Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation
Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule inhibitors of BET bromodomain proteins reduce expression of several oncogenes required for Glioblastoma Multiforme (GBM) progression. However, the...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 112; no. 27; pp. 8326 - 8331 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
07.07.2015
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 |
DOI | 10.1073/pnas.1424220112 |
Cover
Loading…
Abstract | Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule inhibitors of BET bromodomain proteins reduce expression of several oncogenes required for Glioblastoma Multiforme (GBM) progression. However, the mechanism through which BET protein inhibition reduces GBM growth is not completely understood. Long noncoding RNAs (lncRNAs) are important epigenetic regulators with critical roles in cancer initiation and malignant progression, but mechanistic insight into their expression and regulation by BET bromodomain inhibitors remains elusive. In this study, we used Helicos single molecule sequencing to comprehensively profile lncRNAs differentially expressed in GBM, and we identified a subset of GBM-specific lncRNAs whose expression is regulated by BET proteins. Treatment of GBM cells with the BET bromdomain inhibitor I-BET151 reduced levels of the tumor-promoting lncRNA HOX transcript antisense RNA (HOTAIR) and restored the expression of several other GBM down-regulated lncRNAs. Conversely, overexpression of HOTAIR in conjunction with I-BET151 treatment abrogates the antiproliferative activity of the BET bromodomain inhibitor. Moreover, chromatin immunoprecipitation analysis demonstrated binding of Bromodomain Containing 4 (BRD4) to the HOTAIR promoter, suggesting that BET proteins can directly regulate lncRNA expression. Our data unravel a previously unappreciated mechanism through which BET proteins control tumor growth of glioblastoma cells and suggest that modulation of lncRNA networks may, in part, mediate the antiproliferative effects of many epigenetic inhibitors currently in clinical trials for cancer and other diseases. |
---|---|
AbstractList | Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule inhibitors of BET bromodomain proteins reduce expression of several oncogenes required for Glioblastoma Multiforme (GBM) progression. However, the mechanism through which BET protein inhibition reduces GBM growth is not completely understood. Long noncoding RNAs (lncRNAs) are important epigenetic regulators with critical roles in cancer initiation and malignant progression, but mechanistic insight into their expression and regulation by BET bromodomain inhibitors remains elusive. In this study, we used Helicos single molecule sequencing to comprehensively profile lncRNAs differentially expressed in GBM, and we identified a subset of GBM-specific lncRNAs whose expression is regulated by BET proteins. Treatment of GBM cells with the BET bromdomain inhibitor I-BET151 reduced levels of the tumor-promoting lncRNA HOX transcript antisense RNA (HOTAIR) and restored the expression of several other GBM down-regulated lncRNAs. Conversely, overexpression of HOTAIR in conjunction with I-BET151 treatment abrogates the antiproliferative activity of the BET bromodomain inhibitor. Moreover, chromatin immunoprecipitation analysis demonstrated binding of Bromodomain Containing 4 (BRD4) to the HOTAIR promoter, suggesting that BET proteins can directly regulate lncRNA expression. Our data unravel a previously unappreciated mechanism through which BET proteins control tumor growth of glioblastoma cells and suggest that modulation of lncRNA networks may, in part, mediate the antiproliferative effects of many epigenetic inhibitors currently in clinical trials for cancer and other diseases. Glioblastoma Multiforme (GBM) is the most common and deadliest primary brain tumor in adults. As the median survival is approximately 14 mo there is an urgent need for novel therapies. Epigenetic modulators such as bromodomain and extraterminal (BET) proteins are important therapeutic targets in GBM. Bromodomain inhibitors (including I-BET151) suppress proliferation by repressing oncogenes and inducing tumor suppressor genes through unidentified pathways. Here we demonstrate that HOTAIR (HOX transcript antisense RNA) is overexpressed in GBM, where it is crucial to sustain tumor cell proliferation, and that inhibition of HOTAIR by I-BET151 is necessary to induce cell cycle arrest in GBM cells. Our study outlines the mechanism of action underlying the antiproliferative activity of I-BET151, showing for the first time, to our knowledge, that the oncogenic long noncoding RNA HOTAIR is a major target. Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule inhibitors of BET bromodomain proteins reduce expression of several oncogenes required for Glioblastoma Multiforme (GBM) progression. However, the mechanism through which BET protein inhibition reduces GBM growth is not completely understood. Long noncoding RNAs (lncRNAs) are important epigenetic regulators with critical roles in cancer initiation and malignant progression, but mechanistic insight into their expression and regulation by BET bromodomain inhibitors remains elusive. In this study, we used Helicos single molecule sequencing to comprehensively profile lncRNAs differentially expressed in GBM, and we identified a subset of GBM-specific lncRNAs whose expression is regulated by BET proteins. Treatment of GBM cells with the BET bromdomain inhibitor I-BET151 reduced levels of the tumor-promoting lncRNA HOX transcript antisense RNA (HOTAIR) and restored the expression of several other GBM down-regulated lncRNAs. Conversely, overexpression of HOTAIR in conjunction with I-BET151 treatment abrogates the antiproliferative activity of the BET bromodomain inhibitor. Moreover, chromatin immunoprecipitation analysis demonstrated binding of Bromodomain Containing 4 (BRD4) to the HOTAIR promoter, suggesting that BET proteins can directly regulate lncRNA expression. Our data unravel a previously unappreciated mechanism through which BET proteins control tumor growth of glioblastoma cells and suggest that modulation of lncRNA networks may, in part, mediate the antiproliferative effects of many epigenetic inhibitors currently in clinical trials for cancer and other diseases. Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule inhibitors of BET bromodomain proteins reduce expression of several oncogenes required for Glioblastoma Multiforme (GBM) progression. However, the mechanism through which BET protein inhibition reduces GBM growth is not completely understood. Long noncoding RNAs (lncRNAs) are important epigenetic regulators with critical roles in cancer initiation and malignant progression, but mechanistic insight into their expression and regulation by BET bromodomain inhibitors remains elusive. In this study, we used Helicos single molecule sequencing to comprehensively profile lncRNAs differentially expressed in GBM, and we identified a subset of GBM-specific lncRNAs whose expression is regulated by BET proteins. Treatment of GBM cells with the BET bromdomain inhibitor I-BET151 reduced levels of the tumorpromoting lncRNA HOX transcript antisense RNA (HOTAIR) and restored the expression of several other GBM down-regulated lncRNAs. Conversely, overexpression of HOTAIR in conjunction with I-BET151 treatment abrogates the antiproliferative activity of the BET bromodomain inhibitor. Moreover, chromatin immunoprecipitation analysis demonstrated binding of Bromodomain Containing 4 (BRD4) to the HOTAIR promoter, suggesting that BET proteins can directly regulate lncRNA expression. Our data unravel a previously unappreciated mechanism through which BET proteins control tumor growth of glioblastoma cells and suggest that modulation of lncRNA networks may, in part, mediate the antiproliferative effects of many epigenetic inhibitors currently in clinical trials for cancer and other diseases. |
Author | Ricardo Komotar Georges St. Laurent Claude-Henry Volmar Jann N. Sarkaria Philipp Kapranov Claes Wahlestedt Veronica Peschansky Clara Penas Pastori, Chiara Nagi G. Ayad Amade Bregy |
