Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns

Functional connectivity (FC) patterns in functional MRI exhibit dynamic behavior on the scale of seconds, with rich spatiotemporal structure and limited sets of whole-brain, quasi-stable FC configurations (FC states) recurring across time and subjects. Based on previous evidence linking various aspe...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 28; pp. 8762 - 8767
Main Authors Gonzalez-Castillo, Javier, Hoy, Colin W, Handwerker, Daniel A, Robinson, Meghan E, Buchanan, Laura C, Saad, Ziad S, Bandettini, Peter A
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 14.07.2015
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional connectivity (FC) patterns in functional MRI exhibit dynamic behavior on the scale of seconds, with rich spatiotemporal structure and limited sets of whole-brain, quasi-stable FC configurations (FC states) recurring across time and subjects. Based on previous evidence linking various aspects of cognition to group-level, minute-to-minute FC changes in localized connections, we hypothesized that whole-brain FC states may reflect the global, orchestrated dynamics of cognitive processing on the scale of seconds. To test this hypothesis, subjects were continuously scanned as they engaged in and transitioned between mental states dictated by tasks. FC states computed within windows as short as 22.5 s permitted robust tracking of cognition in single subjects with near perfect accuracy. Accuracy dropped markedly for subjects with the lowest task performance. Spatially restricting FC information decreased accuracy at short time scales, emphasizing the distributed nature of whole-brain FC dynamics, beyond univariate magnitude changes, as valuable markers of cognition.
AbstractList Functional connectivity (FC) patterns in functional MRI exhibit dynamic behavior on the scale of seconds, with rich spatiotemporal structure and limited sets of whole-brain, quasi-stable FC configurations (FC states) recurring across time and subjects. Based on previous evidence linking various aspects of cognition to group-level, minute-to-minute FC changes in localized connections, we hypothesized that whole-brain FC states may reflect the global, orchestrated dynamics of cognitive processing on the scale of seconds. To test this hypothesis, subjects were continuously scanned as they engaged in and transitioned between mental states dictated by tasks. FC states computed within windows as short as 22.5 s permitted robust tracking of cognition in single subjects with near perfect accuracy. Accuracy dropped markedly for subjects with the lowest task performance. Spatially restricting FC information decreased accuracy at short time scales, emphasizing the distributed nature of whole-brain FC dynamics, beyond univariate magnitude changes, as valuable markers of cognition.
Recently, it was shown that functional connectivity patterns exhibit complex spatiotemporal dynamics at the scale of tens of seconds. Of particular interest is the observation of a limited set of quasi-stable, whole-brain, recurring configurations—commonly referred to as functional connectivity states (FC states)—hypothesized to reflect the continuous flux of cognitive processes. Here, to test this hypothesis, subjects were continuously scanned as they engaged in and transitioned between mental states dictated by tasks. We demonstrate that there is a strong relationship between FC states and ongoing cognition that permits accurate tracking of mental states in individual subjects. We also demonstrate how informative changes in connectivity are not restricted solely to those regions with sustained elevations in activity during task performance. Functional connectivity (FC) patterns in functional MRI exhibit dynamic behavior on the scale of seconds, with rich spatiotemporal structure and limited sets of whole-brain, quasi-stable FC configurations (FC states) recurring across time and subjects. Based on previous evidence linking various aspects of cognition to group-level, minute-to-minute FC changes in localized connections, we hypothesized that whole-brain FC states may reflect the global, orchestrated dynamics of cognitive processing on the scale of seconds. To test this hypothesis, subjects were continuously scanned as they engaged in and transitioned between mental states dictated by tasks. FC states computed within windows as short as 22.5 s permitted robust tracking of cognition in single subjects with near perfect accuracy. Accuracy dropped markedly for subjects with the lowest task performance. Spatially restricting FC information decreased accuracy at short time scales, emphasizing the distributed nature of whole-brain FC dynamics, beyond univariate magnitude changes, as valuable markers of cognition.
Functional connectivity (FC) patterns in functional MRI exhibit dynamic behavior on the scale of seconds, with rich spatiotemporal structure and limited sets of whole-brain, quasi-stable FC configurations (FC states) recurring across time and subjects. Based on previous evidence linking various aspects of cognition to group-level, minute-to-minute FC changes in localized connections, we hypothesized that whole-brain FC states may reflect the global, orchestrated dynamics of cognitive processing on the scale of seconds. To test this hypothesis, subjects were continuously scanned as they engaged in and transitioned between mental states dictated by tasks. FC states computed within windows as short as 22.5 s permitted robust tracking of cognition in single subjects with near perfect accuracy. Accuracy dropped markedly for subjects with the lowest task performance. Spatially restricting FC information decreased accuracy at short time scales, emphasizing the distributed nature of whole-brain FC dynamics, beyond univariate magnitude changes, as valuable markers of cognition.Functional connectivity (FC) patterns in functional MRI exhibit dynamic behavior on the scale of seconds, with rich spatiotemporal structure and limited sets of whole-brain, quasi-stable FC configurations (FC states) recurring across time and subjects. Based on previous evidence linking various aspects of cognition to group-level, minute-to-minute FC changes in localized connections, we hypothesized that whole-brain FC states may reflect the global, orchestrated dynamics of cognitive processing on the scale of seconds. To test this hypothesis, subjects were continuously scanned as they engaged in and transitioned between mental states dictated by tasks. FC states computed within windows as short as 22.5 s permitted robust tracking of cognition in single subjects with near perfect accuracy. Accuracy dropped markedly for subjects with the lowest task performance. Spatially restricting FC information decreased accuracy at short time scales, emphasizing the distributed nature of whole-brain FC dynamics, beyond univariate magnitude changes, as valuable markers of cognition.
