survey of human brain transcriptome diversity at the single cell level

Significance The brain comprises an immense number of cells and cellular connections. We describe the first, to our knowledge, single cell whole transcriptome analysis of human adult cortical samples. We have established an experimental and analytical framework with which the complexity of the human...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 23; pp. 7285 - 7290
Main Authors Darmanis, Spyros, Sloan, Steven A., Zhang, Ye, Enge, Martin, Caneda, Christine, Shuer, Lawrence M., Gephart, Melanie G. Hayden, Barres, Ben A., Quake, Stephen R.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 09.06.2015
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Significance The brain comprises an immense number of cells and cellular connections. We describe the first, to our knowledge, single cell whole transcriptome analysis of human adult cortical samples. We have established an experimental and analytical framework with which the complexity of the human brain can be dissected on the single cell level. Using this approach, we were able to identify all major cell types of the brain and characterize subtypes of neuronal cells. We observed changes in neurons from early developmental to late differentiated stages in the adult. We found a subset of adult neurons which express major histocompatibility complex class I genes and thus are not immune privileged. The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.
AbstractList The brain comprises an immense number of cells and cellular connections. We describe the first, to our knowledge, single cell whole transcriptome analysis of human adult cortical samples. We have established an experimental and analytical framework with which the complexity of the human brain can be dissected on the single cell level. Using this approach, we were able to identify all major cell types of the brain and characterize subtypes of neuronal cells. We observed changes in neurons from early developmental to late differentiated stages in the adult. We found a subset of adult neurons which express major histocompatibility complex class I genes and thus are not immune privileged. The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.
The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.
The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.
Significance The brain comprises an immense number of cells and cellular connections. We describe the first, to our knowledge, single cell whole transcriptome analysis of human adult cortical samples. We have established an experimental and analytical framework with which the complexity of the human brain can be dissected on the single cell level. Using this approach, we were able to identify all major cell types of the brain and characterize subtypes of neuronal cells. We observed changes in neurons from early developmental to late differentiated stages in the adult. We found a subset of adult neurons which express major histocompatibility complex class I genes and thus are not immune privileged. The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.
Author Sloan, Steven A.
Caneda, Christine
Gephart, Melanie G. Hayden
Shuer, Lawrence M.
Zhang, Ye
Enge, Martin
Barres, Ben A.
Darmanis, Spyros
Quake, Stephen R.
Author_xml – sequence: 1
  givenname: Spyros
  surname: Darmanis
  fullname: Darmanis, Spyros
  organization: Departments of Bioengineering and Applied Physics, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
– sequence: 2
  givenname: Steven A.
  surname: Sloan
  fullname: Sloan, Steven A.
  organization: Neurobiology, Stanford University, Stanford, CA 94305
– sequence: 3
  givenname: Ye
  surname: Zhang
  fullname: Zhang, Ye
  organization: Neurobiology, Stanford University, Stanford, CA 94305
– sequence: 4
  givenname: Martin
  surname: Enge
  fullname: Enge, Martin
  organization: Departments of Bioengineering and Applied Physics, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
– sequence: 5
  givenname: Christine
  surname: Caneda
  fullname: Caneda, Christine
  organization: Neurobiology, Stanford University, Stanford, CA 94305
– sequence: 6
  givenname: Lawrence M.
  surname: Shuer
  fullname: Shuer, Lawrence M.
  organization: Neurosurgery, Stanford University, Stanford, CA 94305
– sequence: 7
  givenname: Melanie G. Hayden
  surname: Gephart
  fullname: Gephart, Melanie G. Hayden
  organization: Neurosurgery, Stanford University, Stanford, CA 94305
– sequence: 8
  givenname: Ben A.
  surname: Barres
  fullname: Barres, Ben A.
  organization: Neurobiology, Stanford University, Stanford, CA 94305
– sequence: 9
  givenname: Stephen R.
  surname: Quake
  fullname: Quake, Stephen R.
  organization: Departments of Bioengineering and Applied Physics, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26060301$$D View this record in MEDLINE/PubMed
BookMark eNqFks1vEzEQxS1URD_gzAlYiQuXtDO21x8XJFRRQKrEAXq2nF1v4mhjB3s3Uv57vCSkpQd68mF-8_zezJyTkxCDI-Q1wiWCZFebYPMl1iCR1oj0GTlD0DgTXMMJOQOgcqY45afkPOcVAOhawQtySgUIYIBn5CaPaet2Veyq5bi2oZon60M1JBtyk_xmiGtXtX7rUvbDrrJDNSxdlX1Y9K5qXN9Xvdu6_iV53tk-u1eH94Lc3Xz-ef11dvv9y7frT7ezRlA2zJR00mLboWhbLV1bS2Qa5sWKoJqC7pzgiisAbC1KVXeqaVoUFjTX87pt2AX5uNfdjPO1axsXitPebJJf27Qz0XrzbyX4pVnEreFcCFlDEfhwEEjx1-jyYNY-TzlscHHMBhUwBCaYehqVgFxyLeunUaFkSaaBFvT9I3QVxxTK0Aqly1I5V5Pg24c5jwH_Lq4AV3ugSTHn5LojgmCm0zDTaZj70ygd9aOOxg928HEalO__0_fuYGUqHH9Baigzkv4x-2ZPrPIQ0wOvXLBaiHuFzkZjF8lnc_eDAoqy5zIUzdhv_g_YuQ
CitedBy_id crossref_primary_10_1093_nar_gkaa762
crossref_primary_10_1007_s40484_018_0164_3
crossref_primary_10_1016_j_neurobiolaging_2023_03_004
crossref_primary_10_1124_molpharm_122_000641
crossref_primary_10_1002_alz_13821
crossref_primary_10_1038_s41593_022_01181_8
crossref_primary_10_1038_s41392_023_01637_8
crossref_primary_10_1016_j_compbiolchem_2017_08_012
crossref_primary_10_1016_j_stem_2023_03_007
crossref_primary_10_1038_s41598_020_58715_y
crossref_primary_10_1093_bib_bbae511
crossref_primary_10_1038_s41467_021_27018_9
crossref_primary_10_1038_s41592_019_0586_5
crossref_primary_10_1002_alz_13823
crossref_primary_10_1039_C8AN01525B
crossref_primary_10_1080_21541264_2023_2295044
crossref_primary_10_1016_j_coisb_2017_04_011
crossref_primary_10_1038_s41386_020_0763_3
crossref_primary_10_1038_s41467_023_41689_6
crossref_primary_10_1007_s12561_021_09324_4
crossref_primary_10_1109_JBHI_2023_3247723
crossref_primary_10_1186_s13059_016_0927_y
crossref_primary_10_1016_j_biomaterials_2021_120712
crossref_primary_10_1002_1878_0261_12569
crossref_primary_10_1016_j_cels_2019_01_002
crossref_primary_10_1371_journal_pone_0200003
crossref_primary_10_1038_s41598_020_63495_6
crossref_primary_10_1038_s41588_021_00921_z
crossref_primary_10_3389_fnins_2020_614680
crossref_primary_10_1016_j_neuron_2020_05_014
crossref_primary_10_1007_s00262_025_03979_4
crossref_primary_10_1016_j_neuron_2022_09_030
crossref_primary_10_1093_nar_gkaa506
crossref_primary_10_3389_fcell_2020_544043
crossref_primary_10_1016_j_ynstr_2021_100307
crossref_primary_10_1109_JBHI_2021_3091506
crossref_primary_10_1186_s40478_022_01453_1
crossref_primary_10_1007_s13238_019_0638_8
crossref_primary_10_1016_j_celrep_2016_08_038
crossref_primary_10_1093_bfgp_elx044
crossref_primary_10_3390_genes12111670
crossref_primary_10_1038_s42003_023_04928_6
crossref_primary_10_1146_annurev_neuro_070815_013858
crossref_primary_10_1016_j_celrep_2017_02_007
crossref_primary_10_1093_bib_bbac590
