Enzymes of the Shikimic Acid Pathway Encoded in the Genome of a Basal Metazoan, Nematostella vectensis, Have Microbial Origins
The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino ac...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 7; pp. 2533 - 2537 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
19.02.2008
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis. Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum-like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a "shared metabolic adaptation" between the partners. |
---|---|
AbstractList | The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis. Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum-like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a "shared metabolic adaptation" between the partners. The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis . Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum -like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a “shared metabolic adaptation” between the partners. The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis . Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum -like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a “shared metabolic adaptation” between the partners. symbiosis Tenacibaculum Cnidaria The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis. Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum-like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a "shared metabolic adaptation" between the partners.The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis. Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum-like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a "shared metabolic adaptation" between the partners. The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and some protozoans. Animals are considered to lack this pathway, as evinced by their dietary requirement for shikimate-derived aromatic amino acids. We challenge the universality of this traditional view in this report of genes encoding enzymes for the shikimate pathway in an animal, the starlet sea anemone Nematostella vectensis. Molecular evidence establishes horizontal transfer of ancestral genes of the shikimic acid pathway into the N. vectensis genome from both bacterial and eukaryotic (dinoflagellate) donors. Bioinformatic analysis also reveals four genes that are closely related to those of Tenacibaculum sp. MED152, raising speculation for the existence of a previously unsuspected bacterial symbiont. Indeed, the genome of the holobiont (i.e., the entity consisting of the host and its symbionts) comprises a high content of Tenacibaculum-like gene orthologs, including a 16S rRNA sequence that establishes the phylogenetic position of this associate to be within the family Flavobacteriaceae. These results provide a complementary view for the biogenesis of shikimate-related metabolites in marine Cnidaria as a "shared metabolic adaptation" between the partners. [PUBLICATION ABSTRACT] |
Author | Long, Paul F. Cullum, John Shick, J. Malcolm Akthar, Shamima Hranueli, Daslav Starcevic, Antonio Dunlap, Walter C. |
