Enzymes of the Shikimic Acid Pathway Encoded in the Genome of a Basal Metazoan, Nematostella vectensis, Have Microbial Origins

The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino ac...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 7; pp. 2533 - 2537
Main Authors Starcevic, Antonio, Akthar, Shamima, Dunlap, Walter C., Shick, J. Malcolm, Hranueli, Daslav, Cullum, John, Long, Paul F.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 19.02.2008
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis. Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum-like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a "shared metabolic adaptation" between the partners.
AbstractList The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis. Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum-like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a "shared metabolic adaptation" between the partners.
The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis . Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum -like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a “shared metabolic adaptation” between the partners.
The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis . Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum -like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a “shared metabolic adaptation” between the partners. symbiosis Tenacibaculum Cnidaria
The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis. Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum-like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a "shared metabolic adaptation" between the partners.The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis. Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum-like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a "shared metabolic adaptation" between the partners.
The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis. Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum-like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a "shared metabolic adaptation" between the partners. [PUBLICATION ABSTRACT]
Author Long, Paul F.
Cullum, John
Shick, J. Malcolm
Akthar, Shamima
Hranueli, Daslav
Starcevic, Antonio
Dunlap, Walter C.
Author_xml – sequence: 1
  givenname: Antonio
  surname: Starcevic
  fullname: Starcevic, Antonio
– sequence: 2
  givenname: Shamima
  surname: Akthar
  fullname: Akthar, Shamima
– sequence: 3
  givenname: Walter C.
  surname: Dunlap
  fullname: Dunlap, Walter C.
– sequence: 4
  givenname: J. Malcolm
  surname: Shick
  fullname: Shick, J. Malcolm
– sequence: 5
  givenname: Daslav
  surname: Hranueli
  fullname: Hranueli, Daslav
– sequence: 6
  givenname: John
  surname: Cullum
  fullname: Cullum, John
– sequence: 7
  givenname: Paul F.
  surname: Long
  fullname: Long, Paul F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18268342$$D View this record in MEDLINE/PubMed
BookMark eNqFks1vEzEQxS1URNPCmRPI4gCXpvXX7novSKUKLVJLkYCzNev1Ng67drp2AumBvx0vCWmpQD3Z0vze07yZ2UM7zjuD0HNKDikp-NHcQTgkRfpKSUn2CI0oKek4FyXZQSNCWDGWgoldtBfCjBBSZpI8QbtUslxywUbo58TdrDoTsG9wnBr8eWq_2c5qfKxtjT9BnH6HFZ447WtTY-t-Q6fG-c4MEsDvIECLL0yEGw_uAH80HUQfomlbwEujo3HBhgN8BkuDL6zufWWT4LK3V9aFp-hxA20wzzbvPvr6fvLl5Gx8fnn64eT4fKxzxuM4rwxjmhakFjTXkhXcsBqEIEKXAvJS8FzKCig0uipKwSpiSl7TGnhTEmA530dv177zRdWZWhsXe2jVvLcd9Cvlwaq_K85O1ZVfKpYGRQuaDF5vDHp_vTAhqs4GPYR0xi-CKghnlNOHQVFkmcwleRBkaV2FYFkCX90DZ37RuzSuxFBeshQ_QS_vBtwm-7PpBGRrIG0ghN40StsI0fohr20VJWq4KDVclLq9qKQ7uqfbWv9X8WbTylC4pTNVqBSHq2bRttH8iHea_jeZgBdrYBai77cEy0RGs5T9F11U7s4