crossref_primary_10_1186_s13040_021_00285_4
crossref_primary_10_1093_bioinformatics_btz704
crossref_primary_10_1016_j_jbi_2021_103899
crossref_primary_10_1002_alz_12719
crossref_primary_10_1002_alz_13805
crossref_primary_10_1038_s41592_024_02171_3
crossref_primary_10_3389_fmolb_2018_00012
crossref_primary_10_1371_journal_pone_0281477
crossref_primary_10_1016_j_stemcr_2020_05_003
crossref_primary_10_1101_gr_265769_120
crossref_primary_10_1093_bioinformatics_bty618
crossref_primary_10_1146_annurev_immunol_042718_041728
crossref_primary_10_1016_j_isci_2024_109342
crossref_primary_10_1038_s41588_018_0129_5
crossref_primary_10_1016_j_bpsgos_2025_100448
crossref_primary_10_1084_jem_20211121
crossref_primary_10_3390_brainsci15030294
crossref_primary_10_1016_j_celrep_2017_12_046
crossref_primary_10_1186_s40169_017_0139_4
crossref_primary_10_1007_s11064_021_03468_x
crossref_primary_10_1073_pnas_1617384114
crossref_primary_10_1186_s13059_019_1747_7
crossref_primary_10_1093_bib_bbab204
crossref_primary_10_1186_s12987_020_00209_0
crossref_primary_10_1109_TCBB_2022_3203592
crossref_primary_10_1016_j_mtbio_2022_100222
crossref_primary_10_1172_JCI173789
crossref_primary_10_1097_j_pain_0000000000002480
crossref_primary_10_1016_j_mcn_2016_03_009
crossref_primary_10_1093_nsr_nwac147
crossref_primary_10_1186_s13059_023_03007_7
crossref_primary_10_1186_s12983_022_00472_x
crossref_primary_10_1007_s00418_016_1466_z
crossref_primary_10_3389_fneur_2020_572850
crossref_primary_10_1007_s00018_024_05179_2
crossref_primary_10_1038_s41598_020_69096_7
crossref_primary_10_1002_ana_25719
crossref_primary_10_1007_s12264_023_01160_4
crossref_primary_10_1038_s41586_022_04436_3
crossref_primary_10_3390_genes13010122
crossref_primary_10_1186_s13073_023_01195_2
crossref_primary_10_1109_TCBB_2024_3458170
crossref_primary_10_1002_pmic_201800257
crossref_primary_10_1080_19768354_2022_2110937
crossref_primary_10_1016_j_compbiomed_2024_109212
crossref_primary_10_1038_s41467_019_11493_2
crossref_primary_10_1038_s41386_020_00924_0
crossref_primary_10_1093_gigascience_giz106
crossref_primary_10_3389_fimmu_2021_646259
crossref_primary_10_1016_j_neurobiolaging_2022_09_002
crossref_primary_10_1126_science_aan3456
crossref_primary_10_1093_bib_bbac556
crossref_primary_10_3390_genes10020098
crossref_primary_10_1093_bioinformatics_btad731
crossref_primary_10_1016_j_celrep_2020_01_010
crossref_primary_10_3389_fnmol_2023_1279232
crossref_primary_10_1186_s12864_019_6341_6
crossref_primary_10_1371_journal_pgen_1007961
crossref_primary_10_1007_s12539_023_00553_3
crossref_primary_10_1038_s41586_020_2496_1
crossref_primary_10_3389_fnmol_2019_00208
crossref_primary_10_1523_ENEURO_0328_24_2024
crossref_primary_10_1016_j_isci_2022_105884
crossref_primary_10_1093_bib_bbab214
crossref_primary_10_1186_s12918_016_0366_0
crossref_primary_10_1016_j_copbio_2019_03_001
crossref_primary_10_1073_pnas_1701201114
crossref_primary_10_7554_eLife_93325_3
crossref_primary_10_1007_s12031_015_0694_3
crossref_primary_10_1007_s12035_019_01795_3
crossref_primary_10_1016_j_trsl_2022_07_004
crossref_primary_10_1038_s41598_017_06145_8
crossref_primary_10_1016_j_csbj_2024_06_004
crossref_primary_10_1016_j_conb_2017_10_005
crossref_primary_10_1007_s11427_023_2376_0
crossref_primary_10_3390_microbiolres12020022
crossref_primary_10_1176_appi_ajp_2019_18070864
crossref_primary_10_1016_j_pneurobio_2018_07_004
crossref_primary_10_1159_000501935
crossref_primary_10_1016_j_gpb_2019_03_003
crossref_primary_10_1261_rna_058271_116
crossref_primary_10_1007_s00018_016_2304_0
crossref_primary_10_3389_fpsyt_2018_00726
crossref_primary_10_1093_g3journal_jkab098
crossref_primary_10_1080_01621459_2023_2256503
crossref_primary_10_1038_srep33999
crossref_primary_10_1021_acschemneuro_5c00006
crossref_primary_10_1016_j_cell_2019_11_020
crossref_primary_10_1016_j_coisb_2017_05_004
crossref_primary_10_1186_s12859_022_04814_8
crossref_primary_10_1038_s41593_020_0604_z
crossref_primary_10_1084_jem_20202446
crossref_primary_10_1038_s41398_018_0358_5
crossref_primary_10_1038_s41598_019_45676_0
crossref_primary_10_1038_d41586_019_02343_8
crossref_primary_10_3389_fncir_2017_00076
crossref_primary_10_1038_s41593_024_01573_y
crossref_primary_10_1186_s13148_020_00916_3
crossref_primary_10_1093_nargab_lqad032
crossref_primary_10_3389_fcell_2023_1209320
crossref_primary_10_1101_gr_268722_120
crossref_primary_10_12688_f1000research_50858_1
crossref_primary_10_3390_ijms20236017
crossref_primary_10_1186_s12864_017_4261_x
crossref_primary_10_1016_j_gpb_2018_08_003
crossref_primary_10_1186_s40478_023_01568_z
crossref_primary_10_3389_fnmol_2022_905328
crossref_primary_10_1016_j_ajhg_2024_07_001
crossref_primary_10_1111_jnc_16002
crossref_primary_10_3389_fnmol_2018_00410
crossref_primary_10_3389_fimmu_2022_960906
crossref_primary_10_1038_s41598_020_71805_1
crossref_primary_10_1093_nar_gky182
crossref_primary_10_1111_adb_12591
crossref_primary_10_1016_j_ebiom_2024_105286
crossref_primary_10_1016_j_jad_2025_01_093
crossref_primary_10_3389_fcell_2022_884748
crossref_primary_10_1038_nn_4181
crossref_primary_10_1261_rna_064931_117
crossref_primary_10_1016_j_ijdevneu_2016_01_002
crossref_primary_10_1038_s41596_021_00514_4
crossref_primary_10_1038_s41598_017_00250_4
crossref_primary_10_1186_s12859_020_03679_z
crossref_primary_10_1126_science_aam8999
crossref_primary_10_1186_s12987_021_00299_4
crossref_primary_10_1371_journal_pone_0292961
crossref_primary_10_1016_j_coph_2015_10_007
crossref_primary_10_1038_s41380_022_01657_w
crossref_primary_10_1007_s11227_022_04920_7
crossref_primary_10_1093_bioinformatics_btaa278
crossref_primary_10_1038_s41467_023_44300_0
crossref_primary_10_1016_j_cell_2017_09_004
crossref_primary_10_7554_eLife_68224
crossref_primary_10_1007_s12539_020_00386_4
crossref_primary_10_1038_s41467_021_21735_x
crossref_primary_10_1002_rmv_2227
crossref_primary_10_1016_j_neuron_2018_10_015
crossref_primary_10_1093_molbev_msx065
crossref_primary_10_1523_JNEUROSCI_2479_17_2018
crossref_primary_10_1186_s13148_020_00884_8
crossref_primary_10_1038_s41467_019_10248_3
crossref_primary_10_1016_j_engappai_2023_107707
crossref_primary_10_1146_annurev_genom_083115_022413
crossref_primary_10_1186_s13073_016_0355_3
crossref_primary_10_1093_bioinformatics_btaa283
crossref_primary_10_1016_j_nbd_2020_104877
crossref_primary_10_1038_nn_4366
crossref_primary_10_1038_s42003_024_05923_1
crossref_primary_10_1002_adbi_201900226
crossref_primary_10_1093_bioinformatics_btz321
crossref_primary_10_1186_s12864_018_4649_2
crossref_primary_10_1186_s12918_019_0699_6
crossref_primary_10_1016_j_cell_2021_07_009
crossref_primary_10_1016_j_neuron_2020_12_010
crossref_primary_10_5633_amm_2017_0307
crossref_primary_10_2217_epi_2019_0319
crossref_primary_10_1158_0008_5472_CAN_17_0736
crossref_primary_10_1038_nn_4156
crossref_primary_10_1242_dmm_049843
crossref_primary_10_1109_TCBB_2020_3029187
crossref_primary_10_3171_2016_2_FOCUS161
crossref_primary_10_1186_s12859_021_03972_5
crossref_primary_10_1093_brain_awz233
crossref_primary_10_1093_nar_gkaa394
crossref_primary_10_1109_JBHI_2021_3110766
crossref_primary_10_1007_s00193_024_01169_2
crossref_primary_10_1016_j_molcel_2018_09_016
crossref_primary_10_1039_D0MO00034E
crossref_primary_10_1016_j_neuron_2019_05_013
crossref_primary_10_1186_s13024_020_00392_6
crossref_primary_10_1186_s13073_017_0458_5
crossref_primary_10_1109_TCBB_2020_2997326
crossref_primary_10_1109_TCBB_2022_3230098
crossref_primary_10_1007_s12031_016_0825_5
