Detailed assessment of global transport-energy models’ structures and projections

•We compare major global transportation models with considerable technology details to 2050.•There are significant differences in the base-year data and key parameters for future projections.•Main GHG mitigation differs for economics IA models vs transport-only expert models.•Significant EV gaps bet...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part D, Transport and environment Vol. 55; no. C; pp. 294 - 309
Main Authors Yeh, Sonia, Mishra, Gouri Shankar, Fulton, Lew, Kyle, Page, McCollum, David L., Miller, Joshua, Cazzola, Pierpaolo, Teter, Jacob
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.08.2017
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We compare major global transportation models with considerable technology details to 2050.•There are significant differences in the base-year data and key parameters for future projections.•Main GHG mitigation differs for economics IA models vs transport-only expert models.•Significant EV gaps between policy targets and model trajectories to 2°C target.•We offer suggestions on access to data, model improvements, and future comparisons. This paper focuses on comparing the frameworks and projections from four global transportation models with considerable technology details. We analyze and compare the modeling frameworks, underlying data, assumptions, intermediate parameters, and projections to identify the sources of divergence or consistency, as well as key knowledge gaps. We find that there are significant differences in the base-year data and key parameters for future projections, especially for developing countries. These include passenger and freight activity, mode shares, vehicle ownership rates, and energy consumption by mode, particularly for shipping, aviation and trucking. This may be due in part to a lack of previous efforts to do such consistency-checking and “bench-marking.” We find that the four models differ in terms of the relative roles of various mitigation strategies to achieve a 2°C/450ppm target: the economics-based integrated assessment models favor the use of low carbon fuels as the primary mitigation option followed by efficiency improvements, whereas transport-only and expert-based models favor efficiency improvements of vehicles followed by mode shifts. We offer recommendations for future modeling improvements focusing on (1) reducing data gaps; (2) translating the findings from this study into relevant policy implications such as gaps of current policy goals, additional policy targets needed, regional vs. global reductions; (3) modeling strata of demographic groups to improve understanding of vehicle ownership levels, travel behavior, and urban vs. rural considerations; and (4) conducting coordinated efforts in aligning historical data, and comparing input assumptions and results of policy analysis and modeling insights.
AbstractList This paper focuses on comparing the frameworks and projections from four major global transportation models with considerable transportation technology and behavioral detail. We analyze and compare the modeling frameworks, underlying data, assumptions, intermediate parameters, and projections to identify the sources of divergence or consistency, as well as key knowledge gaps. We find that there are significant differences in the base-year data and key parameters for future projections, especially for developing countries. These include passenger and freight activity, mode shares, vehicle ownership rates, and even energy consumption by mode, particularly for shipping, aviation and trucking. This may be due in part to a lack of previous efforts to do such consistency-checking and “bench-marking.” We find that the four models differ in terms of the relative roles of various mitigation strategies to achieve a 2°C / 450 ppm CO2e target: the economics-based integrated assessment models favor the use of low carbon fuels as the primary mitigation option followed by efficiency improvements, whereas transport-only and expert-based models favor efficiency improvements of vehicles followed by mode shifts. We offer recommendations for future modeling improvements focusing on (1) reducing data gaps; (2) translating the findings from this study into relevant policy implications such as feasibility of current policy goals, additional policy targets needed, regional vs. global reductions, etc.; (3) modeling strata of demographic groups to improve understanding of vehicle ownership levels, travel behavior, and urban vs. rural considerations; and (4) conducting coordinated efforts in aligning input assumptions and historical data, policy analysis, and modeling insights.
This paper focuses on comparing the frameworks and projections from four global transportation models with considerable technology details. We analyze and compare the modeling frameworks, underlying data, assumptions, intermediate parameters, and projections to identify the sources of divergence or consistency, as well as key knowledge gaps. We find that there are significant differences in the base-year data and key parameters for future projections, especially for developing countries. These include passenger and freight activity, mode shares, vehicle ownership rates, and energy consumption by mode, particularly for shipping, aviation and trucking. This may be due in part to a lack of previous efforts to do such consistency-checking and "bench-marking." We find that the four models differ in terms of the relative roles of various mitigation strategies to achieve a 2. °C/450. ppm target: the economics-based integrated assessment models favor the use of low carbon fuels as the primary mitigation option followed by efficiency improvements, whereas transport-only and expert-based models favor efficiency improvements of vehicles followed by mode shifts. We offer recommendations for future modeling improvements focusing on (1) reducing data gaps; (2) translating the findings from this study into relevant policy implications such as gaps of current policy goals, additional policy targets needed, regional vs. global reductions; (3) modeling strata of demographic groups to improve understanding of vehicle ownership levels, travel behavior, and urban vs. rural considerations; and (4) conducting coordinated efforts in aligning historical data, and comparing input assumptions and results of policy analysis and modeling insights.
•We compare major global transportation models with considerable technology details to 2050.•There are significant differences in the base-year data and key parameters for future projections.•Main GHG mitigation differs for economics IA models vs transport-only expert models.•Significant EV gaps between policy targets and model trajectories to 2°C target.•We offer suggestions on access to data, model improvements, and future comparisons. This paper focuses on comparing the frameworks and projections from four global transportation models with considerable technology details. We analyze and compare the modeling frameworks, underlying data, assumptions, intermediate parameters, and projections to identify the sources of divergence or consistency, as well as key knowledge gaps. We find that there are significant differences in the base-year data and key parameters for future projections, especially for developing countries. These include passenger and freight activity, mode shares, vehicle ownership rates, and energy consumption by mode, particularly for shipping, aviation and trucking. This may be due in part to a lack of previous efforts to do such consistency-checking and “bench-marking.” We find that the four models differ in terms of the relative roles of various mitigation strategies to achieve a 2°C/450ppm target: the economics-based integrated assessment models favor the use of low carbon fuels as the primary mitigation option followed by efficiency improvements, whereas transport-only and expert-based models favor efficiency improvements of vehicles followed by mode shifts. We offer recommendations for future modeling improvements focusing on (1) reducing data gaps; (2) translating the findings from this study into relevant policy implications such as gaps of current policy goals, additional policy targets needed, regional vs. global reductions; (3) modeling strata of demographic groups to improve understanding of vehicle ownership levels, travel behavior, and urban vs. rural considerations; and (4) conducting coordinated efforts in aligning historical data, and comparing input assumptions and results of policy analysis and modeling insights.
