A Framework to Assess the Information Dynamics of Source EEG Activity and Its Application to Epileptic Brain Networks
This study introduces a framework for the information-theoretic analysis of brain functional connectivity performed at the level of electroencephalogram (EEG) sources. The framework combines the use of common spatial patterns to select the EEG components which maximize the variance between two exper...
Saved in:
Published in | Brain sciences Vol. 10; no. 9; p. 657 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
22.09.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study introduces a framework for the information-theoretic analysis of brain functional connectivity performed at the level of electroencephalogram (EEG) sources. The framework combines the use of common spatial patterns to select the EEG components which maximize the variance between two experimental conditions, simultaneous implementation of vector autoregressive modeling (VAR) with independent component analysis to describe the joint source dynamics and their projection to the scalp, and computation of information dynamics measures (information storage, information transfer, statistically significant network links) from the source VAR parameters. The proposed framework was tested on simulated EEGs obtained mixing source signals generated under different coupling conditions, showing its ability to retrieve source information dynamics from the scalp signals. Then, it was applied to investigate scalp and source brain connectivity in a group of children manifesting episodes of focal and generalized epilepsy; the analysis was performed on EEG signals lasting 5 s, collected in two consecutive windows preceding and one window following each ictal episode. Our results show that generalized seizures are associated with a significant decrease from pre-ictal to post-ictal periods of the information stored in the signals and of the information transferred among them, reflecting reduced self-predictability and causal connectivity at the level of both scalp and source brain dynamics. On the contrary, in the case of focal seizures the scalp EEG activity was not discriminated across conditions by any information measure, while source analysis revealed a tendency of the measures of information transfer to increase just before seizures and to decrease just after seizures. These results suggest that focal epileptic seizures are associated with a reorganization of the topology of EEG brain networks which is only visible analyzing connectivity among the brain sources. Our findings emphasize the importance of EEG modeling approaches able to deal with the adverse effects of volume conduction on brain connectivity analysis, and their potential relevance to the development of strategies for prediction and clinical treatment of epilepsy. |
---|---|
AbstractList | This study introduces a framework for the information-theoretic analysis of brain functional connectivity performed at the level of electroencephalogram (EEG) sources. The framework combines the use of common spatial patterns to select the EEG components which maximize the variance between two experimental conditions, simultaneous implementation of vector autoregressive modeling (VAR) with independent component analysis to describe the joint source dynamics and their projection to the scalp, and computation of information dynamics measures (information storage, information transfer, statistically significant network links) from the source VAR parameters. The proposed framework was tested on simulated EEGs obtained mixing source signals generated under different coupling conditions, showing its ability to retrieve source information dynamics from the scalp signals. Then, it was applied to investigate scalp and source brain connectivity in a group of children manifesting episodes of focal and generalized epilepsy; the analysis was performed on EEG signals lasting 5 s, collected in two consecutive windows preceding and one window following each ictal episode. Our results show that generalized seizures are associated with a significant decrease from