crossref_primary_10_1038_nrn_2017_85
crossref_primary_10_1016_j_ymeth_2018_07_009
crossref_primary_10_1002_advs_202205442
crossref_primary_10_1038_s41598_019_56911_z
crossref_primary_10_1007_s00018_016_2429_1
crossref_primary_10_1093_bioinformatics_btab286
crossref_primary_10_1186_s13059_016_0964_6
crossref_primary_10_17816_CP219
crossref_primary_10_1038_nn_4337
crossref_primary_10_1016_j_gpb_2018_07_007
crossref_primary_10_1038_s41380_020_0775_8
crossref_primary_10_1038_s41422_018_0053_3
crossref_primary_10_3389_fmolb_2024_1414119
crossref_primary_10_1002_cnr2_1185
crossref_primary_10_1016_j_devcel_2016_10_014
crossref_primary_10_1186_s12864_018_5301_x
crossref_primary_10_3390_ph14080765
crossref_primary_10_1093_noajnl_vdac177
crossref_primary_10_1093_bioinformatics_btac393
crossref_primary_10_1038_nbt_4038
crossref_primary_10_3390_biomedicines9040368
crossref_primary_10_3390_cells13110903
crossref_primary_10_3389_fgene_2021_665843
crossref_primary_10_3389_fonc_2021_797057
crossref_primary_10_3389_fnins_2016_00481
crossref_primary_10_1186_s13073_023_01267_3
crossref_primary_10_1016_j_ymeth_2023_11_019
crossref_primary_10_1096_fj_202401117R
crossref_primary_10_1126_science_abq7871
crossref_primary_10_1038_tp_2017_163
crossref_primary_10_1038_s41598_025_90872_w
crossref_primary_10_1016_j_compbiolchem_2023_107862
crossref_primary_10_1371_journal_pone_0313855
crossref_primary_10_1126_science_aba7721
crossref_primary_10_1152_physrev_00042_2016
crossref_primary_10_1016_j_celrep_2023_112486
crossref_primary_10_1073_pnas_1520760112
crossref_primary_10_1186_s40478_020_0880_6
crossref_primary_10_3389_fnins_2016_00016
crossref_primary_10_1186_s13287_023_03261_3
crossref_primary_10_1016_j_devcel_2023_01_003
crossref_primary_10_1186_s13059_021_02260_y
crossref_primary_10_1038_s41581_019_0227_3
crossref_primary_10_3390_molecules26175113
crossref_primary_10_1016_j_neuron_2021_09_001
crossref_primary_10_1002_wsbm_1526
crossref_primary_10_1038_s41467_020_17051_5
crossref_primary_10_1074_jbc_RA119_008853
crossref_primary_10_1016_j_cell_2017_10_019
crossref_primary_10_1007_s40473_019_00192_3
crossref_primary_10_7717_peerj_17184
crossref_primary_10_3389_fgene_2021_687687
crossref_primary_10_1080_15592294_2021_2020436
crossref_primary_10_1038_s41467_021_24306_2
crossref_primary_10_1016_j_cels_2019_05_007
crossref_primary_10_3934_fods_2022013
crossref_primary_10_1002_glia_24286
crossref_primary_10_1093_bioinformatics_btz295
crossref_primary_10_1007_s11682_019_00193_6
crossref_primary_10_1016_j_biopsych_2018_09_014
crossref_primary_10_1038_s41467_022_28803_w
crossref_primary_10_1109_JBHI_2023_3299748
crossref_primary_10_3389_fgene_2020_00424
crossref_primary_10_1038_s41467_024_52366_7
crossref_primary_10_1093_brain_awad125
crossref_primary_10_3389_fcell_2021_726852
crossref_primary_10_3389_fnana_2016_00086
crossref_primary_10_1007_s12035_024_04124_5
crossref_primary_10_1016_j_immuni_2016_02_013
crossref_primary_10_1038_s41380_020_00974_2
crossref_primary_10_1007_s00204_019_02590_8
crossref_primary_10_1016_j_ccell_2022_05_009
crossref_primary_10_1016_j_neuint_2024_105788
crossref_primary_10_3390_ijms22010261
crossref_primary_10_1002_gepi_22209
crossref_primary_10_1016_j_cell_2022_06_031
crossref_primary_10_1038_s41588_021_00973_1
crossref_primary_10_1002_glia_24274
crossref_primary_10_3389_fgene_2020_00407
crossref_primary_10_1186_s40246_022_00396_x
crossref_primary_10_1007_s12035_020_01879_5
crossref_primary_10_1007_s13238_022_00912_8
crossref_primary_10_1016_j_pneurobio_2021_102212
crossref_primary_10_1186_s12859_024_05797_4
crossref_primary_10_1002_cpmb_57
crossref_primary_10_1016_j_neuron_2015_12_030
crossref_primary_10_1016_j_cell_2016_07_054
crossref_primary_10_3389_fpsyt_2016_00011
crossref_primary_10_1021_acs_jcim_3c00674
crossref_primary_10_2144_fsoa_2019_0035
crossref_primary_10_21876_rcshci_v13i3_1422
crossref_primary_10_1186_s12859_024_05895_3
crossref_primary_10_1038_nn_4548
crossref_primary_10_1038_s41598_017_04356_7
crossref_primary_10_1146_annurev_cellbio_100616_060818
crossref_primary_10_1007_s00018_018_2991_9
crossref_primary_10_1016_j_neuroimage_2021_118570
crossref_primary_10_3389_fnagi_2019_00297
crossref_primary_10_1016_j_compbiomed_2022_106050
crossref_primary_10_1038_s42003_024_06956_2
crossref_primary_10_1016_j_celrep_2019_09_017
crossref_primary_10_1038_nmeth_4291
crossref_primary_10_1073_pnas_2024383118
crossref_primary_10_1371_journal_ppat_1006813
crossref_primary_10_1186_s12859_020_03797_8
crossref_primary_10_1523_JNEUROSCI_0556_21_2021
crossref_primary_10_7554_eLife_93325
crossref_primary_10_1038_nbt_4259
crossref_primary_10_3390_cells8101161
crossref_primary_10_1016_j_cell_2018_05_035
crossref_primary_10_1016_j_bpsgos_2022_03_013
crossref_primary_10_1016_j_neuron_2017_10_007
crossref_primary_10_1093_bib_bbae483
crossref_primary_10_1093_nar_gkaa1157
crossref_primary_10_1016_j_celrep_2019_04_003
crossref_primary_10_1007_s00429_016_1338_2
crossref_primary_10_1038_s41418_018_0060_4
crossref_primary_10_1038_s41467_020_15298_6
crossref_primary_10_1038_s41467_019_11181_1
crossref_primary_10_3390_ijms25052882
crossref_primary_10_1161_ATVBAHA_124_321141
crossref_primary_10_1038_550451a
crossref_primary_10_1038_s41467_018_03933_2
crossref_primary_10_1089_cmb_2021_0403
crossref_primary_10_1038_s41593_021_00913_6
crossref_primary_10_1016_j_ebiom_2022_104052
crossref_primary_10_1038_s41598_020_67016_3
crossref_primary_10_1177_1073858415610541
crossref_primary_10_1186_s12859_019_3179_5
crossref_primary_10_3389_fgene_2022_1063130
crossref_primary_10_1016_j_schres_2019_02_005
crossref_primary_10_1007_s11011_024_01523_4
crossref_primary_10_2139_ssrn_4054839
crossref_primary_10_1126_sciadv_1600947
crossref_primary_10_1093_nar_gkx681
crossref_primary_10_1016_j_stemcr_2018_01_021
crossref_primary_10_3390_ijms21218013
crossref_primary_10_1016_j_conb_2018_04_021
crossref_primary_10_1002_sim_9430
crossref_primary_10_1002_stem_2295
crossref_primary_10_3389_fnmol_2015_00056
crossref_primary_10_1038_s41593_019_0578_x
crossref_primary_10_1172_jci_insight_123151
crossref_primary_10_1038_s41593_019_0532_y
crossref_primary_10_1016_j_neubiorev_2023_105042
crossref_primary_10_1126_science_aaf1204
crossref_primary_10_1097_JBR_0000000000000053
crossref_primary_10_3390_brainsci13071070
crossref_primary_10_15302_J_QB_021_0261
crossref_primary_10_1016_j_psychres_2020_113513
crossref_primary_10_1261_rna_078804_121
crossref_primary_10_1016_j_stem_2023_01_010
crossref_primary_10_1101_gr_254557_119
crossref_primary_10_1038_s41598_021_99352_3
crossref_primary_10_1038_s41419_024_06737_z
crossref_primary_10_3389_fcell_2020_614624
crossref_primary_10_1016_j_ynstr_2021_100393
crossref_primary_10_1038_s42003_023_04791_5
crossref_primary_10_2174_1574893614666181120095038
crossref_primary_10_1038_s42003_023_05690_5
crossref_primary_10_1371_journal_pone_0274667
crossref_primary_10_1039_D0LC00169D
crossref_primary_10_1002_cpmb_23
crossref_primary_10_1039_D0AY00633E
crossref_primary_10_1088_2632_2153_acd7c3
crossref_primary_10_1002_alz_14062
crossref_primary_10_1038_s41380_022_01460_7
crossref_primary_10_1038_s41380_021_01347_z
crossref_primary_10_7554_eLife_27041
crossref_primary_10_1111_nan_12334
crossref_primary_10_7554_eLife_86933_3
crossref_primary_10_1111_pcn_12550
crossref_primary_10_1093_bib_bbae203
crossref_primary_10_1002_jnr_25221
crossref_primary_10_1038_s41537_019_0078_8
crossref_primary_10_1186_s40169_017_0150_9
crossref_primary_10_1016_j_schres_2019_03_007