Author Cazzola, Pierpaolo
Fulton, Lew
Kyle, Page
Miller, Joshua
Teter, Jacob
McCollum, David L.
Mishra, Gouri Shankar
Yeh, Sonia
Author_xml – sequence: 1
  givenname: Sonia
  surname: Yeh
  fullname: Yeh, Sonia
  email: sonia.yeh@chalmers.se
  organization: Institute of Transportation Studies, University of California, Davis, USA
– sequence: 2
  givenname: Gouri Shankar
  surname: Mishra
  fullname: Mishra, Gouri Shankar
  organization: Institute of Transportation Studies, University of California, Davis, USA
– sequence: 3
  givenname: Lew
  surname: Fulton
  fullname: Fulton, Lew
  organization: Institute of Transportation Studies, University of California, Davis, USA
– sequence: 4
  givenname: Page
  surname: Kyle
  fullname: Kyle, Page
  organization: Joint Global Change Research Institute, Pacific Northwest National Laboratory, USA
– sequence: 5
  givenname: David L.
  surname: McCollum
  fullname: McCollum, David L.
  organization: Energy Program, International Institute for Applied Systems Analysis, Austria
– sequence: 6
  givenname: Joshua
  surname: Miller
  fullname: Miller, Joshua
  organization: International Council on Clean Transportation, USA
– sequence: 7
  givenname: Pierpaolo
  surname: Cazzola
  fullname: Cazzola, Pierpaolo
  organization: International Energy Agency, France
– sequence: 8
  givenname: Jacob
  surname: Teter
  fullname: Teter, Jacob
  organization: International Energy Agency, France
BackLink https://www.osti.gov/biblio/1415092$$D View this record in Osti.gov
https://research.chalmers.se/publication/247930$$DView record from Swedish Publication Index
BookMark eNp9kU1u3DAMhY0iBZq_A2RndG-XtCzbQldF-gsEyCLtWqBlOuOBRxqImhbZ9Rq5Xk9SDaboMitywfeRj--iOPPBc1HcINQI2L3b1ilOdZPbGrEGwFfFOQ69qRrVwlnuVYeVacC8KS5EtgCgte7Oi4ePnGhZeSpJhEV27FMZ5vJxDSOtZYrkZR9iqthzfHwqd2HiVf78fi4lxYNLh8hSkp_KfQxbdmkJXq6K1zOtwtf_6mXx4_On77dfq7v7L99uP9xVrmtUqgZH7LBVjHNjCLXpkbUaZlJKA6GZRlCT6WcCgyNopBm4b_QEHbnss1eXxcOJK794fxjtPi47ik820GLzWUzRbazb0LrjKFbYNkODCG1nTeu0baHrLTk32LYbae5UrwmHTH17ogZJixW3JHYbF7zP7iy2qME0eQhPQy4Gkcjz_-UI9hiI3dociD0GYhFtDiRr3p80-YH8c-F4hLN3PC3xyJ7C8oL6LxW3lo4
CitedBy_id crossref_primary_10_1016_j_techfore_2022_121803
crossref_primary_10_1080_14693062_2020_1804817
crossref_primary_10_1016_j_rser_2019_05_041
crossref_primary_10_1080_14693062_2018_1471385
crossref_primary_10_1016_j_jclepro_2020_125086
crossref_primary_10_2139_ssrn_4118045
crossref_primary_10_1108_SASBE_04_2020_0052
crossref_primary_10_2139_ssrn_3766557
crossref_primary_10_1016_j_trd_2019_01_023
crossref_primary_10_1016_j_eneco_2023_106710
crossref_primary_10_1016_j_erss_2022_102596
crossref_primary_10_1080_15568318_2018_1466220
crossref_primary_10_1016_j_apenergy_2018_01_058
crossref_primary_10_1007_s12053_018_9670_4
crossref_primary_10_1016_j_trd_2022_103254
crossref_primary_10_1002_ffo2_126
crossref_primary_10_1007_s10563_022_09364_w
crossref_primary_10_3390_en12071382
crossref_primary_10_1016_j_esr_2021_100737
crossref_primary_10_1016_j_enpol_2021_112288
crossref_primary_10_3390_su11071965
crossref_primary_10_46830_wrirpt_21_00145
crossref_primary_10_1038_s41598_023_30555_6
crossref_primary_10_1016_j_rser_2019_109349
crossref_primary_10_2139_ssrn_4047249
crossref_primary_10_1016_j_rser_2019_109541
crossref_primary_10_2139_ssrn_3860164
crossref_primary_10_1007_s10584_021_03245_3
crossref_primary_10_1016_j_futures_2020_102553
crossref_primary_10_1186_s12544_022_00568_9
crossref_primary_10_1126_science_aas9793
crossref_primary_10_1038_s41560_020_00740_2
crossref_primary_10_1016_j_treng_2022_100133
crossref_primary_10_1080_09535314_2023_2230653
crossref_primary_10_1016_j_rser_2022_112698
crossref_primary_10_1016_j_apenergy_2019_114121
crossref_primary_10_1016_j_eneco_2019_06_013
crossref_primary_10_1007_s42524_023_0270_4
crossref_primary_10_1038_s41560_021_00855_0
crossref_primary_10_1016_j_esr_2020_100543
crossref_primary_10_1016_j_trd_2019_102214
crossref_primary_10_1016_j_eneco_2021_105490
crossref_primary_10_1021_acs_estlett_0c00764
crossref_primary_10_2139_ssrn_4149232
crossref_primary_10_1016_j_jclepro_2018_11_271
crossref_primary_10_1016_j_jtrangeo_2024_103903