Author Peter A. Bandettini
Daniel A. Handwerker
Meghan E. Robinson
Laura C. Buchanan
Gonzalez-Castillo, Javier
Ziad S. Saad
Colin W. Hoy
Author_xml – sequence: 1
  givenname: Javier
  surname: Gonzalez-Castillo
  fullname: Gonzalez-Castillo, Javier
  email: javier.gonzalez-castillo@nih.gov
  organization: Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892; javier.gonzalez-castillo@nih.gov
– sequence: 2
  givenname: Colin W
  surname: Hoy
  fullname: Hoy, Colin W
  organization: Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
– sequence: 3
  givenname: Daniel A
  surname: Handwerker
  fullname: Handwerker, Daniel A
  organization: Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
– sequence: 4
  givenname: Meghan E
  surname: Robinson
  fullname: Robinson, Meghan E
  organization: Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892; Veterans Affairs Boston Healthcare System, Boston, MA 02130
– sequence: 5
  givenname: Laura C
  surname: Buchanan
  fullname: Buchanan, Laura C
  organization: Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
– sequence: 6
  givenname: Ziad S
  surname: Saad
  fullname: Saad, Ziad S
  organization: Statistical and Scientific Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
– sequence: 7
  givenname: Peter A
  surname: Bandettini
  fullname: Bandettini, Peter A
  organization: Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892; Functional MRI Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26124112$$D View this record in MEDLINE/PubMed
BookMark eNqFks1rFDEYxoO02G317Ekd8OLBafP9cRGkaC0UPNieQyaTmWadTdZkZqX_vRl2u609WAiE8P6eJ2_yvMfgIMTgAHiD4CmCgpytg8mniEGEKUYIvwALBBWqOVXwACwgxKKWFNMjcJzzEkKomIQvwRHmRVD4BbDXydhfPvRVDH2cdxv74EcfQ-Xn1fqNbycz5GrKc7lJ3nWfqj-3cXB1k0yBuinYWWCGIg7BlcPGj3fV2oyjSyG_AoddMXCvd_sJuPn29fr8e3314-Ly_MtVbTkmY62IILQx0pHWKMkUdxLZhjTENNhRQaGFtmGocx3DEAknOFOUUAyJap3DgpyAz1vf9dSsXGtdGJMZ9Dr5lUl3Ohqv_60Ef6v7uNGUQYERLwYfdwYp_p5cHvXKZ-uGwQQXp6yRREISyol8HhUlB4EwEc-jXJXbmWCooB-eoMs4pfKxW0qoXZvvHr9z_8D7VAtwtgVsijkn1-0RBPU8N3qeG_0wN0XBniisH80cavkoP_xH937XylzY34KwxlJLwWfi7ZZY5jGmR71SziFhDw6didr0yWd987Pky8vwlpSZIn8BrmLkWQ
CitedBy_id crossref_primary_10_1089_neu_2024_0318
crossref_primary_10_1007_s41109_019_0178_4
crossref_primary_10_3389_fnimg_2022_825105
crossref_primary_10_1109_MSP_2015_2478915
crossref_primary_10_1016_j_neuroimage_2016_05_078
crossref_primary_10_1177_0004867420948960
crossref_primary_10_1371_journal_pcbi_1004533
crossref_primary_10_1017_S003329171900028X
crossref_primary_10_1016_j_neuroimage_2017_03_064
crossref_primary_10_1162_netn_a_00168
crossref_primary_10_1016_j_neuroimage_2020_117348
crossref_primary_10_1016_j_nic_2017_06_009
crossref_primary_10_1016_j_neuroimage_2017_10_019
crossref_primary_10_1002_hbm_24335
crossref_primary_10_1002_hbm_24336
crossref_primary_10_3389_fnins_2021_683633
crossref_primary_10_1038_s41467_021_22027_0
crossref_primary_10_3389_fnhum_2023_1134012
crossref_primary_10_1016_j_neuroimage_2019_116129
crossref_primary_10_1162_netn_a_00037
crossref_primary_10_1371_journal_pbio_3002732
crossref_primary_10_1016_j_neuroimage_2017_09_010
crossref_primary_10_1016_j_neuroimage_2021_117755
crossref_primary_10_1016_j_neuroimage_2018_12_037
crossref_primary_10_1038_s41467_024_51839_z
crossref_primary_10_1111_adb_13050
crossref_primary_10_1016_j_seizure_2023_04_004
crossref_primary_10_1016_j_neuron_2018_03_035
crossref_primary_10_1016_j_neuroimage_2018_01_075
crossref_primary_10_1093_cercor_bhw265
crossref_primary_10_1016_j_neuroimage_2018_01_071
crossref_primary_10_1016_j_neuroimage_2018_01_080
crossref_primary_10_1139_apnm_2020_0396
crossref_primary_10_1016_j_neuroimage_2017_09_020
crossref_primary_10_3389_fnagi_2020_593648
crossref_primary_10_1016_j_neuroimage_2017_02_036
crossref_primary_10_1080_23273798_2019_1608072
crossref_primary_10_1007_s11336_023_09908_7
crossref_primary_10_3389_fpsyt_2020_00227
crossref_primary_10_1002_hbm_23268