pre-ictal to post-ictal periods of the information stored in the signals and of the information transferred among them, reflecting reduced self-predictability and causal connectivity at the level of both scalp and source brain dynamics. On the contrary, in the case of focal seizures the scalp EEG activity was not discriminated across conditions by any information measure, while source analysis revealed a tendency of the measures of information transfer to increase just before seizures and to decrease just after seizures. These results suggest that focal epileptic seizures are associated with a reorganization of the topology of EEG brain networks which is only visible analyzing connectivity among the brain sources. Our findings emphasize the importance of EEG modeling approaches able to deal with the adverse effects of volume conduction on brain connectivity analysis, and their potential relevance to the development of strategies for prediction and clinical treatment of epilepsy. This study introduces a framework for the information-theoretic analysis of brain functional connectivity performed at the level of electroencephalogram (EEG) sources. The framework combines the use of common spatial patterns to select the EEG components which maximize the variance between two experimental conditions, simultaneous implementation of vector autoregressive modeling (VAR) with independent component analysis to describe the joint source dynamics and their projection to the scalp, and computation of information dynamics measures (information storage, information transfer, statistically significant network links) from the source VAR parameters. The proposed framework was tested on simulated EEGs obtained mixing source signals generated under different coupling conditions, showing its ability to retrieve source information dynamics from the scalp signals. Then, it was applied to investigate scalp and source brain connectivity in a group of children manifesting episodes of focal and generalized epilepsy; the analysis was performed on EEG signals lasting 5 s, collected in two consecutive windows preceding and one window following each ictal episode. Our results show that generalized seizures are associated with a significant decrease from pre-ictal to post-ictal periods of the information stored in the signals and of the information transferred among them, reflecting reduced self-predictability and causal connectivity at the level of both scalp and source brain dynamics. On the contrary, in the case of focal seizures the scalp EEG activity was not discriminated across conditions by any information measure, while source analysis revealed a tendency of the measures of information transfer to increase just before seizures and to decrease just after seizures. These results suggest that focal epileptic seizures are associated with a reorganization of the topology of EEG brain networks which is only visible analyzing connectivity among the brain sources. Our findings emphasize the importance of EEG modeling approaches able to deal with the adverse effects of volume conduction on brain connectivity analysis, and their potential relevance to the development of strategies for prediction and clinical treatment of epilepsy. Keywords: epilepsy; information theory; EEG; information storage; information transfer; vector autoregressive modeling; common spatial patterns; independent component analysis |
Audience | Academic |
Author | Kotiuchyi, Ivan Popov, Anton Kharytonov, Volodymyr Pernice, Riccardo Faes, Luca |
AuthorAffiliation | 1 Department of Biomedical Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056 Kyiv, Ukraine; ivanellokot@gmail.com 5 Clinical Hospital “Psychiatry”, 03056 Kyiv, Ukraine; vkharytonov69@gmail.com 4 Department of Electronic Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056 Kyiv, Ukraine 3 Department of Engineering, University of Palermo, 90133 Palermo, Italy; riccardo.pernice@unipa.it 2 Data & Analytics, Ciklum, London WC1 A 2TH, UK; popov.kpi@gmail.com |