Author_xml | – sequence: 1 fullname: Pastori, Chiara – sequence: 2 fullname: Philipp Kapranov – sequence: 3 fullname: Clara Penas – sequence: 4 fullname: Veronica Peschansky – sequence: 5 fullname: Claude-Henry Volmar – sequence: 6 fullname: Jann N. Sarkaria – sequence: 7 fullname: Amade Bregy – sequence: 8 fullname: Ricardo Komotar – sequence: 9 fullname: Georges St. Laurent – sequence: 10 fullname: Nagi G. Ayad – sequence: 11 fullname: Claes Wahlestedt |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26111795$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAQtVAR3RbOnIBIXDiQ1nYcO74gbctHK1VUWtqz5Xid4JVjb-0sEv-eCbtsSw9wGkvz3pvnmXeEDkIMFqGXBJ8QLKrTddD5hDDKKMWE0CdoRrAkJWcSH6AZxlSUDXQP0VHOK4yxrBv8DB1STggRsp6h_izFIS7joF0o1imOFurZ4iMrTAxjij4XF9c388vF-0IXPoa-AAcmLh28Fl_nhc3ZhtFpX3QxFb13sfU6j6A3qXnX2aRHF8Nz9LTTPtsXu3qMbj9_ujm_KK-uv1yez69Kw2k1lhxTWrfSiI63VmhtGikM4Vw32BC7NMxUTaMxqaWgnRFWMAwt3gktlwLLtjpGH7a66007AAHMJe3VOrlBp58qaqf-7gT3XfXxh2I1bKupQODdTiDFu43NoxpcNtZ7HWzcZEUaIhoqmGD_hwpMmACLEqBvH0FXcZMCbEIRLjmueM2m2a8fmt-7_nMuAJxuASbFnJPt9hCC1RQINQVC3QcCGPUjhnHj74vA753_B-_NzsrU2E8hVFGhmopyQLzaIlZw7vTAK-OVwPW9Qqej0n1yWd1-A3EOe4YgSlH9Assk1qY |
CitedBy_id | crossref_primary_10_1042_BCJ20170664 crossref_primary_10_1007_s44194_022_00019_6 crossref_primary_10_1002_tox_22873 crossref_primary_10_1186_s12967_023_04823_y crossref_primary_10_3389_fonc_2017_00046 crossref_primary_10_18632_oncotarget_24597 crossref_primary_10_18632_oncotarget_7580 crossref_primary_10_3390_cancers13123039 crossref_primary_10_1016_j_lfs_2021_119504 crossref_primary_10_1038_s41392_023_01637_8 crossref_primary_10_1111_cas_14002 crossref_primary_10_1038_s41419_020_02977_x crossref_primary_10_1186_s12974_019_1511_7 crossref_primary_10_3390_ijms21197001 crossref_primary_10_1016_j_canlet_2018_01_041 crossref_primary_10_1038_s41419_022_04699_8 crossref_primary_10_1038_srep31969 crossref_primary_10_1007_s11011_017_9965_8 crossref_primary_10_1016_j_cellsig_2017_01_003 crossref_primary_10_1042_BST20160377 crossref_primary_10_1016_j_jns_2018_11_027 crossref_primary_10_1007_s10571_022_01311_7 crossref_primary_10_1038_cddis_2016_41 crossref_primary_10_1186_s12943_020_01189_3 crossref_primary_10_3390_cancers12092583 crossref_primary_10_1016_j_talanta_2024_126577 crossref_primary_10_3389_fimmu_2021_706936 crossref_primary_10_1016_j_neulet_2020_134896 crossref_primary_10_1002_ggn2_202200024 crossref_primary_10_1093_bfgp_elx013 crossref_primary_10_1097_RMR_0000000000000111 crossref_primary_10_3389_fnmol_2017_00053 crossref_primary_10_1002_jcb_28117 crossref_primary_10_1007_s12031_022_02069_9 crossref_primary_10_1016_j_ncrna_2023_08_005 crossref_primary_10_1134_S0026893317050247 crossref_primary_10_1016_j_phrs_2019_104508 crossref_primary_10_1093_narcan_zcaa041 crossref_primary_10_1007_s13365_022_01089_w crossref_primary_10_1016_j_coisb_2017_04_016 crossref_primary_10_1042_BSR20190994 crossref_primary_10_3389_fonc_2021_679244 crossref_primary_10_1016_j_gene_2019_144126 crossref_primary_10_1016_j_neo_2018_02_010 crossref_primary_10_1038_s41467_018_07659_z crossref_primary_10_18632_oncotarget_15991 crossref_primary_10_1002_cbf_3921 crossref_primary_10_1038_s12276_024_01239_6 crossref_primary_10_1038_s41598_021_02584_6 crossref_primary_10_1093_nar_gkw729 crossref_primary_10_1097_MD_0000000000027248 crossref_primary_10_1186_s12935_021_02060_1 crossref_primary_10_1227_neu_0000000000002449 crossref_primary_10_3892_ijmm_2018_3430 crossref_primary_10_1073_pnas_1712363115 crossref_primary_10_31083_j_jin2104111 crossref_primary_10_3390_cells11071113 crossref_primary_10_1016_j_biopha_2022_113594 crossref_primary_10_1016_j_heliyon_2021_e06502 crossref_primary_10_1158_1078_0432_CCR_17_0605 crossref_primary_10_1002_ctm2_181 crossref_primary_10_1016_j_isci_2023_108559 crossref_primary_10_1080_15592294_2016_1278095 crossref_primary_10_3390_cancers13071604 crossref_primary_10_1177_2472555220926158 crossref_primary_10_3389_fonc_2018_00521 crossref_primary_10_1016_j_neulet_2015_12_025 crossref_primary_10_1093_narmme_ugae016 crossref_primary_10_1007_s00109_020_01984_x crossref_primary_10_1042_BCJ20200339 crossref_primary_10_1158_1078_0432_CCR_19_0747 crossref_primary_10_3233_CBM_190939 crossref_primary_10_1186_s13578_019_0336_5 crossref_primary_10_3389_fonc_2019_00899 crossref_primary_10_32604_biocell_2024_048791 crossref_primary_10_3389_fgene_2022_884424 crossref_primary_10_1007_s13237_017_0201_z crossref_primary_10_1016_j_celrep_2016_05_018 crossref_primary_10_1007_s12264_019_00436_y crossref_primary_10_1155_2017_2312318 crossref_primary_10_1002_hon_2776 crossref_primary_10_1016_j_bbagen_2021_130065 crossref_primary_10_1016_j_cca_2019_12_028 