crossref_primary_10_1016_j_neuroimage_2021_118254
crossref_primary_10_7554_eLife_32696
crossref_primary_10_1016_j_neuroimage_2021_118252
crossref_primary_10_1016_j_jneumeth_2018_08_021
crossref_primary_10_1016_j_neuroimage_2018_08_021
crossref_primary_10_1007_s10548_020_00792_3
crossref_primary_10_1016_j_clinph_2024_02_004
crossref_primary_10_1016_j_nicl_2024_103694
crossref_primary_10_1073_pnas_1912226117
crossref_primary_10_1016_j_neuroimage_2017_09_036
crossref_primary_10_1016_j_neuroimage_2021_117847
crossref_primary_10_1073_pnas_1615269114
crossref_primary_10_1089_brain_2018_0632
crossref_primary_10_1038_s41386_024_01962_8
crossref_primary_10_1371_journal_pone_0168180
crossref_primary_10_1007_s11571_019_09557_6
crossref_primary_10_1016_j_jocn_2024_110817
crossref_primary_10_1016_j_neuroimage_2021_118027
crossref_primary_10_1016_j_nicl_2020_102507
crossref_primary_10_1002_hbm_26044
crossref_primary_10_1093_cercor_bhac133
crossref_primary_10_1002_hbm_23574
crossref_primary_10_1016_j_neuroimage_2022_119288
crossref_primary_10_1038_s41593_024_01618_2
crossref_primary_10_1021_acsphotonics_3c01253
crossref_primary_10_1002_glia_23079
crossref_primary_10_1038_s41598_024_79820_2
crossref_primary_10_3389_fnhum_2022_875201
crossref_primary_10_1016_j_neuroimage_2016_12_061
crossref_primary_10_1371_journal_pcbi_1005031
crossref_primary_10_1016_j_neuroimage_2018_10_054
crossref_primary_10_3389_fnins_2023_1131062
crossref_primary_10_1523_JNEUROSCI_2948_19_2020
crossref_primary_10_1007_s11682_020_00266_x
crossref_primary_10_1016_j_jad_2024_07_123
crossref_primary_10_1016_j_neuron_2019_08_025
crossref_primary_10_1016_j_neuroimage_2021_118590
crossref_primary_10_1016_j_dcn_2020_100855
crossref_primary_10_1103_PhysRevE_94_052411
crossref_primary_10_1016_j_neuroimage_2022_119279
crossref_primary_10_1093_cercor_bhw279
crossref_primary_10_3389_fnins_2022_1050240
crossref_primary_10_3389_fphys_2018_01852
crossref_primary_10_1007_s11682_023_00790_6
crossref_primary_10_1016_j_neuroimage_2021_118800
crossref_primary_10_1016_j_neuroimage_2016_12_073
crossref_primary_10_1016_j_tics_2017_09_006
crossref_primary_10_1093_cercor_bhw029
crossref_primary_10_1162_netn_a_00193
crossref_primary_10_1016_j_cobeha_2020_12_007
crossref_primary_10_1093_brain_aww337
crossref_primary_10_1002_hbm_25617
crossref_primary_10_1093_cercor_bhac396
crossref_primary_10_1002_hbm_26060
crossref_primary_10_1038_s41598_020_78276_4
crossref_primary_10_1093_scan_nsaa114
crossref_primary_10_1002_hbm_26183
crossref_primary_10_1016_j_bbr_2023_114521
crossref_primary_10_1093_schbul_sbw078
crossref_primary_10_1371_journal_pcbi_1005178
crossref_primary_10_1016_j_neuroscience_2019_10_024
crossref_primary_10_3390_brainsci10040223
crossref_primary_10_1002_hbm_25649
crossref_primary_10_1007_s11682_018_9976_z
crossref_primary_10_1002_hbm_25763
crossref_primary_10_1016_j_neuroimage_2023_120221
crossref_primary_10_1523_JNEUROSCI_1324_15_2015
crossref_primary_10_1073_pnas_2110811118
crossref_primary_10_31887_DCNS_2018_20_2_osporns
crossref_primary_10_1162_netn_a_00051
crossref_primary_10_1016_j_conb_2016_05_003
crossref_primary_10_1016_j_neuroimage_2019_01_063
crossref_primary_10_1016_j_neuroimage_2020_117630
crossref_primary_10_1093_cercor_bhaa305
crossref_primary_10_1523_JNEUROSCI_0723_23_2023
crossref_primary_10_1016_j_neuroimage_2018_04_070
crossref_primary_10_1002_hbm_23890
crossref_primary_10_3389_fnhum_2016_00659
crossref_primary_10_1109_TIM_2020_3019849
crossref_primary_10_1016_j_neuroimage_2022_119364
crossref_primary_10_1002_hbm_26488
crossref_primary_10_1109_TSIPN_2020_2984853
crossref_primary_10_3390_brainsci14121172
crossref_primary_10_1007_s10548_019_00719_7
crossref_primary_10_1371_journal_pone_0149849
crossref_primary_10_3389_fnut_2024_1354245
crossref_primary_10_1093_cercor_bhw089
crossref_primary_10_1162_netn_a_00321
crossref_primary_10_1038_s41380_024_02486_9
crossref_primary_10_1109_TMI_2022_3187141
