Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation

Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule inhibitors of BET bromodomain proteins reduce expression of several oncogenes required for Glioblastoma Multiforme (GBM) progression. However, the...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 27; pp. 8326 - 8331
Main Authors Pastori, Chiara, Philipp Kapranov, Clara Penas, Veronica Peschansky, Claude-Henry Volmar, Jann N. Sarkaria, Amade Bregy, Ricardo Komotar, Georges St. Laurent, Nagi G. Ayad, Claes Wahlestedt
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 07.07.2015
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
DOI10.1073/pnas.1424220112

Cover

Loading…
Abstract Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule inhibitors of BET bromodomain proteins reduce expression of several oncogenes required for Glioblastoma Multiforme (GBM) progression. However, the mechanism through which BET protein inhibition reduces GBM growth is not completely understood. Long noncoding RNAs (lncRNAs) are important epigenetic regulators with critical roles in cancer initiation and malignant progression, but mechanistic insight into their expression and regulation by BET bromodomain inhibitors remains elusive. In this study, we used Helicos single molecule sequencing to comprehensively profile lncRNAs differentially expressed in GBM, and we identified a subset of GBM-specific lncRNAs whose expression is regulated by BET proteins. Treatment of GBM cells with the BET bromdomain inhibitor I-BET151 reduced levels of the tumor-promoting lncRNA HOX transcript antisense RNA (HOTAIR) and restored the expression of several other GBM down-regulated lncRNAs. Conversely, overexpression of HOTAIR in conjunction with I-BET151 treatment abrogates the antiproliferative activity of the BET bromodomain inhibitor. Moreover, chromatin immunoprecipitation analysis demonstrated binding of Bromodomain Containing 4 (BRD4) to the HOTAIR promoter, suggesting that BET proteins can directly regulate lncRNA expression. Our data unravel a previously unappreciated mechanism through which BET proteins control tumor growth of glioblastoma cells and suggest that modulation of lncRNA networks may, in part, mediate the antiproliferative effects of many epigenetic inhibitors currently in clinical trials for cancer and other diseases.
AbstractList Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule inhibitors of BET bromodomain proteins reduce expression of several oncogenes required for Glioblastoma Multiforme (GBM) progression. However, the mechanism through which BET protein inhibition reduces GBM growth is not completely understood. Long noncoding RNAs (lncRNAs) are important epigenetic regulators with critical roles in cancer initiation and malignant progression, but mechanistic insight into their expression and regulation by BET bromodomain inhibitors remains elusive. In this study, we used Helicos single molecule sequencing to comprehensively profile lncRNAs differentially expressed in GBM, and we identified a subset of GBM-specific lncRNAs whose expression is regulated by BET proteins. Treatment of GBM cells with the BET bromdomain inhibitor I-BET151 reduced levels of the tumor-promoting lncRNA HOX transcript antisense RNA (HOTAIR) and restored the expression of several other GBM down-regulated lncRNAs. Conversely, overexpression of HOTAIR in conjunction with I-BET151 treatment abrogates the antiproliferative activity of the BET bromodomain inhibitor. Moreover, chromatin immunoprecipitation analysis demonstrated binding of Bromodomain Containing 4 (BRD4) to the HOTAIR promoter, suggesting that BET proteins can directly regulate lncRNA expression. Our data unravel a previously unappreciated mechanism through which BET proteins control tumor growth of glioblastoma cells and suggest that modulation of lncRNA networks may, in part, mediate the antiproliferative effects of many epigenetic inhibitors currently in clinical trials for cancer and other diseases.
Glioblastoma Multiforme (GBM) is the most common and deadliest primary brain tumor in adults. As the median survival is approximately 14 mo there is an urgent need for novel therapies. Epigenetic modulators such as bromodomain and extraterminal (BET) proteins are important therapeutic targets in GBM. Bromodomain inhibitors (including I-BET151) suppress proliferation by repressing oncogenes and inducing tumor suppressor genes through unidentified pathways. Here we demonstrate that HOTAIR (HOX transcript antisense RNA) is overexpressed in GBM, where it is crucial to sustain tumor cell proliferation, and that inhibition of HOTAIR by I-BET151 is necessary to induce cell cycle arrest in GBM cells. Our study outlines the mechanism of action underlying the antiproliferative activity of I-BET151, showing for the first time, to our knowledge, that the oncogenic long noncoding RNA HOTAIR is a major target. Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule inhibitors of BET bromodomain proteins reduce expression of several oncogenes required for Glioblastoma Multiforme (GBM) progression. However, the mechanism through which BET protein inhibition reduces GBM growth is not completely understood. Long noncoding RNAs (lncRNAs) are important epigenetic regulators with critical roles in cancer initiation and malignant progression, but mechanistic insight into their expression and regulation by BET bromodomain inhibitors remains elusive. In this study, we used Helicos single molecule sequencing to comprehensively profile lncRNAs differentially expressed in GBM, and we identified a subset of GBM-specific lncRNAs whose expression is regulated by BET proteins. Treatment of GBM cells with the BET bromdomain inhibitor I-BET151 reduced levels of the tumor-promoting lncRNA HOX transcript antisense RNA (HOTAIR) and restored the expression of several other GBM down-regulated lncRNAs. Conversely, overexpression of HOTAIR in conjunction with I-BET151 treatment abrogates the antiproliferative activity of the BET bromodomain inhibitor. Moreover, chromatin immunoprecipitation analysis demonstrated binding of Bromodomain Containing 4 (BRD4) to the HOTAIR promoter, suggesting that BET proteins can directly regulate lncRNA expression. Our data unravel a previously unappreciated mechanism through which BET proteins control tumor growth of glioblastoma cells and suggest that modulation of lncRNA networks may, in part, mediate the antiproliferative effects of many epigenetic inhibitors currently in clinical trials for cancer and other diseases.
Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule inhibitors of BET bromodomain proteins reduce expression of several oncogenes required for Glioblastoma Multiforme (GBM) progression. However, the mechanism through which BET protein inhibition reduces GBM growth is not completely understood. Long noncoding RNAs (lncRNAs) are important epigenetic regulators with critical roles in cancer initiation and malignant progression, but mechanistic insight into their expression and regulation by BET bromodomain inhibitors remains elusive. In this study, we used Helicos single molecule sequencing to comprehensively profile lncRNAs differentially expressed in GBM, and we identified a subset of GBM-specific lncRNAs whose expression is regulated by BET proteins. Treatment of GBM cells with the BET bromdomain inhibitor I-BET151 reduced levels of the tumorpromoting lncRNA HOX transcript antisense RNA (HOTAIR) and restored the expression of several other GBM down-regulated lncRNAs. Conversely, overexpression of HOTAIR in conjunction with I-BET151 treatment abrogates the antiproliferative activity of the BET bromodomain inhibitor. Moreover, chromatin immunoprecipitation analysis demonstrated binding of Bromodomain Containing 4 (BRD4) to the HOTAIR promoter, suggesting that BET proteins can directly regulate lncRNA expression. Our data unravel a previously unappreciated mechanism through which BET proteins control tumor growth of glioblastoma cells and suggest that modulation of lncRNA networks may, in part, mediate the antiproliferative effects of many epigenetic inhibitors currently in clinical trials for cancer and other diseases.
Author Ricardo Komotar
Georges St. Laurent
Claude-Henry Volmar
Jann N. Sarkaria
Philipp Kapranov
Claes Wahlestedt
Veronica Peschansky
Clara Penas
Pastori, Chiara
Nagi G. Ayad
Amade Bregy
Author_xml – sequence: 1
  fullname: Pastori, Chiara
– sequence: 2
  fullname: Philipp Kapranov
– sequence: 3
  fullname: Clara Penas
– sequence: 4
  fullname: Veronica Peschansky
– sequence: 5
  fullname: Claude-Henry Volmar
– sequence: 6
  fullname: Jann N. Sarkaria
– sequence: 7
  fullname: Amade Bregy
– sequence: 8
  fullname: Ricardo Komotar
– sequence: 9
  fullname: Georges St. Laurent
– sequence: 10
  fullname: Nagi G. Ayad
– sequence: 11
  fullname: Claes Wahlestedt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26111795$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQtVAR3RbOnIBIXDiQ1nYcO74gbctHK1VUWtqz5Xid4JVjb-0sEv-eCbtsSw9wGkvz3pvnmXeEDkIMFqGXBJ8QLKrTddD5hDDKKMWE0CdoRrAkJWcSH6AZxlSUDXQP0VHOK4yxrBv8DB1STggRsp6h_izFIS7joF0o1imOFurZ4iMrTAxjij4XF9c388vF-0IXPoa-AAcmLh28Fl_nhc3ZhtFpX3QxFb13sfU6j6A3qXnX2aRHF8Nz9LTTPtsXu3qMbj9_ujm_KK-uv1yez69Kw2k1lhxTWrfSiI63VmhtGikM4Vw32BC7NMxUTaMxqaWgnRFWMAwt3gktlwLLtjpGH7a66007AAHMJe3VOrlBp58qaqf-7gT3XfXxh2I1bKupQODdTiDFu43NoxpcNtZ7HWzcZEUaIhoqmGD_hwpMmACLEqBvH0FXcZMCbEIRLjmueM2m2a8fmt-7_nMuAJxuASbFnJPt9hCC1RQINQVC3QcCGPUjhnHj74vA753_B-_NzsrU2E8hVFGhmopyQLzaIlZw7vTAK-OVwPW9Qqej0n1yWd1-A3EOe4YgSlH9Assk1qY
CitedBy_id crossref_primary_10_1042_BCJ20170664
crossref_primary_10_1007_s44194_022_00019_6
crossref_primary_10_1002_tox_22873
crossref_primary_10_1186_s12967_023_04823_y
crossref_primary_10_3389_fonc_2017_00046
crossref_primary_10_18632_oncotarget_24597
crossref_primary_10_18632_oncotarget_7580
crossref_primary_10_3390_cancers13123039
crossref_primary_10_1016_j_lfs_2021_119504
crossref_primary_10_1038_s41392_023_01637_8
crossref_primary_10_1111_cas_14002
crossref_primary_10_1038_s41419_020_02977_x
crossref_primary_10_1186_s12974_019_1511_7
crossref_primary_10_3390_ijms21197001
crossref_primary_10_1016_j_canlet_2018_01_041
crossref_primary_10_1038_s41419_022_04699_8
crossref_primary_10_1038_srep31969
crossref_primary_10_1007_s11011_017_9965_8
crossref_primary_10_1016_j_cellsig_2017_01_003
crossref_primary_10_1042_BST20160377
crossref_primary_10_1016_j_jns_2018_11_027
crossref_primary_10_1007_s10571_022_01311_7
crossref_primary_10_1038_cddis_2016_41
crossref_primary_10_1186_s12943_020_01189_3
crossref_primary_10_3390_cancers12092583
crossref_primary_10_1016_j_talanta_2024_126577