crossref_primary_10_1007_s00109_019_01798_6 crossref_primary_10_1136_jim_2019_001080 crossref_primary_10_1186_s12967_023_04394_y crossref_primary_10_3892_ol_2020_11542 crossref_primary_10_3390_cancers7030843 crossref_primary_10_1007_s13311_018_00702_3 crossref_primary_10_1016_j_phrs_2023_106767 crossref_primary_10_1080_17520363_2025_2455925 crossref_primary_10_1016_j_jbc_2023_105235 crossref_primary_10_1186_s12943_018_0822_0 crossref_primary_10_15252_embr_201948170 crossref_primary_10_3390_cancers13133209 crossref_primary_10_1161_CIRCULATIONAHA_120_047626 crossref_primary_10_3390_cancers12071842 crossref_primary_10_3389_fonc_2021_716830 crossref_primary_10_3389_fonc_2022_887766 crossref_primary_10_1016_j_omtn_2021_07_024 crossref_primary_10_1016_j_cellsig_2022_110306 crossref_primary_10_1155_2020_1645249 crossref_primary_10_1186_s12935_020_1135_0 crossref_primary_10_3389_fonc_2024_1431636 crossref_primary_10_1016_j_modpat_2024_100702 crossref_primary_10_1186_s13046_020_01700_0 crossref_primary_10_1093_annonc_mdx106 crossref_primary_10_1007_s11060_021_03836_1 crossref_primary_10_1007_s10571_024_01455_8 crossref_primary_10_1111_jcmm_14502 crossref_primary_10_1177_1724600818814459 crossref_primary_10_1002_adma_202411869 crossref_primary_10_18632_oncotarget_8075 crossref_primary_10_3389_fcell_2022_846864 crossref_primary_10_3389_fonc_2020_590352 crossref_primary_10_1523_JNEUROSCI_0826_15_2015 crossref_primary_10_1155_2022_2623599 crossref_primary_10_1038_s41598_024_60031_8 crossref_primary_10_1186_s12943_018_0812_2 crossref_primary_10_3390_ijms24065665 crossref_primary_10_1016_j_ygeno_2021_07_015 crossref_primary_10_1016_j_omto_2021_03_005 crossref_primary_10_1002_jgm_3104 crossref_primary_10_1016_j_prp_2024_155708 crossref_primary_10_1016_j_mcn_2016_03_008 crossref_primary_10_1002_jcp_28933 crossref_primary_10_1182_blood_2015_09_671040 crossref_primary_10_1007_s13277_016_5307_4 crossref_primary_10_1002_slct_202104054 crossref_primary_10_2217_bmm_2023_0368 crossref_primary_10_1016_j_omtn_2018_09_023 crossref_primary_10_1016_j_mce_2017_07_020 crossref_primary_10_1016_j_neuropharm_2020_108306 crossref_primary_10_1111_jcmm_13781 crossref_primary_10_18632_oncotarget_25510 crossref_primary_10_1007_s11060_018_2951_0 crossref_primary_10_18632_oncotarget_20340 crossref_primary_10_1111_jcmm_15044 crossref_primary_10_1002_2211_5463_12602 crossref_primary_10_1111_cpr_13375 crossref_primary_10_1016_j_omtn_2021_03_018 crossref_primary_10_1073_pnas_1707544114 crossref_primary_10_3390_cancers11010017 crossref_primary_10_1016_j_wneu_2018_04_021 crossref_primary_10_1111_cpr_12313 crossref_primary_10_3390_ijms221810160 crossref_primary_10_3892_mmr_2024_13288 crossref_primary_10_1093_abbs_gmv116 crossref_primary_10_1038_s41420_022_01157_4 crossref_primary_10_1158_1535_7163_MCT_16_0320 crossref_primary_10_1016_j_ygeno_2019_06_017 crossref_primary_10_1016_j_ibneur_2025_01_015 crossref_primary_10_1038_s41388_020_01466_x crossref_primary_10_2174_0929867325666180831170227 crossref_primary_10_1016_j_ddtec_2016_09_001 crossref_primary_10_2176_nmc_ra_2017_0018 crossref_primary_10_1016_j_trsl_2017_06_013 crossref_primary_10_1186_s13045_021_01088_0 crossref_primary_10_3390_ijms161226236 crossref_primary_10_1186_s13046_020_01643_6 crossref_primary_10_1016_j_biopha_2020_110642 crossref_primary_10_1155_2018_2895958 crossref_primary_10_1038_s12276_023_00934_0 crossref_primary_10_1038_npp_2016_203 crossref_primary_10_1007_s12035_017_0572_9 crossref_primary_10_1016_j_biochi_2018_05_021 crossref_primary_10_18632_oncotarget_15175 crossref_primary_10_1038_s41584_020_00543_5 crossref_primary_10_3390_v16071096 crossref_primary_10_1016_j_jpeds_2020_02_078 |