crossref_primary_10_1016_j_mri_2019_11_012
crossref_primary_10_1016_j_neuroimage_2021_118310
crossref_primary_10_1162_imag_a_00366
crossref_primary_10_1002_hbm_24979
crossref_primary_10_1016_j_neuroimage_2017_08_044
crossref_primary_10_1016_j_neuroimage_2023_119890
crossref_primary_10_1007_s11695_018_3178_z
crossref_primary_10_31887_DCNS_2016_18_3_efinn
crossref_primary_10_1109_TMI_2020_3030047
crossref_primary_10_1016_j_celrep_2016_10_002
crossref_primary_10_1016_j_jad_2019_04_103
crossref_primary_10_1093_cercor_bhy011
crossref_primary_10_1038_s42003_022_03466_x
crossref_primary_10_2174_18744400_v15_e2206270
crossref_primary_10_1007_s10548_017_0546_2
crossref_primary_10_1016_j_neuroimage_2020_117296
crossref_primary_10_1523_JNEUROSCI_0037_21_2021
crossref_primary_10_3389_fnhum_2022_868135
crossref_primary_10_1002_hbm_24721
crossref_primary_10_1016_j_neuroimage_2017_05_050
crossref_primary_10_1371_journal_pbio_3002808
crossref_primary_10_1016_j_tins_2023_04_001
crossref_primary_10_3389_fpsyg_2023_1068404
crossref_primary_10_1016_j_celrep_2023_112527
crossref_primary_10_1162_netn_a_00301
crossref_primary_10_1093_cercor_bhy282
crossref_primary_10_3389_fncir_2021_608655
crossref_primary_10_1371_journal_pcbi_1011007
crossref_primary_10_1016_j_neuroimage_2022_119818
crossref_primary_10_1007_s11682_020_00287_6
crossref_primary_10_1016_j_neuroimage_2020_116635
crossref_primary_10_1016_j_neuroimage_2019_04_048
crossref_primary_10_3389_fnins_2018_00994
crossref_primary_10_3389_fnins_2017_00624
crossref_primary_10_1016_j_neuroimage_2021_118531
crossref_primary_10_3389_fnhum_2022_971062
crossref_primary_10_3390_life13091852
crossref_primary_10_1007_s11682_024_00908_4
crossref_primary_10_1162_netn_a_00419
crossref_primary_10_1016_j_neuroimage_2022_119131
crossref_primary_10_1089_brain_2017_0543
crossref_primary_10_1038_s41598_022_25016_5
crossref_primary_10_1002_hbm_26258
crossref_primary_10_1007_s00429_018_1619_z
crossref_primary_10_1016_j_neuroimage_2018_09_042
crossref_primary_10_1016_j_neuroimage_2018_03_074
crossref_primary_10_1007_s00429_020_02119_1
crossref_primary_10_1109_JBHI_2020_3008731
crossref_primary_10_1186_s12888_023_05009_y
crossref_primary_10_1038_s41380_024_02683_6
crossref_primary_10_1016_j_neuroimage_2020_117156
crossref_primary_10_3389_fnins_2017_00072
crossref_primary_10_3389_fnhum_2020_00003
crossref_primary_10_1016_j_neuroimage_2021_118423
crossref_primary_10_1093_gigascience_giae009
crossref_primary_10_3389_fnhum_2018_00166
crossref_primary_10_1093_cercor_bhac247
crossref_primary_10_3389_fpsyt_2022_1054380
crossref_primary_10_1038_s41598_023_48656_7
crossref_primary_10_1002_hbm_24385
crossref_primary_10_1016_j_neuroimage_2023_120395
crossref_primary_10_1038_s41598_023_44001_0
crossref_primary_10_1016_j_neuroimage_2017_08_006
crossref_primary_10_1002_hbm_24381
crossref_primary_10_1016_j_neuroimage_2021_117784
crossref_primary_10_1016_j_neuroimage_2019_116398
crossref_primary_10_3389_fneur_2019_01242
crossref_primary_10_1126_sciadv_abq8566
crossref_primary_10_1002_hbm_24374
crossref_primary_10_1016_j_neuroimage_2018_05_040
crossref_primary_10_1002_hbm_25225
crossref_primary_10_1038_srep46072
crossref_primary_10_1162_netn_a_00116
crossref_primary_10_1162_netn_a_00117
crossref_primary_10_1162_netn_a_00238
crossref_primary_10_3389_fnagi_2017_00152
crossref_primary_10_3389_fnins_2020_00645
crossref_primary_10_1162_jocn_a_01779
crossref_primary_10_1038_s41467_018_03664_4
crossref_primary_10_1016_j_cobeha_2021_04_002
crossref_primary_10_1038_s41467_022_31965_2
crossref_primary_10_1002_hbm_70024
crossref_primary_10_1093_braincomms_fcae154
crossref_primary_10_1016_j_neuroimage_2017_08_010
crossref_primary_10_1007_s11682_020_00405_4
crossref_primary_10_1016_j_neuroimage_2019_116059
crossref_primary_10_1162_NETN_a_00028
crossref_primary_10_1016_j_nicl_2021_102726
crossref_primary_10_3389_fnins_2019_01333
crossref_primary_10_3389_fnsys_2017_00029