crossref_primary_10_1038_s41467_024_48424_9
crossref_primary_10_1016_j_enpol_2022_113239
crossref_primary_10_3390_atmos14030434
crossref_primary_10_1016_j_enpol_2018_01_037
crossref_primary_10_3390_en13092229
crossref_primary_10_1016_j_jclepro_2020_124890
crossref_primary_10_1016_j_trd_2019_04_014
crossref_primary_10_12688_aasopenres_13065_1
crossref_primary_10_1007_s12053_018_9671_3
crossref_primary_10_1016_j_enpol_2023_113591
crossref_primary_10_1016_j_futures_2019_04_004
crossref_primary_10_1016_j_iatssr_2023_02_005
crossref_primary_10_1016_j_apenergy_2021_117364
crossref_primary_10_3390_futuretransp2010010
crossref_primary_10_1016_j_scitotenv_2020_144280
crossref_primary_10_1016_j_trd_2017_05_003
crossref_primary_10_3389_fbuil_2019_00089
crossref_primary_10_1016_j_enpol_2021_112714
crossref_primary_10_1088_2516_1083_ac86b5
crossref_primary_10_1016_j_apenergy_2018_03_064
crossref_primary_10_46830_wrirpt_21_00145cn
crossref_primary_10_1016_j_trip_2024_101016
crossref_primary_10_1016_j_trd_2022_103487
crossref_primary_10_3390_earth2040043
Cites_doi 10.1016/j.trd.2016.04.003
10.1016/j.trd.2016.10.007
10.1126/science.aac8033
10.5194/bg-11-6435-2014
10.1038/nclimate2475
10.1016/j.energy.2013.08.059
10.3141/2454-01
10.1016/j.trd.2016.11.002
10.1016/j.trd.2016.07.003
10.1038/nature13837
10.3390/en4040563
10.1007/s10584-012-0663-6
10.1016/S0301-4215(03)00076-4
10.1016/j.enpol.2011.03.016
10.1016/S0140-9883(00)00069-4
10.1016/0140-9883(93)90031-L
10.1016/j.enpol.2009.07.065
10.1126/science.aad5761
10.1016/j.eneco.2014.04.024
10.1142/S2010007813400137
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
OTOTI
ADTPV
AOWAS
F1S
DOI 10.1016/j.trd.2016.11.001
DatabaseName CrossRef
OSTI.GOV
SwePub
SwePub Articles
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Environmental Sciences
EISSN 1879-2340
EndPage 309
ExternalDocumentID oai_research_chalmers_se_28211046_94c5_4067_acc8_46baf6375a18
1415092
10_1016_j_trd_2016_11_001
S1361920916301651
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABMMH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
PZZ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSB
SSJ
SSO
SSZ
T5K
~G-
0SF
AAXKI
AAYXX
AFJKZ
CITATION
AALMO
ABPIF
ABPTK
OTOTI
ADTPV
AOWAS
F1S
ID FETCH-LOGICAL-c623t-8caec143e1f29a15971e538fa3350a19db03d97fa091b051af0e725d06ac01673
IEDL.DBID .~1
ISSN 1361-9209
IngestDate Tue Oct 01 22:08:17 EDT 2024
Fri May 19 01:41:40 EDT 2023
Thu Sep 26 16:54:48 EDT 2024
Fri Feb 23 02:30:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Climate mitigation
Transportation behaviors
Transportation scenarios
Energy use
GHG emissions
Model comparison
Transportation demand
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c623t-8caec143e1f29a15971e538fa3350a19db03d97fa091b051af0e725d06ac01673
Notes USDOE
AC05-76RL01830
PNNL-SA-117294
OpenAccessLink http://manuscript.elsevier.com/S1361920916301651/pdf/S1361920916301651.pdf
PageCount 16
ParticipantIDs swepub_primary_oai_research_chalmers_se_28211046_94c5_4067_acc8_46baf6375a18
osti_scitechconnect_1415092
crossref_primary_10_1016_j_trd_2016_11_001
elsevier_sciencedirect_doi_10_1016_j_trd_2016_11_001
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Transportation research. Part D, Transport and environment
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Schipper, Saenger, Sudardshan (b0175) 2011; 4
EC, 2009. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC Text with EEA relevance.
McJeon, Edmonds, Bauer, Clarke, Fisher, Flannery, Hilaire, Krey, Marangoni, Mi, Riahi, Rogner, Tavoni (b0115) 2014; 514
Tavoni, Kriegler, Riahi, van Vuuren, Aboumahboub, Bowen, Calvin, Campiglio, Kober, Jewell, Luderer, Marangoni, McCollum, van Sluisveld, Zimmer, van der Zwaan (b0180) 2015; 5
McCollum, Krey, Kolp, Nagai, Riahi (b0110) 2013; 123
Mishra, Gouri Shankar, Kyle, Page, Teter, Jacob, Morrison, Geoffrey M., Kim, Son, Yeh, Sonia, 2013. Transportation Module of Global Change Assessment Model (GCAM): Model Documentation. Research Report UCD-ITS-RR-13-05. Davis, CA: Institute of Transportation Studies, University of California.
