Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition
Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 22; pp. 6955 - 6960 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
02.06.2015
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation.
Significance This report reveals the influence of sialylation on the activation of epidermal growth factor receptor (EGFR) and sensitivity to tyrosine kinase inhibitors (TKIs) against EGFR phosphorylation. By utilizing biochemical approaches, we demonstrated that EGFR sialylation suppresses EGFR phosphorylation by inhibiting EGF binding and EGFR dimerization. In the TKI-resistant lung cancer cell line with L858R/T790M mutations on EGFR, the levels of phosphorylation at Y1068, Y1086, and Y1173 are upregulated, and sialylation can partially suppress the phosphorylation of EGFR at these sites and enhance EGFR sensitivity to TKI. These findings suggest that sialylation has an important role in tumorigenesis and sensitivity to TKIs by modulating EGFR phosphorylation and the associated signaling network and provide insights for therapeutic intervention. |
---|---|
AbstractList | Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation.Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation. Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation. This report reveals the influence of sialylation on the activation of epidermal growth factor receptor (EGFR) and sensitivity to tyrosine kinase inhibitors (TKIs) against EGFR phosphorylation. By utilizing biochemical approaches, we demonstrated that EGFR sialylation suppresses EGFR phosphorylation by inhibiting EGF binding and EGFR dimerization. In the TKI-resistant lung cancer cell line with L858R/T790M mutations on EGFR, the levels of phosphorylation at Y1068, Y1086, and Y1173 are upregulated, and sialylation can partially suppress the phosphorylation of EGFR at these sites and enhance EGFR sensitivity to TKI. These findings suggest that sialylation has an important role in tumorigenesis and sensitivity to TKIs by modulating EGFR phosphorylation and the associated signaling network and provide insights for therapeutic intervention. Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation. Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation. Significance This report reveals the influence of sialylation on the activation of epidermal growth factor receptor (EGFR) and sensitivity to tyrosine kinase inhibitors (TKIs) against EGFR phosphorylation. By utilizing biochemical approaches, we demonstrated that EGFR sialylation suppresses EGFR phosphorylation by inhibiting EGF binding and EGFR dimerization. In the TKI-resistant lung cancer cell line with L858R/T790M mutations on EGFR, the levels of phosphorylation at Y1068, Y1086, and Y1173 are upregulated, and sialylation can partially suppress the phosphorylation of EGFR at these sites and enhance EGFR sensitivity to TKI. These findings suggest that sialylation has an important role in tumorigenesis and sensitivity to TKIs by modulating EGFR phosphorylation and the associated signaling network and provide insights for therapeutic intervention. |
Author | Yen, Hsin-Yung Chen, Nai-Yu Chen, Yu-Ju Yang, Pan-Chyr Wong, Chi-Huey Hsu, Tsui-Ling Wang, Yi-Ting Liu, Ying-Chih Tsai, Chia-Feng |