crossref_primary_10_1016_j_neuroimage_2017_09_065
crossref_primary_10_1016_j_neuroimage_2022_118928
crossref_primary_10_1038_s41598_021_93190_z
crossref_primary_10_1038_nrn_2017_149
crossref_primary_10_1016_j_neubiorev_2025_106024
crossref_primary_10_1002_hbm_24831
crossref_primary_10_3389_fpsyt_2020_00663
crossref_primary_10_1038_s41598_017_06389_4
crossref_primary_10_1038_s41598_017_06866_w
crossref_primary_10_3389_fnins_2019_01220
crossref_primary_10_24835_1607_0763_2020_2_119_130
crossref_primary_10_1016_j_nicl_2022_103207
crossref_primary_10_1080_19312458_2020_1860206
crossref_primary_10_1016_j_neuroimage_2018_01_040
crossref_primary_10_1093_cercor_bhac209
crossref_primary_10_1016_j_neuroimage_2020_117111
crossref_primary_10_1016_j_neulet_2018_09_008
Cites_doi 10.1089/brain.2012.0115
10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
10.1016/j.neuroimage.2010.01.093
10.1371/journal.pone.0039731
10.1126/science.282.5395.1846
10.1016/j.nicl.2014.07.003
10.1093/cercor/bhs352
10.1016/j.neuroimage.2012.06.036
10.1002/hbm.22058
10.1016/j.neuroimage.2012.06.078
10.1016/S0167-8760(97)00098-6
10.3389/fnins.2014.00138
10.3389/fnhum.2012.00339
10.1006/cbmr.1996.0014
10.1093/cercor/bhr099
10.1016/S1364-6613(00)01819-2
10.1016/j.neuroimage.2013.01.049
10.1037/1082-989X.9.3.386
10.1093/brain/121.6.1013
10.1016/j.neuroimage.2010.04.246
10.1523/JNEUROSCI.1604-12.2012
10.1007/BF01908075
10.1073/pnas.1121049109
10.1073/pnas.1007841107
10.1016/j.neuroimage.2006.02.048
10.1016/j.neuroimage.2010.05.081
10.1016/j.neuroimage.2013.04.083
10.1002/hbm.21333
10.1063/1.4790830
10.1016/j.neuroimage.2012.02.031
10.1016/j.neuroimage.2009.12.011
10.1073/pnas.1311149110
10.1016/j.neuroimage.2008.09.029
10.1016/j.neuroimage.2012.10.076
10.1016/j.neuroimage.2013.05.079
10.1016/j.neuroimage.2010.02.052
10.1073/pnas.0905267106
10.1016/j.neuron.2014.10.015
10.3174/ajnr.A2894
10.1371/journal.pone.0085929
10.1016/j.neuroimage.2012.03.070
10.1371/journal.pcbi.1002441
10.1016/j.brainresbull.2009.11.014
10.1016/j.neuroimage.2014.09.007
10.1038/nmeth.1635
10.1016/j.neuroimage.2013.07.036
10.1073/pnas.1121329109
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jul 14, 2015
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jul 14, 2015
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1501242112
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE
AGRICOLA


Virology and AIDS Abstracts

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Tracking ongoing cognition with fMRI connectivity
EISSN 1091-6490
EndPage 8767
ExternalDocumentID PMC4507216
3750355881
26124112
10_1073_pnas_1501242112
112_28_8762
26466035
US201600201759
Genre Journal Article
Research Support, N.I.H., Intramural
Feature
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c623t-93734ba8e3da98596e81cb3b3ab2e4740c0cb51fef52017e76594342039dee273
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:01:46 EDT 2025
Fri Jul 11 02:30:10 EDT 2025
Fri Jul 11 15:17:44 EDT 2025
Fri Jul 11 05:36:13 EDT 2025
Mon Jun 30 08:30:32 EDT 2025
Mon Jul 21 05:56:25 EDT 2025
Tue Jul 01 01:53:29 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Wed Nov 11 00:29:40 EST 2020
Fri May 30 12:01:37 EDT 2025
Wed Dec 27 19:00:54 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords cognitive states
fMRI
functional connectivity states
connectivity dynamics
classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c623t-93734ba8e3da98596e81cb3b3ab2e4740c0cb51fef52017e76594342039dee273
Notes http://dx.doi.org/10.1073/pnas.1501242112
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
1J.G.-C. and C.W.H. contributed equally to this work.
Author contributions: J.G.-C., C.W.H., D.A.H., M.E.R., and P.A.B. designed research; J.G.-C., C.W.H., M.E.R., and L.C.B. performed research; Z.S.S. contributed new reagents/analytic tools; J.G.-C., C.W.H., D.A.H., M.E.R., and L.C.B. analyzed data; and J.G.-C., C.W.H., D.A.H., Z.S.S., and P.A.B. wrote the paper.