crossref_primary_10_3389_fimmu_2021_706936
crossref_primary_10_1016_j_neulet_2020_134896
crossref_primary_10_1002_ggn2_202200024
crossref_primary_10_1093_bfgp_elx013
crossref_primary_10_1097_RMR_0000000000000111
crossref_primary_10_3389_fnmol_2017_00053
crossref_primary_10_1002_jcb_28117
crossref_primary_10_1007_s12031_022_02069_9
crossref_primary_10_1016_j_ncrna_2023_08_005
crossref_primary_10_1134_S0026893317050247
crossref_primary_10_1016_j_phrs_2019_104508
crossref_primary_10_1093_narcan_zcaa041
crossref_primary_10_1007_s13365_022_01089_w
crossref_primary_10_1016_j_coisb_2017_04_016
crossref_primary_10_1042_BSR20190994
crossref_primary_10_3389_fonc_2021_679244
crossref_primary_10_1016_j_gene_2019_144126
crossref_primary_10_1016_j_neo_2018_02_010
crossref_primary_10_1038_s41467_018_07659_z
crossref_primary_10_18632_oncotarget_15991
crossref_primary_10_1002_cbf_3921
crossref_primary_10_1038_s12276_024_01239_6
crossref_primary_10_1038_s41598_021_02584_6
crossref_primary_10_1093_nar_gkw729
crossref_primary_10_1097_MD_0000000000027248
crossref_primary_10_1186_s12935_021_02060_1
crossref_primary_10_1227_neu_0000000000002449
crossref_primary_10_3892_ijmm_2018_3430
crossref_primary_10_1073_pnas_1712363115
crossref_primary_10_31083_j_jin2104111
crossref_primary_10_3390_cells11071113
crossref_primary_10_1016_j_biopha_2022_113594
crossref_primary_10_1016_j_heliyon_2021_e06502
crossref_primary_10_1158_1078_0432_CCR_17_0605
crossref_primary_10_1002_ctm2_181
crossref_primary_10_1016_j_isci_2023_108559
crossref_primary_10_1080_15592294_2016_1278095
crossref_primary_10_3390_cancers13071604
crossref_primary_10_1177_2472555220926158
crossref_primary_10_3389_fonc_2018_00521
crossref_primary_10_1016_j_neulet_2015_12_025
crossref_primary_10_1093_narmme_ugae016
crossref_primary_10_1007_s00109_020_01984_x
crossref_primary_10_1042_BCJ20200339
crossref_primary_10_1158_1078_0432_CCR_19_0747
crossref_primary_10_3233_CBM_190939
crossref_primary_10_1186_s13578_019_0336_5
crossref_primary_10_3389_fonc_2019_00899
crossref_primary_10_32604_biocell_2024_048791
crossref_primary_10_3389_fgene_2022_884424
crossref_primary_10_1007_s13237_017_0201_z
crossref_primary_10_1016_j_celrep_2016_05_018
crossref_primary_10_1007_s12264_019_00436_y
crossref_primary_10_1155_2017_2312318
crossref_primary_10_1002_hon_2776
crossref_primary_10_1016_j_bbagen_2021_130065
crossref_primary_10_1016_j_cca_2019_12_028
crossref_primary_10_1007_s00109_019_01798_6
crossref_primary_10_1136_jim_2019_001080
crossref_primary_10_1186_s12967_023_04394_y
crossref_primary_10_3892_ol_2020_11542
crossref_primary_10_3390_cancers7030843
crossref_primary_10_1007_s13311_018_00702_3
crossref_primary_10_1016_j_phrs_2023_106767
crossref_primary_10_1080_17520363_2025_2455925
crossref_primary_10_1016_j_jbc_2023_105235
crossref_primary_10_1186_s12943_018_0822_0
crossref_primary_10_15252_embr_201948170
crossref_primary_10_3390_cancers13133209
crossref_primary_10_1161_CIRCULATIONAHA_120_047626
crossref_primary_10_3390_cancers12071842
crossref_primary_10_3389_fonc_2021_716830
crossref_primary_10_3389_fonc_2022_887766
crossref_primary_10_1016_j_omtn_2021_07_024
crossref_primary_10_1016_j_cellsig_2022_110306
crossref_primary_10_1155_2020_1645249
crossref_primary_10_1186_s12935_020_1135_0
crossref_primary_10_3389_fonc_2024_1431636
crossref_primary_10_1016_j_modpat_2024_100702
crossref_primary_10_1186_s13046_020_01700_0
crossref_primary_10_1093_annonc_mdx106
crossref_primary_10_1007_s11060_021_03836_1
crossref_primary_10_1007_s10571_024_01455_8
crossref_primary_10_1111_jcmm_14502
crossref_primary_10_1177_1724600818814459
crossref_primary_10_1002_adma_202411869
crossref_primary_10_18632_oncotarget_8075
crossref_primary_10_3389_fcell_2022_846864
crossref_primary_10_3389_fonc_2020_590352
crossref_primary_10_1523_JNEUROSCI_0826_15_2015
crossref_primary_10_1155_2022_2623599
crossref_primary_10_1038_s41598_024_60031_8
crossref_primary_10_1186_s12943_018_0812_2
crossref_primary_10_3390_ijms24065665
crossref_primary_10_1016_j_ygeno_2021_07_015
crossref_primary_10_1016_j_omto_2021_03_005
crossref_primary_10_1002_jgm_3104
crossref_primary_10_1016_j_prp_2024_155708
crossref_primary_10_1016_j_mcn_2016_03_008
crossref_primary_10_1002_jcp_28933
crossref_primary_10_1182_blood_2015_09_671040
crossref_primary_10_1007_s13277_016_5307_4
crossref_primary_10_1002_slct_202104054
crossref_primary_10_2217_bmm_2023_0368
crossref_primary_10_1016_j_omtn_2018_09_023
crossref_primary_10_1016_j_mce_2017_07_020
crossref_primary_10_1016_j_neuropharm_2020_108306
crossref_primary_10_1111_jcmm_13781
crossref_primary_10_18632_oncotarget_25510
crossref_primary_10_1007_s11060_018_2951_0
crossref_primary_10_18632_oncotarget_20340
crossref_primary_10_1111_jcmm_15044
crossref_primary_10_1002_2211_5463_12602
crossref_primary_10_1111_cpr_13375
crossref_primary_10_1016_j_omtn_2021_03_018
crossref_primary_10_1073_pnas_1707544114
crossref_primary_10_3390_cancers11010017
crossref_primary_10_1016_j_wneu_2018_04_021
crossref_primary_10_1111_cpr_12313
crossref_primary_10_3390_ijms221810160
crossref_primary_10_3892_mmr_2024_13288
crossref_primary_10_1093_abbs_gmv116
crossref_primary_10_1038_s41420_022_01157_4
crossref_primary_10_1158_1535_7163_MCT_16_0320
crossref_primary_10_1016_j_ygeno_2019_06_017
crossref_primary_10_1016_j_ibneur_2025_01_015
crossref_primary_10_1038_s41388_020_01466_x
crossref_primary_10_2174_0929867325666180831170227
crossref_primary_10_1016_j_ddtec_2016_09_001
crossref_primary_10_2176_nmc_ra_2017_0018
crossref_primary_10_1016_j_trsl_2017_06_013
crossref_primary_10_1186_s13045_021_01088_0
crossref_primary_10_3390_ijms161226236
crossref_primary_10_1186_s13046_020_01643_6
crossref_primary_10_1016_j_biopha_2020_110642
crossref_primary_10_1155_2018_2895958
crossref_primary_10_1038_s12276_023_00934_0
crossref_primary_10_1038_npp_2016_203
crossref_primary_10_1007_s12035_017_0572_9
crossref_primary_10_1016_j_biochi_2018_05_021
crossref_primary_10_18632_oncotarget_15175
crossref_primary_10_1038_s41584_020_00543_5
crossref_primary_10_3390_v16071096
crossref_primary_10_1016_j_jpeds_2020_02_078
Cites_doi 10.1038/nature09589
10.1038/nsmb.2912
10.1038/nature03574
10.4161/epi.27906
10.1021/jm300915b
10.1038/nature09190
10.1126/science.1192002
10.1016/j.ygyno.2014.03.556
10.1016/S0014-5793(01)03309-9
10.1074/jbc.M112.413047
10.1126/science.1181369
10.1186/gb-2013-14-7-r73
10.1073/pnas.1108190108
10.1016/j.molmed.2014.06.004
10.4161/rna.20482
10.1016/j.molcel.2005.06.027
10.1056/NEJMoa043330
10.1038/20974
10.1093/neuonc/not131
10.1371/journal.pgen.1000459
10.1016/j.ccr.2014.01.028
10.1126/science.1138341
10.1186/1476-4598-10-38
10.3389/fgene.2012.00017
10.1002/jcb.24055
10.1158/2159-8290.CD-11-0209
10.1038/nsmb.2842
10.1038/onc.2012.193
10.1016/j.cell.2007.05.022
10.1371/journal.pone.0086295
10.1126/science.1112009
10.1111/cns.12220
10.1158/1078-0432.CCR-12-3066
10.1126/science.1112014
10.18632/oncotarget.2681
10.1038/modpathol.2012.160
10.1016/j.nbd.2012.06.004
10.1038/nature08975
10.1016/j.ccr.2010.03.017
10.1021/jm401088k
10.1038/nrd4286
10.1016/j.cell.2014.06.049
10.1182/blood-2013-01-478420
10.1200/JCO.2008.19.0694
10.1002/jcb.22116
10.1038/nature13185
10.1073/pnas.0904715106
10.1016/j.cell.2011.08.017
10.1016/j.cell.2013.03.036
10.1007/s12253-014-9833-3
10.1074/jbc.M702029200
10.1016/j.molcel.2014.05.016
10.1371/journal.pone.0017305
10.1016/j.cell.2009.02.006
10.1038/bjc.2013.233
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jul 7, 2015
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jul 7, 2015
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
5PM
DOI 10.1073/pnas.1424220112
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Virology and AIDS Abstracts
Neurosciences Abstracts

CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Bromodomain proteins regulate long noncoding RNAs
EISSN 1091-6490
EndPage 8331
ExternalDocumentID PMC4500283
3742520581
26111795
10_1073_pnas_1424220112
112_27_8326
26463705
US201600200997
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: P50 NS071674
– fundername: NINDS NIH HHS
  grantid: R01 NS067289
– fundername: NIMH NIH HHS
  grantid: MH084880
– fundername: NINDS NIH HHS
  grantid: NS071674
– fundername: NIDA NIH HHS
  grantid: R21 DA035592
– fundername: NIMH NIH HHS
  grantid: R01 MH084880
– fundername: NIDA NIH HHS
  grantid: DA035592
– fundername: NINDS NIH HHS
  grantid: R01NS067289
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
5PM
ID FETCH-LOGICAL-c623t-60225b9c7f6be7aac897c166a80c1edc4c388a015972fc7e740a806f7a9d709b3
ISSN 0027-8424
IngestDate Thu Aug 21 18:12:24 EDT 2025
Fri Jul 11 06:10:40 EDT 2025
Fri Jul 11 16:35:17 EDT 2025
Mon Jun 30 08:07:24 EDT 2025
Thu Apr 03 07:08:25 EDT 2025
Thu Apr 24 22:51:44 EDT 2025
Tue Jul 01 01:53:29 EDT 2025
Wed Nov 11 00:29:41 EST 2020
Fri May 30 12:01:39 EDT 2025
Wed Dec 27 19:19:45 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords I-BET151
glioblastoma
long noncoding RNAs
epigenetics
BRD4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c623t-60225b9c7f6be7aac897c166a80c1edc4c388a015972fc7e740a806f7a9d709b3
Notes http://dx.doi.org/10.1073/pnas.1424220112
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Thomas C. Roberts, Scripps Research Institute, and accepted by the Editorial Board May 19, 2015 (received for review December 18, 2014)
Author contributions: C. Pastori, N.G.A., and C.W. designed research; C. Pastori, C. Penas, and V.P. performed research; C.-H.V., J.N.S., A.B., R.K., and G.S.L. contributed new reagents/analytic tools; C. Pastori and P.K. analyzed data; and C. Pastori, V.P., N.G.A., and C.W. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/112/27/8326.full.pdf
PMID 26111795
PQID 1696036543
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_1696036543
pubmed_primary_26111795
crossref_primary_10_1073_pnas_1424220112
pnas_primary_112_27_8326
jstor_primary_26463705
proquest_miscellaneous_1701477409
crossref_citationtrail_10_1073_pnas_1424220112
fao_agris_US201600200997
proquest_miscellaneous_1817827474
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4500283
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-07
PublicationDateYYYYMMDD 2015-07-07
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
Kim HJ (e_1_3_3_48_2) 2011; 3
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
Ozawa T (e_1_3_3_43_2) 2010; 41
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
Sanchez R (e_1_3_3_5_2) 2009; 12
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
17604720 - Cell. 2007 Jun 29;129(7):1311-23
15880101 - Nature. 2005 Jun 2;435(7042):637-45
24751816 - Nat Rev Drug Discov. 2014 May;13(5):337-56
17569660 - J Biol Chem. 2007 Aug 24;282(34):24731-42
11911891 - FEBS Lett. 2002 Feb 20;513(1):124-8
22096659 - Cancer Discov. 2011 Oct;1(5):391-407
23582323 - Cell. 2013 Apr 11;153(2):320-34
25156108 - Pathol Oncol Res. 2014 Oct;20(4):777-87
19247990 - J Cell Biochem. 2009 May 1;107(1):30-9
23403638 - Clin Cancer Res. 2013 Apr 1;19(7):1748-59
19239885 - Cell. 2009 Feb 20;136(4):629-41
19307505 - J Clin Oncol. 2009 Apr 20;27(12):2052-8
23876380 - Genome Biol. 2013;14(7):R73
17510325 - Science. 2007 Jun 8;316(5830):1484-8
21068722 - Nature. 2010 Dec 23;468(7327):1119-23
21489289 - Mol Cancer. 2011;10:38
25109877 - Cell. 2014 Aug 14;158(4):929-44
20671709 - Nature. 2010 Jul 29;466(7306):642-6
21416059 - Am J Transl Res. 2011 Feb;3(2):166-79
19390609 - PLoS Genet. 2009 Apr;5(4):e1000459
19815776 - Science. 2009 Oct 9;326(5950):289-93
16109376 - Mol Cell. 2005 Aug 19;19(4):523-34
20393566 - Nature. 2010 Apr 15;464(7291):1071-6
21889194 - Cell. 2011 Sep 16;146(6):904-17
24335499 - Blood. 2014 Jan 30;123(5):697-705
20644517 - J Vis Exp. 2010;(41). pii: 1986. doi: 10.3791/1986
19736624 - Curr Opin Drug Discov Devel. 2009 Sep;12(5):659-65
23660942 - Br J Cancer. 2013 Jun 25;108(12):2419-25
20616235 - Science. 2010 Aug 6;329(5992):689-93
24929436 - Nat Struct Mol Biol. 2014 Jul;21(7):585-90
24695229 - Nature. 2014 Apr 10;508(7495):199-206
22709987 - Neurobiol Dis. 2012 Oct;48(1):1-8
21949397 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16669-74
24662839 - Gynecol Oncol. 2014 Jul;134(1):121-8
24986769 - Trends Mol Med. 2014 Sep;20(9):477-8
22614017 - Oncogene. 2013 Mar 28;32(13):1616-25
20399149 - Cancer Cell. 2010 May 18;17(5):510-22
24203894 - Neuro Oncol. 2013 Dec;15(12):1595-603
22234798 - J Cell Biochem. 2012 Jun;113(6):1868-74
25383670 - Nat Struct Mol Biol. 2014 Dec;21(12):1047-57
25428914 - Oncotarget. 2015 Jan 1;6(1):537-46
19571010 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11667-72
24393335 - CNS Neurosci Ther. 2014 Apr;20(4):339-43
24466011 - PLoS One. 2014;9(1):e86295
23086925 - J Biol Chem. 2012 Dec 14;287(51):43137-55
24525235 - Cancer Cell. 2014 Feb 10;25(2):210-25
24496381 - Epigenetics. 2014 Apr;9(4):611-20
24905006 - Mol Cell. 2014 Jun 5;54(5):728-36
22699553 - RNA Biol. 2012 Jun;9(6):860-70
22996375 - Mod Pathol. 2013 Feb;26(2):155-65
22363342 - Front Genet. 2012 Feb 15;3:17
15758009 - N Engl J Med. 2005 Mar 10;352(10):987-96
22924434 - J Med Chem. 2012 Nov 26;55(22):9393-413
16141073 - Science. 2005 Sep 2;309(5740):1564-6
21390249 - PLoS One. 2011;6(3):e17305
16141072 - Science. 2005 Sep 2;309(5740):1559-63
24015967 - J Med Chem. 2013 Oct 10;56(19):7501-15
10365964 - Nature. 1999 Jun 3;399(6735):491-6
References_xml – ident: e_1_3_3_9_2
  doi: 10.1038/nature09589
– ident: e_1_3_3_51_2
  doi: 10.1038/nsmb.2912
– ident: e_1_3_3_55_2
  doi: 10.1038/nature03574
– ident: e_1_3_3_4_2
  doi: 10.4161/epi.27906
– ident: e_1_3_3_11_2
  doi: 10.1021/jm300915b
– ident: e_1_3_3_26_2
  doi: 10.1038/nature09190
– ident: e_1_3_3_42_2
  doi: 10.1126/science.1192002
– ident: e_1_3_3_22_2
  doi: 10.1016/j.ygyno.2014.03.556
– ident: e_1_3_3_8_2
  doi: 10.1016/S0014-5793(01)03309-9
– ident: e_1_3_3_53_2
  doi: 10.1074/jbc.M112.413047
– ident: e_1_3_3_56_2
  doi: 10.1126/science.1181369
– ident: e_1_3_3_28_2
  doi: 10.1186/gb-2013-14-7-r73
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.1108190108
– ident: e_1_3_3_2_2
  doi: 10.1016/j.molmed.2014.06.004
– ident: e_1_3_3_21_2
  doi: 10.4161/rna.20482
– ident: e_1_3_3_7_2
  doi: 10.1016/j.molcel.2005.06.027
– ident: e_1_3_3_1_2
  doi: 10.1056/NEJMoa043330
– ident: e_1_3_3_6_2
  doi: 10.1038/20974
– ident: e_1_3_3_39_2
  doi: 10.1093/neuonc/not131
– ident: e_1_3_3_17_2
  doi: 10.1371/journal.pgen.1000459
– ident: e_1_3_3_58_2
  doi: 10.1016/j.ccr.2014.01.028
– ident: e_1_3_3_30_2
  doi: 10.1126/science.1138341
– ident: e_1_3_3_20_2
  doi: 10.1186/1476-4598-10-38
– ident: e_1_3_3_19_2
  doi: 10.3389/fgene.2012.00017
– ident: e_1_3_3_50_2
  doi: 10.1002/jcb.24055
– ident: e_1_3_3_18_2
  doi: 10.1158/2159-8290.CD-11-0209
– ident: e_1_3_3_47_2
  doi: 10.1038/nsmb.2842
– ident: e_1_3_3_38_2
  doi: 10.1038/onc.2012.193
– ident: e_1_3_3_41_2
  doi: 10.1016/j.cell.2007.05.022
– ident: e_1_3_3_36_2
  doi: 10.1371/journal.pone.0086295
– ident: e_1_3_3_29_2
  doi: 10.1126/science.1112009
– ident: e_1_3_3_24_2
  doi: 10.1111/cns.12220
– ident: e_1_3_3_15_2
  doi: 10.1158/1078-0432.CCR-12-3066
– ident: e_1_3_3_31_2
  doi: 10.1126/science.1112014
– ident: e_1_3_3_45_2
  doi: 10.18632/oncotarget.2681
– ident: e_1_3_3_23_2
  doi: 10.1038/modpathol.2012.160
– ident: e_1_3_3_25_2
  doi: 10.1016/j.nbd.2012.06.004
– ident: e_1_3_3_37_2
  doi: 10.1038/nature08975
– ident: e_1_3_3_33_2
  doi: 10.1016/j.ccr.2010.03.017
– volume: 12
  start-page: 659
  year: 2009
  ident: e_1_3_3_5_2
  article-title: The role of human bromodomains in chromatin biology and gene transcription
  publication-title: Curr Opin Drug Discov Devel
– ident: e_1_3_3_10_2
  doi: 10.1021/jm401088k
– ident: e_1_3_3_3_2
  doi: 10.1038/nrd4286
– ident: e_1_3_3_35_2
  doi: 10.1016/j.cell.2014.06.049
– volume: 3
  start-page: 166
  year: 2011
  ident: e_1_3_3_48_2
  article-title: Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs
  publication-title: Am J Transl Res
– ident: e_1_3_3_52_2
  doi: 10.1182/blood-2013-01-478420
– volume: 41
  start-page: 1986
  year: 2010
  ident: e_1_3_3_43_2
  article-title: Establishing intracranial brain tumor xenografts with subsequent analysis of tumor growth and response to therapy using bioluminescence imaging
  publication-title: J Vis Exp
– ident: e_1_3_3_49_2
  doi: 10.1200/JCO.2008.19.0694
– ident: e_1_3_3_57_2
  doi: 10.1002/jcb.22116
– ident: e_1_3_3_46_2
  doi: 10.1038/nature13185
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.0904715106
– ident: e_1_3_3_13_2
  doi: 10.1016/j.cell.2011.08.017
– ident: e_1_3_3_54_2
  doi: 10.1016/j.cell.2013.03.036
– ident: e_1_3_3_34_2
  doi: 10.1007/s12253-014-9833-3
– ident: e_1_3_3_44_2
  doi: 10.1074/jbc.M702029200
– ident: e_1_3_3_12_2
  doi: 10.1016/j.molcel.2014.05.016
– ident: e_1_3_3_27_2
  doi: 10.1371/journal.pone.0017305
– ident: e_1_3_3_16_2
  doi: 10.1016/j.cell.2009.02.006
– ident: e_1_3_3_32_2
  doi: 10.1038/bjc.2013.233
– reference: 19571010 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11667-72
– reference: 21416059 - Am J Transl Res. 2011 Feb;3(2):166-79
– reference: 10365964 - Nature. 1999 Jun 3;399(6735):491-6
– reference: 16141073 - Science. 2005 Sep 2;309(5740):1564-6
– reference: 20393566 - Nature. 2010 Apr 15;464(7291):1071-6
– reference: 24751816 - Nat Rev Drug Discov. 2014 May;13(5):337-56
– reference: 22699553 - RNA Biol. 2012 Jun;9(6):860-70
– reference: 25383670 - Nat Struct Mol Biol. 2014 Dec;21(12):1047-57
– reference: 25428914 - Oncotarget. 2015 Jan 1;6(1):537-46
– reference: 22363342 - Front Genet. 2012 Feb 15;3:17
– reference: 24393335 - CNS Neurosci Ther. 2014 Apr;20(4):339-43
– reference: 22614017 - Oncogene. 2013 Mar 28;32(13):1616-25
– reference: 23876380 - Genome Biol. 2013;14(7):R73
– reference: 21489289 - Mol Cancer. 2011;10:38
– reference: 21949397 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16669-74
– reference: 24929436 - Nat Struct Mol Biol. 2014 Jul;21(7):585-90
– reference: 20671709 - Nature. 2010 Jul 29;466(7306):642-6
– reference: 17604720 - Cell. 2007 Jun 29;129(7):1311-23
– reference: 19239885 - Cell. 2009 Feb 20;136(4):629-41
– reference: 24662839 - Gynecol Oncol. 2014 Jul;134(1):121-8
– reference: 17510325 - Science. 2007 Jun 8;316(5830):1484-8
– reference: 21889194 - Cell. 2011 Sep 16;146(6):904-17
– reference: 23582323 - Cell. 2013 Apr 11;153(2):320-34
– reference: 19307505 - J Clin Oncol. 2009 Apr 20;27(12):2052-8
– reference: 22924434 - J Med Chem. 2012 Nov 26;55(22):9393-413
– reference: 19815776 - Science. 2009 Oct 9;326(5950):289-93
– reference: 17569660 - J Biol Chem. 2007 Aug 24;282(34):24731-42
– reference: 15880101 - Nature. 2005 Jun 2;435(7042):637-45
– reference: 23086925 - J Biol Chem. 2012 Dec 14;287(51):43137-55
– reference: 24525235 - Cancer Cell. 2014 Feb 10;25(2):210-25
– reference: 16141072 - Science. 2005 Sep 2;309(5740):1559-63
– reference: 23403638 - Clin Cancer Res. 2013 Apr 1;19(7):1748-59
– reference: 20399149 - Cancer Cell. 2010 May 18;17(5):510-22
– reference: 25156108 - Pathol Oncol Res. 2014 Oct;20(4):777-87
– reference: 21068722 - Nature. 2010 Dec 23;468(7327):1119-23
– reference: 24905006 - Mol Cell. 2014 Jun 5;54(5):728-36
– reference: 24015967 - J Med Chem. 2013 Oct 10;56(19):7501-15
– reference: 21390249 - PLoS One. 2011;6(3):e17305
– reference: 23660942 - Br J Cancer. 2013 Jun 25;108(12):2419-25
– reference: 20616235 - Science. 2010 Aug 6;329(5992):689-93
– reference: 24496381 - Epigenetics. 2014 Apr;9(4):611-20
– reference: 22096659 - Cancer Discov. 2011 Oct;1(5):391-407
– reference: 24203894 - Neuro Oncol. 2013 Dec;15(12):1595-603
– reference: 22996375 - Mod Pathol. 2013 Feb;26(2):155-65
– reference: 22709987 - Neurobiol Dis. 2012 Oct;48(1):1-8
– reference: 20644517 - J Vis Exp. 2010;(41). pii: 1986. doi: 10.3791/1986
– reference: 19247990 - J Cell Biochem. 2009 May 1;107(1):30-9
– reference: 24695229 - Nature. 2014 Apr 10;508(7495):199-206
– reference: 24466011 - PLoS One. 2014;9(1):e86295
– reference: 16109376 - Mol Cell. 2005 Aug 19;19(4):523-34
– reference: 11911891 - FEBS Lett. 2002 Feb 20;513(1):124-8
– reference: 19736624 - Curr Opin Drug Discov Devel. 2009 Sep;12(5):659-65
– reference: 25109877 - Cell. 2014 Aug 14;158(4):929-44
– reference: 19390609 - PLoS Genet. 2009 Apr;5(4):e1000459
– reference: 24335499 - Blood. 2014 Jan 30;123(5):697-705
– reference: 22234798 - J Cell Biochem. 2012 Jun;113(6):1868-74
– reference: 24986769 - Trends Mol Med. 2014 Sep;20(9):477-8
– reference: 15758009 - N Engl J Med. 2005 Mar 10;352(10):987-96
SSID ssj0009580
Score 2.5591805
Snippet Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule...