AuthorAffiliation_xml | – name: 4 Department of Electronic Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056 Kyiv, Ukraine – name: 3 Department of Engineering, University of Palermo, 90133 Palermo, Italy; riccardo.pernice@unipa.it – name: 2 Data & Analytics, Ciklum, London WC1 A 2TH, UK; popov.kpi@gmail.com – name: 5 Clinical Hospital “Psychiatry”, 03056 Kyiv, Ukraine; vkharytonov69@gmail.com – name: 1 Department of Biomedical Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 03056 Kyiv, Ukraine; ivanellokot@gmail.com |
Author_xml | – sequence: 1 givenname: Ivan orcidid: 0000-0003-1612-9581 surname: Kotiuchyi fullname: Kotiuchyi, Ivan organization: Data & Analytics, Ciklum, London WC1 A 2TH, UK – sequence: 2 givenname: Riccardo orcidid: 0000-0002-9992-3221 surname: Pernice fullname: Pernice, Riccardo organization: Department of Engineering, University of Palermo, 90133 Palermo, Italy – sequence: 3 givenname: Anton orcidid: 0000-0002-1194-4424 surname: Popov fullname: Popov, Anton organization: Department of Electronic Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 03056 Kyiv, Ukraine – sequence: 4 givenname: Luca orcidid: 0000-0002-3271-5348 surname: Faes fullname: Faes, Luca organization: Department of Engineering, University of Palermo, 90133 Palermo, Italy – sequence: 5 givenname: Volodymyr surname: Kharytonov fullname: Kharytonov, Volodymyr organization: Clinical Hospital "Psychiatry", 03056 Kyiv, Ukraine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32971835$$D View this record in MEDLINE/PubMed |
BookMark | eNptUktv1DAYjFARLaV3TsgSFy5bPj-TXJDSsi0rVXAAzpZjO1svSRxsp2j_PV62lG6FfbBlz8z3mpfF0ehHWxSvMZxTWsP7Nig3Ru0wQA2Cl8-KEwKlWFBG-NGj-3FxFuMG8qoAKIcXxTEldYkryk-KuUFXQQ32lw8_UPKoidHGiNKtRaux82FQyfkRfdyOanA6It-hr34O2qLl8ho1Ork7l7ZIjQatUkTNNPVO7zlZbTm53k7JaXSxSxZ9tmkXKL4qnneqj_bs_jwtvl8tv11-Wtx8uV5dNjcLLQhNC1YbDQRzaoEIKCm3HcemNEZp0AZqDMJ0irXAaFe2WoCtaVXVvK00UFErelqs9rrGq42cghtU2EqvnPzz4MNaqpDT660UmOmSEtWVVjFGTAUC09yxWivOod1pfdhrTXM7WKPtmILqD0QPf0Z3K9f-TpZcMFpBFnh3LxD8z9nGJAcXte17NVo_R0kYE0JQAnWGvn0C3eSmj7lVknCGSZmx7B9qrXIBLo8rx9U7UdmI7JCcN-CMOv8PKm9j80Szpbo8o0MC7Ak6-BiD7R5qxCB3zpNPnZcpbx735oHw12f0N8Jh1WE |
CitedBy_id | crossref_primary_10_3389_fnins_2020_602584 crossref_primary_10_1016_j_clinph_2023_03_004 crossref_primary_10_3390_brainsci11111476 crossref_primary_10_1109_TNNLS_2021_3096642 crossref_primary_10_1109_ACCESS_2021_3124601 crossref_primary_10_3390_brainsci13121671 crossref_primary_10_1098_rsta_2020_0263 crossref_primary_10_1016_j_bspc_2023_105315 crossref_primary_10_1088_1741_2552_ac7fba crossref_primary_10_3390_bioengineering10030372 crossref_primary_10_3390_s21227710 |
Cites_doi | 10.1007/s10827-010-0262-3 10.1103/PhysRevLett.111.177203 10.3390/e15010198 10.1111/acfi.12390 10.3390/e17010277 10.1002/hbm.20263 10.3389/fninf.2013.00006 10.1162/netn_a_00146 10.1016/S0013-4694(97)00147-8 10.1109/JPROC.2015.2476824 10.1007/978-3-540-71512-2_17 10.1684/epd.2015.0736 10.1109/TBME.2016.2619665 10.1016/j.seizure.2019.10.015 10.1098/rsta.2011.0618 10.1371/journal.pone.0175870 10.1155/2012/140513 10.1111/j.1467-9892.2011.00752.x 10.1016/j.pneurobio.2014.06.004 10.1371/journal.pone.0093616 10.1109/TBME.2010.2082539 10.1016/j.jneumeth.2009.04.021 10.1038/s41467-018-02973-y 10.1089/brain.2011.0008 10.1109/SPS.2019.8882099 10.1088/0031-9155/46/1/306 10.22237/jmasm/1257035100 10.1016/j.jneumeth.2013.10.018 10.1109/MMSP.2010.5662067 10.3389/fninf.2014.00001 10.1016/j.yebeh.2019.106688 10.4324/9780203771587 10.1162/089976699300016719 10.1016/j.compbiomed.2011.06.020 10.1016/j.pneurobio.2005.10.003 10.3389/fnsys.2010.00154 10.1016/S0013-4694(97)00066-7 10.1016/S1053-8119(03)00112-5 10.1007/978-3-642-54474-3 10.1088/1361-6579/ab16a3 10.3389/fncom.2016.00121 10.1038/s41598-018-30869-w 10.1016/j.advms.2018.08.003 10.1007/978-3-319-58709-7_3 10.1002/hbm.20745 10.1016/j.physd.2013.06.009 10.1109/TBME.2016.2569823 10.1007/s10548-016-0538-7 10.3389/fninf.2014.00022 10.1016/j.clinph.2019.09.017 10.3390/e19010005 10.1016/j.jneumeth.2003.10.009 10.3389/fneur.2019.00721 10.1016/j.neuroimage.2008.07.032 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | NPM AAYXX CITATION 3V. 7TK 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/brainsci10090657 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Databases ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Biological Science Collection ProQuest Research Library Biological Science Database Research Library (Corporate) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Biological Science Collection ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Databases url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2076-3425 |
