survey of human brain transcriptome diversity at the single cell level
Significance The brain comprises an immense number of cells and cellular connections. We describe the first, to our knowledge, single cell whole transcriptome analysis of human adult cortical samples. We have established an experimental and analytical framework with which the complexity of the human...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 23; pp. 7285 - 7290 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
09.06.2015
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Significance The brain comprises an immense number of cells and cellular connections. We describe the first, to our knowledge, single cell whole transcriptome analysis of human adult cortical samples. We have established an experimental and analytical framework with which the complexity of the human brain can be dissected on the single cell level. Using this approach, we were able to identify all major cell types of the brain and characterize subtypes of neuronal cells. We observed changes in neurons from early developmental to late differentiated stages in the adult. We found a subset of adult neurons which express major histocompatibility complex class I genes and thus are not immune privileged.
The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain. |
---|---|
AbstractList | The brain comprises an immense number of cells and cellular connections. We describe the first, to our knowledge, single cell whole transcriptome analysis of human adult cortical samples. We have established an experimental and analytical framework with which the complexity of the human brain can be dissected on the single cell level. Using this approach, we were able to identify all major cell types of the brain and characterize subtypes of neuronal cells. We observed changes in neurons from early developmental to late differentiated stages in the adult. We found a subset of adult neurons which express major histocompatibility complex class I genes and thus are not immune privileged.
The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain. The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain. The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain. Significance The brain comprises an immense number of cells and cellular connections. We describe the first, to our knowledge, single cell whole transcriptome analysis of human adult cortical samples. We have established an experimental and analytical framework with which the complexity of the human brain can be dissected on the single cell level. Using this approach, we were able to identify all major cell types of the brain and characterize subtypes of neuronal cells. We observed changes in neurons from early developmental to late differentiated stages in the adult. We found a subset of adult neurons which express major histocompatibility complex class I genes and thus are not immune privileged. The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain. |
Author | Sloan, Steven A. Caneda, Christine Gephart, Melanie G. Hayden Shuer, Lawrence M. Zhang, Ye Enge, Martin Barres, Ben A. Darmanis, Spyros Quake, Stephen R. |
Author_xml | – sequence: 1 givenname: Spyros surname: Darmanis fullname: Darmanis, Spyros organization: Departments of Bioengineering and Applied Physics, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 – sequence: 2 givenname: Steven A. surname: Sloan fullname: Sloan, Steven A. organization: Neurobiology, Stanford University, Stanford, CA 94305 – sequence: 3 givenname: Ye surname: Zhang fullname: Zhang, Ye organization: Neurobiology, Stanford University, Stanford, CA 94305 – sequence: 4 givenname: Martin surname: Enge fullname: Enge, Martin organization: Departments of Bioengineering and Applied Physics, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 – sequence: 5 givenname: Christine surname: Caneda fullname: Caneda, Christine organization: Neurobiology, Stanford University, Stanford, CA 94305 – sequence: 6 givenname: Lawrence M. surname: Shuer fullname: Shuer, Lawrence M. organization: Neurosurgery, Stanford University, Stanford, CA 94305 – sequence: 7 givenname: Melanie G. Hayden surname: Gephart fullname: Gephart, Melanie G. Hayden organization: Neurosurgery, Stanford University, Stanford, CA 94305 – sequence: 8 givenname: Ben A. surname: Barres fullname: Barres, Ben A. organization: Neurobiology, Stanford University, Stanford, CA 94305 – sequence: 9 givenname: Stephen R. surname: Quake fullname: Quake, Stephen R. organization: Departments of Bioengineering and Applied Physics, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26060301$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1vEzEQxS1URD_gzAlYiQuXtDO21x8XJFRRQKrEAXq2nF1v4mhjB3s3Uv57vCSkpQd68mF-8_zezJyTkxCDI-Q1wiWCZFebYPMl1iCR1oj0GTlD0DgTXMMJOQOgcqY45afkPOcVAOhawQtySgUIYIBn5CaPaet2Veyq5bi2oZon60M1JBtyk_xmiGtXtX7rUvbDrrJDNSxdlX1Y9K5qXN9Xvdu6_iV53tk-u1eH94Lc3Xz-ef11dvv9y7frT7ezRlA2zJR00mLboWhbLV1bS2Qa5sWKoJqC7pzgiisAbC1KVXeqaVoUFjTX87pt2AX5uNfdjPO1axsXitPebJJf27Qz0XrzbyX4pVnEreFcCFlDEfhwEEjx1-jyYNY-TzlscHHMBhUwBCaYehqVgFxyLeunUaFkSaaBFvT9I3QVxxTK0Aqly1I5V5Pg24c5jwH_Lq4AV3ugSTHn5LojgmCm0zDTaZj70ygd9aOOxg928HEalO__0_fuYGUqHH9Baigzkv4x-2ZPrPIQ0wOvXLBaiHuFzkZjF8lnc_eDAoqy5zIUzdhv_g_YuQ |
CitedBy_id | crossref_primary_10_1093_nar_gkaa762 crossref_primary_10_1007_s40484_018_0164_3 crossref_primary_10_1016_j_neurobiolaging_2023_03_004 crossref_primary_10_1124_molpharm_122_000641 crossref_primary_10_1002_alz_13821 crossref_primary_10_1038_s41593_022_01181_8 crossref_primary_10_1038_s41392_023_01637_8 crossref_primary_10_1016_j_compbiolchem_2017_08_012 crossref_primary_10_1016_j_stem_2023_03_007 crossref_primary_10_1038_s41598_020_58715_y crossref_primary_10_1093_bib_bbae511 crossref_primary_10_1038_s41467_021_27018_9 crossref_primary_10_1038_s41592_019_0586_5 crossref_primary_10_1002_alz_13823 crossref_primary_10_1039_C8AN01525B crossref_primary_10_1080_21541264_2023_2295044 crossref_primary_10_1016_j_coisb_2017_04_011 crossref_primary_10_1038_s41386_020_0763_3 crossref_primary_10_1038_s41467_023_41689_6 crossref_primary_10_1007_s12561_021_09324_4 crossref_primary_10_1109_JBHI_2023_3247723 crossref_primary_10_1186_s13059_016_0927_y crossref_primary_10_1016_j_biomaterials_2021_120712 crossref_primary_10_1002_1878_0261_12569 crossref_primary_10_1016_j_cels_2019_01_002 crossref_primary_10_1371_journal_pone_0200003 crossref_primary_10_1038_s41598_020_63495_6 crossref_primary_10_1038_s41588_021_00921_z crossref_primary_10_3389_fnins_2020_614680 crossref_primary_10_1016_j_neuron_2020_05_014 crossref_primary_10_1007_s00262_025_03979_4 crossref_primary_10_1016_j_neuron_2022_09_030 crossref_primary_10_1093_nar_gkaa506 crossref_primary_10_3389_fcell_2020_544043 crossref_primary_10_1016_j_ynstr_2021_100307 crossref_primary_10_1109_JBHI_2021_3091506 crossref_primary_10_1186_s40478_022_01453_1 crossref_primary_10_1007_s13238_019_0638_8 crossref_primary_10_1016_j_celrep_2016_08_038 crossref_primary_10_1093_bfgp_elx044 crossref_primary_10_3390_genes12111670 crossref_primary_10_1038_s42003_023_04928_6 crossref_primary_10_1146_annurev_neuro_070815_013858 crossref_primary_10_1016_j_celrep_2017_02_007 crossref_primary_10_1093_bib_bbac590 crossref_primary_10_1186_s13040_021_00285_4 crossref_primary_10_1093_bioinformatics_btz704 crossref_primary_10_1016_j_jbi_2021_103899 crossref_primary_10_1002_alz_12719 crossref_primary_10_1002_alz_13805 