Author_xml | – sequence: 1 givenname: Hsin-Yung surname: Yen fullname: Yen, Hsin-Yung organization: Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan; Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 2 givenname: Ying-Chih surname: Liu fullname: Liu, Ying-Chih organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 3 givenname: Nai-Yu surname: Chen fullname: Chen, Nai-Yu organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan – sequence: 4 givenname: Chia-Feng surname: Tsai fullname: Tsai, Chia-Feng organization: Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, National Taiwan University, Taipei 106, Taiwan – sequence: 5 givenname: Yi-Ting surname: Wang fullname: Wang, Yi-Ting organization: Institute of Biochemical Sciences and National Taiwan University, Taipei 106, Taiwan; Institute of Chemistry and Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan – sequence: 6 givenname: Yu-Ju surname: Chen fullname: Chen, Yu-Ju organization: Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan – sequence: 7 givenname: Tsui-Ling surname: Hsu fullname: Hsu, Tsui-Ling organization: Genomics Research Center, Academia Sinica, Taipei 115, Taiwan – sequence: 8 givenname: Pan-Chyr surname: Yang fullname: Yang, Pan-Chyr organization: Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan – sequence: 9 givenname: Chi-Huey surname: Wong fullname: Wong, Chi-Huey organization: Institute of Biochemical Sciences and National Taiwan University, Taipei 106, Taiwan Genomics Research Center,Taipei 115, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25971727$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks-LUzEQx4OsuD_07El94MVLd2fy6yUXQZbuKiwI6l68hDTN26a-JjV5Ffrfm9p2qwuikJCQ-cyXmcz3lBzFFD0hzxHOEVp2sYy2nKOoV6oR6SNygqBxJLmGI3ICQNuR4pQfk9NS5gCghYIn5JgK3WJL2xPyddx13g1N6poSbL_u7RBSbOoaX199apazVOrO-3cbp032JZTBRuebITXDOqcSom--hVqLb0KchUnYwE_J4872xT_bnWfk9mr85fL96Obj9YfLdzcjJykbRtprpyQqaR2XHcJECyYtdxbY1DNqmbYta1ln3VSCkJYyp1XXMeGgRYXAzsjbre5yNVn4qfNxyLY3yxwWNq9NssH8GYlhZu7SD8N5FURWBd7sBHL6vvJlMItQnO97G31aFYMKGCKnDP-NtiBAUK3_A5VKgpRSyIq-foDO0yrH-mkbSknJkapKvfy9z_sG98OsgNgCro6kZN8ZF4Zfc6tth94gmI1pzMY05mCamnfxIG8v_feMV7tSNoF7Gqmh1EgtRCVebIl5GVI-1Cq5ZFzhQaGzydi7HIq5_UwBJQBW80pgPwHuGeBt |
CitedBy_id | crossref_primary_10_1007_s10719_022_10041_3 crossref_primary_10_1039_D1SC00814E crossref_primary_10_1038_s41388_024_03180_4 crossref_primary_10_1038_s41598_021_03197_9 crossref_primary_10_3390_ijms19020580 crossref_primary_10_1093_glycob_cwae030 crossref_primary_10_3389_fcell_2022_931132 crossref_primary_10_1093_glycob_cww086 crossref_primary_10_1242_jcs_244020 crossref_primary_10_18632_oncotarget_8396 crossref_primary_10_3390_molecules25112632 crossref_primary_10_1074_jbc_RA119_008643 crossref_primary_10_3390_molecules28176257 crossref_primary_10_1038_s41598_018_25510_9 crossref_primary_10_3390_biomedicines9121804 crossref_primary_10_3390_ijms21030722 crossref_primary_10_3892_ol_2021_12907 crossref_primary_10_1016_j_ijms_2017_09_002 crossref_primary_10_1186_s12906_017_1956_0 crossref_primary_10_1242_jcs_185447 crossref_primary_10_3389_fbioe_2022_1011851 crossref_primary_10_1016_j_ejmech_2019_111607 crossref_primary_10_1038_srep26145 crossref_primary_10_2478_fco_2021_0006 crossref_primary_10_1186_s13048_018_0385_0 crossref_primary_10_1002_ijch_201800139 crossref_primary_10_1016_j_carbpol_2024_122471 crossref_primary_10_1101_cshperspect_a041419 crossref_primary_10_1002_acn3_50980 crossref_primary_10_3390_cancers11040437 crossref_primary_10_1016_j_jcis_2022_07_027 