ExternalDocumentID | oai_doaj_org_article_614c732af7ea442d806130809ca550ba A639055001 10_3390_brainsci10090657 32971835 |
Genre | Journal Article |
GeographicLocations | Ukraine |
GeographicLocations_xml | – name: Ukraine |
GroupedDBID | 3V. 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ ABDBF ABUWG ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E NPM OK1 PGMZT PIMPY PQQKQ PROAC RPM AAYXX AFPKN CITATION 7TK 7XB 8FK MBDVC PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c623t-49dc02153e0260735ef51d7ddac0cd09106dfa4b043f7bc60e938895b8c0369a3 |
IEDL.DBID | RPM |
ISSN | 2076-3425 |
IngestDate | Tue Oct 22 15:14:15 EDT 2024 Tue Sep 17 21:03:03 EDT 2024 Sat Oct 26 05:58:04 EDT 2024 Thu Oct 10 19:52:08 EDT 2024 Thu Feb 22 23:27:11 EST 2024 Fri Feb 02 04:27:10 EST 2024 Fri Aug 23 05:27:36 EDT 2024 Sat Nov 02 12:24:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | epilepsy independent component analysis EEG common spatial patterns information theory information transfer information storage vector autoregressive modeling |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c623t-49dc02153e0260735ef51d7ddac0cd09106dfa4b043f7bc60e938895b8c0369a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1194-4424 0000-0002-3271-5348 0000-0003-1612-9581 0000-0002-9992-3221 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564380/ |
PMID | 32971835 |
PQID | 2541272444 |
PQPubID | 2032423 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_614c732af7ea442d806130809ca550ba pubmedcentral_primary_oai_pubmedcentral_nih_gov_7564380 proquest_miscellaneous_2446663209 proquest_journals_2541272444 gale_infotracmisc_A639055001 gale_infotracacademiconefile_A639055001 crossref_primary_10_3390_brainsci10090657 pubmed_primary_32971835 |
PublicationCentury | 2000 |
PublicationDate | 20200922 |
PublicationDateYYYYMMDD | 2020-09-22 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200922 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Brain sciences |
PublicationTitleAlternate | Brain Sci |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Camfield (ref_49) 2015; 17 ref_14 ref_57 Gershon (ref_2) 2019; 2019 Atienza (ref_27) 2008; 43 ref_56 Baillet (ref_25) 2001; 46 ref_54 ref_52 Bossomaier (ref_51) 2018; 58 Nuzzi (ref_53) 2020; 4 ref_19 ref_60 Pereda (ref_9) 2005; 77 Vicente (ref_45) 2011; 30 Faes (ref_47) 2016; 63 Lai (ref_17) 2018; 8 ref_21 Mosdorf (ref_58) 2019; 64 Faes (ref_48) 2013; 15 Barrett (ref_16) 2013; 7 Faes (ref_39) 2013; 371 Billinger (ref_28) 2014; 8 Papadopoulou (ref_3) 2014; 121 Astolfi (ref_12) 2007; 28 ref_26 Wendling (ref_7) 2010; 4 Faes (ref_22) 2019; 32 Porta (ref_15) 2015; 104 Horwitz (ref_24) 2003; 19 Proix (ref_55) 2018; 9 Wendling (ref_11) 2009; 183 Sawilowsky (ref_44) 2009; 8 Nunez (ref_18) 1997; 103 Barnett (ref_50) 2013; 111 ref_35 Naik (ref_38) 2011; 35 Coito (ref_6) 2016; 63 ref_34 ref_33 ref_32 ref_31 Lee (ref_36) 1999; 11 Faes (ref_13) 2012; 2012 Wibral (ref_46) 2014; 8 Friston (ref_1) 2011; 1 Okanari (ref_59) 2019; 102 Pernice (ref_40) 2019; 40 Delorme (ref_37) 2004; 134 ref_43 Faes (ref_30) 2015; 17 ref_42 ref_41 Lehnertz (ref_8) 2014; 267 Reinders (ref_20) 1998; 106 Lotte (ref_29) 2010; 58 ref_5 Sakkalis (ref_10) 2011; 41 Schoffelen (ref_23) 2009; 30 ref_4 |