crossref_primary_10_1038_s41592_024_02171_3 crossref_primary_10_3389_fmolb_2018_00012 crossref_primary_10_1371_journal_pone_0281477 crossref_primary_10_1016_j_stemcr_2020_05_003 crossref_primary_10_1101_gr_265769_120 crossref_primary_10_1093_bioinformatics_bty618 crossref_primary_10_1146_annurev_immunol_042718_041728 crossref_primary_10_1016_j_isci_2024_109342 crossref_primary_10_1038_s41588_018_0129_5 crossref_primary_10_1016_j_bpsgos_2025_100448 crossref_primary_10_1084_jem_20211121 crossref_primary_10_3390_brainsci15030294 crossref_primary_10_1016_j_celrep_2017_12_046 crossref_primary_10_1186_s40169_017_0139_4 crossref_primary_10_1007_s11064_021_03468_x crossref_primary_10_1073_pnas_1617384114 crossref_primary_10_1186_s13059_019_1747_7 crossref_primary_10_1093_bib_bbab204 crossref_primary_10_1186_s12987_020_00209_0 crossref_primary_10_1109_TCBB_2022_3203592 crossref_primary_10_1016_j_mtbio_2022_100222 crossref_primary_10_1172_JCI173789 crossref_primary_10_1097_j_pain_0000000000002480 crossref_primary_10_1016_j_mcn_2016_03_009 crossref_primary_10_1093_nsr_nwac147 crossref_primary_10_1186_s13059_023_03007_7 crossref_primary_10_1186_s12983_022_00472_x crossref_primary_10_1007_s00418_016_1466_z crossref_primary_10_3389_fneur_2020_572850 crossref_primary_10_1007_s00018_024_05179_2 crossref_primary_10_1038_s41598_020_69096_7 crossref_primary_10_1002_ana_25719 crossref_primary_10_1007_s12264_023_01160_4 crossref_primary_10_1038_s41586_022_04436_3 crossref_primary_10_3390_genes13010122 crossref_primary_10_1186_s13073_023_01195_2 crossref_primary_10_1109_TCBB_2024_3458170 crossref_primary_10_1002_pmic_201800257 crossref_primary_10_1080_19768354_2022_2110937 crossref_primary_10_1016_j_compbiomed_2024_109212 crossref_primary_10_1038_s41467_019_11493_2 crossref_primary_10_1038_s41386_020_00924_0 crossref_primary_10_1093_gigascience_giz106 crossref_primary_10_3389_fimmu_2021_646259 crossref_primary_10_1016_j_neurobiolaging_2022_09_002 crossref_primary_10_1126_science_aan3456 crossref_primary_10_1093_bib_bbac556 crossref_primary_10_3390_genes10020098 crossref_primary_10_1093_bioinformatics_btad731 crossref_primary_10_1016_j_celrep_2020_01_010 crossref_primary_10_3389_fnmol_2023_1279232 crossref_primary_10_1186_s12864_019_6341_6 crossref_primary_10_1371_journal_pgen_1007961 crossref_primary_10_1007_s12539_023_00553_3 crossref_primary_10_1038_s41586_020_2496_1 crossref_primary_10_3389_fnmol_2019_00208 crossref_primary_10_1523_ENEURO_0328_24_2024 crossref_primary_10_1016_j_isci_2022_105884 crossref_primary_10_1093_bib_bbab214 crossref_primary_10_1186_s12918_016_0366_0 crossref_primary_10_1016_j_copbio_2019_03_001 crossref_primary_10_1073_pnas_1701201114 crossref_primary_10_7554_eLife_93325_3 crossref_primary_10_1007_s12031_015_0694_3 crossref_primary_10_1007_s12035_019_01795_3 crossref_primary_10_1016_j_trsl_2022_07_004 crossref_primary_10_1038_s41598_017_06145_8 crossref_primary_10_1016_j_csbj_2024_06_004 crossref_primary_10_1016_j_conb_2017_10_005 crossref_primary_10_1007_s11427_023_2376_0 crossref_primary_10_3390_microbiolres12020022 crossref_primary_10_1176_appi_ajp_2019_18070864 crossref_primary_10_1016_j_pneurobio_2018_07_004 crossref_primary_10_1159_000501935 crossref_primary_10_1016_j_gpb_2019_03_003 crossref_primary_10_1261_rna_058271_116 crossref_primary_10_1007_s00018_016_2304_0 crossref_primary_10_3389_fpsyt_2018_00726 crossref_primary_10_1093_g3journal_jkab098 crossref_primary_10_1080_01621459_2023_2256503 crossref_primary_10_1038_srep33999 crossref_primary_10_1021_acschemneuro_5c00006 crossref_primary_10_1016_j_cell_2019_11_020 crossref_primary_10_1016_j_coisb_2017_05_004 crossref_primary_10_1186_s12859_022_04814_8 crossref_primary_10_1038_s41593_020_0604_z crossref_primary_10_1084_jem_20202446 crossref_primary_10_1038_s41398_018_0358_5 crossref_primary_10_1038_s41598_019_45676_0 crossref_primary_10_1038_d41586_019_02343_8 crossref_primary_10_3389_fncir_2017_00076 crossref_primary_10_1038_s41593_024_01573_y crossref_primary_10_1186_s13148_020_00916_3 crossref_primary_10_1093_nargab_lqad032 crossref_primary_10_3389_fcell_2023_1209320 crossref_primary_10_1101_gr_268722_120 crossref_primary_10_12688_f1000research_50858_1 crossref_primary_10_3390_ijms20236017 crossref_primary_10_1186_s12864_017_4261_x crossref_primary_10_1016_j_gpb_2018_08_003 crossref_primary_10_1186_s40478_023_01568_z crossref_primary_10_3389_fnmol_2022_905328 crossref_primary_10_1016_j_ajhg_2024_07_001 crossref_primary_10_1111_jnc_16002 crossref_primary_10_3389_fnmol_2018_00410 crossref_primary_10_3389_fimmu_2022_960906 crossref_primary_10_1038_s41598_020_71805_1 crossref_primary_10_1093_nar_gky182 crossref_primary_10_1111_adb_12591 crossref_primary_10_1016_j_ebiom_2024_105286 crossref_primary_10_1016_j_jad_2025_01_093 crossref_primary_10_3389_fcell_2022_884748 crossref_primary_10_1038_nn_4181 crossref_primary_10_1261_rna_064931_117 crossref_primary_10_1016_j_ijdevneu_2016_01_002 crossref_primary_10_1038_s41596_021_00514_4 crossref_primary_10_1038_s41598_017_00250_4 crossref_primary_10_1186_s12859_020_03679_z crossref_primary_10_1126_science_aam8999 crossref_primary_10_1186_s12987_021_00299_4 crossref_primary_10_1371_journal_pone_0292961 crossref_primary_10_1016_j_coph_2015_10_007 crossref_primary_10_1038_s41380_022_01657_w crossref_primary_10_1007_s11227_022_04920_7 crossref_primary_10_1093_bioinformatics_btaa278 crossref_primary_10_1038_s41467_023_44300_0 crossref_primary_10_1016_j_cell_2017_09_004 crossref_primary_10_7554_eLife_68224 crossref_primary_10_1007_s12539_020_00386_4 crossref_primary_10_1038_s41467_021_21735_x crossref_primary_10_1002_rmv_2227 crossref_primary_10_1016_j_neuron_2018_10_015 crossref_primary_10_1093_molbev_msx065 crossref_primary_10_1523_JNEUROSCI_2479_17_2018 crossref_primary_10_1186_s13148_020_00884_8 crossref_primary_10_1038_s41467_019_10248_3 crossref_primary_10_1016_j_engappai_2023_107707 crossref_primary_10_1146_annurev_genom_083115_022413 crossref_primary_10_1186_s13073_016_0355_3 crossref_primary_10_1093_bioinformatics_btaa283 crossref_primary_10_1016_j_nbd_2020_104877 crossref_primary_10_1038_nn_4366 crossref_primary_10_1038_s42003_024_05923_1 crossref_primary_10_1002_adbi_201900226 crossref_primary_10_1093_bioinformatics_btz321 crossref_primary_10_1186_s12864_018_4649_2 crossref_primary_10_1186_s12918_019_0699_6 crossref_primary_10_1016_j_cell_2021_07_009 crossref_primary_10_1016_j_neuron_2020_12_010 crossref_primary_10_5633_amm_2017_0307 crossref_primary_10_2217_epi_2019_0319 crossref_primary_10_1158_0008_5472_CAN_17_0736 crossref_primary_10_1038_nn_4156 crossref_primary_10_1242_dmm_049843 crossref_primary_10_1109_TCBB_2020_3029187 crossref_primary_10_3171_2016_2_FOCUS161 crossref_primary_10_1186_s12859_021_03972_5 crossref_primary_10_1093_brain_awz233 crossref_primary_10_1093_nar_gkaa394 crossref_primary_10_1109_JBHI_2021_3110766 crossref_primary_10_1007_s00193_024_01169_2 crossref_primary_10_1016_j_molcel_2018_09_016 crossref_primary_10_1039_D0MO00034E crossref_primary_10_1016_j_neuron_2019_05_013 crossref_primary_10_1186_s13024_020_00392_6 crossref_primary_10_1186_s13073_017_0458_5 crossref_primary_10_1109_TCBB_2020_2997326 crossref_primary_10_1109_TCBB_2022_3230098 crossref_primary_10_1007_s12031_016_0825_5 crossref_primary_10_1038_nrn_2017_85 crossref_primary_10_1016_j_ymeth_2018_07_009 crossref_primary_10_1002_advs_202205442 crossref_primary_10_1038_s41598_019_56911_z crossref_primary_10_1007_s00018_016_2429_1 