Edited by Russell A. Poldrack, University of Texas at Austin, Austin, TX, and accepted by the Editorial Board June 1, 2015 (received for review January 21, 2015)
OpenAccessLink https://www.pnas.org/content/pnas/112/28/8762.full.pdf
PMID 26124112
PQID 1697797216
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1697215751
pubmed_primary_26124112
proquest_miscellaneous_1709171237
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4507216
proquest_journals_1697797216
crossref_citationtrail_10_1073_pnas_1501242112
pnas_primary_112_28_8762
fao_agris_US201600201759
proquest_miscellaneous_1817834638
crossref_primary_10_1073_pnas_1501242112
jstor_primary_26466035
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-14
PublicationDateYYYYMMDD 2015-07-14
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Richiardi J (e_1_3_4_18_2) 2011; 56
Baars BJ (e_1_3_4_40_2) 2002; 6
Tononi G (e_1_3_4_22_2) 2010; 148
Chang C (e_1_3_4_47_2) 2009; 44
Yarkoni T (e_1_3_4_38_2) 2011; 8
Milazzo AC (e_1_3_4_37_2) 2014; 2014
Gonzalez-Castillo J (e_1_3_4_15_2) 2014; 8
Tagliazucchi E (e_1_3_4_6_2) 2012; 6
Shirer WR (e_1_3_4_17_2) 2012; 22
Smith SM (e_1_3_4_7_2) 2012; 109
Gonzalez-Castillo J (e_1_3_4_21_2) 2012; 109
Thompson GJ (e_1_3_4_12_2) 2013; 83
Delamillieure P (e_1_3_4_23_2) 2010; 81
Leonardi N (e_1_3_4_39_2) 2015; 104
Glover GH (e_1_3_4_45_2) 2000; 44
Birn RM (e_1_3_4_46_2) 2006; 31
Craddock RC (e_1_3_4_26_2) 2012; 33
Mesulam MM (e_1_3_4_20_2) 1998; 121
Yuan H (e_1_3_4_35_2) 2012; 60
Pantazatos SP (e_1_3_4_28_2) 2012; 8
Steinley D (e_1_3_4_25_2) 2004; 9
Keilholz SD (e_1_3_4_10_2) 2013; 3
Hutchison RM (e_1_3_4_9_2) 2013; 34
Calhoun VD (e_1_3_4_16_2) 2014; 84
Hubert L (e_1_3_4_24_2) 1985; 2
Britz J (e_1_3_4_34_2) 2010; 52
e_1_3_4_41_2
Schlegel A (e_1_3_4_31_2) 2013; 110
Musso F (e_1_3_4_36_2) 2010; 52
Cribben I (e_1_3_4_29_2) 2012; 61
Bassett DS (e_1_3_4_14_2) 2013; 23
Castellanos FX (e_1_3_4_3_2) 2013; 80
Gonzalez-Castillo J (e_1_3_4_49_2) 2013; 67
Damaraju E (e_1_3_4_43_2) 2014; 5
Smith SM (e_1_3_4_1_2) 2009; 106
Lehmann D (e_1_3_4_32_2) 1998; 29
Chou YH (e_1_3_4_2_2) 2012; 33
Hutchison RM (e_1_3_4_4_2) 2013; 80
Jones DT (e_1_3_4_42_2) 2012; 7
Cox RW (e_1_3_4_44_2) 1996; 29
Chang C (e_1_3_4_5_2) 2010; 50
Chang C (e_1_3_4_11_2) 2013; 72
Allen EA (e_1_3_4_13_2) 2014; 24
Zilverstand A (e_1_3_4_27_2) 2014; 9
Heinzle J (e_1_3_4_30_2) 2012; 32
Jo HJ (e_1_3_4_48_2) 2010; 52
Van de Ville D (e_1_3_4_33_2) 2010; 107
Handwerker DA (e_1_3_4_8_2) 2012; 63
Tagliazucchi E (e_1_3_4_19_2) 2012; 63
References_xml – volume: 3
  start-page: 31
  year: 2013
  ident: e_1_3_4_10_2
  article-title: Dynamic properties of functional connectivity in the rodent
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0115
– volume: 44
  start-page: 162
  year: 2000
  ident: e_1_3_4_45_2
  article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR
  publication-title: Magn Reson Med
  doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
– volume: 52
  start-page: 1149
  year: 2010
  ident: e_1_3_4_36_2
  article-title: Spontaneous brain activity and EEG microstates: A novel EEG/fMRI analysis approach to explore resting-state networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.093
– volume: 7
  start-page: e39731
  year: 2012
  ident: e_1_3_4_42_2
  article-title: Non-stationarity in the “resting brain’s” modular architecture
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0039731
– ident: e_1_3_4_41_2
  doi: 10.1126/science.282.5395.1846
– volume: 5
  start-page: 298
  year: 2014
  ident: e_1_3_4_43_2
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2014.07.003
– volume: 24
  start-page: 663
  year: 2014
  ident: e_1_3_4_13_2
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhs352
– volume: 63
  start-page: 63
  year: 2012
  ident: e_1_3_4_19_2
  article-title: Automatic sleep staging using fMRI functional connectivity data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.036
– volume: 34
  start-page: 2154
  year: 2013
  ident: e_1_3_4_9_2
  article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22058
– volume: 63
  start-page: 1712
  year: 2012
  ident: e_1_3_4_8_2
  article-title: Periodic changes in fMRI connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.078
– volume: 29
  start-page: 1
  year: 1998
  ident: e_1_3_4_32_2
  article-title: Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts
  publication-title: Int J Psychophysiol
  doi: 10.1016/S0167-8760(97)00098-6
– volume: 8
  start-page: 138
  year: 2014
  ident: e_1_3_4_15_2
  article-title: The spatial structure of resting state connectivity stability on the scale of minutes
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2014.00138
– volume: 6
  start-page: 339
  year: 2012
  ident: e_1_3_4_6_2
  article-title: Dynamic BOLD functional connectivity in humans and its electrophysiological correlates
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2012.00339
– volume: 29
  start-page: 162
  year: 1996