crossref_primary_10_1038_s41598_018_35365_9
crossref_primary_10_1038_s41598_020_74917_w
crossref_primary_10_1038_s41467_021_24243_0
crossref_primary_10_1038_s41467_021_21312_2
crossref_primary_10_1038_s41467_024_49524_2
crossref_primary_10_1101_gr_273961_120
crossref_primary_10_1016_j_cels_2017_02_009
crossref_primary_10_3389_fnins_2021_776809
crossref_primary_10_1016_j_stem_2025_02_007
crossref_primary_10_1126_sciadv_adg3754
crossref_primary_10_1016_j_pnpbp_2018_08_017
crossref_primary_10_3233_ADR_200191
crossref_primary_10_1242_dev_201198
crossref_primary_10_1038_s41596_023_00820_z
crossref_primary_10_1038_s42003_024_06355_7
crossref_primary_10_1016_j_conb_2022_102539
crossref_primary_10_1016_j_cub_2020_01_049
crossref_primary_10_1016_j_pneurobio_2018_04_001
crossref_primary_10_3390_cancers15051557
crossref_primary_10_1016_j_neuron_2022_06_021
crossref_primary_10_1016_S1474_4422_20_30308_2
crossref_primary_10_1126_science_aat8464
crossref_primary_10_1186_s13024_022_00517_z
crossref_primary_10_1186_s13287_024_04077_5
crossref_primary_10_1016_j_celrep_2019_09_088
crossref_primary_10_1038_s41586_018_0590_4
crossref_primary_10_1073_pnas_1610547113
crossref_primary_10_1097_j_pain_0000000000001217
crossref_primary_10_1007_s10571_024_01453_w
crossref_primary_10_1111_cns_70129
crossref_primary_10_1016_j_ajhg_2018_04_011
crossref_primary_10_1016_j_neuropharm_2017_10_035
crossref_primary_10_1089_cmb_2022_0118
crossref_primary_10_1038_s41598_018_34688_x
crossref_primary_10_1038_nature22047
crossref_primary_10_1002_wdev_396
crossref_primary_10_1016_j_cels_2019_06_004
crossref_primary_10_1016_j_imlet_2022_04_001
crossref_primary_10_1016_j_trsl_2017_06_013
crossref_primary_10_1261_rna_074427_119
crossref_primary_10_3389_fpsyt_2021_553305
crossref_primary_10_1177_1744806916646111
crossref_primary_10_1126_sciadv_abn9494
crossref_primary_10_1111_psyp_14671
crossref_primary_10_1186_s13059_020_02027_x
crossref_primary_10_1016_j_expneurol_2023_114463
crossref_primary_10_1038_s41467_022_30623_x
crossref_primary_10_7554_eLife_64875
crossref_primary_10_1002_hbm_26328
crossref_primary_10_1007_s12035_017_0844_4
crossref_primary_10_1021_acs_analchem_8b01541
crossref_primary_10_2174_1574893618666221103114320
crossref_primary_10_1016_j_xhgg_2024_100311
crossref_primary_10_3389_fgene_2019_01253
crossref_primary_10_1016_j_ajhg_2017_09_009
crossref_primary_10_1101_gr_231357_117
crossref_primary_10_1146_annurev_neuro_080317_061822
crossref_primary_10_1007_s12539_019_00357_4
crossref_primary_10_3390_cells6030024
crossref_primary_10_1007_s00401_016_1641_2
crossref_primary_10_1016_j_ynstr_2021_100408
crossref_primary_10_1038_s41467_024_46068_3
crossref_primary_10_1109_TCBB_2023_3298334
crossref_primary_10_1007_s10489_024_05442_w
crossref_primary_10_1016_j_celrep_2022_111585
crossref_primary_10_1007_s13139_018_0550_9
crossref_primary_10_1186_s40478_020_01020_6
crossref_primary_10_1242_dev_200180
crossref_primary_10_1186_s40478_019_0805_4
crossref_primary_10_1016_j_cam_2024_115842
crossref_primary_10_1038_s42003_022_03473_y
crossref_primary_10_1109_TCBB_2023_3319375
crossref_primary_10_1016_j_devcel_2019_03_001
crossref_primary_10_1186_s13229_023_00554_5
crossref_primary_10_1016_j_bcp_2021_114532
crossref_primary_10_1093_bioinformatics_bty718
crossref_primary_10_1038_ncomms11022
crossref_primary_10_1038_s41467_023_40744_6
crossref_primary_10_1159_000493941
crossref_primary_10_1021_acs_chemrev_2c00212
crossref_primary_10_1093_molbev_msae001
crossref_primary_10_1016_j_jneumeth_2019_108399
crossref_primary_10_1073_pnas_1610155113
crossref_primary_10_1038_s41467_022_29884_3
crossref_primary_10_1007_s12017_024_08776_3
crossref_primary_10_3390_ijms161125996
crossref_primary_10_1093_bib_bbab147
crossref_primary_10_1186_s13059_020_01960_1
crossref_primary_10_1126_scitranslmed_aay1163
crossref_primary_10_3389_fnmol_2017_00045
crossref_primary_10_3390_biomedicines12071496
crossref_primary_10_1109_JBHI_2021_3099127
crossref_primary_10_1042_EBC20220079
crossref_primary_10_1002_glia_23767
crossref_primary_10_1016_j_compbiomed_2024_108211
crossref_primary_10_1111_acel_13153
crossref_primary_10_1186_s12964_023_01390_z
crossref_primary_10_1111_ene_14872
crossref_primary_10_1038_s41556_024_01583_9
crossref_primary_10_1038_s41593_024_01624_4
crossref_primary_10_1523_ENEURO_0255_20_2020
crossref_primary_10_1007_s13238_016_0247_8
crossref_primary_10_1016_j_neuron_2024_05_002
crossref_primary_10_1016_j_biopsych_2018_05_005
crossref_primary_10_3390_genes12101506
crossref_primary_10_1016_j_nbd_2017_06_008
crossref_primary_10_1038_s42003_024_05877_4
crossref_primary_10_1097_WCO_0000000000000952
crossref_primary_10_1109_TCBB_2024_3404013
crossref_primary_10_1093_nar_gkad955
crossref_primary_10_1016_j_neuroimage_2018_03_027
crossref_primary_10_1126_science_aan6827
crossref_primary_10_1016_j_ajhg_2020_08_022
crossref_primary_10_1038_s41467_022_30531_0
crossref_primary_10_1002_glia_23991
crossref_primary_10_1038_s41467_019_14266_z
crossref_primary_10_1016_j_conb_2016_11_001
crossref_primary_10_3389_fnins_2020_00470
crossref_primary_10_1038_s41593_022_01205_3
crossref_primary_10_1016_j_neucom_2022_06_046
crossref_primary_10_1186_s13059_021_02367_2
crossref_primary_10_1007_s12539_023_00587_7
crossref_primary_10_1186_s12974_021_02306_9
crossref_primary_10_1016_j_tig_2018_02_007
crossref_primary_10_1126_sciadv_adl2256
crossref_primary_10_1242_jcs_257212
crossref_primary_10_1093_bioinformatics_btz619
crossref_primary_10_1016_j_jbc_2024_107530
crossref_primary_10_1038_s41598_020_65916_y
crossref_primary_10_7554_eLife_49424
crossref_primary_10_1002_cam4_6316
crossref_primary_10_3389_fgene_2017_00073
crossref_primary_10_1016_j_ynstr_2024_100679
crossref_primary_10_1038_s41598_017_05927_4
crossref_primary_10_1038_nature18637
crossref_primary_10_1016_j_neuron_2024_12_015
crossref_primary_10_1093_biostatistics_kxac005
crossref_primary_10_1002_advs_202103396
crossref_primary_10_1063_1_4978426
crossref_primary_10_1016_j_celrep_2018_04_066
crossref_primary_10_3389_fcell_2021_649538
crossref_primary_10_1016_j_jneumeth_2019_108353
crossref_primary_10_1038_s41467_019_10101_7
crossref_primary_10_3390_math11173785
crossref_primary_10_1093_bib_bbab105
crossref_primary_10_1038_s41398_022_02054_1
crossref_primary_10_1038_s41467_022_28655_4
crossref_primary_10_1038_s41593_018_0216_z
crossref_primary_10_1093_bib_bby076
crossref_primary_10_1016_j_celrep_2021_110173
crossref_primary_10_1039_C9CS00438F
crossref_primary_10_1016_j_compbiomed_2024_108497
crossref_primary_10_1186_s40478_022_01387_8
crossref_primary_10_1007_s11912_018_0673_2
crossref_primary_10_1186_s12864_024_10728_x
crossref_primary_10_1038_s41398_018_0228_1
crossref_primary_10_1111_mec_17382
crossref_primary_10_1016_j_stem_2016_10_003
crossref_primary_10_1002_hbm_23579
crossref_primary_10_1038_s42003_021_02952_y
crossref_primary_10_1016_j_tins_2018_02_008
crossref_primary_10_1109_ACCESS_2020_3008681
crossref_primary_10_1016_j_neuron_2024_06_002
crossref_primary_10_1093_bioinformatics_bty329
crossref_primary_10_1146_annurev_anchem_061516_045228
crossref_primary_10_1016_j_neulet_2019_134403
crossref_primary_10_1093_bib_bbab531
crossref_primary_10_1016_j_neuron_2018_05_023
crossref_primary_10_1093_bioinformatics_bty563
crossref_primary_10_1038_s41467_019_13144_y
crossref_primary_10_1038_s41598_022_26434_1
crossref_primary_10_2174_0113862073285198240322072301
crossref_primary_10_1038_srep41008
crossref_primary_10_1093_nar_gkz172