crossref_primary_10_1093_bioinformatics_btab286 crossref_primary_10_1186_s13059_016_0964_6 crossref_primary_10_17816_CP219 crossref_primary_10_1038_nn_4337 crossref_primary_10_1016_j_gpb_2018_07_007 crossref_primary_10_1038_s41380_020_0775_8 crossref_primary_10_1038_s41422_018_0053_3 crossref_primary_10_3389_fmolb_2024_1414119 crossref_primary_10_1002_cnr2_1185 crossref_primary_10_1016_j_devcel_2016_10_014 crossref_primary_10_1186_s12864_018_5301_x crossref_primary_10_3390_ph14080765 crossref_primary_10_1093_noajnl_vdac177 crossref_primary_10_1093_bioinformatics_btac393 crossref_primary_10_1038_nbt_4038 crossref_primary_10_3390_biomedicines9040368 crossref_primary_10_3390_cells13110903 crossref_primary_10_3389_fgene_2021_665843 crossref_primary_10_3389_fonc_2021_797057 crossref_primary_10_3389_fnins_2016_00481 crossref_primary_10_1186_s13073_023_01267_3 crossref_primary_10_1016_j_ymeth_2023_11_019 crossref_primary_10_1096_fj_202401117R crossref_primary_10_1126_science_abq7871 crossref_primary_10_1038_tp_2017_163 crossref_primary_10_1038_s41598_025_90872_w crossref_primary_10_1016_j_compbiolchem_2023_107862 crossref_primary_10_1371_journal_pone_0313855 crossref_primary_10_1126_science_aba7721 crossref_primary_10_1152_physrev_00042_2016 crossref_primary_10_1016_j_celrep_2023_112486 crossref_primary_10_1073_pnas_1520760112 crossref_primary_10_1186_s40478_020_0880_6 crossref_primary_10_3389_fnins_2016_00016 crossref_primary_10_1186_s13287_023_03261_3 crossref_primary_10_1016_j_devcel_2023_01_003 crossref_primary_10_1186_s13059_021_02260_y crossref_primary_10_1038_s41581_019_0227_3 crossref_primary_10_3390_molecules26175113 crossref_primary_10_1016_j_neuron_2021_09_001 crossref_primary_10_1002_wsbm_1526 crossref_primary_10_1038_s41467_020_17051_5 crossref_primary_10_1074_jbc_RA119_008853 crossref_primary_10_1016_j_cell_2017_10_019 crossref_primary_10_1007_s40473_019_00192_3 crossref_primary_10_7717_peerj_17184 crossref_primary_10_3389_fgene_2021_687687 crossref_primary_10_1080_15592294_2021_2020436 crossref_primary_10_1038_s41467_021_24306_2 crossref_primary_10_1016_j_cels_2019_05_007 crossref_primary_10_3934_fods_2022013 crossref_primary_10_1002_glia_24286 crossref_primary_10_1093_bioinformatics_btz295 crossref_primary_10_1007_s11682_019_00193_6 crossref_primary_10_1016_j_biopsych_2018_09_014 crossref_primary_10_1038_s41467_022_28803_w crossref_primary_10_1109_JBHI_2023_3299748 crossref_primary_10_3389_fgene_2020_00424 crossref_primary_10_1038_s41467_024_52366_7 crossref_primary_10_1093_brain_awad125 crossref_primary_10_3389_fcell_2021_726852 crossref_primary_10_3389_fnana_2016_00086 crossref_primary_10_1007_s12035_024_04124_5 crossref_primary_10_1016_j_immuni_2016_02_013 crossref_primary_10_1038_s41380_020_00974_2 crossref_primary_10_1007_s00204_019_02590_8 crossref_primary_10_1016_j_ccell_2022_05_009 crossref_primary_10_1016_j_neuint_2024_105788 crossref_primary_10_3390_ijms22010261 crossref_primary_10_1002_gepi_22209 crossref_primary_10_1016_j_cell_2022_06_031 crossref_primary_10_1038_s41588_021_00973_1 crossref_primary_10_1002_glia_24274 crossref_primary_10_3389_fgene_2020_00407 crossref_primary_10_1186_s40246_022_00396_x crossref_primary_10_1007_s12035_020_01879_5 crossref_primary_10_1007_s13238_022_00912_8 crossref_primary_10_1016_j_pneurobio_2021_102212 crossref_primary_10_1186_s12859_024_05797_4 crossref_primary_10_1002_cpmb_57 crossref_primary_10_1016_j_neuron_2015_12_030 crossref_primary_10_1016_j_cell_2016_07_054 crossref_primary_10_3389_fpsyt_2016_00011 crossref_primary_10_1021_acs_jcim_3c00674 crossref_primary_10_2144_fsoa_2019_0035 crossref_primary_10_21876_rcshci_v13i3_1422 crossref_primary_10_1186_s12859_024_05895_3 crossref_primary_10_1038_nn_4548 crossref_primary_10_1038_s41598_017_04356_7 crossref_primary_10_1146_annurev_cellbio_100616_060818 crossref_primary_10_1007_s00018_018_2991_9 crossref_primary_10_1016_j_neuroimage_2021_118570 crossref_primary_10_3389_fnagi_2019_00297 crossref_primary_10_1016_j_compbiomed_2022_106050 crossref_primary_10_1038_s42003_024_06956_2 crossref_primary_10_1016_j_celrep_2019_09_017 crossref_primary_10_1038_nmeth_4291 crossref_primary_10_1073_pnas_2024383118 crossref_primary_10_1371_journal_ppat_1006813 crossref_primary_10_1186_s12859_020_03797_8 crossref_primary_10_1523_JNEUROSCI_0556_21_2021 crossref_primary_10_7554_eLife_93325 crossref_primary_10_1038_nbt_4259 crossref_primary_10_3390_cells8101161 crossref_primary_10_1016_j_cell_2018_05_035 crossref_primary_10_1016_j_bpsgos_2022_03_013 crossref_primary_10_1016_j_neuron_2017_10_007 crossref_primary_10_1093_bib_bbae483 crossref_primary_10_1093_nar_gkaa1157 crossref_primary_10_1016_j_celrep_2019_04_003 crossref_primary_10_1007_s00429_016_1338_2 crossref_primary_10_1038_s41418_018_0060_4 crossref_primary_10_1038_s41467_020_15298_6 crossref_primary_10_1038_s41467_019_11181_1 crossref_primary_10_3390_ijms25052882 crossref_primary_10_1161_ATVBAHA_124_321141 crossref_primary_10_1038_550451a crossref_primary_10_1038_s41467_018_03933_2 crossref_primary_10_1089_cmb_2021_0403 crossref_primary_10_1038_s41593_021_00913_6 crossref_primary_10_1016_j_ebiom_2022_104052 crossref_primary_10_1038_s41598_020_67016_3 crossref_primary_10_1177_1073858415610541 crossref_primary_10_1186_s12859_019_3179_5 crossref_primary_10_3389_fgene_2022_1063130 crossref_primary_10_1016_j_schres_2019_02_005 crossref_primary_10_1007_s11011_024_01523_4 crossref_primary_10_2139_ssrn_4054839 crossref_primary_10_1126_sciadv_1600947 crossref_primary_10_1093_nar_gkx681 crossref_primary_10_1016_j_stemcr_2018_01_021 crossref_primary_10_3390_ijms21218013 crossref_primary_10_1016_j_conb_2018_04_021 crossref_primary_10_1002_sim_9430 crossref_primary_10_1002_stem_2295 crossref_primary_10_3389_fnmol_2015_00056 crossref_primary_10_1038_s41593_019_0578_x crossref_primary_10_1172_jci_insight_123151 crossref_primary_10_1038_s41593_019_0532_y crossref_primary_10_1016_j_neubiorev_2023_105042 crossref_primary_10_1126_science_aaf1204 crossref_primary_10_1097_JBR_0000000000000053 crossref_primary_10_3390_brainsci13071070 crossref_primary_10_15302_J_QB_021_0261 crossref_primary_10_1016_j_psychres_2020_113513 crossref_primary_10_1261_rna_078804_121 crossref_primary_10_1016_j_stem_2023_01_010 crossref_primary_10_1101_gr_254557_119 crossref_primary_10_1038_s41598_021_99352_3 crossref_primary_10_1038_s41419_024_06737_z crossref_primary_10_3389_fcell_2020_614624 crossref_primary_10_1016_j_ynstr_2021_100393 crossref_primary_10_1038_s42003_023_04791_5 crossref_primary_10_2174_1574893614666181120095038 crossref_primary_10_1038_s42003_023_05690_5 crossref_primary_10_1371_journal_pone_0274667 crossref_primary_10_1039_D0LC00169D crossref_primary_10_1002_cpmb_23 crossref_primary_10_1039_D0AY00633E crossref_primary_10_1088_2632_2153_acd7c3 crossref_primary_10_1002_alz_14062 crossref_primary_10_1038_s41380_022_01460_7 crossref_primary_10_1038_s41380_021_01347_z crossref_primary_10_7554_eLife_27041 crossref_primary_10_1111_nan_12334 crossref_primary_10_7554_eLife_86933_3 crossref_primary_10_1111_pcn_12550 crossref_primary_10_1093_bib_bbae203 crossref_primary_10_1002_jnr_25221 crossref_primary_10_1038_s41537_019_0078_8 crossref_primary_10_1186_s40169_017_0150_9 crossref_primary_10_1016_j_schres_2019_03_007 crossref_primary_10_1038_s41598_018_35365_9 crossref_primary_10_1038_s41598_020_74917_w crossref_primary_10_1038_s41467_021_24243_0 crossref_primary_10_1038_s41467_021_21312_2 