Author_xml | – sequence: 1 givenname: Antonio surname: Starcevic fullname: Starcevic, Antonio – sequence: 2 givenname: Shamima surname: Akthar fullname: Akthar, Shamima – sequence: 3 givenname: Walter C. surname: Dunlap fullname: Dunlap, Walter C. – sequence: 4 givenname: J. Malcolm surname: Shick fullname: Shick, J. Malcolm – sequence: 5 givenname: Daslav surname: Hranueli fullname: Hranueli, Daslav – sequence: 6 givenname: John surname: Cullum fullname: Cullum, John – sequence: 7 givenname: Paul F. surname: Long fullname: Long, Paul F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18268342$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1vEzEQxS1URNPCmRPI4gCXpvXX7novSKUKLVJLkYCzNev1Ng67drp2AumBvx0vCWmpQD3Z0vze07yZ2UM7zjuD0HNKDikp-NHcQTgkRfpKSUn2CI0oKek4FyXZQSNCWDGWgoldtBfCjBBSZpI8QbtUslxywUbo58TdrDoTsG9wnBr8eWq_2c5qfKxtjT9BnH6HFZ447WtTY-t-Q6fG-c4MEsDvIECLL0yEGw_uAH80HUQfomlbwEujo3HBhgN8BkuDL6zufWWT4LK3V9aFp-hxA20wzzbvPvr6fvLl5Gx8fnn64eT4fKxzxuM4rwxjmhakFjTXkhXcsBqEIEKXAvJS8FzKCig0uipKwSpiSl7TGnhTEmA530dv177zRdWZWhsXe2jVvLcd9Cvlwaq_K85O1ZVfKpYGRQuaDF5vDHp_vTAhqs4GPYR0xi-CKghnlNOHQVFkmcwleRBkaV2FYFkCX90DZ37RuzSuxFBeshQ_QS_vBtwm-7PpBGRrIG0ghN40StsI0fohr20VJWq4KDVclLq9qKQ7uqfbWv9X8WbTylC4pTNVqBSHq2bRttH8iHea_jeZgBdrYBai77cEy0RGs5T9F11U7s4 |
CitedBy_id | crossref_primary_10_1093_plankt_fbn133 crossref_primary_10_1371_journal_pone_0151092 crossref_primary_10_1073_pnas_1103906108 crossref_primary_10_3390_genes13091613 crossref_primary_10_1016_j_biotechadv_2012_03_001 crossref_primary_10_1039_c0pp90036b crossref_primary_10_1093_gbe_evv170 crossref_primary_10_1186_1471_2229_14_19 crossref_primary_10_1517_17460441_3_5_565 crossref_primary_10_1016_j_cbpb_2010_03_011 crossref_primary_10_1128_AEM_01635_13 crossref_primary_10_1098_rspb_2013_2450 crossref_primary_10_1146_annurev_marine_021623_093133 crossref_primary_10_1007_s11274_023_03674_5 crossref_primary_10_3390_md6020147 crossref_primary_10_3390_md9030387 crossref_primary_10_1016_j_gene_2012_03_063 crossref_primary_10_1093_molbev_msad263 crossref_primary_10_1016_j_plgene_2019_100172 crossref_primary_10_1146_annurev_genet_110711_155529 crossref_primary_10_1186_1471_2164_11_628 crossref_primary_10_1016_j_envres_2023_116269 crossref_primary_10_1016_j_marenvres_2022_105569 crossref_primary_10_1039_b908825c crossref_primary_10_1038_s41598_018_35701_z crossref_primary_10_3389_fmicb_2014_00638 crossref_primary_10_1534_g3_119_400758 crossref_primary_10_1039_C7NP00017K crossref_primary_10_1186_s12864_018_4857_9 crossref_primary_10_1101_pdb_emo129 crossref_primary_10_1128_AEM_02984_09 crossref_primary_10_3390_md19070379 crossref_primary_10_3390_nu7010001 crossref_primary_10_1039_C7NP00053G crossref_primary_10_1111_j_1365_2427_2012_02760_x crossref_primary_10_1111_j_1420_9101_2010_02192_x crossref_primary_10_1007_s10811_017_1067_9 crossref_primary_10_1039_b902763g crossref_primary_10_1039_c2np00075j crossref_primary_10_1016_j_arr_2009_05_004 crossref_primary_10_1093_jxb_erx297 crossref_primary_10_3390_md8041273 crossref_primary_10_1016_j_cropro_2012_09_016 crossref_primary_10_1007_s00128_011_0463_0 crossref_primary_10_7554_eLife_34226 crossref_primary_10_1007_s11120_013_9886_2 crossref_primary_10_1074_jbc_REV119_006130 crossref_primary_10_3389_fcimb_2014_00176 crossref_primary_10_1002_cbic_201000709 crossref_primary_10_1073_pnas_1513318112 crossref_primary_10_1146_annurev_marine_010419_010641 crossref_primary_10_3390_ijms231810284 crossref_primary_10_3390_md16090336 crossref_primary_10_1016_j_algal_2021_102425 