CitedBy_id crossref_primary_10_1093_plankt_fbn133
crossref_primary_10_1371_journal_pone_0151092
crossref_primary_10_1073_pnas_1103906108
crossref_primary_10_3390_genes13091613
crossref_primary_10_1016_j_biotechadv_2012_03_001
crossref_primary_10_1039_c0pp90036b
crossref_primary_10_1093_gbe_evv170
crossref_primary_10_1186_1471_2229_14_19
crossref_primary_10_1517_17460441_3_5_565
crossref_primary_10_1016_j_cbpb_2010_03_011
crossref_primary_10_1128_AEM_01635_13
crossref_primary_10_1098_rspb_2013_2450
crossref_primary_10_1146_annurev_marine_021623_093133
crossref_primary_10_1007_s11274_023_03674_5
crossref_primary_10_3390_md6020147
crossref_primary_10_3390_md9030387
crossref_primary_10_1016_j_gene_2012_03_063
crossref_primary_10_1093_molbev_msad263
crossref_primary_10_1016_j_plgene_2019_100172
crossref_primary_10_1146_annurev_genet_110711_155529
crossref_primary_10_1186_1471_2164_11_628
crossref_primary_10_1016_j_envres_2023_116269
crossref_primary_10_1016_j_marenvres_2022_105569
crossref_primary_10_1039_b908825c
crossref_primary_10_1038_s41598_018_35701_z
crossref_primary_10_3389_fmicb_2014_00638
crossref_primary_10_1534_g3_119_400758
crossref_primary_10_1039_C7NP00017K
crossref_primary_10_1186_s12864_018_4857_9
crossref_primary_10_1101_pdb_emo129
crossref_primary_10_1128_AEM_02984_09
crossref_primary_10_3390_md19070379
crossref_primary_10_3390_nu7010001
crossref_primary_10_1039_C7NP00053G
crossref_primary_10_1111_j_1365_2427_2012_02760_x
crossref_primary_10_1111_j_1420_9101_2010_02192_x
crossref_primary_10_1007_s10811_017_1067_9
crossref_primary_10_1039_b902763g
crossref_primary_10_1039_c2np00075j
crossref_primary_10_1016_j_arr_2009_05_004
crossref_primary_10_1093_jxb_erx297
crossref_primary_10_3390_md8041273
crossref_primary_10_1016_j_cropro_2012_09_016
crossref_primary_10_1007_s00128_011_0463_0
crossref_primary_10_7554_eLife_34226
crossref_primary_10_1007_s11120_013_9886_2
crossref_primary_10_1074_jbc_REV119_006130
crossref_primary_10_3389_fcimb_2014_00176
crossref_primary_10_1002_cbic_201000709
crossref_primary_10_1073_pnas_1513318112
crossref_primary_10_1146_annurev_marine_010419_010641
crossref_primary_10_3390_ijms231810284
crossref_primary_10_3390_md16090336
crossref_primary_10_1016_j_algal_2021_102425
crossref_primary_10_1128_AEM_00727_14
crossref_primary_10_1007_s10295_010_0718_5
crossref_primary_10_1016_j_biortech_2022_127579
crossref_primary_10_1111_1462_2920_12926
crossref_primary_10_1016_j_ygeno_2009_10_002
crossref_primary_10_3389_fmicb_2014_00336
crossref_primary_10_3389_fmicb_2015_00818
crossref_primary_10_1002_hlca_201100117
crossref_primary_10_3390_molecules26237302
crossref_primary_10_1186_1471_2164_14_509
crossref_primary_10_1016_j_jphotobiol_2016_04_020
crossref_primary_10_1128_AEM_05870_11
crossref_primary_10_1186_1745_6150_6_41
crossref_primary_10_2174_0929867324666170529124237
crossref_primary_10_1093_nar_gkn685
crossref_primary_10_1111_evo_12935
crossref_primary_10_1093_plankt_fbn041
crossref_primary_10_1073_pnas_0804968105