Schäfer, Heywood, Jacoby, Waitz (b0165) 2009
Carrara, Longden (b0015) 2017; 55
Girod, Vuuren, Grahn, Kitous, Kim, Kyle (b0060) 2013; 118
Kishimoto, Zhang, Zhang, Karplus (b0095) 2014; 2454
Mishra, Zakerinia, Yeh, Teter, Morrison (b0130) 2014; 44
Kim, Hejazi, Liu, Calvin, Clarke, Edmonds, Kyle, Patel, Wise, Davies (b0090) 2016
Zhang, Ang (b0190) 2001; 23
Ang (b0005) 2004; 32
U.S. EPA, 2012. Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards (40 CFR Part 80 [EPA–HQ–OAR–2010–0133; FRL–9614–4] RIN 2060–AQ76). Federal Register, U.S. Environmental Protection Agency. 77.
Mock, Peter, Kühlwein, Jörg, Tietge, Uwe, Franco, Vicente, Bandivadekar, Anup, German, John, 2014. The WLTP: How a new test procedure for cars will affect fuel consumption values in the EU. The International Council on Clean Transportation (ICCT) Working paper 2014-9.
Façanha, Blumberg, Miller (b0045) 2012
Plötz, Patrick, Funke, Simon, Jochem, Patrick, 2015. Real-world fuel economy and CO
IEA (b0070) 2014
State Council (zhongguo renmin gongheguo guowuyuan 中华人民共和国国务院), 2012. “Energy Saving and New Energy Auto Industry Development Plan (2012–2020) (jieneng yu xin nengyuan qiche chanye yu fazhan guihua节能与新能源汽车产业发展规划(2012–2020年))”. June 28.
Riahi, Dentener, Gielen, Grubler, Jewell, Klimont, Krey, McCollum, Pachauri, Rao, van Ruijven, van Vuuren, Wilson (b0160) 2012
Kyle, Kim (b0100) 2011; 39
Di Vittorio, Chini, Bond-Lamberty, Mao, Shi, Truesdale, Craig, Calvin, Jones, Collins, Edmonds, Hurtt, Thornton, Thomson (b0030) 2014; 11
IEA (b0075) 2016
Schäfer, Victor (b0170) 2000; 34
Edelenbosch, McCollum, van Vuuren, Bertram, Carrara, Daly, Fujimori, Kitous, Kyle, Broin, Karkatsoulis, Sano (b0040) 2017; 55
Ó Broin, Guivarch (b0145) 2017; 55
IPCC (b0080) 2014
ARB, 2012. Subchapter 10. Climate Change. Article 4. Regulations to Achieve Greenhouse Gas Emission Reductions. Subarticle 7. Low Carbon Fuel Standard. Sacramento, CA, California Air Resources Board.
Fawcett, Iyer, Clarke, Edmonds, Hultman, McJeon, Rogelj, Schuler, Alsalam, Asrar, Creason, Jeong, McFarland, Mundra, Shi (b0050) 2015
Navigant Consulting Inc, 2015. Transportation Forecast: Light Duty Vehicles Global Market Forecasts, 2015–2035.
Creutzig, Jochem, Edelenbosch, Mattauch, van Vuuren, McCollum, Minx (b0025) 2015; 350
IPCC (b0085) 2014
Fulton, Cazzola, Cuenot (b0055) 2009; 37
Pietzcker, Longden, Chen, Sha, Kriegler, Kyle, Luderer (b0150) 2014; 64
.
Bunch, David S., Ramea, Kalai, Yeh, Sonia, Yang, Christopher, 2015. Incorporating Behavioral effects from Vehicle Choice Models into Bottom-Up Energy Sector Models. Research Report – UCD-ITS-RR-15-13. Institute of Transportation Studies, University of California, Davis.
ICCT (b0065) 2015
van der Zwaan, Rösler, Kober, Aboumahboub, Calvin, Gernaat, Marangoni, McCollum (b0185) 2013; 04
Clarke, Edmonds (b0020) 1993
McCollum, Wilson, Pettifor, Ramea, Krey, Riahi, Lin, Edelenbosch, Fujisawa (b0105) 2017; 55
Miller, Façanha (b0120) 2014
emissions of plug-in hybrid electric vehicles. Working Paper Sustainability and Innovation, No. S1/2015.