crossref_primary_10_1128_AEM_00727_14 crossref_primary_10_1007_s10295_010_0718_5 crossref_primary_10_1016_j_biortech_2022_127579 crossref_primary_10_1111_1462_2920_12926 crossref_primary_10_1016_j_ygeno_2009_10_002 crossref_primary_10_3389_fmicb_2014_00336 crossref_primary_10_3389_fmicb_2015_00818 crossref_primary_10_1002_hlca_201100117 crossref_primary_10_3390_molecules26237302 crossref_primary_10_1186_1471_2164_14_509 crossref_primary_10_1016_j_jphotobiol_2016_04_020 crossref_primary_10_1128_AEM_05870_11 crossref_primary_10_1186_1745_6150_6_41 crossref_primary_10_2174_0929867324666170529124237 crossref_primary_10_1093_nar_gkn685 crossref_primary_10_1111_evo_12935 crossref_primary_10_1093_plankt_fbn041 crossref_primary_10_1073_pnas_0804968105 crossref_primary_10_1111_j_1751_1097_2009_00670_x crossref_primary_10_3390_md11020559 crossref_primary_10_1038_s41598_021_85259_6 crossref_primary_10_1371_journal_pone_0013975 crossref_primary_10_4161_mge_24773 crossref_primary_10_3390_fermentation9070669 crossref_primary_10_1007_s10565_008_9107_5 crossref_primary_10_1016_j_marenvres_2018_01_002 crossref_primary_10_3390_molecules28145588 crossref_primary_10_1016_j_ympev_2014_02_015 crossref_primary_10_1007_s00726_013_1509_x crossref_primary_10_1242_jeb_046540 crossref_primary_10_1038_srep18676 crossref_primary_10_3390_md18020072 crossref_primary_10_1128_spectrum_01896_23 crossref_primary_10_1371_journal_pone_0175422 crossref_primary_10_1186_s12859_017_1941_0 crossref_primary_10_1002_pro_640 crossref_primary_10_1111_1462_2920_12854 crossref_primary_10_1242_jeb_093690 crossref_primary_10_1126_science_1193637 |
Cites_doi | 10.1016/j.jembe.2006.06.014 10.1016/S0022-0981(00)00192-1 10.1126/science.1130441 10.1016/j.cub.2004.03.047 10.1146/annurev.arplant.50.1.473 10.1002/bies.20181 10.1007/BF00699229 10.1093/molbev/msl008 10.1093/icb/45.4.595 10.1126/science.1133739 10.1146/annurev.physiol.64.081501.155802 10.1093/bioinformatics/btm009 10.1242/jeb.201.16.2445 10.1128/EC.00106-06 10.1242/jeb.01571 10.1007/BF02602848 10.1016/S0031-9422(00)83866-2 10.2307/1543574 10.1078/1434-4610-00046 10.1042/bj3220213 10.1128/AEM.00731-06 10.1126/science.1139158 10.1093/nar/gkj020 10.2216/i0031-8884-42-4-384.1 10.1093/nar/30.1.276 10.2307/1541840 10.1093/bioinformatics/14.9.755 10.1007/s10152-007-0069-4 10.1016/S0022-2836(05)80360-2 10.1016/j.tig.2005.09.007 10.4319/lo.1999.44.7.1667 10.1073/pnas.0703375104 10.1007/978-3-662-06414-6 10.1016/S0966-842X(00)01703-0 10.1186/1745-6150-1-31 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Feb 19, 2008 2008 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Feb 19, 2008 – notice: 2008 by The National Academy of Sciences of the USA |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7T7 7TN F1W H95 L.G 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0707388105 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 2537 |