crossref_primary_10_1111_j_1751_1097_2009_00670_x
crossref_primary_10_3390_md11020559
crossref_primary_10_1038_s41598_021_85259_6
crossref_primary_10_1371_journal_pone_0013975
crossref_primary_10_4161_mge_24773
crossref_primary_10_3390_fermentation9070669
crossref_primary_10_1007_s10565_008_9107_5
crossref_primary_10_1016_j_marenvres_2018_01_002
crossref_primary_10_3390_molecules28145588
crossref_primary_10_1016_j_ympev_2014_02_015
crossref_primary_10_1007_s00726_013_1509_x
crossref_primary_10_1242_jeb_046540
crossref_primary_10_1038_srep18676
crossref_primary_10_3390_md18020072
crossref_primary_10_1128_spectrum_01896_23
crossref_primary_10_1371_journal_pone_0175422
crossref_primary_10_1186_s12859_017_1941_0
crossref_primary_10_1002_pro_640
crossref_primary_10_1111_1462_2920_12854
crossref_primary_10_1242_jeb_093690
crossref_primary_10_1126_science_1193637
Cites_doi 10.1016/j.jembe.2006.06.014
10.1016/S0022-0981(00)00192-1
10.1126/science.1130441
10.1016/j.cub.2004.03.047
10.1146/annurev.arplant.50.1.473
10.1002/bies.20181
10.1007/BF00699229
10.1093/molbev/msl008
10.1093/icb/45.4.595
10.1126/science.1133739
10.1146/annurev.physiol.64.081501.155802
10.1093/bioinformatics/btm009
10.1242/jeb.201.16.2445
10.1128/EC.00106-06
10.1242/jeb.01571
10.1007/BF02602848
10.1016/S0031-9422(00)83866-2
10.2307/1543574
10.1078/1434-4610-00046
10.1042/bj3220213
10.1128/AEM.00731-06
10.1126/science.1139158
10.1093/nar/gkj020
10.2216/i0031-8884-42-4-384.1
10.1093/nar/30.1.276
10.2307/1541840
10.1093/bioinformatics/14.9.755
10.1007/s10152-007-0069-4
10.1016/S0022-2836(05)80360-2
10.1016/j.tig.2005.09.007
10.4319/lo.1999.44.7.1667
10.1073/pnas.0703375104
10.1007/978-3-662-06414-6
10.1016/S0966-842X(00)01703-0
10.1186/1745-6150-1-31
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Feb 19, 2008
2008 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Feb 19, 2008
– notice: 2008 by The National Academy of Sciences of the USA
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7T7
7TN
F1W
H95
L.G
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0707388105
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList


CrossRef
MEDLINE
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 2537
ExternalDocumentID PMC2268171
1433278731
18268342
10_1073_pnas_0707388105
105_7_2533
25451501
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7T7
7TN
F1W
H95
L.G
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c623t-6be22c170d416c8273e2da4404c94a6943688ba1afcb7942b0e93d1da3f90a263
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:32:53 EDT 2025
Fri Jul 11 04:07:15 EDT 2025
Fri Jul 11 07:51:32 EDT 2025
Fri Jul 11 05:28:17 EDT 2025
Mon Jun 30 10:26:23 EDT 2025
Mon Jul 21 05:33:16 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Tue Jul 01 02:38:53 EDT 2025
Thu May 30 08:50:29 EDT 2019
Wed Nov 11 00:29:15 EST 2020
Thu May 29 08:42:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c623t-6be22c170d416c8273e2da4404c94a6943688ba1afcb7942b0e93d1da3f90a263
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: W.C.D., J.M.S., D.H., J.C., and P.F.L. designed research; A.S., S.A., W.C.D., and J.C. performed research; A.S., S.A., W.C.D., J.M.S., D.H., J.C., and P.F.L. analyzed data; and A.S., W.C.D., J.M.S., D.H., J.C., and P.F.L. wrote the paper.