Riahi (10.1016/j.trd.2016.11.001_b0160) 2012
Clarke (10.1016/j.trd.2016.11.001_b0020) 1993
Fulton (10.1016/j.trd.2016.11.001_b0055) 2009; 37
Girod (10.1016/j.trd.2016.11.001_b0060) 2013; 118
ICCT (10.1016/j.trd.2016.11.001_b0065)
Creutzig (10.1016/j.trd.2016.11.001_b0025) 2015; 350
10.1016/j.trd.2016.11.001_b9015
Mishra (10.1016/j.trd.2016.11.001_b0130) 2014; 44
van der Zwaan (10.1016/j.trd.2016.11.001_b0185) 2013; 04
10.1016/j.trd.2016.11.001_b0140
Kim (10.1016/j.trd.2016.11.001_b0090) 2016
McJeon (10.1016/j.trd.2016.11.001_b0115) 2014; 514
Façanha (10.1016/j.trd.2016.11.001_b0045) 2012
10.1016/j.trd.2016.11.001_b0125
Di Vittorio (10.1016/j.trd.2016.11.001_b0030) 2014; 11
IPCC (10.1016/j.trd.2016.11.001_b0080) 2014
McCollum (10.1016/j.trd.2016.11.001_b0105) 2017; 55
Ang (10.1016/j.trd.2016.11.001_b0005) 2004; 32
Carrara (10.1016/j.trd.2016.11.001_b0015) 2017; 55
Schäfer (10.1016/j.trd.2016.11.001_b0165) 2009
IPCC (10.1016/j.trd.2016.11.001_b0085) 2014
Kishimoto (10.1016/j.trd.2016.11.001_b0095) 2014; 2454
Pietzcker (10.1016/j.trd.2016.11.001_b0150) 2014; 64
10.1016/j.trd.2016.11.001_b9010
Fawcett (10.1016/j.trd.2016.11.001_b0050) 2015
Edelenbosch (10.1016/j.trd.2016.11.001_b0040) 2017; 55
IEA (10.1016/j.trd.2016.11.001_b0070) 2014
Kyle (10.1016/j.trd.2016.11.001_b0100) 2011; 39
Miller (10.1016/j.trd.2016.11.001_b0120) 2014
McCollum (10.1016/j.trd.2016.11.001_b0110) 2013; 123
10.1016/j.trd.2016.11.001_b9005
Zhang (10.1016/j.trd.2016.11.001_b0190) 2001; 23
Tavoni (10.1016/j.trd.2016.11.001_b0180) 2015; 5
IEA (10.1016/j.trd.2016.11.001_b0075) 2016
Ó Broin (10.1016/j.trd.2016.11.001_b0145) 2017; 55
10.1016/j.trd.2016.11.001_b9000
10.1016/j.trd.2016.11.001_b0010
Schäfer (10.1016/j.trd.2016.11.001_b0170) 2000; 34
10.1016/j.trd.2016.11.001_b0155
10.1016/j.trd.2016.11.001_b0135
Schipper (10.1016/j.trd.2016.11.001_b0175) 2011; 4
References_xml – year: 2015
  ident: b0065
  article-title: Global Passenger Vehicle Standards
  contributor:
    fullname: ICCT
– volume: 34
  start-page: 171
  year: 2000
  end-page: 205
  ident: b0170
  article-title: The future mobility of the world population
  publication-title: Transport. Res. Part A
  contributor:
    fullname: Victor
– volume: 55
  start-page: 322
  year: 2017
  end-page: 342
  ident: b0105
  article-title: Improving the behavioral realism of global integrated assessment models: an application to consumers’ vehicle choices
  publication-title: Transport. Res. Part D
  contributor:
    fullname: Fujisawa
– volume: 04
  start-page: 1340013
  year: 2013
  ident: b0185
  article-title: A cross-model comparison of global long-term technology diffusion under a 2
  publication-title: Clim. Change Econ.
  contributor:
    fullname: McCollum
– volume: 32
  start-page: 1131
  year: 2004
  end-page: 1139
  ident: b0005
  article-title: Decomposition analysis for policymaking in energy: which is the preferred method?
  publication-title: Energy Policy
  contributor:
    fullname: Ang
– year: 2015
  ident: b0050
  article-title: Can Paris pledges avert severe climate change?
  publication-title: Science
  contributor:
    fullname: Shi
– volume: 514
  start-page: 482
  year: 2014
  end-page: 485
  ident: b0115
  article-title: Limited impact on decadal-scale climate change from increased use of natural gas
  publication-title: Nature
  contributor:
    fullname: Tavoni
– volume: 5
  start-page: 119
  year: 2015
  end-page: 126
  ident: b0180
  article-title: Post-2020 climate agreements in the major economies assessed in the light of global models
  publication-title: Nat. Clim. Change
  contributor:
    fullname: van der Zwaan
– start-page: 123
  year: 1993
  end-page: 129
  ident: b0020
  article-title: Modelling energy technologies in a competitive market
  publication-title: Energy Econ.
  contributor:
    fullname: Edmonds
– volume: 55
  start-page: 281
  year: 2017
  end-page: 293
  ident: b0040
  article-title: Decomposing passenger transport futures: comparing results of global integrated assessment models
  publication-title: Transport. Res. Part D: Trans. Environment.
  contributor:
    fullname: Sano
– year: 2009
  ident: b0165
  article-title: Transportation in a Climate-Constrained World
  contributor:
    fullname: Waitz
– volume: 55
  start-page: 359
  year: 2017
  end-page: 372
  ident: b0015
  article-title: The potential impact of road freight on climate policy
  publication-title: Transport. Res. Part D
  contributor:
    fullname: Longden
– year: 2012
  ident: b0045
  article-title: Global transportation energy and climate roadmap
  publication-title: Int. Council Clean Transport.
  contributor:
    fullname: Miller
– volume: 64
  start-page: 95
  year: 2014
  end-page: 108
  ident: b0150
  article-title: Long-term transport energy demand and climate policy: alternative visions on transport decarbonization in energy-economy models
  publication-title: Energy
  contributor:
    fullname: Luderer
– volume: 23
  start-page: 179
  year: 2001
  end-page: 190
  ident: b0190
  article-title: Methodological issues in cross-country/region decomposition of energy and environment indicators
  publication-title: Energy Econ.
  contributor:
    fullname: Ang
– volume: 123
  start-page: 651
  year: 2013
  end-page: 664
  ident: b0110
  article-title: Transport electrification: a key element for energy system transformation and climate stabilization
  publication-title: Clim. Change
  contributor:
    fullname: Riahi
– year: 2016
  ident: b0075
  article-title: Energy Technology Perspectives 2016 - Mobilising Innovation to Accelerate Climate Action
  contributor:
    fullname: IEA
– volume: 350
  start-page: 911
  year: 2015
  end-page: 912
  ident: b0025
  article-title: Transport: a roadblock to climate change mitigation?