ExternalDocumentID | PMC2268171 1433278731 18268342 10_1073_pnas_0707388105 105_7_2533 25451501 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7T7 7TN F1W H95 L.G 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c623t-6be22c170d416c8273e2da4404c94a6943688ba1afcb7942b0e93d1da3f90a263 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:32:53 EDT 2025 Fri Jul 11 04:07:15 EDT 2025 Fri Jul 11 07:51:32 EDT 2025 Fri Jul 11 05:28:17 EDT 2025 Mon Jun 30 10:26:23 EDT 2025 Mon Jul 21 05:33:16 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Tue Jul 01 02:38:53 EDT 2025 Thu May 30 08:50:29 EDT 2019 Wed Nov 11 00:29:15 EST 2020 Thu May 29 08:42:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c623t-6be22c170d416c8273e2da4404c94a6943688ba1afcb7942b0e93d1da3f90a263 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: W.C.D., J.M.S., D.H., J.C., and P.F.L. designed research; A.S., S.A., W.C.D., and J.C. performed research; A.S., S.A., W.C.D., J.M.S., D.H., J.C., and P.F.L. analyzed data; and A.S., W.C.D., J.M.S., D.H., J.C., and P.F.L. wrote the paper. Edited by Lynn Margulis, University of Massachusetts, Amherst, MA, and approved December 19, 2007 |
OpenAccessLink | http://doi.org/10.1073/pnas.0707388105 |
PMID | 18268342 |
PQID | 201392943 |
PQPubID | 42026 |
PageCount | 5 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_0707388105 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2268171 pnas_primary_105_7_2533_fulltext proquest_miscellaneous_20007425 proquest_miscellaneous_70321311 proquest_miscellaneous_47558680 proquest_journals_201392943 pnas_primary_105_7_2533 pubmed_primary_18268342 crossref_primary_10_1073_pnas_0707388105 jstor_primary_25451501 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-02-19 |
PublicationDateYYYYMMDD | 2008-02-19 |
PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-19 day: 19 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Allemand D (e_1_3_3_3_2) 1998; 76 Muscatine L (e_1_3_3_1_2) 1990 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 Cook CB (e_1_3_3_2_2) 1987; 4 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_21_2 11545441 - Protist. 2001 Jul;152(2):93-101 17038609 - Science. 2006 Oct 13;314(5797):259-60 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 15914659 - J Exp Biol. 2005 Jun;208(Pt 11):2157-65 17615350 - Science. 2007 Jul 6;317(5834):86-94 10841936 - J Exp Mar Bio Ecol. 2000 Jun 28;249(2):219-233 10707066 - Trends Microbiol. 2000 Mar;8(3):128-33 17059607 - Biol Direct. 2006 Oct 23;1:31 17237039 - Bioinformatics. 2007 Mar 15;23(6):673-9 15666346 - Bioessays. 2005 Feb;27(2):211-21 16936055 - Appl Environ Microbiol. 2006 Nov;72(11):7098-110 11826269 - Annu Rev Physiol. 2002;64:223-62 15084296 - Curr Biol. 2004 Apr 20;14(8):R298-9 12480722 - Biol Bull. 2002 Dec;203(3):315-30 16381919 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D495-9 16226338 - Trends Genet. 2005 Dec;21(12):633-9 16675503 - Mol Biol Evol. 2006 Jul;23(7):1437-43 17038625 - Science. 2006 Oct 13;314(5797):312-3 9078264 - Biochem J. 1997 Feb 15;322 ( Pt 1):213-21 16963634 - Eukaryot Cell. 2006 Sep;5(9):1517-31 11752314 - Nucleic Acids Res. 2002 Jan 1;30(1):276-80 15012217 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:473-503 9679106 - J Exp Biol. 1998 Aug;201 (Pt 16):2445-53 21676806 - Integr Comp Biol. 2005 Aug;45(4):595-604 17664430 - Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13146-51 9918945 - Bioinformatics. 1998;14(9):755-63 |