crossref_primary_10_3390_cancers16172953 crossref_primary_10_1042_CS20160273 crossref_primary_10_1111_cas_14872 crossref_primary_10_1016_j_cca_2019_05_015 crossref_primary_10_1016_j_mam_2016_05_003 crossref_primary_10_1016_j_mam_2022_101112 crossref_primary_10_1021_jacs_9b01991 crossref_primary_10_18632_oncotarget_15994 crossref_primary_10_1038_s41576_024_00725_x crossref_primary_10_3390_cancers14174248 crossref_primary_10_1016_j_bbrc_2017_03_167 crossref_primary_10_1039_D0MO00009D crossref_primary_10_1038_s41419_018_1101_0 crossref_primary_10_1016_j_jbc_2023_105217 crossref_primary_10_1016_j_ccell_2019_06_006 crossref_primary_10_1093_glycob_cwz053 crossref_primary_10_3934_medsci_2016_4_386 crossref_primary_10_3390_cells9020273 crossref_primary_10_1021_acs_chemrev_1c01032 crossref_primary_10_1038_s41416_019_0400_2 crossref_primary_10_1042_BST20200763 crossref_primary_10_3390_ijms23136922 crossref_primary_10_1021_acs_jpcb_4c00873 crossref_primary_10_3390_ijms252413258 crossref_primary_10_3390_ijms23158754 crossref_primary_10_1039_D3AY00982C crossref_primary_10_1007_s12032_019_1270_4 crossref_primary_10_1016_j_mcpro_2023_100624 crossref_primary_10_1189_jlb_3A1216_538RR crossref_primary_10_1016_j_canlet_2021_04_006 crossref_primary_10_1111_pbi_14260 crossref_primary_10_1186_s13046_018_0935_8 crossref_primary_10_18632_oncotarget_11582 crossref_primary_10_1016_j_drup_2017_02_002 crossref_primary_10_1093_glycob_cwab131 crossref_primary_10_3390_proteomes5040028 crossref_primary_10_3390_ijms22189794 crossref_primary_10_1074_jbc_RA120_014126 crossref_primary_10_3389_fimmu_2018_00743 crossref_primary_10_3390_ijms19030715 crossref_primary_10_1016_j_cytogfr_2021_03_004 crossref_primary_10_3389_fcell_2024_1436033 crossref_primary_10_1002_elps_201500552 crossref_primary_10_1016_j_trecan_2022_02_003 crossref_primary_10_3390_ijms24054827 crossref_primary_10_3390_cancers15205103 crossref_primary_10_3390_cancers10030080 crossref_primary_10_1080_07391102_2020_1841027 crossref_primary_10_3390_cells8040316 crossref_primary_10_1016_j_ijbiomac_2023_123855 crossref_primary_10_1016_j_bbagen_2016_03_012 crossref_primary_10_1038_s41467_021_22759_z crossref_primary_10_1021_acs_jproteome_8b00433 crossref_primary_10_3390_cells10051252 crossref_primary_10_1016_j_bbrc_2016_11_107 crossref_primary_10_1021_acs_analchem_1c03224 |
Cites_doi | 10.1038/nsmb.2168 10.1111/j.1742-4658.2009.07448.x 10.1021/bi300476v 10.1093/glycob/cwl023 10.1016/j.lungcan.2011.12.014 10.1016/j.cell.2012.02.063 10.1186/1756-9966-31-65 10.1016/S0092-8674(02)00940-6 10.1074/jbc.R110.191429 10.1128/MCB.25.17.7734-7742.2005 10.1073/pnas.0709662105 10.1093/oxfordjournals.jbchem.a021718 10.1016/j.yexcr.2008.07.026 10.1016/j.cell.2007.01.049 10.1093/emboj/19.17.4632 10.1210/en.2004-0401 10.1016/S1097-2765(03)00047-9 10.1074/jbc.M003400200 10.1074/jbc.M510893200 10.1073/pnas.1107385108 10.1158/0008-5472.CAN-09-2719 10.1021/bi3013142 10.1056/NEJMoa040938 10.1126/science.1099314 10.1016/S0021-9258(18)90787-8 10.1146/annurev.biophys.37.032807.125829 10.1093/nar/gku1267 10.1371/journal.pmed.0020073 10.1016/j.yexcr.2008.10.024 10.1371/journal.pone.0054136 10.1038/360689a0 10.1073/pnas.1105666108 10.1007/s00432-008-0509-9 10.1021/bi050751j 10.1002/jcp.21260 10.1165/ajrcmb.17.3.2837 10.1038/nrc2088 10.1016/j.ccr.2006.12.017 10.1038/nrm1962 10.1158/0008-5472.CAN-06-3023 10.1128/mcb.14.8.5192-5201.1994 10.1016/S0092-8674(02)00963-7 10.1038/onc.2010.631 10.1016/j.str.2012.11.014 10.1038/nchembio.999 10.1002/pmic.200800204 10.1073/pnas.0405220101 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jun 2, 2015 |