Edited by Lynn Margulis, University of Massachusetts, Amherst, MA, and approved December 19, 2007
OpenAccessLink http://doi.org/10.1073/pnas.0707388105
PMID 18268342
PQID 201392943
PQPubID 42026
PageCount 5
ParticipantIDs crossref_citationtrail_10_1073_pnas_0707388105
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2268171
pnas_primary_105_7_2533_fulltext
proquest_miscellaneous_20007425
proquest_miscellaneous_70321311
proquest_miscellaneous_47558680
proquest_journals_201392943
pnas_primary_105_7_2533
pubmed_primary_18268342
crossref_primary_10_1073_pnas_0707388105
jstor_primary_25451501
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-19
PublicationDateYYYYMMDD 2008-02-19
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-19
  day: 19
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Allemand D (e_1_3_3_3_2) 1998; 76
Muscatine L (e_1_3_3_1_2) 1990
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
Cook CB (e_1_3_3_2_2) 1987; 4
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_21_2
11545441 - Protist. 2001 Jul;152(2):93-101
17038609 - Science. 2006 Oct 13;314(5797):259-60
2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
15914659 - J Exp Biol. 2005 Jun;208(Pt 11):2157-65
17615350 - Science. 2007 Jul 6;317(5834):86-94
10841936 - J Exp Mar Bio Ecol. 2000 Jun 28;249(2):219-233
10707066 - Trends Microbiol. 2000 Mar;8(3):128-33
17059607 - Biol Direct. 2006 Oct 23;1:31
17237039 - Bioinformatics. 2007 Mar 15;23(6):673-9
15666346 - Bioessays. 2005 Feb;27(2):211-21
16936055 - Appl Environ Microbiol. 2006 Nov;72(11):7098-110
11826269 - Annu Rev Physiol. 2002;64:223-62
15084296 - Curr Biol. 2004 Apr 20;14(8):R298-9
12480722 - Biol Bull. 2002 Dec;203(3):315-30
16381919 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D495-9
16226338 - Trends Genet. 2005 Dec;21(12):633-9
16675503 - Mol Biol Evol. 2006 Jul;23(7):1437-43
17038625 - Science. 2006 Oct 13;314(5797):312-3
9078264 - Biochem J. 1997 Feb 15;322 ( Pt 1):213-21
16963634 - Eukaryot Cell. 2006 Sep;5(9):1517-31
11752314 - Nucleic Acids Res. 2002 Jan 1;30(1):276-80
15012217 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:473-503
9679106 - J Exp Biol. 1998 Aug;201 (Pt 16):2445-53
21676806 - Integr Comp Biol. 2005 Aug;45(4):595-604
17664430 - Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13146-51
9918945 - Bioinformatics. 1998;14(9):755-63
References_xml – ident: e_1_3_3_16_2
  doi: 10.1016/j.jembe.2006.06.014
– ident: e_1_3_3_15_2
  doi: 10.1016/S0022-0981(00)00192-1
– ident: e_1_3_3_38_2
  doi: 10.1126/science.1130441
– volume: 4
  start-page: 199
  year: 1987
  ident: e_1_3_3_2_2
  article-title: Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida.
  publication-title: Symbiosis
– ident: e_1_3_3_18_2
  doi: 10.1016/j.cub.2004.03.047
– ident: e_1_3_3_10_2
  doi: 10.1146/annurev.arplant.50.1.473
– ident: e_1_3_3_19_2
  doi: 10.1002/bies.20181
– ident: e_1_3_3_13_2
  doi: 10.1007/BF00699229
– ident: e_1_3_3_25_2
  doi: 10.1093/molbev/msl008
– ident: e_1_3_3_4_2
  doi: 10.1093/icb/45.4.595
– ident: e_1_3_3_37_2
  doi: 10.1126/science.1133739
– start-page: 75
  volume-title: Ecosystems of the World
  year: 1990
  ident: e_1_3_3_1_2
– ident: e_1_3_3_5_2
  doi: 10.1146/annurev.physiol.64.081501.155802
– ident: e_1_3_3_30_2
  doi: 10.1093/bioinformatics/btm009
– ident: e_1_3_3_12_2
  doi: 10.1242/jeb.201.16.2445
– ident: e_1_3_3_22_2
  doi: 10.1128/EC.00106-06
– ident: e_1_3_3_28_2
  doi: 10.1242/jeb.01571
– ident: e_1_3_3_31_2
  doi: 10.1007/BF02602848
– volume: 76
  start-page: 925
  year: 1998
  ident: e_1_3_3_3_2
  article-title: Mechanisms of carbon acquisition for endosymbiont photosynthesis in Anthozoa.