  publication-title: Science
  contributor:
    fullname: Minx
– volume: 37
  start-page: 3758
  year: 2009
  end-page: 3768
  ident: b0055
  article-title: IEA Mobility Model (MoMo) and its use in the ETP 2008
  publication-title: Energy Policy
  contributor:
    fullname: Cuenot
– year: 2014
  ident: b0080
  article-title: Climate change 2014: mitigation of climate change
  publication-title: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  contributor:
    fullname: IPCC
– year: 2014
  ident: b0070
  article-title: Energy Technology Perspectives 2014
  contributor:
    fullname: IEA
– volume: 44
  start-page: 448
  year: 2014
  end-page: 455
  ident: b0130
  article-title: Mitigating climate change: decomposing the relative roles of energy conservation, technological change, and structural shift
  publication-title: Energy Econ.
  contributor:
    fullname: Morrison
– year: 2014
  ident: b0120
  article-title: State of clean transport policy: a 2014 synthesis of vehicle and fuel policy developments
  publication-title: Int. Council Clean Transport.
  contributor:
    fullname: Façanha
– year: 2014
  ident: b0085
  article-title: Climate change 2014: synthesis report
  publication-title: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  contributor:
    fullname: IPCC
– volume: 39
  start-page: 3012
  year: 2011
  end-page: 3024
  ident: b0100
  article-title: Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands
  publication-title: Energy Policy
  contributor:
    fullname: Kim
– volume: 118
  start-page: 595
  year: 2013
  end-page: 608
  ident: b0060
  article-title: Climate impact of transportation A model comparison
  publication-title: Clim. Change
  contributor:
    fullname: Kyle
– start-page: 1
  year: 2016
  end-page: 15
  ident: b0090
  article-title: Balancing global water availability and use at basin scale in an integrated assessment model
  publication-title: Clim. Change
  contributor:
    fullname: Davies
– start-page: 1203
  year: 2012
  end-page: 1306
  ident: b0160
  article-title: Energy pathways for sustainable development
  publication-title: Global Energy Assessment - Toward a Sustainable Future
  contributor:
    fullname: Wilson
– volume: 4
  start-page: 563
  year: 2011
  end-page: 581
  ident: b0175
  article-title: Transport and carbon emissions in the United States: the long view
  publication-title: Energies
  contributor:
    fullname: Sudardshan
– volume: 11
  start-page: 6435
  year: 2014
  end-page: 6450
  ident: b0030
  article-title: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment–earth system model and the implications for CMIP5 RCP simulations
  publication-title: Biogeosciences
  contributor:
    fullname: Thomson
– volume: 55
  start-page: 389
  year: 2017
  end-page: 403
  ident: b0145
  article-title: Transport infrastructure costs in low-carbon pathways
  publication-title: Transport. Res. Part D
  contributor:
    fullname: Guivarch
– volume: 2454
  start-page: 1
  year: 2014
  end-page: 11
  ident: b0095
  article-title: Modeling regional transportation demand in china and the impacts of a national carbon policy
  publication-title: Transport. Res. Record: J. Transport. Res. Board
  contributor:
    fullname: Karplus
– ident: 10.1016/j.trd.2016.11.001_b0065
  contributor:
    fullname: ICCT
– volume: 55
  start-page: 322
  year: 2017
  ident: 10.1016/j.trd.2016.11.001_b0105
  article-title: Improving the behavioral realism of global integrated assessment models: an application to consumers’ vehicle choices
  publication-title: Transport. Res. Part D
  doi: 10.1016/j.trd.2016.04.003
  contributor:
    fullname: McCollum
– ident: 10.1016/j.trd.2016.11.001_b9005
– volume: 55
  start-page: 359
  year: 2017
  ident: 10.1016/j.trd.2016.11.001_b0015
  article-title: The potential impact of road freight on climate policy
  publication-title: Transport. Res. Part D
  doi: 10.1016/j.trd.2016.10.007
  contributor:
    fullname: Carrara
– volume: 350
  start-page: 911
  issue: 6263
  year: 2015
  ident: 10.1016/j.trd.2016.11.001_b0025
  article-title: Transport: a roadblock to climate change mitigation?
  publication-title: Science
  doi: 10.1126/science.aac8033
  contributor:
    fullname: Creutzig
– volume: 11
  start-page: 6435
  issue: 22
  year: 2014
  ident: 10.1016/j.trd.2016.11.001_b0030
  article-title: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment–earth system model and the implications for CMIP5 RCP simulations
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-6435-2014
  contributor:
    fullname: Di Vittorio
– start-page: 1
  year: 2016
  ident: 10.1016/j.trd.2016.11.001_b0090
  article-title: Balancing global water availability and use at basin scale in an integrated assessment model
  publication-title: Clim. Change
  contributor:
    fullname: Kim
– volume: 5
  start-page: 119
  issue: 2
  year: 2015
  ident: 10.1016/j.trd.2016.11.001_b0180
  article-title: Post-2020 climate agreements in the major economies assessed in the light of global models
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2475
  contributor:
    fullname: Tavoni
– year: 2014
  ident: 10.1016/j.trd.2016.11.001_b0070
  contributor:
    fullname: IEA
– volume: 64
  start-page: 95
  year: 2014
  ident: 10.1016/j.trd.2016.11.001_b0150
  article-title: Long-term transport energy demand and climate policy: alternative visions on transport decarbonization in energy-economy models
  publication-title: Energy
  doi: 10.1016/j.energy.2013.08.059
  contributor:
    fullname: Pietzcker
– volume: 2454
  start-page: 1
  year: 2014
  ident: 10.1016/j.trd.2016.11.001_b0095
  article-title: Modeling regional transportation demand in china and the impacts of a national carbon policy
  publication-title: Transport. Res. Record: J. Transport. Res. Board
  doi: 10.3141/2454-01
  contributor:
    fullname: Kishimoto
– ident: 10.1016/j.trd.2016.11.001_b0155
– ident: 10.1016/j.trd.2016.11.001_b9010
– year: 2014
  ident: 10.1016/j.trd.2016.11.001_b0085
  article-title: Climate change 2014: synthesis report
  contributor:
    fullname: IPCC
– volume: 123
  start-page: 651
  issue: 3
  year: 2013
  ident: 10.1016/j.trd.2016.11.001_b0110
  article-title: Transport electrification: a key element for energy system transformation and climate stabilization
  publication-title: Clim. Change
  contributor:
    fullname: McCollum
– volume: 55
  start-page: 389
  year: 2017
  ident: 10.1016/j.trd.2016.11.001_b0145
  article-title: Transport infrastructure costs in low-carbon pathways
  publication-title: Transport. Res. Part D
  doi: 10.1016/j.trd.2016.11.002
  contributor:
    fullname: Ó Broin
– year: 2012
  ident: 10.1016/j.trd.2016.11.001_b0045
  article-title: Global transportation energy and climate roadmap
  publication-title: Int. Council Clean Transport.