Copyright_xml | – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jun 2, 2015 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7ST SOI 7S9 L.6 5PM |
DOI | 10.1073/pnas.1507329112 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Environment Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts CrossRef AGRICOLA MEDLINE Environment Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | EGFR phosphorylation and resistance to gefitinib |
EISSN | 1091-6490 |
EndPage | 6960 |
ExternalDocumentID | PMC4460513 3716526921 25971727 10_1073_pnas_1507329112 112_22_6955 26463481 US201600149060 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7ST SOI 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c623t-9e9c86186ac46f10b9536a4ca03de32a39a7373facd6056a23c98ff35c0718103 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:47:25 EDT 2025 Thu Jul 10 18:11:02 EDT 2025 Fri Jul 11 11:07:58 EDT 2025 Thu Jul 10 18:46:55 EDT 2025 Mon Jun 30 07:50:59 EDT 2025 Wed Feb 19 02:00:30 EST 2025 Tue Jul 01 01:53:27 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Wed Nov 11 00:29:43 EST 2020 Fri May 30 12:01:28 EDT 2025 Thu Apr 03 09:44:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | lung cancer dimerization glycosylation gefitinib tyrosin kinase inhibitor |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c623t-9e9c86186ac46f10b9536a4ca03de32a39a7373facd6056a23c98ff35c0718103 |
Notes | http://dx.doi.org/10.1073/pnas.1507329112 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Contributed by Chi-Huey Wong, April 15, 2015 (sent for review April 18, 2014) Author contributions: H.-Y.Y., Y.-C.L., Y.-J.C., T.-L.H., P.-C.Y., and C.-H.W. designed research; H.-Y.Y., Y.-C.L., N.-Y.C., C.-F.T., and Y.-T.W. performed research; H.-Y.Y., Y.-C.L., C.-F.T., Y.-T.W., and T.-L.H. analyzed data; and H.-Y.Y., T.-L.H., and C.-H.W. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/112/22/6955.full.pdf |
PMID | 25971727 |
PQID | 1688664128 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_112_22_6955 jstor_primary_26463481 pubmed_primary_25971727 proquest_miscellaneous_1686066656 proquest_miscellaneous_1803114231 proquest_miscellaneous_1705052991 crossref_citationtrail_10_1073_pnas_1507329112 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4460513 crossref_primary_10_1073_pnas_1507329112 fao_agris_US201600149060 proquest_journals_1688664128 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-02 |
PublicationDateYYYYMMDD | 2015-06-02 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 18846509 - Proteomics. 2008 Nov;8(21):4383-401 1465135 - Nature. 1992 Dec 17;360(6405):689-92 22683610 - Nat Chem Biol. 2012 Jul;8(7):661-8 10970856 - EMBO J. 2000 Sep 1;19(17):4632-43 18721806 - Exp Cell Res. 2009 Feb 15;315(4):557-71 12620237 - Mol Cell. 2003 Feb;11(2):507-17 23382875 - PLoS One. 2013;8(1):e54136 22579287 - Cell. 2012 May 11;149(4):860-70 19002495 - J Cancer Res Clin Oncol. 2009 May;135(5):723-30 18573086 - Annu Rev Biophys. 2008;37:353-73 18227510 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2070-5 17318210 - Nat Rev Cancer. 