References_xml | – volume: 30 start-page: 45 year: 2011 ident: ref_45 article-title: Transfer entropy—A model-free measure of effective connectivity for the neurosciences publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-010-0262-3 contributor: fullname: Vicente – ident: ref_26 – volume: 111 start-page: 177203 year: 2013 ident: ref_50 article-title: Information flow in a kinetic Ising model peaks in the disordered phase publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.177203 contributor: fullname: Barnett – volume: 15 start-page: 198 year: 2013 ident: ref_48 article-title: Compensated transfer entropy as a tool for reliably estimating information transfer in physiological time series publication-title: Entropy doi: 10.3390/e15010198 contributor: fullname: Faes – volume: 58 start-page: 45 year: 2018 ident: ref_51 article-title: Information flow around stock market collapse publication-title: Account. Financ. doi: 10.1111/acfi.12390 contributor: fullname: Bossomaier – volume: 17 start-page: 277 year: 2015 ident: ref_30 article-title: Information Decomposition in Bivariate Systems: Theory and Application to Cardiorespiratory Dynamics publication-title: Entropy doi: 10.3390/e17010277 contributor: fullname: Faes – volume: 28 start-page: 143 year: 2007 ident: ref_12 article-title: Comparison of different cortical connectivity estimators for high-resolution EEG recordings publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20263 contributor: fullname: Astolfi – volume: 7 start-page: 6 year: 2013 ident: ref_16 article-title: Granger causality is designed to measure effect, not mechanism publication-title: Front. Neuroinform. doi: 10.3389/fninf.2013.00006 contributor: fullname: Barrett – ident: ref_42 – volume: 4 start-page: 910 year: 2020 ident: ref_53 article-title: Synergistic information in a dynamical model implemented on the human structural connectome reveals spatially distinct associations with age publication-title: Netw. Neurosci. doi: 10.1162/netn_a_00146 contributor: fullname: Nuzzi – volume: 106 start-page: 522 year: 1998 ident: ref_20 article-title: Volume conduction effects in EEG and MEG publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(97)00147-8 contributor: fullname: Reinders – volume: 104 start-page: 282 year: 2015 ident: ref_15 article-title: Wiener–Granger causality in network physiology with applications to cardiovascular control and neuroscience publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2476824 contributor: fullname: Porta – ident: ref_5 doi: 10.1007/978-3-540-71512-2_17 – volume: 17 start-page: 117 year: 2015 ident: ref_49 article-title: Incidence, prevalence and aetiology of seizures and epilepsy in children publication-title: Epileptic Disord. doi: 10.1684/epd.2015.0736 contributor: fullname: Camfield – volume: 63 start-page: 2619 year: 2016 ident: ref_6 article-title: Directed functional brain connectivity based on EEG source imaging: Methodology and application to temporal lobe epilepsy publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2619665 contributor: fullname: Coito – ident: ref_56 doi: 10.1016/j.seizure.2019.10.015 – volume: 371 start-page: 20110618 year: 2013 ident: ref_39 article-title: A framework for assessing frequency domain causality in physiological time series with instantaneous effects publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2011.0618 contributor: fullname: Faes – ident: ref_4 doi: 10.1371/journal.pone.0175870 – volume: 2012 start-page: 140513 year: 2012 ident: ref_13 article-title: Measuring Connectivity in Linear Multivariate Processes: Definitions, Interpretation, and Practical Analysis publication-title: Comput. Math. Methods Med. doi: 10.1155/2012/140513 contributor: fullname: Faes – ident: ref_35 doi: 10.1111/j.1467-9892.2011.00752.x – volume: 121 start-page: 19 year: 2014 ident: ref_3 article-title: Functional brain connectivity from EEG in epilepsy: Seizure prediction and epileptogenic focus localization publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2014.06.004 contributor: fullname: Papadopoulou – ident: ref_52 doi: 10.1371/journal.pone.0093616 – volume: 58 start-page: 355 year: 2010 ident: ref_29 article-title: Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082539 contributor: fullname: Lotte – volume: 183 start-page: 9 year: 2009 ident: ref_11 article-title: From EEG signals to brain connectivity: A model-based evaluation of interdependence measures publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.04.021 contributor: fullname: Wendling – volume: 9 start-page: 1 year: 2018 ident: ref_55 