  publication-title: Can J Bot
– ident: e_1_3_3_6_2
  doi: 10.1016/S0031-9422(00)83866-2
– ident: e_1_3_3_9_2
  doi: 10.2307/1543574
– ident: e_1_3_3_14_2
  doi: 10.1078/1434-4610-00046
– ident: e_1_3_3_11_2
  doi: 10.1042/bj3220213
– ident: e_1_3_3_36_2
  doi: 10.1128/AEM.00731-06
– ident: e_1_3_3_20_2
  doi: 10.1126/science.1139158
– ident: e_1_3_3_21_2
  doi: 10.1093/nar/gkj020
– ident: e_1_3_3_8_2
  doi: 10.2216/i0031-8884-42-4-384.1
– ident: e_1_3_3_24_2
  doi: 10.1093/nar/30.1.276
– ident: e_1_3_3_32_2
  doi: 10.2307/1541840
– ident: e_1_3_3_23_2
  doi: 10.1093/bioinformatics/14.9.755
– ident: e_1_3_3_34_2
  doi: 10.1007/s10152-007-0069-4
– ident: e_1_3_3_29_2
  doi: 10.1016/S0022-2836(05)80360-2
– ident: e_1_3_3_26_2
  doi: 10.1016/j.tig.2005.09.007
– ident: e_1_3_3_7_2
  doi: 10.4319/lo.1999.44.7.1667
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.0703375104
– ident: e_1_3_3_35_2
  doi: 10.1007/978-3-662-06414-6
– ident: e_1_3_3_17_2
  doi: 10.1016/S0966-842X(00)01703-0
– ident: e_1_3_3_27_2
  doi: 10.1186/1745-6150-1-31
– reference: 16381919 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D495-9
– reference: 21676806 - Integr Comp Biol. 2005 Aug;45(4):595-604
– reference: 17038609 - Science. 2006 Oct 13;314(5797):259-60
– reference: 15666346 - Bioessays. 2005 Feb;27(2):211-21
– reference: 16675503 - Mol Biol Evol. 2006 Jul;23(7):1437-43
– reference: 17615350 - Science. 2007 Jul 6;317(5834):86-94
– reference: 12480722 - Biol Bull. 2002 Dec;203(3):315-30
– reference: 16963634 - Eukaryot Cell. 2006 Sep;5(9):1517-31
– reference: 17237039 - Bioinformatics. 2007 Mar 15;23(6):673-9
– reference: 11752314 - Nucleic Acids Res. 2002 Jan 1;30(1):276-80
– reference: 9078264 - Biochem J. 1997 Feb 15;322 ( Pt 1):213-21
– reference: 11545441 - Protist. 2001 Jul;152(2):93-101
– reference: 9918945 - Bioinformatics. 1998;14(9):755-63
– reference: 16936055 - Appl Environ Microbiol. 2006 Nov;72(11):7098-110
– reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
– reference: 9679106 - J Exp Biol. 1998 Aug;201 (Pt 16):2445-53
– reference: 11826269 - Annu Rev Physiol. 2002;64:223-62
– reference: 10841936 - J Exp Mar Bio Ecol. 2000 Jun 28;249(2):219-233
– reference: 15012217 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:473-503
– reference: 17664430 - Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13146-51
– reference: 15084296 - Curr Biol. 2004 Apr 20;14(8):R298-9
– reference: 17059607 - Biol Direct. 2006 Oct 23;1:31
– reference: 17038625 - Science. 2006 Oct 13;314(5797):312-3
– reference: 10707066 - Trends Microbiol. 2000 Mar;8(3):128-33
– reference: 15914659 - J Exp Biol. 2005 Jun;208(Pt 11):2157-65
– reference: 16226338 - Trends Genet. 2005 Dec;21(12):633-9
SSID ssj0009580
Score 2.2760015