  contributor:
    fullname: Façanha
– year: 2014
  ident: 10.1016/j.trd.2016.11.001_b0080
  article-title: Climate change 2014: mitigation of climate change
  contributor:
    fullname: IPCC
– volume: 55
  start-page: 281
  year: 2017
  ident: 10.1016/j.trd.2016.11.001_b0040
  article-title: Decomposing passenger transport futures: comparing results of global integrated assessment models
  publication-title: Transport. Res. Part D: Trans. Environment.
  doi: 10.1016/j.trd.2016.07.003
  contributor:
    fullname: Edelenbosch
– volume: 514
  start-page: 482
  issue: 7523
  year: 2014
  ident: 10.1016/j.trd.2016.11.001_b0115
  article-title: Limited impact on decadal-scale climate change from increased use of natural gas
  publication-title: Nature
  doi: 10.1038/nature13837
  contributor:
    fullname: McJeon
– start-page: 1203
  year: 2012
  ident: 10.1016/j.trd.2016.11.001_b0160
  article-title: Energy pathways for sustainable development
  contributor:
    fullname: Riahi
– ident: 10.1016/j.trd.2016.11.001_b0010
– ident: 10.1016/j.trd.2016.11.001_b0125
– volume: 4
  start-page: 563
  year: 2011
  ident: 10.1016/j.trd.2016.11.001_b0175
  article-title: Transport and carbon emissions in the United States: the long view
  publication-title: Energies
  doi: 10.3390/en4040563
  contributor:
    fullname: Schipper
– ident: 10.1016/j.trd.2016.11.001_b9000
– ident: 10.1016/j.trd.2016.11.001_b0140
– volume: 118
  start-page: 595
  issue: 3
  year: 2013
  ident: 10.1016/j.trd.2016.11.001_b0060
  article-title: Climate impact of transportation A model comparison
  publication-title: Clim. Change
  doi: 10.1007/s10584-012-0663-6
  contributor:
    fullname: Girod
– year: 2014
  ident: 10.1016/j.trd.2016.11.001_b0120
  article-title: State of clean transport policy: a 2014 synthesis of vehicle and fuel policy developments
  publication-title: Int. Council Clean Transport.
  contributor:
    fullname: Miller
– volume: 32
  start-page: 1131
  issue: 9
  year: 2004
  ident: 10.1016/j.trd.2016.11.001_b0005
  article-title: Decomposition analysis for policymaking in energy: which is the preferred method?
  publication-title: Energy Policy
  doi: 10.1016/S0301-4215(03)00076-4
  contributor:
    fullname: Ang
– volume: 39
  start-page: 3012
  issue: 5
  year: 2011
  ident: 10.1016/j.trd.2016.11.001_b0100
  article-title: Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.03.016
  contributor:
    fullname: Kyle
– volume: 23
  start-page: 179
  issue: 2
  year: 2001
  ident: 10.1016/j.trd.2016.11.001_b0190
  article-title: Methodological issues in cross-country/region decomposition of energy and environment indicators
  publication-title: Energy Econ.
  doi: 10.1016/S0140-9883(00)00069-4
  contributor:
    fullname: Zhang
– ident: 10.1016/j.trd.2016.11.001_b9015
– ident: 10.1016/j.trd.2016.11.001_b0135
– start-page: 123
  year: 1993
  ident: 10.1016/j.trd.2016.11.001_b0020
  article-title: Modelling energy technologies in a competitive market
  publication-title: Energy Econ.
  doi: 10.1016/0140-9883(93)90031-L
  contributor:
    fullname: Clarke
– volume: 37
  start-page: 3758
  issue: 10
  year: 2009
  ident: 10.1016/j.trd.2016.11.001_b0055
  article-title: IEA Mobility Model (MoMo) and its use in the ETP 2008
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.07.065
  contributor:
    fullname: Fulton
– volume: 34
  start-page: 171
  year: 2000
  ident: 10.1016/j.trd.2016.11.001_b0170
  article-title: The future mobility of the world population
  publication-title: Transport. Res. Part A
  contributor:
    fullname: Schäfer
– year: 2015
  ident: 10.1016/j.trd.2016.11.001_b0050
  article-title: Can Paris pledges avert severe climate change?