2007 Mar;7(3):169-81 17418791 - Cell. 2007 Apr 6;129(1):123-34 22101934 - Nat Struct Mol Biol. 2011 Dec;18(12):1388-93 21173156 - J Biol Chem. 2011 Feb 25;286(8):5935-41 12297050 - Cell. 2002 Sep 20;110(6):775-87 21258405 - Oncogene. 2011 Jun 2;30(22):2514-25 16274239 - Biochemistry. 2005 Nov 15;44(45):14920-31 15737014 - PLoS Med. 2005 Mar;2(3):e73 21709263 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11332-7 22901364 - J Exp Clin Cancer Res. 2012;31:65 16316986 - J Biol Chem. 2006 Feb 3;281(5):2572-7 7518560 - Mol Cell Biol. 1994 Aug;14(8):5192-201 16861703 - Glycobiology. 2006 Oct;16(10):1007-19 9276679 - J Biochem. 1997 Jul;122(1):116-21 19038249 - Exp Cell Res. 2009 Feb 15;315(4):638-48 22281074 - Lung Cancer. 2012 Jul;77(1):2-8 17332320 - Cancer Res. 2007 Mar 1;67(5):1935-42 15192046 - Endocrinology. 2004 Sep;145(9):4232-43 17349580 - Cancer Cell. 2007 Mar;11(3):217-27 19922469 - FEBS J. 2010 Jan;277(2):301-8 20395209 - Cancer Res. 2010 Apr 15;70(8):3361-71 23273428 - Structure. 2013 Feb 5;21(2):209-19 15329413 - Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13306-11 17894407 - J Cell Physiol. 2008 Mar;214(3):559-67 12297049 - Cell. 2002 Sep 20;110(6):763-73 22657099 - Biochemistry. 2012 Jun 26;51(25):5212-22 25514926 - Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20 16829981 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):505-16 23259747 - Biochemistry. 2013 Jan 15;52(2):402-14 15118073 - N Engl J Med. 2004 May 20;350(21):2129-39 9308922 - Am J Respir Cell Mol Biol. 1997 Sep;17(3):353-60 6092339 - J Biol Chem. 1984 Oct 25;259(20):12586-94 10801876 - J Biol Chem. 2000 Jul 21;275(29):21988-94 21571640 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9044-8 15118125 - Science. 2004 Jun 4;304(5676):1497-500 16107719 - Mol Cell Biol. 2005 Sep;25(17):7734-42 |
References_xml | – ident: e_1_3_3_30_2 doi: 10.1038/nsmb.2168 – ident: e_1_3_3_10_2 doi: 10.1111/j.1742-4658.2009.07448.x – ident: e_1_3_3_34_2 doi: 10.1021/bi300476v – ident: e_1_3_3_22_2 doi: 10.1093/glycob/cwl023 – ident: e_1_3_3_46_2 doi: 10.1016/j.lungcan.2011.12.014 – ident: e_1_3_3_31_2 doi: 10.1016/j.cell.2012.02.063 – ident: e_1_3_3_44_2 doi: 10.1186/1756-9966-31-65 – ident: e_1_3_3_4_2 doi: 10.1016/S0092-8674(02)00940-6 – ident: e_1_3_3_39_2 doi: 10.1074/jbc.R110.191429 – ident: e_1_3_3_2_2 doi: 10.1128/MCB.25.17.7734-7742.2005 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.0709662105 – ident: e_1_3_3_25_2 doi: 10.1093/oxfordjournals.jbchem.a021718 – ident: e_1_3_3_11_2 doi: 10.1016/j.yexcr.2008.07.026 – ident: e_1_3_3_18_2 doi: 10.1016/j.cell.2007.01.049 – ident: e_1_3_3_26_2 doi: 10.1093/emboj/19.17.4632 – ident: e_1_3_3_40_2 doi: 10.1210/en.2004-0401 – ident: e_1_3_3_3_2 doi: 10.1016/S1097-2765(03)00047-9 – ident: e_1_3_3_21_2 doi: 10.1074/jbc.M003400200 – ident: e_1_3_3_23_2 doi: 10.1074/jbc.M510893200 – ident: e_1_3_3_24_2 doi: 10.1073/pnas.1107385108 – ident: e_1_3_3_45_2 doi: 10.1158/0008-5472.CAN-09-2719 – ident: e_1_3_3_35_2 doi: 10.1021/bi3013142 – ident: e_1_3_3_12_2 doi: 10.1056/NEJMoa040938 – ident: e_1_3_3_13_2 doi: 10.1126/science.1099314 – ident: e_1_3_3_27_2 doi: 10.1016/S0021-9258(18)90787-8 – ident: e_1_3_3_7_2 doi: 10.1146/annurev.biophys.37.032807.125829 – ident: e_1_3_3_36_2 doi: 10.1093/nar/gku1267 – ident: e_1_3_3_17_2 doi: 10.1371/journal.pmed.0020073 – ident: e_1_3_3_5_2 doi: 10.1016/j.yexcr.2008.10.024 – ident: e_1_3_3_28_2 doi: 10.1371/journal.pone.0054136 – ident: e_1_3_3_42_2 