crossref_primary_10_1038_s41467_024_49524_2 crossref_primary_10_1101_gr_273961_120 crossref_primary_10_1016_j_cels_2017_02_009 crossref_primary_10_3389_fnins_2021_776809 crossref_primary_10_1016_j_stem_2025_02_007 crossref_primary_10_1126_sciadv_adg3754 crossref_primary_10_1016_j_pnpbp_2018_08_017 crossref_primary_10_3233_ADR_200191 crossref_primary_10_1242_dev_201198 crossref_primary_10_1038_s41596_023_00820_z crossref_primary_10_1038_s42003_024_06355_7 crossref_primary_10_1016_j_conb_2022_102539 crossref_primary_10_1016_j_cub_2020_01_049 crossref_primary_10_1016_j_pneurobio_2018_04_001 crossref_primary_10_3390_cancers15051557 crossref_primary_10_1016_j_neuron_2022_06_021 crossref_primary_10_1016_S1474_4422_20_30308_2 crossref_primary_10_1126_science_aat8464 crossref_primary_10_1186_s13024_022_00517_z crossref_primary_10_1186_s13287_024_04077_5 crossref_primary_10_1016_j_celrep_2019_09_088 crossref_primary_10_1038_s41586_018_0590_4 crossref_primary_10_1073_pnas_1610547113 crossref_primary_10_1097_j_pain_0000000000001217 crossref_primary_10_1007_s10571_024_01453_w crossref_primary_10_1111_cns_70129 crossref_primary_10_1016_j_ajhg_2018_04_011 crossref_primary_10_1016_j_neuropharm_2017_10_035 crossref_primary_10_1089_cmb_2022_0118 crossref_primary_10_1038_s41598_018_34688_x crossref_primary_10_1038_nature22047 crossref_primary_10_1002_wdev_396 crossref_primary_10_1016_j_cels_2019_06_004 crossref_primary_10_1016_j_imlet_2022_04_001 crossref_primary_10_1016_j_trsl_2017_06_013 crossref_primary_10_1261_rna_074427_119 crossref_primary_10_3389_fpsyt_2021_553305 crossref_primary_10_1177_1744806916646111 crossref_primary_10_1126_sciadv_abn9494 crossref_primary_10_1111_psyp_14671 crossref_primary_10_1186_s13059_020_02027_x crossref_primary_10_1016_j_expneurol_2023_114463 crossref_primary_10_1038_s41467_022_30623_x crossref_primary_10_7554_eLife_64875 crossref_primary_10_1002_hbm_26328 crossref_primary_10_1007_s12035_017_0844_4 crossref_primary_10_1021_acs_analchem_8b01541 crossref_primary_10_2174_1574893618666221103114320 crossref_primary_10_1016_j_xhgg_2024_100311 crossref_primary_10_3389_fgene_2019_01253 crossref_primary_10_1016_j_ajhg_2017_09_009 crossref_primary_10_1101_gr_231357_117 crossref_primary_10_1146_annurev_neuro_080317_061822 crossref_primary_10_1007_s12539_019_00357_4 crossref_primary_10_3390_cells6030024 crossref_primary_10_1007_s00401_016_1641_2 crossref_primary_10_1016_j_ynstr_2021_100408 crossref_primary_10_1038_s41467_024_46068_3 crossref_primary_10_1109_TCBB_2023_3298334 crossref_primary_10_1007_s10489_024_05442_w crossref_primary_10_1016_j_celrep_2022_111585 crossref_primary_10_1007_s13139_018_0550_9 crossref_primary_10_1186_s40478_020_01020_6 crossref_primary_10_1242_dev_200180 crossref_primary_10_1186_s40478_019_0805_4 crossref_primary_10_1016_j_cam_2024_115842 crossref_primary_10_1038_s42003_022_03473_y crossref_primary_10_1109_TCBB_2023_3319375 crossref_primary_10_1016_j_devcel_2019_03_001 crossref_primary_10_1186_s13229_023_00554_5 crossref_primary_10_1016_j_bcp_2021_114532 crossref_primary_10_1093_bioinformatics_bty718 crossref_primary_10_1038_ncomms11022 crossref_primary_10_1038_s41467_023_40744_6 crossref_primary_10_1159_000493941 crossref_primary_10_1021_acs_chemrev_2c00212 crossref_primary_10_1093_molbev_msae001 crossref_primary_10_1016_j_jneumeth_2019_108399 crossref_primary_10_1073_pnas_1610155113 crossref_primary_10_1038_s41467_022_29884_3 crossref_primary_10_1007_s12017_024_08776_3 crossref_primary_10_3390_ijms161125996 crossref_primary_10_1093_bib_bbab147 crossref_primary_10_1186_s13059_020_01960_1 crossref_primary_10_1126_scitranslmed_aay1163 crossref_primary_10_3389_fnmol_2017_00045 crossref_primary_10_3390_biomedicines12071496 crossref_primary_10_1109_JBHI_2021_3099127 crossref_primary_10_1042_EBC20220079 crossref_primary_10_1002_glia_23767 crossref_primary_10_1016_j_compbiomed_2024_108211 crossref_primary_10_1111_acel_13153 crossref_primary_10_1186_s12964_023_01390_z crossref_primary_10_1111_ene_14872 crossref_primary_10_1038_s41556_024_01583_9 crossref_primary_10_1038_s41593_024_01624_4 crossref_primary_10_1523_ENEURO_0255_20_2020 crossref_primary_10_1007_s13238_016_0247_8 crossref_primary_10_1016_j_neuron_2024_05_002 crossref_primary_10_1016_j_biopsych_2018_05_005 crossref_primary_10_3390_genes12101506 crossref_primary_10_1016_j_nbd_2017_06_008 crossref_primary_10_1038_s42003_024_05877_4 crossref_primary_10_1097_WCO_0000000000000952 crossref_primary_10_1109_TCBB_2024_3404013 crossref_primary_10_1093_nar_gkad955 crossref_primary_10_1016_j_neuroimage_2018_03_027 crossref_primary_10_1126_science_aan6827 crossref_primary_10_1016_j_ajhg_2020_08_022 crossref_primary_10_1038_s41467_022_30531_0 crossref_primary_10_1002_glia_23991 crossref_primary_10_1038_s41467_019_14266_z crossref_primary_10_1016_j_conb_2016_11_001 crossref_primary_10_3389_fnins_2020_00470 crossref_primary_10_1038_s41593_022_01205_3 crossref_primary_10_1016_j_neucom_2022_06_046 crossref_primary_10_1186_s13059_021_02367_2 crossref_primary_10_1007_s12539_023_00587_7 crossref_primary_10_1186_s12974_021_02306_9 crossref_primary_10_1016_j_tig_2018_02_007 crossref_primary_10_1126_sciadv_adl2256 crossref_primary_10_1242_jcs_257212 crossref_primary_10_1093_bioinformatics_btz619 crossref_primary_10_1016_j_jbc_2024_107530 crossref_primary_10_1038_s41598_020_65916_y crossref_primary_10_7554_eLife_49424 crossref_primary_10_1002_cam4_6316 crossref_primary_10_3389_fgene_2017_00073 crossref_primary_10_1016_j_ynstr_2024_100679 crossref_primary_10_1038_s41598_017_05927_4 crossref_primary_10_1038_nature18637 crossref_primary_10_1016_j_neuron_2024_12_015 crossref_primary_10_1093_biostatistics_kxac005 crossref_primary_10_1002_advs_202103396 crossref_primary_10_1063_1_4978426 crossref_primary_10_1016_j_celrep_2018_04_066 crossref_primary_10_3389_fcell_2021_649538 crossref_primary_10_1016_j_jneumeth_2019_108353 crossref_primary_10_1038_s41467_019_10101_7 crossref_primary_10_3390_math11173785 crossref_primary_10_1093_bib_bbab105 crossref_primary_10_1038_s41398_022_02054_1 crossref_primary_10_1038_s41467_022_28655_4 crossref_primary_10_1038_s41593_018_0216_z crossref_primary_10_1093_bib_bby076 crossref_primary_10_1016_j_celrep_2021_110173 crossref_primary_10_1039_C9CS00438F crossref_primary_10_1016_j_compbiomed_2024_108497 crossref_primary_10_1186_s40478_022_01387_8 crossref_primary_10_1007_s11912_018_0673_2 crossref_primary_10_1186_s12864_024_10728_x crossref_primary_10_1038_s41398_018_0228_1 crossref_primary_10_1111_mec_17382 crossref_primary_10_1016_j_stem_2016_10_003 crossref_primary_10_1002_hbm_23579 crossref_primary_10_1038_s42003_021_02952_y crossref_primary_10_1016_j_tins_2018_02_008 crossref_primary_10_1109_ACCESS_2020_3008681 crossref_primary_10_1016_j_neuron_2024_06_002 crossref_primary_10_1093_bioinformatics_bty329 crossref_primary_10_1146_annurev_anchem_061516_045228 crossref_primary_10_1016_j_neulet_2019_134403 crossref_primary_10_1093_bib_bbab531 crossref_primary_10_1016_j_neuron_2018_05_023 crossref_primary_10_1093_bioinformatics_bty563 crossref_primary_10_1038_s41467_019_13144_y crossref_primary_10_1038_s41598_022_26434_1 crossref_primary_10_2174_0113862073285198240322072301 crossref_primary_10_1038_srep41008 crossref_primary_10_1093_nar_gkz172 crossref_primary_10_1016_j_cell_2015_12_056 crossref_primary_10_1038_srep43421 crossref_primary_10_1093_nar_gkab581 crossref_primary_10_1093_bioinformatics_btaa126 crossref_primary_10_1186_s40478_021_01152_3 crossref_primary_10_1186_s12974_022_02443_9 crossref_primary_10_3389_fncir_2019_00047 crossref_primary_10_1093_bioinformatics_bty316 crossref_primary_10_1002_glia_24230 crossref_primary_10_1126_science_aat7615 crossref_primary_10_1016_j_compbiomed_2022_105658 crossref_primary_10_1038_s41593_020_0603_0 crossref_primary_10_1093_bioinformatics_bty793 crossref_primary_10_1186_s12864_017_3893_1 crossref_primary_10_1172_JCI125375 crossref_primary_10_1016_j_immuni_2021_01_013 crossref_primary_10_1186_s12859_020_03547_w crossref_primary_10_3389_fneur_2022_778419 crossref_primary_10_1186_s13059_024_03174_1 crossref_primary_10_1038_s41586_019_1289_x crossref_primary_10_1016_j_jaac_2018_09_425 crossref_primary_10_1038_s41588_019_0497_5 crossref_primary_10_1007_s00401_019_01977_2 crossref_primary_10_1016_j_molmet_2024_102070 crossref_primary_10_3389_fnins_2021_639527 crossref_primary_10_1007_s12035_023_03771_4 crossref_primary_10_1038_nrg_2017_19 crossref_primary_10_1186_s12974_018_1113_9 crossref_primary_10_1016_j_biopsych_2023_06_008 crossref_primary_10_1038_s41593_019_0539_4 crossref_primary_10_1002_advs_202104682 crossref_primary_10_1016_j_celrep_2016_12_066 crossref_primary_10_1038_s41467_020_17876_0 crossref_primary_10_1038_s41576_022_00449_w crossref_primary_10_1007_s12539_023_00601_y crossref_primary_10_1038_s41398_022_01806_3 crossref_primary_10_3390_biom10020318 crossref_primary_10_1038_s41593_022_01123_4 crossref_primary_10_1038_s41593_018_0316_9 crossref_primary_10_1038_s41586_022_04461_2 crossref_primary_10_1021_acschemneuro_2c00691 crossref_primary_10_7554_eLife_48994 crossref_primary_10_1002_cne_24545 crossref_primary_10_1016_j_mam_2017_07_002 crossref_primary_10_1055_s_0041_1729970 crossref_primary_10_1016_j_nbd_2019_104612 crossref_primary_10_1002_brx2_33 crossref_primary_10_1007_s40484_017_0116_3 crossref_primary_10_1093_bib_bbac625 crossref_primary_10_3389_fnins_2018_00742 crossref_primary_10_1038_s41586_020_2316_7 crossref_primary_10_1177_0333102418762476 crossref_primary_10_1016_j_ins_2022_11_049 crossref_primary_10_1016_j_biopsych_2018_07_010 crossref_primary_10_1093_nargab_lqaa064 crossref_primary_10_1093_bfgp_elab024 crossref_primary_10_3389_fnins_2020_607215 crossref_primary_10_3233_JAD_240299 crossref_primary_10_1038_s41559_023_02186_7 crossref_primary_10_1186_s12864_022_09027_0 crossref_primary_10_3389_fimmu_2018_00697 crossref_primary_10_1038_s41467_019_09613_z crossref_primary_10_1016_j_bpsgos_2024_100430 crossref_primary_10_1038_s41582_023_00809_y crossref_primary_10_1038_s41467_024_52440_0 crossref_primary_10_1093_cercor_bhaa360 crossref_primary_10_3389_fncel_2020_00124 crossref_primary_10_1186_s13059_022_02785_w crossref_primary_10_1038_s41598_017_14484_9 crossref_primary_10_1016_j_taap_2018_02_003 crossref_primary_10_3390_neuroglia1010014 crossref_primary_10_1093_bioinformatics_btab257 crossref_primary_10_1212_NXG_0000000000000199 crossref_primary_10_3390_neuroglia1010010 crossref_primary_10_1038_s41593_018_0197_y crossref_primary_10_1016_j_alcohol_2018_05_004 crossref_primary_10_1038_srep45656 crossref_primary_10_1093_gigascience_giad098 crossref_primary_10_1038_s41467_018_05325_y crossref_primary_10_1186_s13059_024_03172_3 crossref_primary_10_1038_s41380_021_01274_z crossref_primary_10_1007_s00401_021_02399_9 crossref_primary_10_1038_nmeth_4463 crossref_primary_10_1016_j_jgg_2022_01_004 crossref_primary_10_1038_mp_2016_220 crossref_primary_10_3390_pathogens9121036 crossref_primary_10_1038_s41598_017_15525_z crossref_primary_10_1038_s44220_023_00111_2 crossref_primary_10_1038_s41374_021_00698_z crossref_primary_10_1038_nprot_2016_015 crossref_primary_10_7554_eLife_78216 crossref_primary_10_1016_j_bbagrm_2020_194491 crossref_primary_10_1002_glia_23572 crossref_primary_10_3390_ijms222413211 crossref_primary_10_1089_cmb_2018_0027 crossref_primary_10_3390_cells13231963 crossref_primary_10_1038_s41467_022_28043_y crossref_primary_10_1016_j_ebiom_2020_103066 crossref_primary_10_1002_evan_21831 crossref_primary_10_1038_nprot_2016_002 crossref_primary_10_1038_s41598_018_27293_5 crossref_primary_10_3389_fnana_2019_00094 crossref_primary_10_1016_j_neuron_2019_11_004 crossref_primary_10_1093_bioinformatics_btab276 crossref_primary_10_1038_s41398_020_01175_9 crossref_primary_10_1002_glia_24652 crossref_primary_10_1016_j_celrep_2020_108634 crossref_primary_10_3389_fnins_2022_871979 crossref_primary_10_1016_j_stemcr_2021_08_006 crossref_primary_10_21769_BioProtoc_3091 crossref_primary_10_3389_fgene_2020_604790 crossref_primary_10_1002_jgm_3313 crossref_primary_10_1016_j_cell_2022_09_039 crossref_primary_10_1038_s41380_022_01558_y crossref_primary_10_1016_j_copbio_2016_03_015 crossref_primary_10_1093_bioinformatics_btz139 crossref_primary_10_1093_cercor_bhad142 crossref_primary_10_26508_lsa_202302103 crossref_primary_10_1162_NETN_a_00003 crossref_primary_10_1186_s13059_016_0941_0 crossref_primary_10_1016_j_fertnstert_2015_10_025 crossref_primary_10_1038_s41597_024_03382_1 crossref_primary_10_1093_bfgp_elad002 crossref_primary_10_1038_s41588_024_01990_6 crossref_primary_10_1016_j_neuroimage_2020_116803 crossref_primary_10_3233_JAD_220640 crossref_primary_10_1016_j_molmed_2017_04_006 crossref_primary_10_1073_pnas_1817715116 crossref_primary_10_1021_acs_analchem_7b01462 crossref_primary_10_1016_j_compbiomed_2023_106634 crossref_primary_10_1038_nature20123 crossref_primary_10_3389_fneur_2023_1254290 crossref_primary_10_1038_s41578_021_00339_3 crossref_primary_10_1038_s41398_017_0058_6 crossref_primary_10_1111_1755_0998_13775 crossref_primary_10_1016_j_neuroimage_2023_119928 crossref_primary_10_1016_j_scib_2021_04_002 crossref_primary_10_1016_j_biopsych_2023_02_992 crossref_primary_10_1093_humrep_dew008 crossref_primary_10_1101_gr_223313_117 crossref_primary_10_1016_j_stem_2018_12_015 crossref_primary_10_1111_acel_13606 crossref_primary_10_1002_alz_14121 crossref_primary_10_1016_j_celrep_2023_113467 crossref_primary_10_3389_fmolb_2020_00209 crossref_primary_10_3390_app132011512 crossref_primary_10_1093_nar_gkad339 crossref_primary_10_1126_sciadv_aba2619 crossref_primary_10_1186_s12885_020_07628_0 crossref_primary_10_1016_j_neuron_2017_09_056 crossref_primary_10_3389_fnagi_2017_00162 crossref_primary_10_1371_journal_pone_0311791 crossref_primary_10_1002_mco2_326 crossref_primary_10_15252_msb_20166969 crossref_primary_10_1038_s41467_024_54448_y crossref_primary_10_1186_s12864_018_4512_5 crossref_primary_10_1186_s40246_021_00368_7 crossref_primary_10_1371_journal_pcbi_1008120 crossref_primary_10_1016_j_biopsych_2018_01_017 crossref_primary_10_1038_s41588_018_0320_8 crossref_primary_10_1089_cmb_2021_0597 crossref_primary_10_1016_j_isci_2021_102713 crossref_primary_10_1101_gr_275569_121 crossref_primary_10_1016_j_celrep_2016_06_059 crossref_primary_10_1038_s41392_024_01812_5 crossref_primary_10_1021_acsnano_6b05452 crossref_primary_10_1016_j_mcpro_2023_100534 crossref_primary_10_1073_pnas_1617317113 crossref_primary_10_1016_j_neures_2022_09_011 crossref_primary_10_1007_s40473_016_0083_4 crossref_primary_10_3390_genes13040586 crossref_primary_10_1016_j_biopsych_2022_01_004 crossref_primary_10_1093_bib_bbw114 crossref_primary_10_1007_s13365_016_0499_3 crossref_primary_10_1089_scd_2023_0233 crossref_primary_10_1016_j_copbio_2016_04_020 crossref_primary_10_1038_s41467_019_09786_7 crossref_primary_10_3389_fonc_2018_00582 crossref_primary_10_1093_brain_awz295 crossref_primary_10_1002_alz_13069 crossref_primary_10_1038_nn_4409 crossref_primary_10_1016_j_cell_2020_07_017 crossref_primary_10_1016_j_neuron_2018_12_006 crossref_primary_10_1007_s12031_016_0745_4 crossref_primary_10_3390_biom12081130 crossref_primary_10_1158_2159_8290_CD_19_0329 crossref_primary_10_1038_s41562_021_01082_z crossref_primary_10_1038_s41598_022_06500_4 crossref_primary_10_1016_j_neuroscience_2019_03_008 crossref_primary_10_1038_s41593_021_00851_3 crossref_primary_10_1016_j_neuron_2024_02_009 crossref_primary_10_1080_01621459_2024_2382435 crossref_primary_10_1152_physrev_00017_2017 crossref_primary_10_1186_s13059_017_1362_4 crossref_primary_10_1001_jamanetworkopen_2019_3447 crossref_primary_10_1016_j_bbi_2022_03_004 crossref_primary_10_1016_j_celrep_2020_108460 crossref_primary_10_1038_s43018_022_00356_3 crossref_primary_10_3390_cells10112890 crossref_primary_10_1038_s41380_020_00940_y crossref_primary_10_1523_ENEURO_0212_17_2017 crossref_primary_10_1126_science_adf6484 crossref_primary_10_1093_psyrad_kkac009 crossref_primary_10_1016_j_compbiomed_2023_107783 crossref_primary_10_1007_s12565_023_00747_1 crossref_primary_10_1186_s12576_020_00753_2 crossref_primary_10_1093_hmg_ddv637 crossref_primary_10_1186_s40478_023_01686_8 crossref_primary_10_1016_j_pneurobio_2021_102109 crossref_primary_10_15252_msb_20188557 crossref_primary_10_3389_fnmol_2016_00139 crossref_primary_10_1093_braincomms_fcaa171 crossref_primary_10_1109_JBHI_2023_3319551 crossref_primary_10_1093_bioinformatics_bty098 crossref_primary_10_1186_s13059_017_1188_0 crossref_primary_10_1016_j_molcel_2020_05_016 crossref_primary_10_1016_j_mcn_2015_11_009 crossref_primary_10_1016_j_neurobiolaging_2019_05_008 crossref_primary_10_3389_fneur_2022_874211 crossref_primary_10_3390_ijms252312871 crossref_primary_10_1038_s41573_023_00847_7 crossref_primary_10_1093_braincomms_fcab269 crossref_primary_10_1093_nar_gkae480 crossref_primary_10_1186_s12859_019_2599_6 crossref_primary_10_1109_TCBB_2024_3362472 crossref_primary_10_3389_fimmu_2017_00198 crossref_primary_10_1038_s41398_021_01263_4 crossref_primary_10_1016_j_ydbio_2020_01_012 crossref_primary_10_1093_hmg_ddaa184 crossref_primary_10_1016_j_inffus_2024_102754 crossref_primary_10_1038_s41591_019_0440_4 crossref_primary_10_7554_eLife_86933 crossref_primary_10_3390_biom11081111 crossref_primary_10_3390_genes13020377 crossref_primary_10_1186_s12974_016_0581_z crossref_primary_10_1038_s41598_021_85801_6 crossref_primary_10_1016_j_neuropharm_2017_02_017 crossref_primary_10_1007_s12035_018_1421_1 crossref_primary_10_1016_j_brainresbull_2016_03_017 crossref_primary_10_1002_ctd2_95 crossref_primary_10_1038_s41598_017_17322_0 crossref_primary_10_1093_bib_bbae112 crossref_primary_10_1016_j_neures_2024_11_005 crossref_primary_10_2139_ssrn_3155560 crossref_primary_10_1016_j_jchemneu_2021_101934 crossref_primary_10_1038_s41386_023_01732_y crossref_primary_10_1038_s41556_021_00740_8 crossref_primary_10_1016_j_celrep_2020_01_038 crossref_primary_10_1016_j_stem_2017_07_007 crossref_primary_10_1002_ajmg_b_32932 crossref_primary_10_1016_j_ajhg_2019_07_016 crossref_primary_10_1111_cns_70066 crossref_primary_10_1016_j_devcel_2017_10_029 crossref_primary_10_1007_s12539_021_00444_5 crossref_primary_10_1109_JBHI_2020_2991172 crossref_primary_10_3390_genes11040377 crossref_primary_10_1093_nar_gkz959 crossref_primary_10_1063_5_0043338 crossref_primary_10_3389_fgene_2020_633455 crossref_primary_10_1111_jcmm_15170 crossref_primary_10_1186_s12859_017_1994_0 crossref_primary_10_1016_j_cell_2019_08_053 crossref_primary_10_7554_eLife_64564 crossref_primary_10_1038_s41598_024_51340_z crossref_primary_10_1073_pnas_2007719117 crossref_primary_10_1093_bib_bbad040 crossref_primary_10_1093_jnen_nlx097 crossref_primary_10_1002_hbm_26259 crossref_primary_10_1109_JBHI_2022_3148286 crossref_primary_10_1186_s13059_023_03123_4 crossref_primary_10_1038_s41467_022_34550_9 crossref_primary_10_1016_j_jalz_2017_08_012 crossref_primary_10_1126_science_aat8127 crossref_primary_10_1093_nar_gkz968 crossref_primary_10_1002_dad2_12001 crossref_primary_10_1038_s41380_024_02452_5 crossref_primary_10_1371_journal_pone_0180697 crossref_primary_10_1093_hmg_ddaa182 crossref_primary_10_1016_j_celrep_2017_10_030 crossref_primary_10_1101_gr_250217_119 crossref_primary_10_1016_j_neuron_2016_10_001 crossref_primary_10_1007_s00401_021_02390_4 crossref_primary_10_1016_j_conb_2015_11_002 crossref_primary_10_1111_ejn_16242 crossref_primary_10_3389_fncel_2021_703431 crossref_primary_10_1101_gad_309823_117 crossref_primary_10_1007_s12041_021_01294_2 crossref_primary_10_2217_epi_2016_0005 crossref_primary_10_1007_s12539_021_00457_0 crossref_primary_10_31887_DCNS_2018_20_4_dgurwitz crossref_primary_10_1523_JNEUROSCI_0830_22_2023 crossref_primary_10_1016_j_csbj_2022_06_056 crossref_primary_10_1007_s10439_020_02507_y crossref_primary_10_3390_ijms24098122 crossref_primary_10_1038_s41586_024_07405_0 crossref_primary_10_1093_bioinformatics_btw732 crossref_primary_10_1126_science_aaf2666 crossref_primary_10_1038_s41598_024_72096_6 crossref_primary_10_1038_s41525_019_0113_8 crossref_primary_10_1038_s41380_021_01259_y crossref_primary_10_1371_journal_pcbi_1004575 crossref_primary_10_3390_ijms21062181 crossref_primary_10_1016_j_ecoenv_2022_114303 crossref_primary_10_1093_bib_bbad216 crossref_primary_10_1186_s13195_023_01338_y crossref_primary_10_1111_jnc_15741 crossref_primary_10_1126_sciadv_adh2588 crossref_primary_10_3389_fphys_2020_611982 crossref_primary_10_1038_s41588_021_00987_9 crossref_primary_10_1038_s41380_024_02565_x crossref_primary_10_1523_JNEUROSCI_1930_17_2018 crossref_primary_10_1016_j_ygeno_2021_01_007 crossref_primary_10_1016_j_yexcr_2021_112966 crossref_primary_10_1016_j_cell_2021_03_050 crossref_primary_10_1038_s41467_024_47884_3 crossref_primary_10_1038_s41593_020_00787_0 crossref_primary_10_1016_j_neuron_2023_07_019 crossref_primary_10_1186_s13059_016_0932_1 crossref_primary_10_1016_j_neuron_2017_07_035 crossref_primary_10_1016_j_tiv_2022_105424 crossref_primary_10_1016_j_compbiolchem_2020_107283 crossref_primary_10_1016_j_heliyon_2019_e02589 crossref_primary_10_1186_s12915_024_01867_4 crossref_primary_10_1038_s41593_022_01197_0 crossref_primary_10_1038_s42003_023_05647_8 crossref_primary_10_1038_nbt_3445 crossref_primary_10_1016_j_compbiomed_2023_107152 crossref_primary_10_7554_eLife_72129 |
Cites_doi | 10.1016/j.cell.2012.02.052 10.1523/JNEUROSCI.4178-07.2008 10.1038/nmeth786 10.3389/fncel.2013.00221 10.1002/cne.903080306 10.1016/j.neuron.2011.06.026 10.1523/JNEUROSCI.4199-05.2006 10.1523/JNEUROSCI.1860-14.2014 10.1016/S0306-4522(01)00446-8 10.1038/nmeth.2563 10.1126/science.aaa1934 10.1038/nprot.2014.191 10.1002/dneu.20853 10.1126/science.1072241 10.1523/JNEUROSCI.18-12-04627.1998 10.1016/j.mcn.2012.11.004 10.1126/science.1239200 10.1016/S0896-6273(00)80562-0 10.3389/fnana.2014.00114 10.1242/dev.110601 10.1038/nbt.2967 10.1016/j.neuron.2009.08.005 10.1111/j.1600-065X.2006.00441.x 10.1523/JNEUROSCI.0543-12.2012 10.1073/pnas.0702023104 10.1016/j.neuron.2009.09.044 10.1038/nature13173 10.1038/nmeth.2772 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jun 9, 2015 |
Copyright_xml | – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jun 9, 2015 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1507125112 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts Neurosciences Abstracts MEDLINE - Academic CrossRef MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Single cell analysis of the human brain |