Cites_doi | 10.1038/nature09589 10.1038/nsmb.2912 10.1038/nature03574 10.4161/epi.27906 10.1021/jm300915b 10.1038/nature09190 10.1126/science.1192002 10.1016/j.ygyno.2014.03.556 10.1016/S0014-5793(01)03309-9 10.1074/jbc.M112.413047 10.1126/science.1181369 10.1186/gb-2013-14-7-r73 10.1073/pnas.1108190108 10.1016/j.molmed.2014.06.004 10.4161/rna.20482 10.1016/j.molcel.2005.06.027 10.1056/NEJMoa043330 10.1038/20974 10.1093/neuonc/not131 10.1371/journal.pgen.1000459 10.1016/j.ccr.2014.01.028 10.1126/science.1138341 10.1186/1476-4598-10-38 10.3389/fgene.2012.00017 10.1002/jcb.24055 10.1158/2159-8290.CD-11-0209 10.1038/nsmb.2842 10.1038/onc.2012.193 10.1016/j.cell.2007.05.022 10.1371/journal.pone.0086295 10.1126/science.1112009 10.1111/cns.12220 10.1158/1078-0432.CCR-12-3066 10.1126/science.1112014 10.18632/oncotarget.2681 10.1038/modpathol.2012.160 10.1016/j.nbd.2012.06.004 10.1038/nature08975 10.1016/j.ccr.2010.03.017 10.1021/jm401088k 10.1038/nrd4286 10.1016/j.cell.2014.06.049 10.1182/blood-2013-01-478420 10.1200/JCO.2008.19.0694 10.1002/jcb.22116 10.1038/nature13185 10.1073/pnas.0904715106 10.1016/j.cell.2011.08.017 10.1016/j.cell.2013.03.036 10.1007/s12253-014-9833-3 10.1074/jbc.M702029200 10.1016/j.molcel.2014.05.016 10.1371/journal.pone.0017305 10.1016/j.cell.2009.02.006 10.1038/bjc.2013.233 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jul 7, 2015 |
Copyright_xml | – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jul 7, 2015 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 5PM |
DOI | 10.1073/pnas.1424220112 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Virology and AIDS Abstracts Neurosciences Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Bromodomain proteins regulate long noncoding RNAs |
EISSN | 1091-6490 |
EndPage | 8331 |
ExternalDocumentID | PMC4500283 3742520581 26111795 10_1073_pnas_1424220112 112_27_8326 26463705 US201600200997 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: P50 NS071674 – fundername: NINDS NIH HHS grantid: R01 NS067289 – fundername: NIMH NIH HHS grantid: MH084880 – fundername: NINDS NIH HHS grantid: NS071674 – fundername: NIDA NIH HHS grantid: R21 DA035592 – fundername: NIMH NIH HHS grantid: R01 MH084880 – fundername: NIDA NIH HHS grantid: DA035592 – fundername: NINDS NIH HHS grantid: R01NS067289 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c623t-60225b9c7f6be7aac897c166a80c1edc4c388a015972fc7e740a806f7a9d709b3 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:12:24 EDT 2025 Fri Jul 11 06:10:40 EDT 2025 Fri Jul 11 16:35:17 EDT 2025 Mon Jun 30 08:07:24 EDT 2025 Thu Apr 03 07:08:25 EDT 2025 Thu Apr 24 22:51:44 EDT 2025 Tue Jul 01 01:53:29 EDT 2025 Wed Nov 11 00:29:41 EST 2020 Fri May 30 12:01:39 EDT 2025 Wed Dec 27 19:19:45 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | I-BET151 glioblastoma long noncoding RNAs epigenetics BRD4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c623t-60225b9c7f6be7aac897c166a80c1edc4c388a015972fc7e740a806f7a9d709b3 |
Notes | http://dx.doi.org/10.1073/pnas.1424220112 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Thomas C. Roberts, Scripps Research Institute, and accepted by the Editorial Board May 19, 2015 (received for review December 18, 2014) Author contributions: C. Pastori, N.G.A., and C.W. designed research; C. Pastori, C. Penas, and V.P. performed research; C.-H.V., J.N.S., A.B., R.K., and G.S.L. contributed new reagents/analytic tools; C. Pastori and P.K. analyzed data; and C. Pastori, V.P., N.G.A., and C.W. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/112/27/8326.full.pdf |
PMID | 26111795 |
PQID | 1696036543 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1696036543 pubmed_primary_26111795 crossref_primary_10_1073_pnas_1424220112 pnas_primary_112_27_8326 jstor_primary_26463705 proquest_miscellaneous_1701477409 crossref_citationtrail_10_1073_pnas_1424220112 fao_agris_US201600200997 proquest_miscellaneous_1817827474 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4500283 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-07 |
PublicationDateYYYYMMDD | 2015-07-07 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2015 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 Kim HJ (e_1_3_3_48_2) 2011; 3 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 Ozawa T (e_1_3_3_43_2) 2010; 41 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 Sanchez R (e_1_3_3_5_2) 2009; 12 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 17604720 - Cell. 2007 Jun 29;129(7):1311-23 15880101 - Nature. 2005 Jun 2;435(7042):637-45 24751816 - Nat Rev Drug Discov. 2014 May;13(5):337-56 17569660 - J Biol Chem. 2007 Aug 24;282(34):24731-42 11911891 - FEBS Lett. 2002 Feb 20;513(1):124-8 22096659 - Cancer Discov. 2011 Oct;1(5):391-407 23582323 - Cell. 2013 Apr 11;153(2):320-34 25156108 - Pathol Oncol Res. 2014 Oct;20(4):777-87 19247990 - J Cell Biochem. 