  ident: e_1_3_4_44_2
  article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput Biomed Res
  doi: 10.1006/cbmr.1996.0014
– volume: 22
  start-page: 158
  year: 2012
  ident: e_1_3_4_17_2
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhr099
– volume: 6
  start-page: 47
  year: 2002
  ident: e_1_3_4_40_2
  article-title: The conscious access hypothesis: Origins and recent evidence
  publication-title: Trends Cogn Sci
  doi: 10.1016/S1364-6613(00)01819-2
– volume: 72
  start-page: 227
  year: 2013
  ident: e_1_3_4_11_2
  article-title: EEG correlates of time-varying BOLD functional connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.01.049
– volume: 9
  start-page: 386
  year: 2004
  ident: e_1_3_4_25_2
  article-title: Properties of the Hubert-Arabie adjusted Rand index
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.9.3.386
– volume: 121
  start-page: 1013
  year: 1998
  ident: e_1_3_4_20_2
  article-title: From sensation to cognition
  publication-title: Brain
  doi: 10.1093/brain/121.6.1013
– volume: 52
  start-page: 571
  year: 2010
  ident: e_1_3_4_48_2
  article-title: Mapping sources of correlation in resting state FMRI, with artifact detection and removal
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.246
– volume: 32
  start-page: 9960
  year: 2012
  ident: e_1_3_4_30_2
  article-title: Visuomotor functional network topology predicts upcoming tasks
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1604-12.2012
– volume: 2
  start-page: 193
  year: 1985
  ident: e_1_3_4_24_2
  article-title: Comparing partitions
  publication-title: J Classif
  doi: 10.1007/BF01908075
– volume: 109
  start-page: 5487
  year: 2012
  ident: e_1_3_4_21_2
  article-title: Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1121049109
– volume: 107
  start-page: 18179
  year: 2010
  ident: e_1_3_4_33_2
  article-title: EEG microstate sequences in healthy humans at rest reveal scale-free dynamics
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1007841107
– volume: 31
  start-page: 1536
  year: 2006
  ident: e_1_3_4_46_2
  article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.02.048
– volume: 56
  start-page: 616
  year: 2011
  ident: e_1_3_4_18_2
  article-title: Decoding brain states from fMRI connectivity graphs
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.081
– volume: 80
  start-page: 527
  year: 2013
  ident: e_1_3_4_3_2
  article-title: Clinical applications of the functional connectome
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.083
– volume: 33
  start-page: 1914
  year: 2012
  ident: e_1_3_4_26_2
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21333
– volume: 23
  start-page: 013142
  year: 2013
  ident: e_1_3_4_14_2
  article-title: Robust detection of dynamic community structure in networks
  publication-title: Chaos
  doi: 10.1063/1.4790830
– volume: 60
  start-page: 2062
  year: 2012
  ident: e_1_3_4_35_2
  article-title: Spatiotemporal dynamics of the brain at rest: Exploring EEG microstates as electrophysiological signatures of BOLD resting state networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.031
– volume: 50
  start-page: 81
  year: 2010
  ident: e_1_3_4_5_2
  article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.011
– volume: 110
  start-page: 16277
  year: 2013
  ident: e_1_3_4_31_2
  article-title: Network structure and dynamics of the mental workspace
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1311149110
– volume: 44
  start-page: 857
  year: 2009
  ident: e_1_3_4_47_2
  article-title: Influence of heart rate on the BOLD signal: The cardiac response function
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.029
– volume: 67
  start-page: 163
  year: 2013
  ident: e_1_3_4_49_2
  article-title: Effects of image contrast on functional MRI image registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.076
– volume: 80
  start-page: 360
  year: 2013
  ident: e_1_3_4_4_2
  article-title: Dynamic functional connectivity: Promise, issues, and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 52
  start-page: 1162
  year: 2010
  ident: e_1_3_4_34_2
  article-title: BOLD correlates of EEG topography reveal rapid resting-state network dynamics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.052
– volume: 106
  start-page: 13040
  year: 2009
  ident: e_1_3_4_1_2
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0905267106
– volume: 84
  start-page: 262
  year: 2014
  ident: e_1_3_4_16_2
  article-title: The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.10.015
– volume: 33
  start-page: 833
  year: 2012
  ident: e_1_3_4_2_2
  article-title: Investigation of long-term reproducibility of intrinsic connectivity network mapping: A resting-state fMRI study
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2894
– volume: 148
  start-page: 299
  year: 2010
  ident: e_1_3_4_22_2
  article-title: Information integration: Its relevance to brain function and consciousness