doi: 10.1038/360689a0 – ident: e_1_3_3_37_2 doi: 10.1073/pnas.1105666108 – ident: e_1_3_3_43_2 doi: 10.1007/s00432-008-0509-9 – ident: e_1_3_3_20_2 doi: 10.1021/bi050751j – ident: e_1_3_3_1_2 doi: 10.1002/jcp.21260 – ident: e_1_3_3_47_2 doi: 10.1165/ajrcmb.17.3.2837 – ident: e_1_3_3_16_2 doi: 10.1038/nrc2088 – ident: e_1_3_3_29_2 doi: 10.1016/j.ccr.2006.12.017 – ident: e_1_3_3_8_2 doi: 10.1038/nrm1962 – ident: e_1_3_3_19_2 doi: 10.1158/0008-5472.CAN-06-3023 – ident: e_1_3_3_41_2 doi: 10.1128/mcb.14.8.5192-5201.1994 – ident: e_1_3_3_6_2 doi: 10.1016/S0092-8674(02)00963-7 – ident: e_1_3_3_38_2 doi: 10.1038/onc.2010.631 – ident: e_1_3_3_33_2 doi: 10.1016/j.str.2012.11.014 – ident: e_1_3_3_32_2 doi: 10.1038/nchembio.999 – ident: e_1_3_3_9_2 doi: 10.1002/pmic.200800204 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.0405220101 – reference: 21173156 - J Biol Chem. 2011 Feb 25;286(8):5935-41 – reference: 21258405 - Oncogene. 2011 Jun 2;30(22):2514-25 – reference: 23273428 - Structure. 2013 Feb 5;21(2):209-19 – reference: 19038249 - Exp Cell Res. 2009 Feb 15;315(4):638-48 – reference: 20395209 - Cancer Res. 2010 Apr 15;70(8):3361-71 – reference: 15737014 - PLoS Med. 2005 Mar;2(3):e73 – reference: 16829981 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):505-16 – reference: 22101934 - Nat Struct Mol Biol. 2011 Dec;18(12):1388-93 – reference: 19922469 - FEBS J. 2010 Jan;277(2):301-8 – reference: 23382875 - PLoS One. 2013;8(1):e54136 – reference: 9276679 - J Biochem. 1997 Jul;122(1):116-21 – reference: 12620237 - Mol Cell. 2003 Feb;11(2):507-17 – reference: 18573086 - Annu Rev Biophys. 2008;37:353-73 – reference: 6092339 - J Biol Chem. 1984 Oct 25;259(20):12586-94 – reference: 16274239 - Biochemistry. 2005 Nov 15;44(45):14920-31 – reference: 1465135 - Nature. 1992 Dec 17;360(6405):689-92 – reference: 17894407 - J Cell Physiol. 2008 Mar;214(3):559-67 – reference: 17349580 - Cancer Cell. 2007 Mar;11(3):217-27 – reference: 22901364 - J Exp Clin Cancer Res. 2012;31:65 – reference: 15118125 - Science. 2004 Jun 4;304(5676):1497-500 – reference: 16861703 - Glycobiology. 2006 Oct;16(10):1007-19 – reference: 10970856 - EMBO J. 2000 Sep 1;19(17):4632-43 – reference: 22657099 - Biochemistry. 2012 Jun 26;51(25):5212-22 – reference: 16316986 - J Biol Chem. 2006 Feb 3;281(5):2572-7 – reference: 21709263 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11332-7 – reference: 12297049 - Cell. 2002 Sep 20;110(6):763-73 – reference: 17318210 - Nat Rev Cancer. 2007 Mar;7(3):169-81 – reference: 12297050 - Cell. 2002 Sep 20;110(6):775-87 – reference: 9308922 - Am J Respir Cell Mol Biol. 1997 Sep;17(3):353-60 – reference: 22579287 - Cell. 2012 May 11;149(4):860-70 – reference: 15118073 - N Engl J Med. 2004 May 20;350(21):2129-39 – reference: 15329413 - Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13306-11 – reference: 7518560 - Mol Cell Biol. 1994 Aug;14(8):5192-201 – reference: 18227510 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2070-5 – reference: 21571640 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9044-8 – reference: 23259747 - Biochemistry. 2013 Jan 15;52(2):402-14 – reference: 22683610 - Nat Chem Biol. 2012 Jul;8(7):661-8 – reference: 16107719 - Mol Cell Biol. 2005 Sep;25(17):7734-42 – reference: 19002495 - J Cancer Res Clin Oncol. 2009 May;135(5):723-30 – reference: 25514926 - Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20 – reference: 15192046 - Endocrinology. 2004 Sep;145(9):4232-43 – reference: 17418791 - Cell. 2007 Apr 6;129(1):123-34 – reference: 18721806 - Exp Cell Res. 2009 Feb 15;315(4):557-71 – reference: 10801876 - J Biol Chem. 2000 Jul 21;275(29):21988-94 – reference: 22281074 - Lung Cancer. 2012 Jul;77(1):2-8 – reference: 17332320 - Cancer Res. 2007 Mar 1;67(5):1935-42 – reference: 18846509 - Proteomics. 2008 Nov;8(21):4383-401 |