2009 May 1;107(1):30-9 23403638 - Clin Cancer Res. 2013 Apr 1;19(7):1748-59 19239885 - Cell. 2009 Feb 20;136(4):629-41 19307505 - J Clin Oncol. 2009 Apr 20;27(12):2052-8 23876380 - Genome Biol. 2013;14(7):R73 17510325 - Science. 2007 Jun 8;316(5830):1484-8 21068722 - Nature. 2010 Dec 23;468(7327):1119-23 21489289 - Mol Cancer. 2011;10:38 25109877 - Cell. 2014 Aug 14;158(4):929-44 20671709 - Nature. 2010 Jul 29;466(7306):642-6 21416059 - Am J Transl Res. 2011 Feb;3(2):166-79 19390609 - PLoS Genet. 2009 Apr;5(4):e1000459 19815776 - Science. 2009 Oct 9;326(5950):289-93 16109376 - Mol Cell. 2005 Aug 19;19(4):523-34 20393566 - Nature. 2010 Apr 15;464(7291):1071-6 21889194 - Cell. 2011 Sep 16;146(6):904-17 24335499 - Blood. 2014 Jan 30;123(5):697-705 20644517 - J Vis Exp. 2010;(41). pii: 1986. doi: 10.3791/1986 19736624 - Curr Opin Drug Discov Devel. 2009 Sep;12(5):659-65 23660942 - Br J Cancer. 2013 Jun 25;108(12):2419-25 20616235 - Science. 2010 Aug 6;329(5992):689-93 24929436 - Nat Struct Mol Biol. 2014 Jul;21(7):585-90 24695229 - Nature. 2014 Apr 10;508(7495):199-206 22709987 - Neurobiol Dis. 2012 Oct;48(1):1-8 21949397 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16669-74 24662839 - Gynecol Oncol. 2014 Jul;134(1):121-8 24986769 - Trends Mol Med. 2014 Sep;20(9):477-8 22614017 - Oncogene. 2013 Mar 28;32(13):1616-25 20399149 - Cancer Cell. 2010 May 18;17(5):510-22 24203894 - Neuro Oncol. 2013 Dec;15(12):1595-603 22234798 - J Cell Biochem. 2012 Jun;113(6):1868-74 25383670 - Nat Struct Mol Biol. 2014 Dec;21(12):1047-57 25428914 - Oncotarget. 2015 Jan 1;6(1):537-46 19571010 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11667-72 24393335 - CNS Neurosci Ther. 2014 Apr;20(4):339-43 24466011 - PLoS One. 2014;9(1):e86295 23086925 - J Biol Chem. 2012 Dec 14;287(51):43137-55 24525235 - Cancer Cell. 2014 Feb 10;25(2):210-25 24496381 - Epigenetics. 2014 Apr;9(4):611-20 24905006 - Mol Cell. 2014 Jun 5;54(5):728-36 22699553 - RNA Biol. 2012 Jun;9(6):860-70 22996375 - Mod Pathol. 2013 Feb;26(2):155-65 22363342 - Front Genet. 2012 Feb 15;3:17 15758009 - N Engl J Med. 2005 Mar 10;352(10):987-96 22924434 - J Med Chem. 2012 Nov 26;55(22):9393-413 16141073 - Science. 2005 Sep 2;309(5740):1564-6 21390249 - PLoS One. 2011;6(3):e17305 16141072 - Science. 2005 Sep 2;309(5740):1559-63 24015967 - J Med Chem. 2013 Oct 10;56(19):7501-15 10365964 - Nature. 1999 Jun 3;399(6735):491-6 |
References_xml | – ident: e_1_3_3_9_2 doi: 10.1038/nature09589 – ident: e_1_3_3_51_2 doi: 10.1038/nsmb.2912 – ident: e_1_3_3_55_2 doi: 10.1038/nature03574 – ident: e_1_3_3_4_2 doi: 10.4161/epi.27906 – ident: e_1_3_3_11_2 doi: 10.1021/jm300915b – ident: e_1_3_3_26_2 doi: 10.1038/nature09190 – ident: e_1_3_3_42_2 doi: 10.1126/science.1192002 – ident: e_1_3_3_22_2 doi: 10.1016/j.ygyno.2014.03.556 – ident: e_1_3_3_8_2 doi: 10.1016/S0014-5793(01)03309-9 – ident: e_1_3_3_53_2 doi: 10.1074/jbc.M112.413047 – ident: e_1_3_3_56_2 doi: 10.1126/science.1181369 – ident: e_1_3_3_28_2 doi: 10.1186/gb-2013-14-7-r73 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.1108190108 – ident: e_1_3_3_2_2 doi: 10.1016/j.molmed.2014.06.004 – ident: e_1_3_3_21_2 doi: 10.4161/rna.20482 – ident: e_1_3_3_7_2 doi: 10.1016/j.molcel.2005.06.027 – ident: e_1_3_3_1_2 doi: 10.1056/NEJMoa043330 – ident: e_1_3_3_6_2 doi: 10.1038/20974 – ident: e_1_3_3_39_2 doi: 10.1093/neuonc/not131 – ident: e_1_3_3_17_2 doi: 10.1371/journal.pgen.1000459 – ident: e_1_3_3_58_2 doi: 10.1016/j.ccr.2014.01.028 – ident: e_1_3_3_30_2 doi: 10.1126/science.1138341 – ident: e_1_3_3_20_2 doi: 10.1186/1476-4598-10-38 – ident: e_1_3_3_19_2 doi: 10.3389/fgene.2012.00017 – ident: e_1_3_3_50_2 doi: 10.1002/jcb.24055 – ident: e_1_3_3_18_2 doi: 10.1158/2159-8290.CD-11-0209 – ident: e_1_3_3_47_2 doi: 10.1038/nsmb.2842 – ident: e_1_3_3_38_2 doi: 10.1038/onc.2012.193 – ident: e_1_3_3_41_2 doi: 10.1016/j.cell.2007.05.022 – ident: e_1_3_3_36_2 doi: 10.1371/journal.pone.0086295 – ident: e_1_3_3_29_2 doi: 10.1126/science.1112009 – ident: e_1_3_3_24_2 doi: 10.1111/cns.12220 – ident: e_1_3_3_15_2 doi: 10.1158/1078-0432.CCR-12-3066 – ident: e_1_3_3_31_2 doi: 10.1126/science.1112014 – ident: e_1_3_3_45_2 doi: 10.18632/oncotarget.2681 – ident: e_1_3_3_23_2 doi: 10.1038/modpathol.2012.160 – ident: e_1_3_3_25_2 doi: 10.1016/j.nbd.2012.06.004 – ident: e_1_3_3_37_2 doi: 10.1038/nature08975 – ident: e_1_3_3_33_2 doi: 10.1016/j.ccr.2010.03.017 – volume: 12 start-page: 659 year: 2009 ident: e_1_3_3_5_2 article-title: The role of human bromodomains in chromatin biology and gene transcription publication-title: Curr Opin Drug Discov Devel – ident: e_1_3_3_10_2 doi: 10.1021/jm401088k – ident: e_1_3_3_3_2 doi: 10.1038/nrd4286 – ident: e_1_3_3_35_2 doi: 10.1016/j.cell.2014.06.049 – volume: 3 start-page: 166 year: 2011 ident: e_1_3_3_48_2 article-title: Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs publication-title: Am J Transl Res – ident: e_1_3_3_52_2 doi: 10.1182/blood-2013-01-478420 – volume: 41 start-page: 1986 year: 2010 ident: e_1_3_3_43_2 article-title: Establishing intracranial brain tumor xenografts with subsequent analysis of tumor growth and response to therapy using bioluminescence imaging publication-title: J Vis Exp – ident: e_1_3_3_49_2 doi: 10.1200/JCO.2008.19.0694 – ident: e_1_3_3_57_2 doi: 10.1002/jcb.22116 – ident: e_1_3_3_46_2 doi: 10.1038/nature13185 – ident: e_1_3_3_40_2 doi: 10.1073/pnas.0904715106 – ident: e_1_3_3_13_2 doi: 10.1016/j.cell.2011.08.017 – ident: e_1_3_3_54_2 doi: 10.1016/j.cell.2013.03.036 – ident: e_1_3_3_34_2 doi: 10.1007/s12253-014-9833-3 – ident: e_1_3_3_44_2 doi: 10.1074/jbc.M702029200 – ident: e_1_3_3_12_2 doi: 10.1016/j.molcel.2014.05.016 – ident: e_1_3_3_27_2 doi: 10.1371/journal.pone.0017305 – ident: e_1_3_3_16_2 doi: 10.1016/j.cell.2009.02.006 – ident: e_1_3_3_32_2 doi: 10.1038/bjc.2013.233 – reference: 19571010 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11667-72 – reference: 21416059 - Am J Transl Res. 2011 Feb;3(2):166-79 – reference: 10365964 - Nature. 1999 Jun 3;399(6735):491-6 – reference: 16141073 - Science. 2005 Sep 2;309(5740):1564-6 – reference: 20393566 - Nature. 2010 Apr 15;464(7291):1071-6 – reference: 24751816 - Nat Rev Drug Discov. 2014 May;13(5):337-56 – reference: 22699553 - RNA Biol. 2012 Jun;9(6):860-70 – reference: 25383670 - Nat Struct Mol Biol. 2014 Dec;21(12):1047-57 – reference: 25428914 - Oncotarget. 2015 Jan 1;6(1):537-46 – reference: 22363342 - Front Genet. 2012 Feb 15;3:17 – reference: 24393335 - CNS Neurosci Ther. 2014 Apr;20(4):339-43 – reference: 22614017 - Oncogene. 2013 Mar 28;32(13):1616-25 – reference: 23876380 - Genome Biol. 2013;14(7):R73 – reference: 21489289 - Mol Cancer. 2011;10:38 – reference: 21949397 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16669-74 – reference: 24929436 - Nat Struct Mol Biol. 2014 Jul;21(7):585-90 – reference: 20671709 - Nature. 2010 Jul 29;466(7306):642-6 – reference: 17604720 - Cell. 2007 Jun 29;129(7):1311-23 – reference: 19239885 - Cell. 2009 Feb 20;136(4):629-41 – reference: 24662839 - Gynecol Oncol. 2014 Jul;134(1):121-8 – reference: 17510325 - Science. 2007 Jun 8;316(5830):1484-8 – reference: 21889194 - Cell. 2011 Sep 16;146(6):904-17 – reference: 23582323 - Cell. 2013 Apr 11;153(2):320-34 – reference: 19307505 - J Clin Oncol. 2009 Apr 20;27(12):2052-8 – reference: 22924434 - J Med Chem. 2012 Nov 26;55(22):9393-413 – reference: 19815776 - Science. 2009 Oct 9;326(5950):289-93 – reference: 17569660 - J Biol Chem. 2007 Aug 24;282(34):24731-42 – reference: 15880101 - Nature. 2005 Jun 2;435(7042):637-45 – reference: 23086925 - J Biol Chem. 2012 Dec 14;287(51):43137-55 – reference: 24525235 - Cancer Cell. 2014 Feb 10;25(2):210-25 – reference: 16141072 - Science. 2005 Sep 2;309(5740):1559-63 – reference: 23403638 - Clin Cancer Res. 2013 Apr 1;19(7):1748-59 – reference: 20399149 - Cancer Cell. 2010 May 18;17(5):510-22 – reference: 25156108 - Pathol Oncol Res. 2014 Oct;20(4):777-87 – reference: 21068722 - Nature. 2010 Dec 23;468(7327):1119-23 – reference: 24905006 - Mol Cell. 2014 Jun 5;54(5):728-36 – reference: 24015967 - J Med Chem. 2013 Oct 10;56(19):7501-15 – reference: 21390249 - PLoS One. 2011;6(3):e17305 – reference: 23660942 - Br J Cancer. 2013 Jun 25;108(12):2419-25 – reference: 20616235 - Science. 2010 Aug 6;329(5992):689-93 – reference: 24496381 - Epigenetics. 2014 Apr;9(4):611-20 – reference: 22096659 - Cancer Discov. 2011 Oct;1(5):391-407 – reference: 24203894 - Neuro Oncol. 2013 Dec;15(12):1595-603 – reference: 22996375 - Mod Pathol. 2013 Feb;26(2):155-65 – reference: 22709987 - Neurobiol Dis. 2012 Oct;48(1):1-8 – reference: 20644517 - J Vis Exp. 2010;(41). pii: 1986. doi: 10.3791/1986 – reference: 19247990 - J Cell Biochem. 