EISSN | 1091-6490 |
EndPage | 7290 |
ExternalDocumentID | PMC4466750 3725923151 26060301 10_1073_pnas_1507125112 112_23_7285 26463566 US201600148993 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM007365 – fundername: Howard Hughes Medical Institute – fundername: NIMH NIH HHS grantid: F30 MH106261 – fundername: NHLBI NIH HHS grantid: U01-HL099999 – fundername: NHLBI NIH HHS grantid: U01 HL099995 – fundername: NINDS NIH HHS grantid: R01NS081703 – fundername: NINDS NIH HHS grantid: K99 NS089780 – fundername: NINDS NIH HHS grantid: K99NS089780 – fundername: NHLBI NIH HHS grantid: U01 HL099999 – fundername: NIGMS NIH HHS grantid: T32GM007365 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c623t-87e7a1df16dd97ed571390b030629209fe64848001da1785f8ccd16a0949b5dc3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:18:37 EDT 2025 Fri Jul 11 05:28:45 EDT 2025 Fri Jul 11 14:47:10 EDT 2025 Fri Jul 11 05:38:37 EDT 2025 Mon Jun 30 08:09:06 EDT 2025 Thu Apr 03 07:01:16 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Tue Jul 01 01:53:27 EDT 2025 Wed Nov 11 00:29:42 EST 2020 Fri May 30 12:01:39 EDT 2025 Wed Dec 27 19:19:22 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | human brain single cells RNAseq neurons interneurons |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c623t-87e7a1df16dd97ed571390b030629209fe64848001da1785f8ccd16a0949b5dc3 |
Notes | http://dx.doi.org/10.1073/pnas.1507125112 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: S.D., B.A.B., and S.R.Q. designed research; S.D., S.A.S., Y.Z., C.C., L.M.S., and M.G.H.G. performed research; L.M.S. and M.G.H.G. contributed new reagents/analytic tools; S.D., S.A.S., M.E., and S.R.Q. analyzed data; and S.D., S.A.S., B.A.B., and S.R.Q. wrote the paper. Contributed by Stephen R. Quake, April 15, 2015 (sent for review March 22, 2015) |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4466750 |
PMID | 26060301 |
PQID | 1691074485 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1803103638 pnas_primary_112_23_7285 fao_agris_US201600148993 proquest_miscellaneous_1701474975 crossref_primary_10_1073_pnas_1507125112 jstor_primary_26463566 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4466750 proquest_miscellaneous_1687648902 crossref_citationtrail_10_1073_pnas_1507125112 proquest_journals_1691074485 pubmed_primary_26060301 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-09 |
PublicationDateYYYYMMDD | 2015-06-09 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Park HY (e_1_3_4_4_2) 2014; 343 Wittner L (e_1_3_4_18_2) 2001; 108 Ke R (e_1_3_4_1_2) 2013; 10 James AB (e_1_3_4_21_2) 2006; 26 Pollen AA (e_1_3_4_10_2) 2014; 32 Shi J (e_1_3_4_12_2) 1998; 18 Batista-Brito R (e_1_3_4_15_2) 2009; 63 Kodama T (e_1_3_4_14_2) 2012; 32 Cahoy JD (e_1_3_4_13_2) 2008; 28 Lee JH (e_1_3_4_2_2) 2015; 10 Capodieci P (e_1_3_4_5_2) 2005; 2 Zeng H (e_1_3_4_19_2) 2012; 149 Deans MR (e_1_3_4_20_2) 2011; 71 Brunskill EW (e_1_3_4_6_2) 2014; 141 Shatz CJ (e_1_3_4_26_2) 2009; 64 Cebrián C (e_1_3_4_27_2) 2014; 8 Islam S (e_1_3_4_9_2) 2014; 11 Rudy B (e_1_3_4_28_2) 2011; 71 Zeisel A (e_1_3_4_7_2) 2015; 347 Corriveau RA (e_1_3_4_24_2) 1998; 21 Sloviter RS (e_1_3_4_17_2) 1991; 308 Goddard CA (e_1_3_4_23_2) 2007; 104 Levsky JM (e_1_3_4_3_2) 2002; 297 Carson MJ (e_1_3_4_22_2) 2006; 213 Sultan KT (e_1_3_4_16_2) 2013; 7 Zhang Y (e_1_3_4_11_2) 2014; 34 Chacon MA (e_1_3_4_25_2) 2013; 52 Treutlein B (e_1_3_4_8_2) 2014; 509 23147111 - Mol Cell Neurosci. 2013 Jan;52:117-27 24312011 - Front Cell Neurosci. 2013 Nov 21;7:221 16452686 - J Neurosci. 2006 Feb 1;26(5):1624-34 18171944 - J Neurosci. 2008 Jan 2;28(1):264-78 16972896 - Immunol Rev. 2006 Oct;213:48-65 22674258 - J Neurosci. 2012 Jun 6;32(23):7819-31 1865007 - J Comp Neurol. 1991 Jun 15;308(3):381-96 25186741 - J Neurosci. 2014 Sep 3;34(36):11929-47 22500809 - Cell. 2012 Apr 13;149(2):483-96 24363023 - Nat Methods. 2014 Feb;11(2):163-6 24739965 - Nature. 2014 May 15;509(7500):371-5 9614237 - J Neurosci. 1998 Jun 15;18(12):4627-36 16118636 - Nat Methods. 2005 Sep;2(9):663-5 17420446 - Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6828-33 11738496 - Neuroscience. 2001;108(4):587-600 19709629 - Neuron. 2009 Aug 27;63(4):466-81 9768838 - Neuron. 1998 Sep;21(3):505-20 25086649 - Nat Biotechnol. 2014 Oct;32(10):1053-8 12161654 - Science. 2002 Aug 2;297(5582):836-40 24458643 - Science. 2014 Jan 24;343(6169):422-4 21903076 - Neuron. 2011 Sep 8;71(5):820-32 25352786 - Front Neuroanat. 2014 Oct 13;8:114 25700174 - Science. 2015 Mar 6;347(6226):1138-42 23852452 - Nat Methods. 2013 Sep;10(9):857-60 21154909 - Dev Neurobiol. 2011 Jan 1;71(1):45-61 25053437 - Development. 2014 Aug;141(15):3093-101 19840547 - Neuron. 2009 Oct 15;64(1):40-5 25675209 - Nat Protoc. 2015 Mar;10(3):442-58 |
References_xml | – volume: 149 start-page: 483 year: 2012 ident: e_1_3_4_19_2 article-title: Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures publication-title: Cell doi: 10.1016/j.cell.2012.02.052 – volume: 28 start-page: 264 year: 2008 ident: e_1_3_4_13_2 article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4178-07.2008 – volume: 2 start-page: 663 year: 2005 ident: e_1_3_4_5_2 article-title: Gene expression profiling in single cells within tissue publication-title: Nat Methods doi: 10.1038/nmeth786 – volume: 7 start-page: 221 year: 2013 ident: e_1_3_4_16_2 article-title: Production and organization of neocortical interneurons publication-title: Front Cell Neurosci doi: 10.3389/fncel.2013.00221 – volume: 308 start-page: 381 year: 1991 ident: e_1_3_4_17_2 article-title: Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus publication-title: J Comp Neurol doi: 10.1002/cne.903080306 – volume: 71 start-page: 820 year: 2011 ident: e_1_3_4_20_2 article-title: Control of neuronal morphology by the atypical cadherin Fat3 publication-title: Neuron doi: 10.1016/j.neuron.2011.06.026 – volume: 26 start-page: 1624 year: 2006 ident: e_1_3_4_21_2 article-title: Regulation of the neuronal proteasome by Zif268 (Egr1) publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4199-05.2006 – volume: 34 start-page: 11929 year: 2014 ident: e_1_3_4_11_2 article-title: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1860-14.2014 – volume: 108 start-page: 587 year: 2001 ident: e_1_3_4_18_2 article-title: Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus publication-title: Neuroscience doi: 10.1016/S0306-4522(01)00446-8 – volume: 10 start-page: 857 year: 2013 ident: e_1_3_4_1_2 article-title: In situ sequencing for RNA analysis in preserved tissue and cells publication-title: Nat Methods doi: 10.1038/nmeth.2563 – volume: 347 start-page: 1138 year: 2015 ident: e_1_3_4_7_2 article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq publication-title: Science doi: 10.1126/science.aaa1934 – volume: 10 start-page: 442 year: 2015 ident: e_1_3_4_2_2 article-title: Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues publication-title: Nat Protoc doi: 10.1038/nprot.2014.191 – volume: 71 start-page: 45 year: 2011 ident: e_1_3_4_28_2 article-title: Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons publication-title: Dev Neurobiol doi: 10.1002/dneu.20853 – volume: 297 start-page: 836 year: 2002 ident: e_1_3_4_3_2 article-title: Single-cell gene expression profiling publication-title: Science doi: 10.1126/science.1072241 – volume: 18 start-page: 4627 year: 1998 ident: e_1_3_4_12_2 article-title: Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-12-04627.1998 – volume: 52 start-page: 117 year: 2013 ident: e_1_3_4_25_2 article-title: MHC class I protein is expressed by neurons and neural progenitors in mid-gestation mouse brain publication-title: Mol Cell Neurosci doi: 10.1016/j.mcn.2012.11.004 – volume: 343 start-page: 422 year: 2014 ident: e_1_3_4_4_2 article-title: Visualization of dynamics of single endogenous mRNA labeled in live mouse publication-title: Science doi: 10.1126/science.1239200 – volume: 21 start-page: 505 year: 1998 ident: e_1_3_4_24_2 article-title: Regulation of class I MHC gene expression in the developing and mature CNS by neural activity publication-title: Neuron doi: 10.1016/S0896-6273(00)80562-0 – volume: 8 start-page: 114 year: 2014 ident: e_1_3_4_27_2 article-title: Neuronal MHC-I expression and its implications in synaptic function, axonal regeneration and Parkinson’s and other brain diseases publication-title: Front Neuroanat doi: 10.3389/fnana.2014.00114 – volume: 141 start-page: 3093 year: 2014 ident: e_1_3_4_6_2 article-title: Single cell dissection of early kidney development: Multilineage priming publication-title: Development doi: 10.1242/dev.110601 – volume: 32 start-page: 1053 year: 2014 ident: e_1_3_4_10_2 article-title: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex publication-title: Nat Biotechnol doi: 10.1038/nbt.2967 – volume: 63 start-page: 466 year: 2009 ident: e_1_3_4_15_2 article-title: The cell-intrinsic requirement of Sox6 for cortical interneuron development publication-title: Neuron doi: 10.1016/j.neuron.2009.08.005 – volume: 213 start-page: 48 year: 2006 ident: e_1_3_4_22_2 article-title: CNS immune privilege: Hiding in plain sight publication-title: Immunol Rev doi: 10.1111/j.1600-065X.2006.00441.x – volume: 32 start-page: 7819 year: 2012 ident: e_1_3_4_14_2 article-title: Neuronal classification and marker gene identification via single-cell expression profiling of brainstem vestibular neurons subserving cerebellar learning publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0543-12.2012 – volume: 104 start-page: 6828 year: 2007 ident: e_1_3_4_23_2 article-title: Regulation of CNS synapses by neuronal MHC class I publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0702023104 – volume: 64 start-page: 40 year: 2009 ident: e_1_3_4_26_2 article-title: MHC class I: An unexpected role in neuronal plasticity publication-title: Neuron doi: 10.1016/j.neuron.2009.09.044 – volume: 509 start-page: 371 year: 2014 ident: e_1_3_4_8_2 article-title: Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq publication-title: Nature doi: 10.1038/nature13173 – volume: 11 start-page: 163 year: 2014 ident: e_1_3_4_9_2 article-title: Quantitative single-cell RNA-seq with unique molecular identifiers publication-title: Nat Methods doi: 10.1038/nmeth.2772 – reference: 25675209 - Nat Protoc. 2015 Mar;10(3):442-58 – reference: 11738496 - Neuroscience. 2001;108(4):587-600 – reference: 21903076 - Neuron. 2011 Sep 8;71(5):820-32 – reference: 9614237 - J Neurosci. 1998 Jun 15;18(12):4627-36 – reference: 22674258 - J Neurosci. 2012 Jun 6;32(23):7819-31 – reference: 16972896 - Immunol Rev. 2006 Oct;213:48-65 – reference: 25086649 - Nat Biotechnol. 2014 Oct;32(10):1053-8 – reference: 25053437 - Development. 2014 Aug;141(15):3093-101 – reference: 24363023 - Nat Methods. 2014 Feb;11(2):163-6 – reference: 22500809 - Cell. 2012 Apr 13;149(2):483-96 – reference: 25186741 - J Neurosci. 2014 Sep 3;34(36):11929-47 – reference: 18171944 - J Neurosci. 2008 Jan 2;28(1):264-78 – reference: 23147111 - Mol Cell Neurosci. 2013 Jan;52:117-27 – reference: 1865007 - J Comp Neurol. 1991 Jun 15;308(3):381-96 – reference: 24312011 - Front Cell Neurosci. 2013 Nov 21;7:221 – reference: 16452686 - J Neurosci. 2006 Feb 1;26(5):1624-34 – reference: 9768838 - Neuron. 1998 Sep;21(3):505-20 – reference: 23852452 - Nat Methods. 2013 Sep;10(9):857-60 – reference: 24739965 - Nature. 2014 May 15;509(7500):371-5 – reference: 25700174 - Science. 2015 Mar 6;347(6226):1138-42 – reference: 17420446 - Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6828-33 – reference: 24458643 - Science. 2014 Jan 24;343(6169):422-4 – reference: 12161654 - Science. 2002 Aug 2;297(5582):836-40 – reference: 19840547 - Neuron. 2009 Oct 15;64(1):40-5 – reference: 19709629 - Neuron. 2009 Aug 27;63(4):466-81 – reference: 25352786 - Front Neuroanat. 2014 Oct 13;8:114 – reference: 21154909 - Dev Neurobiol. 2011 Jan 1;71(1):45-61 – reference: 16118636 - Nat Methods. 2005 Sep;2(9):663-5 |
SSID | ssj0009580 |
Score | 2.6574047 |
Snippet | Significance The brain comprises an immense number of cells and cellular connections. We describe the first, to our knowledge, single cell whole transcriptome... The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at... The brain comprises an immense number of cells and cellular connections. We describe the first, to our knowledge, single cell whole transcriptome analysis of... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7285 |
SubjectTerms | Adult adults Biological Sciences Brain Brain - cytology Brain - embryology Brain - metabolism Cells HLA Antigens - immunology Human subjects Humans major histocompatibility complex Neurons Neurons - cytology Neurons - immunology Ribonucleic acid RNA Sequence Analysis, RNA Single-Cell Analysis surveys Transcriptome transcriptomics |
Title | survey of human brain transcriptome diversity at the single cell level |
URI | https://www.jstor.org/stable/26463566 http://www.pnas.org/content/112/23/7285.abstract https://www.ncbi.nlm.nih.gov/pubmed/26060301 https://www.proquest.com/docview/1691074485 https://www.proquest.com/docview/1687648902 https://www.proquest.com/docview/1701474975 https://www.proquest.com/docview/1803103638 https://pubmed.ncbi.nlm.nih.gov/PMC4466750 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBgLDGQkDkNRSmM7cXKsoNOERpm0ViqnyEncgVTSaW2R4P_h_-Q9O3HSMSrgElWx4yR-v76vvA9CXkklhI7VINC8SAKhCxbkaciDEG0VwIuKSvRDfhjHp1PxfhbNer2fnailzTrvFz9uzSv5H6rCOaArZsn-A2XdonACfgN94QgUhuNf0XjorzbX37T5SG6b7eXY8QH7PlSWHSy_ar90oRc2cdFH98BC--iz9xcYNNTVUM-dRFs18QPjxmE4bNNPap6w8gP_fNw2M36HHvLK1i24uPoOIrh1wi5rX6vpo9b6UJ3L-pPD2KiqG76bGgddx0QYmQCqlv3terYuR2YgJYXNo-5ry4RBhwliYduIOi4dsg4cGe8wXcls15_fpAGwL2xhXKlV3-i9aE6xVvA1H_vHH7OT6dlZNhnNJtujVs5LMBFBDcZE_bsMrBHeOIVcbefEZjrVr9JUkJL8zY17byk_d-Zq2UTBYmldmHqbmXMzWrej_kwekPu13UKHFoT7pKerh2S_2Wl6XJcvf_2InA6pRSVdzqlBJTWopFuopA6VVK0poIxaVFJEJTWofEymJ6PJ29Og7tcRFKBEr0GwaqnCch7GZZlKXUYSzItBjlYp9kRL5zoWiQALJSxVKJNonhRFGQKjSEWaR2XBD8hetaz0IaGqjMISZZHKE5GzPEkVl1yDdsqStCi5R_rNRmZFXcwee6osMhNUIXmG25m1O--RY3fBla3j8ueph0CZTF2ClM2mFwxrMKLfHTR5jxwYcrklwJzAAo8xXGNWcUuHLGM8Q2R65KihaVbzDrhbnGIktMDhl24YODtusqr0coNzQFMRGAewY46EJ5MilbvWSbD8LwdB65EnFkqd5x_E6BTxiNwCmZuA1ee3R6ovn00VegwEAXPj6e7Xe0butbzhiOytrzf6Oajx6_yF-RP9Ah6y7rs |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+human+brain+transcriptome+diversity+at+the+single+cell+level&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Darmanis%2C+Spyros&rft.au=Sloan%2C+Steven+A&rft.au=Zhang%2C+Ye&rft.au=Enge%2C+Martin&rft.date=2015-06-09&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=23&rft.spage=7285&rft_id=info:doi/10.1073%2Fpnas.1507125112&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3725923151 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F23.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F23.cover.gif |