crossref_primary_10_1016_j_cell_2015_12_056
crossref_primary_10_1038_srep43421
crossref_primary_10_1093_nar_gkab581
crossref_primary_10_1093_bioinformatics_btaa126
crossref_primary_10_1186_s40478_021_01152_3
crossref_primary_10_1186_s12974_022_02443_9
crossref_primary_10_3389_fncir_2019_00047
crossref_primary_10_1093_bioinformatics_bty316
crossref_primary_10_1002_glia_24230
crossref_primary_10_1126_science_aat7615
crossref_primary_10_1016_j_compbiomed_2022_105658
crossref_primary_10_1038_s41593_020_0603_0
crossref_primary_10_1093_bioinformatics_bty793
crossref_primary_10_1186_s12864_017_3893_1
crossref_primary_10_1172_JCI125375
crossref_primary_10_1016_j_immuni_2021_01_013
crossref_primary_10_1186_s12859_020_03547_w
crossref_primary_10_3389_fneur_2022_778419
crossref_primary_10_1186_s13059_024_03174_1
crossref_primary_10_1038_s41586_019_1289_x
crossref_primary_10_1016_j_jaac_2018_09_425
crossref_primary_10_1038_s41588_019_0497_5
crossref_primary_10_1007_s00401_019_01977_2
crossref_primary_10_1016_j_molmet_2024_102070
crossref_primary_10_3389_fnins_2021_639527
crossref_primary_10_1007_s12035_023_03771_4
crossref_primary_10_1038_nrg_2017_19
crossref_primary_10_1186_s12974_018_1113_9
crossref_primary_10_1016_j_biopsych_2023_06_008
crossref_primary_10_1038_s41593_019_0539_4
crossref_primary_10_1002_advs_202104682
crossref_primary_10_1016_j_celrep_2016_12_066
crossref_primary_10_1038_s41467_020_17876_0
crossref_primary_10_1038_s41576_022_00449_w
crossref_primary_10_1007_s12539_023_00601_y
crossref_primary_10_1038_s41398_022_01806_3
crossref_primary_10_3390_biom10020318
crossref_primary_10_1038_s41593_022_01123_4
crossref_primary_10_1038_s41593_018_0316_9
crossref_primary_10_1038_s41586_022_04461_2
crossref_primary_10_1021_acschemneuro_2c00691
crossref_primary_10_7554_eLife_48994
crossref_primary_10_1002_cne_24545
crossref_primary_10_1016_j_mam_2017_07_002
crossref_primary_10_1055_s_0041_1729970
crossref_primary_10_1016_j_nbd_2019_104612
crossref_primary_10_1002_brx2_33
crossref_primary_10_1007_s40484_017_0116_3
crossref_primary_10_1093_bib_bbac625
crossref_primary_10_3389_fnins_2018_00742
crossref_primary_10_1038_s41586_020_2316_7
crossref_primary_10_1177_0333102418762476
crossref_primary_10_1016_j_ins_2022_11_049
crossref_primary_10_1016_j_biopsych_2018_07_010
crossref_primary_10_1093_nargab_lqaa064
crossref_primary_10_1093_bfgp_elab024
crossref_primary_10_3389_fnins_2020_607215
crossref_primary_10_3233_JAD_240299
crossref_primary_10_1038_s41559_023_02186_7
crossref_primary_10_1186_s12864_022_09027_0
crossref_primary_10_3389_fimmu_2018_00697
crossref_primary_10_1038_s41467_019_09613_z
crossref_primary_10_1016_j_bpsgos_2024_100430
crossref_primary_10_1038_s41582_023_00809_y
crossref_primary_10_1038_s41467_024_52440_0
crossref_primary_10_1093_cercor_bhaa360
crossref_primary_10_3389_fncel_2020_00124
crossref_primary_10_1186_s13059_022_02785_w
crossref_primary_10_1038_s41598_017_14484_9
crossref_primary_10_1016_j_taap_2018_02_003
crossref_primary_10_3390_neuroglia1010014
crossref_primary_10_1093_bioinformatics_btab257
crossref_primary_10_1212_NXG_0000000000000199
crossref_primary_10_3390_neuroglia1010010
crossref_primary_10_1038_s41593_018_0197_y
crossref_primary_10_1016_j_alcohol_2018_05_004
crossref_primary_10_1038_srep45656
crossref_primary_10_1093_gigascience_giad098
crossref_primary_10_1038_s41467_018_05325_y
crossref_primary_10_1186_s13059_024_03172_3
crossref_primary_10_1038_s41380_021_01274_z
crossref_primary_10_1007_s00401_021_02399_9
crossref_primary_10_1038_nmeth_4463
crossref_primary_10_1016_j_jgg_2022_01_004
crossref_primary_10_1038_mp_2016_220
crossref_primary_10_3390_pathogens9121036
crossref_primary_10_1038_s41598_017_15525_z
crossref_primary_10_1038_s44220_023_00111_2
crossref_primary_10_1038_s41374_021_00698_z
crossref_primary_10_1038_nprot_2016_015
crossref_primary_10_7554_eLife_78216
crossref_primary_10_1016_j_bbagrm_2020_194491
crossref_primary_10_1002_glia_23572
crossref_primary_10_3390_ijms222413211
crossref_primary_10_1089_cmb_2018_0027
crossref_primary_10_3390_cells13231963
crossref_primary_10_1038_s41467_022_28043_y
crossref_primary_10_1016_j_ebiom_2020_103066
crossref_primary_10_1002_evan_21831
crossref_primary_10_1038_nprot_2016_002
crossref_primary_10_1038_s41598_018_27293_5
crossref_primary_10_3389_fnana_2019_00094
crossref_primary_10_1016_j_neuron_2019_11_004
crossref_primary_10_1093_bioinformatics_btab276
crossref_primary_10_1038_s41398_020_01175_9
crossref_primary_10_1002_glia_24652
crossref_primary_10_1016_j_celrep_2020_108634
crossref_primary_10_3389_fnins_2022_871979
crossref_primary_10_1016_j_stemcr_2021_08_006
crossref_primary_10_21769_BioProtoc_3091
crossref_primary_10_3389_fgene_2020_604790
crossref_primary_10_1002_jgm_3313
crossref_primary_10_1016_j_cell_2022_09_039
crossref_primary_10_1038_s41380_022_01558_y
crossref_primary_10_1016_j_copbio_2016_03_015
crossref_primary_10_1093_bioinformatics_btz139
crossref_primary_10_1093_cercor_bhad142
crossref_primary_10_26508_lsa_202302103
crossref_primary_10_1162_NETN_a_00003
crossref_primary_10_1186_s13059_016_0941_0
crossref_primary_10_1016_j_fertnstert_2015_10_025
crossref_primary_10_1038_s41597_024_03382_1
crossref_primary_10_1093_bfgp_elad002
crossref_primary_10_1038_s41588_024_01990_6
crossref_primary_10_1016_j_neuroimage_2020_116803
crossref_primary_10_3233_JAD_220640
crossref_primary_10_1016_j_molmed_2017_04_006
crossref_primary_10_1073_pnas_1817715116
crossref_primary_10_1021_acs_analchem_7b01462
crossref_primary_10_1016_j_compbiomed_2023_106634
crossref_primary_10_1038_nature20123
crossref_primary_10_3389_fneur_2023_1254290
crossref_primary_10_1038_s41578_021_00339_3
crossref_primary_10_1038_s41398_017_0058_6
crossref_primary_10_1111_1755_0998_13775
crossref_primary_10_1016_j_neuroimage_2023_119928
crossref_primary_10_1016_j_scib_2021_04_002
crossref_primary_10_1016_j_biopsych_2023_02_992
crossref_primary_10_1093_humrep_dew008
crossref_primary_10_1101_gr_223313_117
crossref_primary_10_1016_j_stem_2018_12_015
crossref_primary_10_1111_acel_13606
crossref_primary_10_1002_alz_14121
crossref_primary_10_1016_j_celrep_2023_113467
crossref_primary_10_3389_fmolb_2020_00209
crossref_primary_10_3390_app132011512
crossref_primary_10_1093_nar_gkad339
crossref_primary_10_1126_sciadv_aba2619
crossref_primary_10_1186_s12885_020_07628_0
crossref_primary_10_1016_j_neuron_2017_09_056
crossref_primary_10_3389_fnagi_2017_00162
crossref_primary_10_1371_journal_pone_0311791
crossref_primary_10_1002_mco2_326
crossref_primary_10_15252_msb_20166969
crossref_primary_10_1038_s41467_024_54448_y
crossref_primary_10_1186_s12864_018_4512_5
crossref_primary_10_1186_s40246_021_00368_7
crossref_primary_10_1371_journal_pcbi_1008120
crossref_primary_10_1016_j_biopsych_2018_01_017
crossref_primary_10_1038_s41588_018_0320_8
crossref_primary_10_1089_cmb_2021_0597
crossref_primary_10_1016_j_isci_2021_102713
crossref_primary_10_1101_gr_275569_121
crossref_primary_10_1016_j_celrep_2016_06_059
crossref_primary_10_1038_s41392_024_01812_5
crossref_primary_10_1021_acsnano_6b05452
crossref_primary_10_1016_j_mcpro_2023_100534
crossref_primary_10_1073_pnas_1617317113
crossref_primary_10_1016_j_neures_2022_09_011
crossref_primary_10_1007_s40473_016_0083_4
crossref_primary_10_3390_genes13040586
crossref_primary_10_1016_j_biopsych_2022_01_004
crossref_primary_10_1093_bib_bbw114
crossref_primary_10_1007_s13365_016_0499_3
crossref_primary_10_1089_scd_2023_0233