Snippet The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2533
SubjectTerms Amino acids
Animals
Anthozoa
Aquatic life
Aromatic compounds
Bacteria
biogenesis
bioinformatics
Biological Sciences
Biosynthesis
Blasts
Cnidaria
Datasets
Dinophyceae
Enzymes
Eukaryotes
Flavobacteriaceae
fungi
genes
Genome - genetics
Genomes
Genomics
Marine
Metabolites
Metazoa
Molecular biology
Nematostella vectensis
nucleotide sequences
Phylogenetics
Phylogeny
Protozoa
ribosomal RNA
Scaffolds
Sea Anemones - classification
Sea Anemones - enzymology
Sea Anemones - genetics
shikimate pathway
shikimic acid
Shikimic Acid - metabolism
symbionts
Symbiosis
Tenacibaculum
Title Enzymes of the Shikimic Acid Pathway Encoded in the Genome of a Basal Metazoan, Nematostella vectensis, Have Microbial Origins
URI https://www.jstor.org/stable/25451501
http://www.pnas.org/content/105/7/2533.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18268342
https://www.proquest.com/docview/201392943
https://www.proquest.com/docview/20007425
https://www.proquest.com/docview/47558680
https://www.proquest.com/docview/70321311
https://pubmed.ncbi.nlm.nih.gov/PMC2268171
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAw5bEHDkWpg71-HyuUKqraUIlE5Gat7bVsNXGqxgE1B34TP5GZ9fqR0ojHJYq845Xj-TIPe-YbQt6DUzfSyBQ6C5in2-BRdA55gy6cOBKBm7hGgonixdgdTe2zmTPr9X52qpbWZTSIN_f2lfyPVuEY6BW7ZP9Bs82mcAC-g37hEzQMn3-l42GxuV1UrLEYP66y_CrHWnce5wkypmbf-W0fmSoTkdQFjUjKuhBVWyS4MNk8UvLNsnoQOkYKV-z7AHT0v4ExxPp2qeoMxxQtcsnbhAGsHKi16sa2l40vbK5oXD9qPGkbV5Q1WfX1_uW4HYMMUe9NDF46VpQGYGuWDRqvyqwqBP-S8UXeuhIIv-dcTtj7Kl_7d575ZmpE_Fn_gs8B7Yut5xs-lkQrK1r3G4AftatO68ZmG04HnF7_esAcHErnVAwytTV2KpIN5dnr1d-8Bpg5HHVc8NUA2Y8s36_33-LnHn8OT6fn5-FkOJs8IA8ZJCaylHTUpXn2q6Yndc01mZRnfbyz_VYcVJXCIr8uCN2X69wt2e3EQJMn5LFKXuhJhcR90hPFU7JfK5QeKQ7zD8_IDwVNukwpAIHW0KQITaqgSRU0aV5IoQqaeAqnEpq0huYx7QKTNsA8pghL2sCSKlg-J9PT4eTTSFejPvQY4u9SdyPBWGx6RgIJQuxDTC1YwpG7Mg5s7gY4J8GPuMnTOAIPwiJDBFZiJtxKA4Mz1zoge8WyEC8JTQNLpMwOuOvBZkECDsoznSRwbc6SKAg0MqhvfBgrHnwcxzIPZT2GZ4WohLDVlEaOmhOuKwqY3aIHUpONHIMEBVIuUyMvpGh7vhN6IeJTI3THSpiq8i-NHNaACJX1WYUMczcGN0Yj75pVcA34vo8XYrlGEUwQmLNbwvYcx3d9Y7cEBAQMGbnwB0gAthfqM9e3bKYRbwuajQAS12-vFHkmCewh5fNNz3z1x-s6JI9ak_Ca7JU3a_EGkoAyeiv_d78AE_wKEw
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymes+of+the+shikimic+acid+pathway+encoded+in+the+genome+of+a+basal+metazoan%2C+Nematostella+vectensis%2C+have+microbial+origins&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Starcevic%2C+Antonio&rft.au=Akthar%2C+Shamima&rft.au=Dunlap%2C+Walter+C&rft.au=Shick%2C+J+Malcolm&rft.date=2008-02-19&rft.issn=0027-8424&rft.volume=105&rft.issue=7+p.2533-2537&rft.spage=2533&rft.epage=2537&rft_id=info:doi/10.1073%2Fpnas.0707388105&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F7.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F7.cover.gif