  publication-title: Arch Ital Biol
– volume: 9
  start-page: e85929
  year: 2014
  ident: e_1_3_4_27_2
  article-title: Windowed correlation: A suitable tool for providing dynamic fMRI-based functional connectivity neurofeedback on task difficulty
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0085929
– volume: 61
  start-page: 907
  year: 2012
  ident: e_1_3_4_29_2
  article-title: Dynamic connectivity regression: Determining state-related changes in brain connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.070
– volume: 8
  start-page: e1002441
  year: 2012
  ident: e_1_3_4_28_2
  article-title: Decoding unattended fearful faces with whole-brain correlations: An approach to identify condition-dependent large-scale functional connectivity
  publication-title: PLOS Comput Biol
  doi: 10.1371/journal.pcbi.1002441
– volume: 81
  start-page: 565
  year: 2010
  ident: e_1_3_4_23_2
  article-title: The resting state questionnaire: An introspective questionnaire for evaluation of inner experience during the conscious resting state
  publication-title: Brain Res Bull
  doi: 10.1016/j.brainresbull.2009.11.014
– volume: 104
  start-page: 430
  year: 2015
  ident: e_1_3_4_39_2
  article-title: On spurious and real fluctuations of dynamic functional connectivity during rest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.09.007
– volume: 2014
  start-page: bhu255
  year: 2014
  ident: e_1_3_4_37_2
  article-title: Identification of mood-relevant brain connections using a continuous, subject-driven rumination paradigm
  publication-title: Cereb Cortex
– volume: 8
  start-page: 665
  year: 2011
  ident: e_1_3_4_38_2
  article-title: Large-scale automated synthesis of human functional neuroimaging data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1635
– volume: 83
  start-page: 826
  year: 2013
  ident: e_1_3_4_12_2
  article-title: Neural correlates of time-varying functional connectivity in the rat
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.07.036
– volume: 109
  start-page: 3131
  year: 2012
  ident: e_1_3_4_7_2
  article-title: Temporally-independent functional modes of spontaneous brain activity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1121329109
SSID ssj0009580
Score 2.5956483
Snippet Functional connectivity (FC) patterns in functional MRI exhibit dynamic behavior on the scale of seconds, with rich spatiotemporal structure and limited sets...
Recently, it was shown that functional connectivity patterns exhibit complex spatiotemporal dynamics at the scale of tens of seconds. Of particular interest is...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8762
SubjectTerms Accuracy
Behavior
Biological Sciences
Brain
Brain - physiology
classification
Cognition
Cognition & reasoning
cognitive states
connectivity dynamics
fMRI
functional connectivity states
Humans
Information processing
Magnetic Resonance Imaging
Title Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns
URI https://www.jstor.org/stable/26466035
http://www.pnas.org/content/112/28/8762.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26124112
https://www.proquest.com/docview/1697797216
https://www.proquest.com/docview/1697215751
https://www.proquest.com/docview/1709171237
https://www.proquest.com/docview/1817834638
https://pubmed.ncbi.nlm.nih.gov/PMC4507216
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-u9cUXsWpttEoEHypnziSbz8dyVIvQo2AP-xaym831qOaO-6Bw_4z_qjP7lVxtiwpHOJLNJmR-mZmdzPyGkPc0ZGAX0trza5p4UUVTjzHBvLgswX1N4jhLsHb4bJScjqOvl_Flr_erk7W0XrEB39xZV_I_UoV9IFeskv0HydpJYQf8B_nCFiQM27-T8aLk1zJtuZnMVPWsTAZS6YtTW2u17K9lSIDBuliSMN5gV1yPYXuIPlo2HRDkmPXCdT-JuWTe1ME87b6eW3O3NMkFIxNNPG5rU7TCWPa9_vmo7XT8ZdZswB5tvGEJisV89CnRMlt0qdDgEFsJ9b-36rGpbsRCJ4Coqvg2CNstYTsTkyvQWCfdYEYQY5RUFZEOhFLA4L94SaRaiFoNHYQdKOpi8qW21kqZ_2EJQHVh--KmXA7A5w3wy3ewNRJEOf8pgYEsapG5xjb5tjm0Qx6FsA6hJhxkWZ0z3_BFpfTTrash0bQ-f8vr2anLmUl_RU5dOOuu9c3tNN2O33PxlDzRCxb3WKFvj_RE84zsGQm7R5q3_MNzwg0cXQ1H18LRneLPwtGVcHQlHD-6HTC6LRjdLhhdA8YXZPz55GJ46ukeHh4Hx3rlgfdLI1ZmglZlnsV5IrKAM8poyUIRpZHPfc7ioBZ1DHhIBagHZCwMfZpXQoBvvU92m1kjDohL_VqEYVXxSvAohEVhlgiR1T6L8iCPwsghA_OMC64J7rHPyo9CJlqktMAnXbTycciRPWGuuF3uH3oAQivKCVjeYvwtRF5GH284zh2yLyVpp4AlRpL4NIZz5Cx26iAswqxAxDrk0Ii70PoErpbAWkySaTnknT0M2h4_4ZWNmK3VGHDS0zh4YEwK71AKHmn6wJgswA47YHwd8lKhrHP_CrMOSbfwZwcgI_32kWZ6JZnpoxjpFpNX9875mjxuX_tDsrtarMUb8OpX7K18s34DkVz3ew
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+ongoing+cognition+in+individuals+using+brief%2C+whole-brain+functional+connectivity+patterns&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Gonzalez-Castillo%2C+Javier&rft.au=Hoy%2C+Colin+W&rft.au=Handwerker%2C+Daniel+A&rft.au=Robinson%2C+Meghan+E&rft.date=2015-07-14&rft.eissn=1091-6490&rft.volume=112&rft.issue=28&rft.spage=8762&rft_id=info:doi/10.1073%2Fpnas.1501242112&rft_id=info%3Apmid%2F26124112&rft.externalDocID=26124112
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F28.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F28.cover.gif