crossref_primary_10_1016_j_copbio_2016_04_020
crossref_primary_10_1038_s41467_019_09786_7
crossref_primary_10_3389_fonc_2018_00582
crossref_primary_10_1093_brain_awz295
crossref_primary_10_1002_alz_13069
crossref_primary_10_1038_nn_4409
crossref_primary_10_1016_j_cell_2020_07_017
crossref_primary_10_1016_j_neuron_2018_12_006
crossref_primary_10_1007_s12031_016_0745_4
crossref_primary_10_3390_biom12081130
crossref_primary_10_1158_2159_8290_CD_19_0329
crossref_primary_10_1038_s41562_021_01082_z
crossref_primary_10_1038_s41598_022_06500_4
crossref_primary_10_1016_j_neuroscience_2019_03_008
crossref_primary_10_1038_s41593_021_00851_3
crossref_primary_10_1016_j_neuron_2024_02_009
crossref_primary_10_1080_01621459_2024_2382435
crossref_primary_10_1152_physrev_00017_2017
crossref_primary_10_1186_s13059_017_1362_4
crossref_primary_10_1001_jamanetworkopen_2019_3447
crossref_primary_10_1016_j_bbi_2022_03_004
crossref_primary_10_1016_j_celrep_2020_108460
crossref_primary_10_1038_s43018_022_00356_3
crossref_primary_10_3390_cells10112890
crossref_primary_10_1038_s41380_020_00940_y
crossref_primary_10_1523_ENEURO_0212_17_2017
crossref_primary_10_1126_science_adf6484
crossref_primary_10_1093_psyrad_kkac009
crossref_primary_10_1016_j_compbiomed_2023_107783
crossref_primary_10_1007_s12565_023_00747_1
crossref_primary_10_1186_s12576_020_00753_2
crossref_primary_10_1093_hmg_ddv637
crossref_primary_10_1186_s40478_023_01686_8
crossref_primary_10_1016_j_pneurobio_2021_102109
crossref_primary_10_15252_msb_20188557
crossref_primary_10_3389_fnmol_2016_00139
crossref_primary_10_1093_braincomms_fcaa171
crossref_primary_10_1109_JBHI_2023_3319551
crossref_primary_10_1093_bioinformatics_bty098
crossref_primary_10_1186_s13059_017_1188_0
crossref_primary_10_1016_j_molcel_2020_05_016
crossref_primary_10_1016_j_mcn_2015_11_009
crossref_primary_10_1016_j_neurobiolaging_2019_05_008
crossref_primary_10_3389_fneur_2022_874211
crossref_primary_10_3390_ijms252312871
crossref_primary_10_1038_s41573_023_00847_7
crossref_primary_10_1093_braincomms_fcab269
crossref_primary_10_1093_nar_gkae480
crossref_primary_10_1186_s12859_019_2599_6
crossref_primary_10_1109_TCBB_2024_3362472
crossref_primary_10_3389_fimmu_2017_00198
crossref_primary_10_1038_s41398_021_01263_4
crossref_primary_10_1016_j_ydbio_2020_01_012
crossref_primary_10_1093_hmg_ddaa184
crossref_primary_10_1016_j_inffus_2024_102754
crossref_primary_10_1038_s41591_019_0440_4
crossref_primary_10_7554_eLife_86933
crossref_primary_10_3390_biom11081111
crossref_primary_10_3390_genes13020377
crossref_primary_10_1186_s12974_016_0581_z
crossref_primary_10_1038_s41598_021_85801_6
crossref_primary_10_1016_j_neuropharm_2017_02_017
crossref_primary_10_1007_s12035_018_1421_1
crossref_primary_10_1016_j_brainresbull_2016_03_017
crossref_primary_10_1002_ctd2_95
crossref_primary_10_1038_s41598_017_17322_0
crossref_primary_10_1093_bib_bbae112
crossref_primary_10_1016_j_neures_2024_11_005
crossref_primary_10_2139_ssrn_3155560
crossref_primary_10_1016_j_jchemneu_2021_101934
crossref_primary_10_1038_s41386_023_01732_y
crossref_primary_10_1038_s41556_021_00740_8
crossref_primary_10_1016_j_celrep_2020_01_038
crossref_primary_10_1016_j_stem_2017_07_007
crossref_primary_10_1002_ajmg_b_32932
crossref_primary_10_1016_j_ajhg_2019_07_016
crossref_primary_10_1111_cns_70066
crossref_primary_10_1016_j_devcel_2017_10_029
crossref_primary_10_1007_s12539_021_00444_5
crossref_primary_10_1109_JBHI_2020_2991172
crossref_primary_10_3390_genes11040377
crossref_primary_10_1093_nar_gkz959
crossref_primary_10_1063_5_0043338
crossref_primary_10_3389_fgene_2020_633455
crossref_primary_10_1111_jcmm_15170
crossref_primary_10_1186_s12859_017_1994_0
crossref_primary_10_1016_j_cell_2019_08_053
crossref_primary_10_7554_eLife_64564
crossref_primary_10_1038_s41598_024_51340_z
crossref_primary_10_1073_pnas_2007719117
crossref_primary_10_1093_bib_bbad040
crossref_primary_10_1093_jnen_nlx097
crossref_primary_10_1002_hbm_26259
crossref_primary_10_1109_JBHI_2022_3148286
crossref_primary_10_1186_s13059_023_03123_4
crossref_primary_10_1038_s41467_022_34550_9
crossref_primary_10_1016_j_jalz_2017_08_012
crossref_primary_10_1126_science_aat8127
crossref_primary_10_1093_nar_gkz968
crossref_primary_10_1002_dad2_12001
crossref_primary_10_1038_s41380_024_02452_5
crossref_primary_10_1371_journal_pone_0180697
crossref_primary_10_1093_hmg_ddaa182
crossref_primary_10_1016_j_celrep_2017_10_030
crossref_primary_10_1101_gr_250217_119
crossref_primary_10_1016_j_neuron_2016_10_001
crossref_primary_10_1007_s00401_021_02390_4
crossref_primary_10_1016_j_conb_2015_11_002
crossref_primary_10_1111_ejn_16242
crossref_primary_10_3389_fncel_2021_703431
crossref_primary_10_1101_gad_309823_117
crossref_primary_10_1007_s12041_021_01294_2
crossref_primary_10_2217_epi_2016_0005
crossref_primary_10_1007_s12539_021_00457_0
crossref_primary_10_31887_DCNS_2018_20_4_dgurwitz
crossref_primary_10_1523_JNEUROSCI_0830_22_2023
crossref_primary_10_1016_j_csbj_2022_06_056
crossref_primary_10_1007_s10439_020_02507_y
crossref_primary_10_3390_ijms24098122
crossref_primary_10_1038_s41586_024_07405_0
crossref_primary_10_1093_bioinformatics_btw732
crossref_primary_10_1126_science_aaf2666
crossref_primary_10_1038_s41598_024_72096_6
crossref_primary_10_1038_s41525_019_0113_8
crossref_primary_10_1038_s41380_021_01259_y
crossref_primary_10_1371_journal_pcbi_1004575
crossref_primary_10_3390_ijms21062181
crossref_primary_10_1016_j_ecoenv_2022_114303
crossref_primary_10_1093_bib_bbad216
crossref_primary_10_1186_s13195_023_01338_y
crossref_primary_10_1111_jnc_15741
crossref_primary_10_1126_sciadv_adh2588
crossref_primary_10_3389_fphys_2020_611982
crossref_primary_10_1038_s41588_021_00987_9
crossref_primary_10_1038_s41380_024_02565_x
crossref_primary_10_1523_JNEUROSCI_1930_17_2018
crossref_primary_10_1016_j_ygeno_2021_01_007
crossref_primary_10_1016_j_yexcr_2021_112966
crossref_primary_10_1016_j_cell_2021_03_050
crossref_primary_10_1038_s41467_024_47884_3
crossref_primary_10_1038_s41593_020_00787_0
crossref_primary_10_1016_j_neuron_2023_07_019
crossref_primary_10_1186_s13059_016_0932_1
crossref_primary_10_1016_j_neuron_2017_07_035
crossref_primary_10_1016_j_tiv_2022_105424
crossref_primary_10_1016_j_compbiolchem_2020_107283
crossref_primary_10_1016_j_heliyon_2019_e02589
crossref_primary_10_1186_s12915_024_01867_4
crossref_primary_10_1038_s41593_022_01197_0
crossref_primary_10_1038_s42003_023_05647_8
crossref_primary_10_1038_nbt_3445
crossref_primary_10_1016_j_compbiomed_2023_107152
crossref_primary_10_7554_eLife_72129
Cites_doi 10.1016/j.cell.2012.02.052
10.1523/JNEUROSCI.4178-07.2008
10.1038/nmeth786
10.3389/fncel.2013.00221
10.1002/cne.903080306
10.1016/j.neuron.2011.06.026
10.1523/JNEUROSCI.4199-05.2006
10.1523/JNEUROSCI.1860-14.2014
10.1016/S0306-4522(01)00446-8
10.1038/nmeth.2563
10.1126/science.aaa1934
10.1038/nprot.2014.191
10.1002/dneu.20853
10.1126/science.1072241
10.1523/JNEUROSCI.18-12-04627.1998
10.1016/j.mcn.2012.11.004
10.1126/science.1239200
10.1016/S0896-6273(00)80562-0
10.3389/fnana.2014.00114
10.1242/dev.110601
10.1038/nbt.2967
10.1016/j.neuron.2009.08.005
10.1111/j.1600-065X.2006.00441.x
10.1523/JNEUROSCI.0543-12.2012
10.1073/pnas.0702023104
10.1016/j.neuron.2009.09.044
10.1038/nature13173
10.1038/nmeth.2772
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jun 9, 2015
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jun 9, 2015
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1507125112
