2007 Mar 1;67(5):1935-42
– reference: 18846509 - Proteomics. 2008 Nov;8(21):4383-401
SSID ssj0009580
Score 2.4856224
Snippet Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational...
This report reveals the influence of sialylation on the activation of epidermal growth factor receptor (EGFR) and sensitivity to tyrosine kinase inhibitors...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6955
SubjectTerms Biological Sciences
carcinogenesis
Cell Line, Tumor
Cells
Dimerization
Enzyme Inhibitors
Epidermal growth factor
epidermal growth factor receptors
gene expression regulation
Humans
Kinases
Lung cancer
lung neoplasms
Models, Molecular
Mutation
Mutation, Missense - genetics
Neuraminidase - pharmacology
Phosphorylation
Phosphorylation - drug effects
Protein Binding - drug effects
Protein-Tyrosine Kinases - antagonists & inhibitors
Quinazolines
Receptor, Epidermal Growth Factor - genetics
Receptor, Epidermal Growth Factor - metabolism
tyrosine
Title Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition
URI https://www.jstor.org/stable/26463481
http://www.pnas.org/content/112/22/6955.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25971727
https://www.proquest.com/docview/1688664128
https://www.proquest.com/docview/1686066656
https://www.proquest.com/docview/1705052991
https://www.proquest.com/docview/1803114231
https://pubmed.ncbi.nlm.nih.gov/PMC4460513
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcJWWCxdEgVJDQYvEoShysHfttX2sopYIiaiCRmq5WOu13VitnKpODuWT-EpmH147oa0KUmJF9njW8Yzn5Xkg9FG6PSzyC1cIGrhBRmWxMuEuz8NIBF5W5Ko7_7cpm8yCr2fh2WDwu5e1tFpmI_HrzrqS_6Eq7AO6yirZf6CsRQo74DfQF7ZAYdg-isam9TDYew0sdntlzL96ePTl-Pvwer5o4HvT7leZ5EUjDUb5NEuj8xZ0pDQzL6satNmwqudVVllSGZv1xOq4ps0omLYhxMOuIMVIiWboDk-m3Xjjcy3XJrCOe74yelJmAFUrJf4BrTueVzYqPTblIlNeAbwNLDR6bDZAchdocNGPVvihyqrqBzDBDXbjQNdNjwotdMFmcVmgx4ZaqeyTHvvp2mUjZFmiO_sahc0SPZHgL2UA0ktOMIYbOJJmLyVJi3St7faGOrRJiur1fERTiSDtEGyhJwRcEpVEOuk3eI51uZP5f20bqYh-3riCNQtoq-SLNhVW9tcF0Lt8nc2U3Z4NdPocPTPOCz7UnLiDBkX9Au20hMcHpof5p5fop2ZNvChxjzUxfCRr4g3WxMCauGNNvFzgljWxZk3cseYrNDs-Oh1PXDPGwxVgWy_dpEhELMcycBGw0vcymTHAA8E9mheUcJrwiEa05CIH35pxQkUSlyUNBZi_se_RXbRdL-piD2Gal2WURDzISxYUYZzlpVdmnOU8Il4uiING7a1NhelxL0etXKX3ENNBB_aEa93e5X7QPaBVyi9A-aazH0S2ZpTxBY95DtpVBLQowMtgssIdzlFYLGqfpISkkoEdtN9SOTUiBVZjccxYADajgz7YwyDw5Vs8XheLlYJRQYeQPQATqQGV4Ps9ABODPvfBmwKY15q5uusPk0h6Ng6K1tjOAsim9OtH6mqumtMHMtHCp28ef2PfoqedpNhH28ubVfEOLP1l9l49Yn8Awx_6Jw
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+sialylation+on+EGFR+phosphorylation+and+resistance+to+tyrosine+kinase+inhibition&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yen%2C+Hsin-Yung&rft.au=Liu%2C+Ying-Chih&rft.au=Chen%2C+Nai-Yu&rft.au=Tsai%2C+Chia-Feng&rft.date=2015-06-02&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=22&rft.spage=6955&rft.epage=6960&rft_id=info:doi/10.1073%2Fpnas.1507329112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1507329112
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F22.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F22.cover.gif