SSID | ssj0009580 |
Score | 2.4856224 |
Snippet | Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational... This report reveals the influence of sialylation on the activation of epidermal growth factor receptor (EGFR) and sensitivity to tyrosine kinase inhibitors... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6955 |
SubjectTerms | Biological Sciences carcinogenesis Cell Line, Tumor Cells Dimerization Enzyme Inhibitors Epidermal growth factor epidermal growth factor receptors gene expression regulation Humans Kinases Lung cancer lung neoplasms Models, Molecular Mutation Mutation, Missense - genetics Neuraminidase - pharmacology Phosphorylation Phosphorylation - drug effects Protein Binding - drug effects Protein-Tyrosine Kinases - antagonists & inhibitors Quinazolines Receptor, Epidermal Growth Factor - genetics Receptor, Epidermal Growth Factor - metabolism tyrosine |
Title | Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition |
URI | https://www.jstor.org/stable/26463481 http://www.pnas.org/content/112/22/6955.abstract https://www.ncbi.nlm.nih.gov/pubmed/25971727 https://www.proquest.com/docview/1688664128 https://www.proquest.com/docview/1686066656 https://www.proquest.com/docview/1705052991 https://www.proquest.com/docview/1803114231 https://pubmed.ncbi.nlm.nih.gov/PMC4460513 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcJWWCxdEgVJDQYvEoShysHfttX2sopYIiaiCRmq5WOu13VitnKpODuWT-EpmH147oa0KUmJF9njW8Yzn5Xkg9FG6PSzyC1cIGrhBRmWxMuEuz8NIBF5W5Ko7_7cpm8yCr2fh2WDwu5e1tFpmI_HrzrqS_6Eq7AO6yirZf6CsRQo74DfQF7ZAYdg-isam9TDYew0sdntlzL96ePTl-Pvwer5o4HvT7leZ5EUjDUb5NEuj8xZ0pDQzL6satNmwqudVVllSGZv1xOq4ps0omLYhxMOuIMVIiWboDk-m3Xjjcy3XJrCOe74yelJmAFUrJf4BrTueVzYqPTblIlNeAbwNLDR6bDZAchdocNGPVvihyqrqBzDBDXbjQNdNjwotdMFmcVmgx4ZaqeyTHvvp2mUjZFmiO_sahc0SPZHgL2UA0ktOMIYbOJJmLyVJi3St7faGOrRJiur1fERTiSDtEGyhJwRcEpVEOuk3eI51uZP5f20bqYh-3riCNQtoq-SLNhVW9tcF0Lt8nc2U3Z4NdPocPTPOCz7UnLiDBkX9Au20hMcHpof5p5fop2ZNvChxjzUxfCRr4g3WxMCauGNNvFzgljWxZk3cseYrNDs-Oh1PXDPGwxVgWy_dpEhELMcycBGw0vcymTHAA8E9mheUcJrwiEa05CIH35pxQkUSlyUNBZi_se_RXbRdL-piD2Gal2WURDzISxYUYZzlpVdmnOU8Il4uiING7a1NhelxL0etXKX3ENNBB_aEa93e5X7QPaBVyi9A-aazH0S2ZpTxBY95DtpVBLQowMtgssIdzlFYLGqfpISkkoEdtN9SOTUiBVZjccxYADajgz7YwyDw5Vs8XheLlYJRQYeQPQATqQGV4Ps9ABODPvfBmwKY15q5uusPk0h6Ng6K1tjOAsim9OtH6mqumtMHMtHCp28ef2PfoqedpNhH28ubVfEOLP1l9l49Yn8Awx_6Jw |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+sialylation+on+EGFR+phosphorylation+and+resistance+to+tyrosine+kinase+inhibition&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yen%2C+Hsin-Yung&rft.au=Liu%2C+Ying-Chih&rft.au=Chen%2C+Nai-Yu&rft.au=Tsai%2C+Chia-Feng&rft.date=2015-06-02&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=22&rft.spage=6955&rft.epage=6960&rft_id=info:doi/10.1073%2Fpnas.1507329112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1507329112 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F22.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F22.cover.gif |