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Virology and AIDS Abstracts
Neurosciences Abstracts
MEDLINE - Academic
CrossRef

MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Single cell analysis of the human brain
EISSN 1091-6490
EndPage 7290
ExternalDocumentID PMC4466750
3725923151
26060301
10_1073_pnas_1507125112
112_23_7285
26463566
US201600148993
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM007365
– fundername: Howard Hughes Medical Institute
– fundername: NIMH NIH HHS
  grantid: F30 MH106261
– fundername: NHLBI NIH HHS
  grantid: U01-HL099999
– fundername: NHLBI NIH HHS
  grantid: U01 HL099995
– fundername: NINDS NIH HHS
  grantid: R01NS081703
– fundername: NINDS NIH HHS
  grantid: K99 NS089780
– fundername: NINDS NIH HHS
  grantid: K99NS089780
– fundername: NHLBI NIH HHS
  grantid: U01 HL099999
– fundername: NIGMS NIH HHS
  grantid: T32GM007365
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c623t-87e7a1df16dd97ed571390b030629209fe64848001da1785f8ccd16a0949b5dc3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:18:37 EDT 2025
Fri Jul 11 05:28:45 EDT 2025
Fri Jul 11 14:47:10 EDT 2025
Fri Jul 11 05:38:37 EDT 2025
Mon Jun 30 08:09:06 EDT 2025
Thu Apr 03 07:01:16 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Tue Jul 01 01:53:27 EDT 2025
Wed Nov 11 00:29:42 EST 2020
Fri May 30 12:01:39 EDT 2025
Wed Dec 27 19:19:22 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords human brain
single cells
RNAseq
neurons
interneurons
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c623t-87e7a1df16dd97ed571390b030629209fe64848001da1785f8ccd16a0949b5dc3
Notes http://dx.doi.org/10.1073/pnas.1507125112
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: S.D., B.A.B., and S.R.Q. designed research; S.D., S.A.S., Y.Z., C.C., L.M.S., and M.G.H.G. performed research; L.M.S. and M.G.H.G. contributed new reagents/analytic tools; S.D., S.A.S., M.E., and S.R.Q. analyzed data; and S.D., S.A.S., B.A.B., and S.R.Q. wrote the paper.
Contributed by Stephen R. Quake, April 15, 2015 (sent for review March 22, 2015)
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4466750
PMID 26060301
PQID 1691074485
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1803103638
pnas_primary_112_23_7285
fao_agris_US201600148993
proquest_miscellaneous_1701474975
crossref_primary_10_1073_pnas_1507125112
jstor_primary_26463566
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4466750
proquest_miscellaneous_1687648902
crossref_citationtrail_10_1073_pnas_1507125112
proquest_journals_1691074485
pubmed_primary_26060301
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-09
PublicationDateYYYYMMDD 2015-06-09
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Park HY (e_1_3_4_4_2) 2014; 343
Wittner L (e_1_3_4_18_2) 2001; 108
Ke R (e_1_3_4_1_2) 2013; 10
James AB (e_1_3_4_21_2) 2006; 26
Pollen AA (e_1_3_4_10_2) 2014; 32
Shi J (e_1_3_4_12_2) 1998; 18
Batista-Brito R (e_1_3_4_15_2) 2009; 63
Kodama T (e_1_3_4_14_2) 2012; 32
Cahoy JD (e_1_3_4_13_2) 2008; 28
Lee JH (e_1_3_4_2_2) 2015; 10
Capodieci P (e_1_3_4_5_2) 2005; 2
Zeng H (e_1_3_4_19_2) 2012; 149
Deans MR (e_1_3_4_20_2) 2011; 71
Brunskill EW (e_1_3_4_6_2) 2014; 141
Shatz CJ (e_1_3_4_26_2) 2009; 64
Cebrián C (e_1_3_4_27_2) 2014; 8
Islam S (e_1_3_4_9_2) 2014; 11
Rudy B (e_1_3_4_28_2) 2011; 71
Zeisel A (e_1_3_4_7_2) 2015; 347
Corriveau RA (e_1_3_4_24_2) 1998; 21
Sloviter RS (e_1_3_4_17_2) 1991; 308
Goddard CA (e_1_3_4_23_2) 2007; 104
Levsky JM (e_1_3_4_3_2) 2002; 297
Carson MJ (e_1_3_4_22_2) 2006; 213
Sultan KT (e_1_3_4_16_2) 2013; 7
Zhang Y (e_1_3_4_11_2) 2014; 34
Chacon MA (e_1_3_4_25_2) 2013; 52
Treutlein B (e_1_3_4_8_2) 2014; 509
23147111 - Mol Cell Neurosci. 2013 Jan;52:117-27
24312011 - Front Cell Neurosci. 2013 Nov 21;7:221
16452686 - J Neurosci. 2006 Feb 1;26(5):1624-34
18171944 - J Neurosci. 2008 Jan 2;28(1):264-78
16972896 - Immunol Rev. 2006 Oct;213:48-65
22674258 - J Neurosci. 2012 Jun 6;32(23):7819-31
1865007 - J Comp Neurol. 1991 Jun 15;308(3):381-96
25186741 - J Neurosci. 2014 Sep 3;34(36):11929-47
22500809 - Cell. 2012 Apr 13;149(2):483-96
24363023 - Nat Methods. 2014 Feb;11(2):163-6
24739965 - Nature. 2014 May 15;509(7500):371-5
9614237 - J Neurosci. 1998 Jun 15;18(12):4627-36
16118636 - Nat Methods. 2005 Sep;2(9):663-5
17420446 - Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6828-33
11738496 - Neuroscience. 2001;108(4):587-600
19709629 - Neuron. 2009 Aug 27;63(4):466-81
9768838 - Neuron. 1998 Sep;21(3):505-20
25086649 - Nat Biotechnol. 2014 Oct;32(10):1053-8
12161654 - Science. 2002 Aug 2;297(5582):836-40
24458643 - Science. 2014 Jan 24;343(6169):422-4
21903076 - Neuron. 2011 Sep 8;71(5):820-32
25352786 - Front Neuroanat. 2014 Oct 13;8:114
25700174 - Science. 2015 Mar 6;347(6226):1138-42
23852452 - Nat Methods. 2013 Sep;10(9):857-60
21154909 - Dev Neurobiol. 2011 Jan 1;71(1):45-61
25053437 - Development. 2014 Aug;141(15):3093-101
19840547 - Neuron. 2009 Oct 15;64(1):40-5
25675209 - Nat Protoc. 2015 Mar;10(3):442-58
References_xml – volume: 149
  start-page: 483
  year: 2012
  ident: e_1_3_4_19_2
  article-title: Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.052
– volume: 28
  start-page: 264
  year: 2008
  ident: e_1_3_4_13_2
  article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4178-07.2008
– volume: 2
  start-page: 663
  year: 2005
  ident: e_1_3_4_5_2
  article-title: Gene expression profiling in single cells within tissue
  publication-title: Nat Methods
  doi: 10.1038/nmeth786
– volume: 7
  start-page: 221
  year: 2013
  ident: e_1_3_4_16_2
  article-title: Production and organization of neocortical interneurons
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2013.00221
– volume: 308
  start-page: 381
  year: 1991
  ident: e_1_3_4_17_2
  article-title: Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903080306
– volume: 71
  start-page: 820
  year: 2011
  ident: e_1_3_4_20_2
  article-title: Control of neuronal morphology by the atypical cadherin Fat3
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.06.026
– volume: 26
  start-page: 1624
  year: 2006
  ident: e_1_3_4_21_2
  article-title: Regulation of the neuronal proteasome by Zif268 (Egr1)
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4199-05.2006
– volume: 34
  start-page: 11929
  year: 2014
  ident: e_1_3_4_11_2
  article-title: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1860-14.2014
– volume: 108
  start-page: 587
  year: 2001
  ident: e_1_3_4_18_2
  article-title: Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(01)00446-8
– volume: 10
  start-page: 857
  year: 2013
  ident: e_1_3_4_1_2
  article-title: In situ sequencing for RNA analysis in preserved tissue and cells
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2563
– volume: 347
  start-page: 1138
  year: 2015
  ident: e_1_3_4_7_2
  article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 10
  start-page: 442
  year: 2015
  ident: e_1_3_4_2_2
  article-title: Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2014.191
– volume: 71
  start-page: 45
  year: 2011
  ident: e_1_3_4_28_2
  article-title: Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons
  publication-title: Dev Neurobiol
  doi: 10.1002/dneu.20853
– volume: 297
  start-page: 836
  year: 2002
  ident: e_1_3_4_3_2
  article-title: Single-cell gene expression profiling
  publication-title: Science
  doi: 10.1126/science.1072241
– volume: 18
  start-page: 4627
  year: 1998
  ident: e_1_3_4_12_2