2009 May 1;107(1):30-9 – reference: 24695229 - Nature. 2014 Apr 10;508(7495):199-206 – reference: 24466011 - PLoS One. 2014;9(1):e86295 – reference: 16109376 - Mol Cell. 2005 Aug 19;19(4):523-34 – reference: 11911891 - FEBS Lett. 2002 Feb 20;513(1):124-8 – reference: 19736624 - Curr Opin Drug Discov Devel. 2009 Sep;12(5):659-65 – reference: 25109877 - Cell. 2014 Aug 14;158(4):929-44 – reference: 19390609 - PLoS Genet. 2009 Apr;5(4):e1000459 – reference: 24335499 - Blood. 2014 Jan 30;123(5):697-705 – reference: 22234798 - J Cell Biochem. 2012 Jun;113(6):1868-74 – reference: 24986769 - Trends Mol Med. 2014 Sep;20(9):477-8 – reference: 15758009 - N Engl J Med. 2005 Mar 10;352(10):987-96 |
SSID | ssj0009580 |
Score | 2.5591805 |
Snippet | Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule... Glioblastoma Multiforme (GBM) is the most common and deadliest primary brain tumor in adults. As the median survival is approximately 14 mo there is an urgent... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8326 |
SubjectTerms | Animals antisense RNA Apoptosis - genetics Biological Sciences Brain cancer Brain Neoplasms - genetics Brain Neoplasms - metabolism Brain Neoplasms - pathology BRD4 Cell growth Cell Line, Tumor Cell Proliferation - drug effects Cell Proliferation - genetics chromatin clinical trials Epigenetics Gene expression gene expression regulation Gene Expression Regulation, Neoplastic - drug effects glioblastoma Glioblastoma - genetics Glioblastoma - metabolism Glioblastoma - pathology Heterocyclic Compounds, 4 or More Rings - pharmacology Humans I-BET151 Inhibitors long noncoding RNAs Mice, Nude Microscopy, Fluorescence neoplasms non-coding RNA Nuclear Proteins - antagonists & inhibitors Nuclear Proteins - genetics Nuclear Proteins - metabolism oncogenes precipitin tests Promoter Regions, Genetic - genetics Protein Binding Proteins Reverse Transcriptase Polymerase Chain Reaction Ribonucleic acid RNA RNA Interference RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism Transcription Factors - antagonists & inhibitors Transcription Factors - genetics Transcription Factors - metabolism Xenograft Model Antitumor Assays - methods |
Title | Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation |
URI | https://www.jstor.org/stable/26463705 http://www.pnas.org/content/112/27/8326.abstract https://www.ncbi.nlm.nih.gov/pubmed/26111795 https://www.proquest.com/docview/1696036543 https://www.proquest.com/docview/1701477409 https://www.proquest.com/docview/1817827474 https://pubmed.ncbi.nlm.nih.gov/PMC4500283 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5cIFUaDUUNAicSgyDn7u2se0PAJIoSoJ6s1ar-3WappEjYMEv5Ufw8zaXjtRioCLFdnr9drzZR72zDeEvAyiwMt5klos5D4EKMy1khSUocilk-epn6e5yvIdseHE_3QenPd6vzpZS6sy6cufW-tK_keqsA_kilWy_yBZPSnsgN8gX9iChGH71zI-xny6dH4tCpVshc0rzeOzt36ThL40h1_Gg48q30GYU2wtBBG_nKtilrPRwETy8FlZVIWM5sW0mCfgUZcwI843xdSXVnq1G3uqzd6ySTIYNW8VB22NSq04lqZlno7ajscnl4W4EeC8KoaS7neJYrEwP4sF2M_5dz16qgZnM6Hd_2-ZYvTFvUusXF5e_ei-vXAClenK2-SO7tr0qroK2wUj6ldl1v2s0tHg4ljMr7qMaiXuuB20VnQDtU4GncW2GgvQbtjhGJbfx3o_F30htzsSpL24VtiBOBO584LWajaZAhvGVKc4wlSxy2O8-A6540IQg_01Ppw7HUrosCqQqm-xIZ7i3puNNSFjdb2ANfdpJxfzJo8WyXnhrG2B0ma-b8eBGt8n9-rIhw4qGO-RXjZ7QPYaYdCjmgD91UNyBbimHVzTGtcUcU0bXNMK16-poIhqqlFNAdVUo5oCqmkX1XQN1Y_I5P278cnQqpuCWBI89dJi4HQGSSR5zpKMCyHDiEuHMRHa0oFb9KUXhgKQFnE3lzzjvg2HWM5FlHI7Srx9sgsLyg4I9WQUSJ5EjpsG4KhK4XqekwQcOe78xMkN0m-edSxrxnxs3DKNVeYG92J84nErJ4Mc6RMWFVnM7UMPQHixuABTHk--ukj0aOOXyogbZF9JVE8BMQvzuB3AOWoWPXULMYMcNmKPawUFV2MRAwc18D2DvNCHwXzgN0Exy-YrGMNtx4cQ0I7-MCZ0II7g8FAM8rhCUmdtFS4Nwtcwpgcgff36kVlxqWjs_UA1Snty-109JXdbnXFIdsubVfYMYoAyea7-Sr8BefgDww |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Bromodomain+protein+BRD4+controls+HOTAIR%2C+a+long+noncoding+RNA+essential+for+glioblastoma+proliferation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chiara+Pastori&rft.au=Philipp+Kapranov&rft.au=Clara+Penas&rft.au=Veronica+Peschansky&rft.date=2015-07-07&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=27&rft.spage=8326&rft_id=info:doi/10.1073%2Fpnas.1424220112&rft_id=info%3Apmid%2F26111795&rft.externalDBID=n%2Fa&rft.externalDocID=112_27_8326 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F27.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F27.cover.gif |