References_xml | – ident: e_1_3_3_16_2 doi: 10.1016/j.jembe.2006.06.014 – ident: e_1_3_3_15_2 doi: 10.1016/S0022-0981(00)00192-1 – ident: e_1_3_3_38_2 doi: 10.1126/science.1130441 – volume: 4 start-page: 199 year: 1987 ident: e_1_3_3_2_2 article-title: Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida. publication-title: Symbiosis – ident: e_1_3_3_18_2 doi: 10.1016/j.cub.2004.03.047 – ident: e_1_3_3_10_2 doi: 10.1146/annurev.arplant.50.1.473 – ident: e_1_3_3_19_2 doi: 10.1002/bies.20181 – ident: e_1_3_3_13_2 doi: 10.1007/BF00699229 – ident: e_1_3_3_25_2 doi: 10.1093/molbev/msl008 – ident: e_1_3_3_4_2 doi: 10.1093/icb/45.4.595 – ident: e_1_3_3_37_2 doi: 10.1126/science.1133739 – start-page: 75 volume-title: Ecosystems of the World year: 1990 ident: e_1_3_3_1_2 – ident: e_1_3_3_5_2 doi: 10.1146/annurev.physiol.64.081501.155802 – ident: e_1_3_3_30_2 doi: 10.1093/bioinformatics/btm009 – ident: e_1_3_3_12_2 doi: 10.1242/jeb.201.16.2445 – ident: e_1_3_3_22_2 doi: 10.1128/EC.00106-06 – ident: e_1_3_3_28_2 doi: 10.1242/jeb.01571 – ident: e_1_3_3_31_2 doi: 10.1007/BF02602848 – volume: 76 start-page: 925 year: 1998 ident: e_1_3_3_3_2 article-title: Mechanisms of carbon acquisition for endosymbiont photosynthesis in Anthozoa. publication-title: Can J Bot – ident: e_1_3_3_6_2 doi: 10.1016/S0031-9422(00)83866-2 – ident: e_1_3_3_9_2 doi: 10.2307/1543574 – ident: e_1_3_3_14_2 doi: 10.1078/1434-4610-00046 – ident: e_1_3_3_11_2 doi: 10.1042/bj3220213 – ident: e_1_3_3_36_2 doi: 10.1128/AEM.00731-06 – ident: e_1_3_3_20_2 doi: 10.1126/science.1139158 – ident: e_1_3_3_21_2 doi: 10.1093/nar/gkj020 – ident: e_1_3_3_8_2 doi: 10.2216/i0031-8884-42-4-384.1 – ident: e_1_3_3_24_2 doi: 10.1093/nar/30.1.276 – ident: e_1_3_3_32_2 doi: 10.2307/1541840 – ident: e_1_3_3_23_2 doi: 10.1093/bioinformatics/14.9.755 – ident: e_1_3_3_34_2 doi: 10.1007/s10152-007-0069-4 – ident: e_1_3_3_29_2 doi: 10.1016/S0022-2836(05)80360-2 – ident: e_1_3_3_26_2 doi: 10.1016/j.tig.2005.09.007 – ident: e_1_3_3_7_2 doi: 10.4319/lo.1999.44.7.1667 – ident: e_1_3_3_33_2 doi: 10.1073/pnas.0703375104 – ident: e_1_3_3_35_2 doi: 10.1007/978-3-662-06414-6 – ident: e_1_3_3_17_2 doi: 10.1016/S0966-842X(00)01703-0 – ident: e_1_3_3_27_2 doi: 10.1186/1745-6150-1-31 – reference: 16381919 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D495-9 – reference: 21676806 - Integr Comp Biol. 2005 Aug;45(4):595-604 – reference: 17038609 - Science. 2006 Oct 13;314(5797):259-60 – reference: 15666346 - Bioessays. 2005 Feb;27(2):211-21 – reference: 16675503 - Mol Biol Evol. 2006 Jul;23(7):1437-43 – reference: 17615350 - Science. 2007 Jul 6;317(5834):86-94 – reference: 12480722 - Biol Bull. 2002 Dec;203(3):315-30 – reference: 16963634 - Eukaryot Cell. 2006 Sep;5(9):1517-31 – reference: 17237039 - Bioinformatics. 2007 Mar 15;23(6):673-9 – reference: 11752314 - Nucleic Acids Res. 2002 Jan 1;30(1):276-80 – reference: 9078264 - Biochem J. 1997 Feb 15;322 ( Pt 1):213-21 – reference: 11545441 - Protist. 2001 Jul;152(2):93-101 – reference: 9918945 - Bioinformatics. 1998;14(9):755-63 – reference: 16936055 - Appl Environ Microbiol. 2006 Nov;72(11):7098-110 – reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 – reference: 9679106 - J Exp Biol. 1998 Aug;201 (Pt 16):2445-53 – reference: 11826269 - Annu Rev Physiol. 2002;64:223-62 – reference: 10841936 - J Exp Mar Bio Ecol. 2000 Jun 28;249(2):219-233 – reference: 15012217 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:473-503 – reference: 17664430 - Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13146-51 – reference: 15084296 - Curr Biol. 2004 Apr 20;14(8):R298-9 – reference: 17059607 - Biol Direct. 2006 Oct 23;1:31 – reference: 17038625 - Science. 2006 Oct 13;314(5797):312-3 – reference: 10707066 - Trends Microbiol. 2000 Mar;8(3):128-33 – reference: 15914659 - J Exp Biol. 2005 Jun;208(Pt 11):2157-65 – reference: 16226338 - Trends Genet. 2005 Dec;21(12):633-9 |