  article-title: Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-12-04627.1998
– volume: 52
  start-page: 117
  year: 2013
  ident: e_1_3_4_25_2
  article-title: MHC class I protein is expressed by neurons and neural progenitors in mid-gestation mouse brain
  publication-title: Mol Cell Neurosci
  doi: 10.1016/j.mcn.2012.11.004
– volume: 343
  start-page: 422
  year: 2014
  ident: e_1_3_4_4_2
  article-title: Visualization of dynamics of single endogenous mRNA labeled in live mouse
  publication-title: Science
  doi: 10.1126/science.1239200
– volume: 21
  start-page: 505
  year: 1998
  ident: e_1_3_4_24_2
  article-title: Regulation of class I MHC gene expression in the developing and mature CNS by neural activity
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80562-0
– volume: 8
  start-page: 114
  year: 2014
  ident: e_1_3_4_27_2
  article-title: Neuronal MHC-I expression and its implications in synaptic function, axonal regeneration and Parkinson’s and other brain diseases
  publication-title: Front Neuroanat
  doi: 10.3389/fnana.2014.00114
– volume: 141
  start-page: 3093
  year: 2014
  ident: e_1_3_4_6_2
  article-title: Single cell dissection of early kidney development: Multilineage priming
  publication-title: Development
  doi: 10.1242/dev.110601
– volume: 32
  start-page: 1053
  year: 2014
  ident: e_1_3_4_10_2
  article-title: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2967
– volume: 63
  start-page: 466
  year: 2009
  ident: e_1_3_4_15_2
  article-title: The cell-intrinsic requirement of Sox6 for cortical interneuron development
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.08.005
– volume: 213
  start-page: 48
  year: 2006
  ident: e_1_3_4_22_2
  article-title: CNS immune privilege: Hiding in plain sight
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.2006.00441.x
– volume: 32
  start-page: 7819
  year: 2012
  ident: e_1_3_4_14_2
  article-title: Neuronal classification and marker gene identification via single-cell expression profiling of brainstem vestibular neurons subserving cerebellar learning
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0543-12.2012
– volume: 104
  start-page: 6828
  year: 2007
  ident: e_1_3_4_23_2
  article-title: Regulation of CNS synapses by neuronal MHC class I
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0702023104
– volume: 64
  start-page: 40
  year: 2009
  ident: e_1_3_4_26_2
  article-title: MHC class I: An unexpected role in neuronal plasticity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.09.044
– volume: 509
  start-page: 371
  year: 2014
  ident: e_1_3_4_8_2
  article-title: Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
  publication-title: Nature
  doi: 10.1038/nature13173
– volume: 11
  start-page: 163
  year: 2014
  ident: e_1_3_4_9_2
  article-title: Quantitative single-cell RNA-seq with unique molecular identifiers
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2772
– reference: 25675209 - Nat Protoc. 2015 Mar;10(3):442-58
– reference: 11738496 - Neuroscience. 2001;108(4):587-600
– reference: 21903076 - Neuron. 2011 Sep 8;71(5):820-32
– reference: 9614237 - J Neurosci. 1998 Jun 15;18(12):4627-36
– reference: 22674258 - J Neurosci. 2012 Jun 6;32(23):7819-31
– reference: 16972896 - Immunol Rev. 2006 Oct;213:48-65
– reference: 25086649 - Nat Biotechnol. 2014 Oct;32(10):1053-8
– reference: 25053437 - Development. 2014 Aug;141(15):3093-101
– reference: 24363023 - Nat Methods. 2014 Feb;11(2):163-6
– reference: 22500809 - Cell. 2012 Apr 13;149(2):483-96
– reference: 25186741 - J Neurosci. 2014 Sep 3;34(36):11929-47
– reference: 18171944 - J Neurosci. 2008 Jan 2;28(1):264-78
– reference: 23147111 - Mol Cell Neurosci. 2013 Jan;52:117-27
– reference: 1865007 - J Comp Neurol. 1991 Jun 15;308(3):381-96
– reference: 24312011 - Front Cell Neurosci. 2013 Nov 21;7:221
– reference: 16452686 - J Neurosci. 2006 Feb 1;26(5):1624-34
– reference: 9768838 - Neuron. 1998 Sep;21(3):505-20
– reference: 23852452 - Nat Methods. 2013 Sep;10(9):857-60
– reference: 24739965 - Nature. 2014 May 15;509(7500):371-5
– reference: 25700174 - Science. 2015 Mar 6;347(6226):1138-42
– reference: 17420446 - Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6828-33
– reference: 24458643 - Science. 2014 Jan 24;343(6169):422-4
– reference: 12161654 - Science. 2002 Aug 2;297(5582):836-40
– reference: 19840547 - Neuron. 2009 Oct 15;64(1):40-5
– reference: 19709629 - Neuron. 2009 Aug 27;63(4):466-81
– reference: 25352786 - Front Neuroanat. 2014 Oct 13;8:114
– reference: 21154909 - Dev Neurobiol. 2011 Jan 1;71(1):45-61
– reference: 16118636 - Nat Methods. 2005 Sep;2(9):663-5
SSID ssj0009580
Score 2.6574047
Snippet Significance The brain comprises an immense number of cells and cellular connections. We describe the first, to our knowledge, single cell whole transcriptome...
The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at...
The brain comprises an immense number of cells and cellular connections. We describe the first, to our knowledge, single cell whole transcriptome analysis of...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7285
SubjectTerms Adult
adults
Biological Sciences
Brain
Brain - cytology
Brain - embryology
Brain - metabolism
Cells
HLA Antigens - immunology
Human subjects
Humans
major histocompatibility complex
Neurons
Neurons - cytology
Neurons - immunology
Ribonucleic acid
RNA
Sequence Analysis, RNA
Single-Cell Analysis
surveys
Transcriptome
transcriptomics
Title survey of human brain transcriptome diversity at the single cell level
URI https://www.jstor.org/stable/26463566
http://www.pnas.org/content/112/23/7285.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26060301
https://www.proquest.com/docview/1691074485
https://www.proquest.com/docview/1687648902
https://www.proquest.com/docview/1701474975
https://www.proquest.com/docview/1803103638
https://pubmed.ncbi.nlm.nih.gov/PMC4466750
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBgLDGQkDkNRSmM7cXKsoNOERpm0ViqnyEncgVTSaW2R4P_h_-Q9O3HSMSrgElWx4yR-v76vvA9CXkklhI7VINC8SAKhCxbkaciDEG0VwIuKSvRDfhjHp1PxfhbNer2fnailzTrvFz9uzSv5H6rCOaArZsn-A2XdonACfgN94QgUhuNf0XjorzbX37T5SG6b7eXY8QH7PlSWHSy_ar90oRc2cdFH98BC--iz9xcYNNTVUM-dRFs18QPjxmE4bNNPap6w8gP_fNw2M36HHvLK1i24uPoOIrh1wi5rX6vpo9b6UJ3L-pPD2KiqG76bGgddx0QYmQCqlv3terYuR2YgJYXNo-5ry4RBhwliYduIOi4dsg4cGe8wXcls15_fpAGwL2xhXKlV3-i9aE6xVvA1H_vHH7OT6dlZNhnNJtujVs5LMBFBDcZE_bsMrBHeOIVcbefEZjrVr9JUkJL8zY17byk_d-Zq2UTBYmldmHqbmXMzWrej_kwekPu13UKHFoT7pKerh2S_2Wl6XJcvf_2InA6pRSVdzqlBJTWopFuopA6VVK0poIxaVFJEJTWofEymJ6PJ29Og7tcRFKBEr0GwaqnCch7GZZlKXUYSzItBjlYp9kRL5zoWiQALJSxVKJNonhRFGQKjSEWaR2XBD8hetaz0IaGqjMISZZHKE5GzPEkVl1yDdsqStCi5R_rNRmZFXcwee6osMhNUIXmG25m1O--RY3fBla3j8ueph0CZTF2ClM2mFwxrMKLfHTR5jxwYcrklwJzAAo8xXGNWcUuHLGM8Q2R65KihaVbzDrhbnGIktMDhl24YODtusqr0coNzQFMRGAewY46EJ5MilbvWSbD8LwdB65EnFkqd5x_E6BTxiNwCmZuA1ee3R6ovn00VegwEAXPj6e7Xe0butbzhiOytrzf6Oajx6_yF-RP9Ah6y7rs
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+human+brain+transcriptome+diversity+at+the+single+cell+level&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Darmanis%2C+Spyros&rft.au=Sloan%2C+Steven+A&rft.au=Zhang%2C+Ye&rft.au=Enge%2C+Martin&rft.date=2015-06-09&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=23&rft.spage=7285&rft_id=info:doi/10.1073%2Fpnas.1507125112&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3725923151
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F23.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F23.cover.gif