Glioblastoma Multiforme (GBM) is the most common and deadliest primary brain tumor in adults. As the median survival is approximately 14 mo there is an urgent...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8326
SubjectTerms Animals
antisense RNA
Apoptosis - genetics
Biological Sciences
Brain cancer
Brain Neoplasms - genetics
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
BRD4
Cell growth
Cell Line, Tumor
Cell Proliferation - drug effects
Cell Proliferation - genetics
chromatin
clinical trials
Epigenetics
Gene expression
gene expression regulation
Gene Expression Regulation, Neoplastic - drug effects
glioblastoma
Glioblastoma - genetics
Glioblastoma - metabolism
Glioblastoma - pathology
Heterocyclic Compounds, 4 or More Rings - pharmacology
Humans
I-BET151
Inhibitors
long noncoding RNAs
Mice, Nude
Microscopy, Fluorescence
neoplasms
non-coding RNA
Nuclear Proteins - antagonists & inhibitors
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
oncogenes
precipitin tests
Promoter Regions, Genetic - genetics
Protein Binding
Proteins
Reverse Transcriptase Polymerase Chain Reaction
Ribonucleic acid
RNA
RNA Interference
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Transcription Factors - antagonists & inhibitors
Transcription Factors - genetics
Transcription Factors - metabolism
Xenograft Model Antitumor Assays - methods
Title Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation
URI https://www.jstor.org/stable/26463705
http://www.pnas.org/content/112/27/8326.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26111795
https://www.proquest.com/docview/1696036543
https://www.proquest.com/docview/1701477409
https://www.proquest.com/docview/1817827474
https://pubmed.ncbi.nlm.nih.gov/PMC4500283
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5cIFUaDUUNAicSgyDn7u2se0PAJIoSoJ6s1ar-3WappEjYMEv5Ufw8zaXjtRioCLFdnr9drzZR72zDeEvAyiwMt5klos5D4EKMy1khSUocilk-epn6e5yvIdseHE_3QenPd6vzpZS6sy6cufW-tK_keqsA_kilWy_yBZPSnsgN8gX9iChGH71zI-xny6dH4tCpVshc0rzeOzt36ThL40h1_Gg48q30GYU2wtBBG_nKtilrPRwETy8FlZVIWM5sW0mCfgUZcwI843xdSXVnq1G3uqzd6ySTIYNW8VB22NSq04lqZlno7ajscnl4W4EeC8KoaS7neJYrEwP4sF2M_5dz16qgZnM6Hd_2-ZYvTFvUusXF5e_ei-vXAClenK2-SO7tr0qroK2wUj6ldl1v2s0tHg4ljMr7qMaiXuuB20VnQDtU4GncW2GgvQbtjhGJbfx3o_F30htzsSpL24VtiBOBO584LWajaZAhvGVKc4wlSxy2O8-A6540IQg_01Ppw7HUrosCqQqm-xIZ7i3puNNSFjdb2ANfdpJxfzJo8WyXnhrG2B0ma-b8eBGt8n9-rIhw4qGO-RXjZ7QPYaYdCjmgD91UNyBbimHVzTGtcUcU0bXNMK16-poIhqqlFNAdVUo5oCqmkX1XQN1Y_I5P278cnQqpuCWBI89dJi4HQGSSR5zpKMCyHDiEuHMRHa0oFb9KUXhgKQFnE3lzzjvg2HWM5FlHI7Srx9sgsLyg4I9WQUSJ5EjpsG4KhK4XqekwQcOe78xMkN0m-edSxrxnxs3DKNVeYG92J84nErJ4Mc6RMWFVnM7UMPQHixuABTHk--ukj0aOOXyogbZF9JVE8BMQvzuB3AOWoWPXULMYMcNmKPawUFV2MRAwc18D2DvNCHwXzgN0Exy-YrGMNtx4cQ0I7-MCZ0II7g8FAM8rhCUmdtFS4Nwtcwpgcgff36kVlxqWjs_UA1Snty-109JXdbnXFIdsubVfYMYoAyea7-Sr8BefgDww
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Bromodomain+protein+BRD4+controls+HOTAIR%2C+a+long+noncoding+RNA+essential+for+glioblastoma+proliferation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chiara+Pastori&rft.au=Philipp+Kapranov&rft.au=Clara+Penas&rft.au=Veronica+Peschansky&rft.date=2015-07-07&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=27&rft.spage=8326&rft_id=info:doi/10.1073%2Fpnas.1424220112&rft_id=info%3Apmid%2F26111795&rft.externalDBID=n%2Fa&rft.externalDocID=112_27_8326
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F27.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F27.cover.gif