  publication-title: Science
  doi: 10.1126/science.aad5761
  contributor:
    fullname: Fawcett
– year: 2016
  ident: 10.1016/j.trd.2016.11.001_b0075
  contributor:
    fullname: IEA
– year: 2009
  ident: 10.1016/j.trd.2016.11.001_b0165
  contributor:
    fullname: Schäfer
– volume: 44
  start-page: 448
  year: 2014
  ident: 10.1016/j.trd.2016.11.001_b0130
  article-title: Mitigating climate change: decomposing the relative roles of energy conservation, technological change, and structural shift
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2014.04.024
  contributor:
    fullname: Mishra
– volume: 04
  start-page: 1340013
  issue: 04
  year: 2013
  ident: 10.1016/j.trd.2016.11.001_b0185
  article-title: A cross-model comparison of global long-term technology diffusion under a 2°C climate change control target
  publication-title: Clim. Change Econ.
  doi: 10.1142/S2010007813400137
  contributor:
    fullname: van der Zwaan
SSID ssj0005556
Score 2.483339
Snippet •We compare major global transportation models with considerable technology details to 2050.•There are significant differences in the base-year data and key...
This paper focuses on comparing the frameworks and projections from four major global transportation models with considerable transportation technology and...
This paper focuses on comparing the frameworks and projections from four global transportation models with considerable technology details. We analyze and...
SourceID swepub
osti
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 294
SubjectTerms Climate mitigation
ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION
Energy use
GCAM
GHG emissions
integrated assessment
Model comparison
model intercomparison
transportation
Transportation behaviors
Transportation demand
Transportation scenarios
Title Detailed assessment of global transport-energy models’ structures and projections
URI https://dx.doi.org/10.1016/j.trd.2016.11.001
https://www.osti.gov/biblio/1415092
https://research.chalmers.se/publication/247930
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB1Vy6HlgGDbiqVQ-cAJyd04ie3kWJVWS0t7KZV6syaOo7aH3YosV8Rv8Ht8CTOOUwpCHLhGHsXxjGee45k3AG-NLb1tgpa-aitZtthI1AplHnIVbBZqDFwofH5hFlfl6bW-3oCjsRaG0yqT7x98evTW6ck8reb8_vZ2fqkKBv8U70zBNTmxgp2CEdn0wddHaR46dnDlwZJHjzebMcdr_ZnJQpU5YCLP1BfmL7FpsqLt9geXaIw_J8_hWQKO4nCY2wvYCMspbI51xf0Unj6iFpzC7vGvCjYSS1u434bL9zFpNLQCH0g5xaoTAzOIWI9k5zLEqkARW-X0P759FwPV7Bc6nwtctiL9w2Gz3YGrk-NPRwuZOitIT3BnLSuPwRNSCqrLayREY1Ugz9dhUegMVd02WdHWtkNa3Ya2LXZZsLluM4Oe6xaKXZgsV8vwEoTJW6uYIcY2vlRoqlAo1EjAUjMZnJ_Bu3FN3f1AoOHGzLI7RwpwrAA6iHB23QzKcdXdb1bgyMH_S2yPNcQizHzrOUWIZBSBk6zOZ_BxUNzD-5lSO3Ep3Th_ExvV9K4Pjs6fii-9XV167QjrWIfeV640DXamsPRd1av_m-MebOWMCGLu4GuYkMrCG8Iz62Y_Guw-PDn8cLa4-AkLZfWT
link.rule.ids 230,315,786,790,891,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V20PhUJWFiu0DfOCEZDZO_EiOVR_a0u1e2kq9WY7jqO1htyLLnb_B3-OXMOM4LSDEgWuUURKPPf4m_uYbgA_aSG_qoLgvm5LLxtXcKeF4HnIRTBYqF6hQ-HKhZzfy86263YDjoRaGaJUp9vcxPUbrdGWaRnP6eH8_vRIFgX_c73RBNTmYAm1KZYQcwebR-cVs8cz0ULGJK93PyWA43Iw0r_UX0gsV-hNpeabWMH_ZnkYrXHF_yInGLehsB7YTdmRH_eu9go2wHMPWUFrcjeHlL-qCY9g9fS5iQ7O0irvXcHUSeaOhYe5Jl5OtWtaLg7D1oHfOQywMZLFbTvfj23fWq81-xRSduWXD0m8cmrlv4Obs9Pp4xlNzBe4R8ax56V3wCJaCaPPKIagxImDwa11RqMyJqqmzoqlM63CAa1y5rs2CyVWTaeepdKHYhdFytQxvgem8MYJEYkztpXC6DIVwyiG2VKQH5yfwcRhT-9hraNiBXPZg0QGWHIC5CBHsJiCHUbe_TQSLMf5fZvvkITIh8VtPLCG0EYhPsiqfwLx33NPzSVU7ySndWX8Xe9V0tgsWU1BB5962kl5ZhDvGOu9LK3XtWl0Y_K5y7__e8T1sza4v53Z-vrjYhxc5AYRIJTyAEbovHCK8Wdfv0vT9CYNu-Ek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detailed+assessment+of+global+transport-energy+models%E2%80%99+structures+and+projections&rft.jtitle=Transportation+research.+Part+D%2C+Transport+and+environment&rft.au=Yeh%2C+Sonia&rft.au=Mishra%2C+Gouri+Shankar&rft.au=Fulton%2C+Lew&rft.au=Kyle%2C+Page&rft.date=2017-08-01&rft.pub=Elsevier+Ltd&rft.issn=1361-9209&rft.eissn=1879-2340&rft.volume=55&rft.spage=294&rft.epage=309&rft_id=info:doi/10.1016%2Fj.trd.2016.11.001&rft.externalDocID=S1361920916301651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-9209&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-9209&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-9209&client=summon