SSID | ssj0009580 |
Score | 2.2760015 |
Snippet | The shikimic acid pathway is responsible for the biosynthesis of many aromatic compounds by a broad range of organisms, including bacteria, fungi, plants, and... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2533 |
SubjectTerms | Amino acids Animals Anthozoa Aquatic life Aromatic compounds Bacteria biogenesis bioinformatics Biological Sciences Biosynthesis Blasts Cnidaria Datasets Dinophyceae Enzymes Eukaryotes Flavobacteriaceae fungi genes Genome - genetics Genomes Genomics Marine Metabolites Metazoa Molecular biology Nematostella vectensis nucleotide sequences Phylogenetics Phylogeny Protozoa ribosomal RNA Scaffolds Sea Anemones - classification Sea Anemones - enzymology Sea Anemones - genetics shikimate pathway shikimic acid Shikimic Acid - metabolism symbionts Symbiosis Tenacibaculum |
Title | Enzymes of the Shikimic Acid Pathway Encoded in the Genome of a Basal Metazoan, Nematostella vectensis, Have Microbial Origins |
URI | https://www.jstor.org/stable/25451501 http://www.pnas.org/content/105/7/2533.abstract https://www.ncbi.nlm.nih.gov/pubmed/18268342 https://www.proquest.com/docview/201392943 https://www.proquest.com/docview/20007425 https://www.proquest.com/docview/47558680 https://www.proquest.com/docview/70321311 https://pubmed.ncbi.nlm.nih.gov/PMC2268171 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAw5bEHDkWpg71-HyuUKqraUIlE5Gat7bVsNXGqxgE1B34TP5GZ9fqR0ojHJYq845Xj-TIPe-YbQt6DUzfSyBQ6C5in2-BRdA55gy6cOBKBm7hGgonixdgdTe2zmTPr9X52qpbWZTSIN_f2lfyPVuEY6BW7ZP9Bs82mcAC-g37hEzQMn3-l42GxuV1UrLEYP66y_CrHWnce5wkypmbf-W0fmSoTkdQFjUjKuhBVWyS4MNk8UvLNsnoQOkYKV-z7AHT0v4ExxPp2qeoMxxQtcsnbhAGsHKi16sa2l40vbK5oXD9qPGkbV5Q1WfX1_uW4HYMMUe9NDF46VpQGYGuWDRqvyqwqBP-S8UXeuhIIv-dcTtj7Kl_7d575ZmpE_Fn_gs8B7Yut5xs-lkQrK1r3G4AftatO68ZmG04HnF7_esAcHErnVAwytTV2KpIN5dnr1d-8Bpg5HHVc8NUA2Y8s36_33-LnHn8OT6fn5-FkOJs8IA8ZJCaylHTUpXn2q6Yndc01mZRnfbyz_VYcVJXCIr8uCN2X69wt2e3EQJMn5LFKXuhJhcR90hPFU7JfK5QeKQ7zD8_IDwVNukwpAIHW0KQITaqgSRU0aV5IoQqaeAqnEpq0huYx7QKTNsA8pghL2sCSKlg-J9PT4eTTSFejPvQY4u9SdyPBWGx6RgIJQuxDTC1YwpG7Mg5s7gY4J8GPuMnTOAIPwiJDBFZiJtxKA4Mz1zoge8WyEC8JTQNLpMwOuOvBZkECDsoznSRwbc6SKAg0MqhvfBgrHnwcxzIPZT2GZ4WohLDVlEaOmhOuKwqY3aIHUpONHIMEBVIuUyMvpGh7vhN6IeJTI3THSpiq8i-NHNaACJX1WYUMczcGN0Yj75pVcA34vo8XYrlGEUwQmLNbwvYcx3d9Y7cEBAQMGbnwB0gAthfqM9e3bKYRbwuajQAS12-vFHkmCewh5fNNz3z1x-s6JI9ak_Ca7JU3a_EGkoAyeiv_d78AE_wKEw |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymes+of+the+shikimic+acid+pathway+encoded+in+the+genome+of+a+basal+metazoan%2C+Nematostella+vectensis%2C+have+microbial+origins&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Starcevic%2C+Antonio&rft.au=Akthar%2C+Shamima&rft.au=Dunlap%2C+Walter+C&rft.au=Shick%2C+J+Malcolm&rft.date=2008-02-19&rft.issn=0027-8424&rft.volume=105&rft.issue=7+p.2533-2537&rft.spage=2533&rft.epage=2537&rft_id=info:doi/10.1073%2Fpnas.0707388105&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F7.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F7.cover.gif |