article-title: Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy publication-title: Nat. Commun. doi: 10.1038/s41467-018-02973-y contributor: fullname: Proix – volume: 1 start-page: 13 year: 2011 ident: ref_1 article-title: Functional and effective connectivity: A review publication-title: Brain Connect. doi: 10.1089/brain.2011.0008 contributor: fullname: Friston – ident: ref_41 doi: 10.1109/SPS.2019.8882099 – volume: 46 start-page: 77 year: 2001 ident: ref_25 article-title: Evaluation of inverse methods and head models for EEG source localization using a human skull phantom publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/46/1/306 contributor: fullname: Baillet – volume: 2019 start-page: 107 year: 2019 ident: ref_2 article-title: Computing Functional Brain Connectivity in Neurological Disorders: Efficient Processing and Retrieval of Electrophysiological Signal Data publication-title: AMIA Summits Transl. Sci. Proc. contributor: fullname: Gershon – ident: ref_34 – volume: 8 start-page: 26 year: 2009 ident: ref_44 article-title: New effect size rules of thumb publication-title: J. Mod. Appl. Stat. Methods doi: 10.22237/jmasm/1257035100 contributor: fullname: Sawilowsky – ident: ref_14 doi: 10.1016/j.jneumeth.2013.10.018 – ident: ref_31 doi: 10.1109/MMSP.2010.5662067 – volume: 8 start-page: 1 year: 2014 ident: ref_46 article-title: Local active information storage as a tool to understand distributed neural information processing publication-title: Front. Neuroinform. doi: 10.3389/fninf.2014.00001 contributor: fullname: Wibral – volume: 102 start-page: 106688 year: 2019 ident: ref_59 article-title: Autonomic dysregulation in children with epilepsy with postictal generalized EEG suppression following generalized convulsive seizures publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2019.106688 contributor: fullname: Okanari – ident: ref_43 doi: 10.4324/9780203771587 – volume: 11 start-page: 417 year: 1999 ident: ref_36 article-title: Independent component analysis using an extended Infomax algorithm for mixed subGaussian and superGaussian sources publication-title: Neural Comput. doi: 10.1162/089976699300016719 contributor: fullname: Lee – volume: 41 start-page: 1110 year: 2011 ident: ref_10 article-title: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2011.06.020 contributor: fullname: Sakkalis – volume: 77 start-page: 1 year: 2005 ident: ref_9 article-title: Nonlinear multivariate analysis of neurophysiological signals publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2005.10.003 contributor: fullname: Pereda – volume: 4 start-page: 154 year: 2010 ident: ref_7 article-title: From intracerebral EEG signals to brain connectivity: Identification of epileptogenic networks in partial epilepsy publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2010.00154 contributor: fullname: Wendling – volume: 103 start-page: 499 year: 1997 ident: ref_18 article-title: EEG coherency I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(97)00066-7 contributor: fullname: Nunez – volume: 19 start-page: 466 year: 2003 ident: ref_24 article-title: The elusive concept of brain connectivity publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00112-5 contributor: fullname: Horwitz – ident: ref_54 doi: 10.1007/978-3-642-54474-3 – volume: 40 start-page: 074003 year: 2019 ident: ref_40 article-title: Time, frequency and information domain analysis of short-term heart rate variability before and after focal and generalized seizures in epileptic children publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab16a3 contributor: fullname: Pernice – ident: ref_21 doi: 10.3389/fncom.2016.00121 – volume: 8 start-page: 1 year: 2018 ident: ref_17 article-title: A comparison between scalp-and source-reconstructed EEG networks publication-title: Sci. Rep. doi: 10.1038/s41598-018-30869-w contributor: fullname: Lai – volume: 64 start-page: 58 year: 2019 ident: ref_58 article-title: Epilepsy identification based on EEG signal using RQA method publication-title: Adv. Med Sci. doi: 10.1016/j.advms.2018.08.003 contributor: fullname: Mosdorf – ident: ref_33 doi: 10.1007/978-3-319-58709-7_3 – volume: 30 start-page: 1857 year: 2009 ident: ref_23 article-title: Source connectivity analysis with MEG and EEG publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20745 contributor: fullname: Schoffelen – volume: 267 start-page: 7 year: 2014 ident: ref_8 article-title: Evolving networks in the human epileptic brain publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/j.physd.2013.06.009 contributor: fullname: Lehnertz – volume: 63 start-page: 2488 year: 2016 ident: ref_47 article-title: An information-theoretic framework to map the spatiotemporal dynamics of the scalp electroencephalogram publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2569823 contributor: fullname: Faes – volume: 32 start-page: 643 year: 2019 ident: ref_22 article-title: Critical comments on EEG sensor space dynamical connectivity analysis publication-title: Brain Topogr. doi: 10.1007/s10548-016-0538-7 contributor: fullname: Faes – volume: 35 start-page: 63 year: 2011 ident: ref_38 article-title: An overview of independent component analysis and its applications publication-title: Informatica contributor: fullname: Naik – volume: 8 start-page: 22 year: 2014 ident: ref_28 article-title: SCoT: A Python toolbox for EEG source connectivity publication-title: Front. Neuroinform. doi: 10.3389/fninf.2014.00022 contributor: fullname: Billinger – ident: ref_57 doi: 10.1016/j.clinph.2019.09.017 – ident: ref_32 doi: 10.3390/e19010005 – ident: ref_19 – volume: 134 start-page: 9 year: 2004 ident: ref_37 article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 contributor: fullname: Delorme – ident: ref_60 doi: 10.3389/fneur.2019.00721 – volume: 43 start-page: 497 year: 2008 ident: ref_27 article-title: Measuring directional coupling between EEG sources publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.07.032 contributor: fullname: Atienza |
SSID | ssj0000800350 |
Score | 2.2712357 |
Snippet | This study introduces a framework for the information-theoretic analysis of brain functional connectivity performed at the level of electroencephalogram (EEG)... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 657 |
SubjectTerms | Algorithms Brain mapping Causality Convulsions & seizures Diagnosis EEG Electroencephalography Epilepsy Health aspects Information storage information theory information transfer Neural circuitry Neural networks Physiological aspects Principal components analysis Seizures Sensors Signal processing Statistical analysis Time series vector autoregressive modeling |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ0AKBgqYSAnGImsR2HB9T2KWtRC9QqTfLrwiQmq3Y7IF_z0ycXTZw4MI1dqJ4Hp5vPOMZxl5bbXFf1DJHaO1y6gSLOlfEXIrgnbMqCkt3hz9d1efX4vJG3uy1-qKcsFQeOBHuFM2HV7yynYpWiCo0ZIAQ5mhvEVy7BI0KvedMfZ9wEJdFikty9OtPHXVcQKtSIqhAs6tmdmgs1__3prxnleYZk3smaPmQPZiwI7Tpnx-xe7F_zA7bHv3m25_wBsZszvGY_JBtWlhu865gWEEK7gLCPZhuIBFH4ENqSL-GVQefx3N8WCw-QutTUwmwfYCLYQ3t7zg3fW1xh5sJbjYezmjBcJWSyddH7Hq5-PL-PJ9aLOQecc-QCx08WX0eqbaY4jJ2sgwqBOsLHwhL1KGzwhWCd8r5uoiaN42WrvHEYsufsIN-1cdnDMbrIMHyxne1KCMyipeWqyAqS-UhZMbebQlu7lIlDYMeCDHH_MmcjJ0RR3bzqAb2-AAlw0ySYf4lGRl7S_w0pKnING-nCwf4u1TzyrQIzgqcWZQZO57NRA3z8-GtRJhJw9cGHeuyUgiORMZOdsP0JmWt9XG1wTkULK95VeiMPU0CtFsSrzTCAiKLmonWbM3zkf7b17H-t5I19Ql4_j-I9ILdr-gEgeJs1TE7GH5s4kuEWYN7NWrUL2BgJI0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Databases dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9sIFFcojUJCREIhD1CR24uSEspClILFCQKXeLMd2CgeSbZM98O-ZSbzbBiSusfNwxjPzzcMzAC91oVEuFmmI0LoOqRMs8lzkwlRYU9daOqHp7PDndXZ6Jj6dp-fe4db7tMqdTBwFte0M-chP0JCJE4nKSLzdXIbUNYqiq76Fxm04SMhSWMDBslp_-br3shAe4mk0xSc52vcnNXVeQO0SI7hA9Stn-mgs2_-vcL6hneaZkzdU0eoQ7noMycqJ6Pfglmvvw1HZov386zd7xcasztFdfgTbkq12-Vds6NgU5GUI-5g_iUSUYe-nxvQ96xr2bfTns6r6wEozNZdgurXs49Cz8jreTU-rNihUUOgYtqQFs_WUVN4_gLNV9f3daehbLYQG8c8QisIa0v7cUY0xyVPXpLGV1moTGUuYIrONFnUkeCNrk0Wu4HlepHVuiNSaP4RF27XuMbDxWIjVPDdNJmJncxQbmksrEk1lItIA3ux-uNpMFTUUWiJEHPU3cQJYEkX286gW9nihu7pQnrUUAgwjeaIb6bQQCb6QbKI8KoxG86vWAbwmeiriWCSa0f7gAX4u1b5SJYK0CGdGcQDHs5nIaWY-vNsRynN6r673ZQAv9sN0J2Wvta7b4hwKmmc8iYoAHk0baL8knhQID-i3yNnWmq15PtL-_DHWAZdpRv0Cnvz_s57CnYR8BBRJS45hMVxt3TMEUkP93HPLH3utHiQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXLggoDxSChokBOIQSGwnTg4IpbBLQaIXWKk3y7GdAqJJ2c1K9N8z42S3DfTAde0ka8_D33hejD0zpUG9WGYxQus6pk6wKHOJjzPpbF0b5aWh3OHPR_nhQn46zo4v0qPHDVxdadpRP6nF8uer37_O36LAvyGLE0321zU1U8ADI0W8gCequs5ucEoEokC-Eez_GLGRCC1bORrvsUBuHfyWV75kck6Fcv7_Ku1Lp9Y0ovLSETW_zW6N2BKqgRnusGu-vct2qxbt6tNzeA4h2jNco--ydQXzTVwW9B0Mzl9AOAhjhhJRDN4PDetX0DXwJdzzw2z2ASo7NJ0A0zr42K-guvCD09tmZ6hsUBlZOKAFw9EQbL66xxbz2dd3h_HYgiG2iIv6WJbOEioQnmqPKZH5Jkudcs7YxDrCGrlrjKwTKRpV2zzxpSiKMqsLSyxgxH2203atf8ggpIs4Iwrb5DL1rkB1YoRykhsqH5FF7OVmw_XZUGlDo4VCxNF_EydiB0SR7TyqkR1-6JYnehQ5jcDDKsFNo7yRkuMHyVYqktIaNMtqE7EXRE9NvIVEs2ZMSMC_SzWxdIXgLcGZSRqx_clMlEA7Hd5whN4wsEbDO-UKwZOM2NPtMD1JUW2t79Y4h5zpueBJGbEHAwNtlyR4ibCBtkVNWGuy5ulI-_1bqA-uspz6COz9x3cfsZucLhDIzcb32U6_XPvHiLL6-kkQnj_vAiUC priority: 102 providerName: Scholars Portal |
Title | A Framework to Assess the Information Dynamics of Source EEG Activity and Its Application to Epileptic Brain Networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32971835 https://www.proquest.com/docview/2541272444 https://search.proquest.com/docview/2446663209 https://pubmed.ncbi.nlm.nih.gov/PMC7564380 https://doaj.org/article/614c732af7ea442d806130809ca550ba |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_axoULGoyPjFEZCYE4ZE1i5-uYjpSB1GoCJu0WObYDQzSp1vTAf897TtI1cOPSQ-ykcd7X79nvA-CNTCXqxTR0EVqXLnWCRZnzjBsKrcpSxkZIyh1eLKPLa_H5Jrw5gHDIhbFB-6q8Pa9_rc7r2x82tnK9UtMhTmx6tbiIw4gKpU8P4RAZdM9F_9lDIB563ZEkR5d-WlKzBTQoPuIJtLjUd48HKSpl2-Pt3hrZov3_quY92zSOm9wzRPNjeNQjSJZ1b_oYDkz9BE6yGr3n1W_2ltmYTrtZfgLbjM2H6CvWNqw74mUI-lifh0R0YR-6tvQb1lTsq93NZ3n-kWWqay3BZK3Zp3bDsvvTbnpavkaVgipHsRmtnS27kPLNU7ie598uLt2-0YKrEP20rki1ItvPDVUYi3loqtDXsdZSeUoTooh0JUXpCV7FpYo8k_IkScMyUURoyZ_BUd3U5gUwmxSiJU9UFQnf6ASVhuSxFoGkIhGhA--HD16su3oaBfohRKfibzo5MCOK7OZRJWx7obn7XvT8UCC8UDEPZBUbKUSAf0geUeKlSqLzVUoH3hE9C5JXJJqSfdoBvi5VvioyhGgezvR8B85GM1HO1Hh44Iiil_NNge61H8QIkYQDr3fDdCfFrtWm2eIcOjKPeOClDjzvGGi3pIEPHYhHrDVa83gEhcJWAe-F4PS_73wJDwPaPKAjtuAMjtq7rXmFCKstJ_Bgli-vvkzsDgX-LkQysVL2B2lvKTs |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,21401,24331,27937,27938,33757,33758,43818,53805,53807,74637 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gAXBBRooICREIhD1CR24uSEspBlC-0KQSv1Fjm2AxxIliZ74N8zk3i3DUhcY-fhjGfmm4dnAF6qTKFczGIfoXXlUydY5LnA-rEwuqqUtELR2eHTVbI8Fx8v4gvncOtcWuVWJg6C2rSafORHaMiEkURlJN6uf_nUNYqiq66Fxk3Yo1JV6Qz25sXq85edl4XwEI-DMT7J0b4_qqjzAmqXEMEFql850UdD2f5_hfM17TTNnLymihZ34Y7DkCwfiX4PbtjmPuznDdrPP3-zV2zI6hzc5fuwydlim3_F-paNQV6GsI-5k0hEGfZ-bEzfsbZmXwd_PiuKDyzXY3MJphrDjvuO5VfxbnpasUahgkJHszktmK3GpPLuAZwvirN3S9-1WvA14p_eF5nRpP25pRpjkse2jkMjjVE60IYwRWJqJapA8FpWOglsxtM0i6tUE6kVfwizpm3sAbDhWIhRPNV1IkJrUhQbiksjIkVlImIP3mx_eLkeK2qUaIkQccq_iePBnCiym0e1sIcL7eW30rFWiQBDSx6pWlolRIQvJJsoDTKt0PyqlAeviZ4lcSwSTSt38AA_l2pflTmCtABnBqEHh5OZyGl6OrzdEaXj9K682pcevNgN052UvdbYdoNzKGie8CjIPHg0bqDdkniUITyg3yInW2uy5ulI8-P7UAdcxgn1C3j8_896DreWZ6cn5cnx6tMTuB2Rv4CiatEhzPrLjX2KoKqvnjnO-QM5ACEe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgV0JcELA8AgsMEgJxiJrETpycUMqm7PKoVsBKe7Mc2wEOJGXTHvj3zCRudwMS19pt48zrm4dnGHuhC416sUhDhNZ1SJNgUeYiF6bCmrrW0glNd4c_LbPjM_H-PD339U-9L6vc6sRBUdvOUIx8ho5MnEg0RmLW-LKI06PFm9WvkCZIUabVj9O4zvalyDg6Yvvzann6eRdxIWzE02jMVXL09Wc1TWFASxMj0EBTLCe2aWjh_6-ivmKpplWUV8zS4ja75fEklCMD3GHXXHuXHZQt-tI_f8NLGCo8h9D5AduUsNjWYsG6gzHhCwgBwd9KIirB0TikvoeugS9DbB-q6h2UZhw0Abq1cLLuobzMfdOvVStUMKiADMzpwLAcC8z7e-xsUX19exz6sQuhQSy0DkVhDSEB7qjfmOSpa9LYSmu1iYwlfJHZRos6EryRtckiV_A8L9I6N0R2ze-zvbZr3UMGwxURq3lumkzEzuaoQjSXViSaWkakAXu9feFqNXbXUOiVEHHU38QJ2JwosttHfbGHD7qLb8qLmUKwYSRPdCOdFiLBPyT_KI8Ko9EVq3XAXhE9FUkvEs1ofwkBH5f6YKkSAVuEO6M4YIeTnSh1Zrq85Qjlpb5XlzwasOe7ZfomVbK1rtvgHkqgZzyJioA9GBlodySeFAgV6LXICWtNzjxdaX98H3qCyzSj2QGP_v9Yz9gNFBr18WT54TG7mVDogBJsySHbW19s3BPEV-v6qRecP88QJVI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+to+Assess+the+Information+Dynamics+of+Source+EEG+Activity+and+Its+Application+to+Epileptic+Brain+Networks&rft.jtitle=Brain+sciences&rft.au=Kotiuchyi%2C+Ivan&rft.au=Pernice%2C+Riccardo&rft.au=Popov%2C+Anton&rft.au=Faes%2C+Luca&rft.date=2020-09-22&rft.issn=2076-3425&rft.eissn=2076-3425&rft.volume=10&rft.issue=9&rft_id=info:doi/10.3390%2Fbrainsci10090657&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon |