Chromatin fiber polymorphism triggered by variations of DNA linker lengths
Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNA...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 22; pp. 8061 - 8066 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.06.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin’s diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes. |
---|---|
AbstractList | Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin's diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes. The structure of the chromatin fiber remains one of the most fundamental open biological questions because structure dictates many template-directed processes. We use coarse-grained modeling to investigate systematically how variations in the linker DNA length that arise naturally for chromatin in different tissues, species, and cell cycle stages affect fiber architecture. We unravel a natural source of fiber polymorphism, in which irregular interdigitated 10-nm and compact 30-nm fibers coexist. These results suggest how structural diversity can be advantageous for gene regulation activity. Interesting DNA design applications also arise. Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin’s diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes. Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin's diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes.Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin's diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes. |
Author | Schlick, Tamar Collepardo-Guevara, Rosana |
Author_xml | – sequence: 1 givenname: Rosana surname: Collepardo-Guevara fullname: Collepardo-Guevara, Rosana – sequence: 2 givenname: Tamar surname: Schlick fullname: Schlick, Tamar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24847063$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstv1DAQxi1URLeFMycgEhcu2874FfuCVC1vVXCAni0ncXa9JPHWzlba_x7voy1UQnCy5Pl9n-abmRNyNITBEfIc4QyhZOerwaYzZChUSRHxEZkgaJxKruGITABoOVWc8mNyktISALRQ8IQcU654CZJNyJfZIobejn4oWl-5WKxCt-lDXC186osx-vncRdcU1aa4sdFnMAypCG3x7utF0fnhZ5Z0bpiPi_SUPG5tl9yzw3tKrj68_zH7NL389vHz7OJyWkvKxilzUjdlU3HlQGukNZNNU9ZWYyWhrRrRSGZb2WiOyBvB8q_EuhZUcd62vGWn5O3ed7WuetfUbhij7cwq-t7GjQnWmz8rg1-YebgxHAQITbPBm4NBDNdrl0bT-1S7rrODC-tkUAEDpaRm_0aFQEmpovw_UCalQsoho68foMuwjkMe2o7Siood9fL3nHcBb5eXAbEH6hhSiq41tR93G8qxfWcQzPZIzPZIzP2RZN35A92t9d8Vrw6tbAt3NKKh1Ki8n0y82BPLNIZ43ysrS6F2gzw4tDYYO48-mavvFFACIGcMNfsFfeza2g |
CitedBy_id | crossref_primary_10_1091_mbc_E17_07_0449 crossref_primary_10_1016_j_bpj_2018_03_008 crossref_primary_10_1016_j_tig_2015_03_010 crossref_primary_10_1073_pnas_1720476115 crossref_primary_10_7554_eLife_91320_3 crossref_primary_10_1016_j_bpj_2021_01_008 crossref_primary_10_1088_0953_8984_27_6_064113 crossref_primary_10_1042_BSR20150087 crossref_primary_10_1088_1478_3975_13_3_035006 crossref_primary_10_15252_embr_201846960 crossref_primary_10_1016_j_bpj_2016_11_3201 crossref_primary_10_15252_embj_201899769 crossref_primary_10_1016_j_bpj_2019_11_004 crossref_primary_10_1042_BST20230721 crossref_primary_10_1021_acs_jpcb_6b03197 crossref_primary_10_1016_j_bpj_2017_01_003 crossref_primary_10_1016_j_cbpa_2019_01_022 crossref_primary_10_3389_fmolb_2022_1106588 crossref_primary_10_1093_nar_gkw514 crossref_primary_10_1073_pnas_1816424116 crossref_primary_10_1103_PhysRevLett_123_208103 crossref_primary_10_1016_j_celrep_2020_108614 crossref_primary_10_1002_1873_3468_13370 crossref_primary_10_1093_nar_gkx562 crossref_primary_10_1038_s41576_018_0089_8 crossref_primary_10_7554_eLife_91320 crossref_primary_10_1088_0953_8984_27_6_064109 crossref_primary_10_1103_PhysRevE_93_042409 crossref_primary_10_1016_j_gde_2015_11_006 crossref_primary_10_7498_aps_66_150201 crossref_primary_10_1088_0953_8984_27_3_033101 crossref_primary_10_1002_cbic_202200450 crossref_primary_10_1021_jacs_5b04086 crossref_primary_10_1016_j_sbi_2018_11_003 crossref_primary_10_1016_j_ceb_2024_102398 crossref_primary_10_1016_j_bpj_2016_04_024 crossref_primary_10_1038_srep14891 crossref_primary_10_1098_rsif_2021_0229 crossref_primary_10_1101_cshperspect_a040675 crossref_primary_10_7554_eLife_87672_3 crossref_primary_10_1016_j_sbi_2022_102506 crossref_primary_10_1016_j_ceb_2020_02_016 crossref_primary_10_1186_s13100_020_0202_3 crossref_primary_10_1021_acs_jctc_8b00299 crossref_primary_10_1016_j_bpj_2022_09_013 crossref_primary_10_1017_S0033583522000038 crossref_primary_10_1021_acs_jpcb_7b04917 crossref_primary_10_1038_s41467_023_42072_1 crossref_primary_10_1146_annurev_physchem_071119_040043 crossref_primary_10_1002_wcms_1434 crossref_primary_10_1126_science_aag0025 crossref_primary_10_1074_jbc_RA118_006412 crossref_primary_10_1371_journal_pcbi_1005365 crossref_primary_10_1016_j_csbj_2022_09_020 crossref_primary_10_1016_j_sbi_2015_04_002 crossref_primary_10_1016_j_jmb_2020_10_017 crossref_primary_10_1016_j_sbi_2020_06_016 crossref_primary_10_1016_j_molcel_2018_09_027 crossref_primary_10_1042_EBC20180065 crossref_primary_10_1016_j_jmb_2015_12_004 crossref_primary_10_1016_j_ceb_2022_02_001 crossref_primary_10_1093_nar_gky207 crossref_primary_10_1016_j_sbi_2016_01_013 crossref_primary_10_1093_nar_gkv215 crossref_primary_10_1016_j_sbi_2020_06_021 crossref_primary_10_1016_j_bpj_2022_02_009 crossref_primary_10_7554_eLife_72062 crossref_primary_10_1016_j_sbi_2015_11_011 crossref_primary_10_1042_EBC20180054 crossref_primary_10_1016_j_bpj_2019_08_019 crossref_primary_10_1038_s41467_021_23090_3 crossref_primary_10_1016_j_bpj_2018_10_007 crossref_primary_10_1002_wcms_1454 crossref_primary_10_7554_eLife_87672 crossref_primary_10_1016_j_febslet_2015_04_023 crossref_primary_10_1016_j_jmb_2020_166744 crossref_primary_10_1093_nar_gku491 crossref_primary_10_1002_bies_201400144 crossref_primary_10_1016_j_molcel_2021_06_006 crossref_primary_10_1016_j_csbj_2020_09_034 crossref_primary_10_1016_j_jmb_2020_166792 crossref_primary_10_1016_j_ceb_2019_02_003 crossref_primary_10_1016_j_sbi_2019_03_004 crossref_primary_10_1038_s44318_025_00407_2 crossref_primary_10_1016_j_bpj_2016_08_046 crossref_primary_10_1093_nar_gkz234 crossref_primary_10_1002_cbin_10672 crossref_primary_10_1126_sciadv_abn5626 crossref_primary_10_3389_fmolb_2020_00015 crossref_primary_10_1016_j_sbi_2021_06_004 crossref_primary_10_1073_pnas_1910044117 crossref_primary_10_1016_j_celrep_2023_113134 crossref_primary_10_1146_annurev_biophys_062920_063639 crossref_primary_10_1016_j_cell_2015_05_048 crossref_primary_10_1016_j_cis_2016_02_002 crossref_primary_10_1021_acs_jpcb_7b00998 crossref_primary_10_1093_nar_gkw1240 crossref_primary_10_1186_s13059_020_02095_z crossref_primary_10_3390_ijms232214488 crossref_primary_10_1038_s41467_023_39907_2 crossref_primary_10_1371_journal_pone_0177372 crossref_primary_10_1016_j_jmb_2021_166902 crossref_primary_10_1016_j_jmb_2017_09_002 crossref_primary_10_1093_nar_gkad1121 crossref_primary_10_1042_BST20170388 crossref_primary_10_1016_j_molcel_2023_08_017 crossref_primary_10_1002_bies_202200043 |
Cites_doi | 10.1016/j.gde.2012.11.006 10.1016/S1097-2765(03)00197-7 10.1016/j.sbi.2006.05.007 10.1021/jp810375d 10.1021/bi973117h 10.1002/1097-0282(200101)58:1<106::AID-BIP100>3.0.CO;2-# 10.1038/emboj.2012.80 10.1016/j.cell.2004.08.011 10.1093/jb/mvm214 10.1093/nar/gks600 10.1080/073911010010524945 10.1007/s10577-005-1026-1 10.1073/pnas.0810057105 10.1016/j.plrev.2011.01.005 10.1016/j.cell.2007.02.008 10.1038/nsmb.1590 10.1007/s00418-005-0093-x 10.1016/S0014-5793(04)00258-3 10.1073/pnas.0903280106 10.1074/jbc.M806479200 10.1073/pnas.97.1.127 10.1073/pnas.1108268108 10.1128/MCB.01127-12 10.1038/38444 10.1016/S0022-2836(02)00386-8 10.1002/j.1460-2075.1986.tb04373.x 10.1126/science.183.4122.330 10.1038/nrm3382 10.1016/j.tibs.2010.09.002 10.1371/journal.pone.0000877 10.1016/j.jmb.2010.07.057 10.1006/jmbi.1998.2170 10.1073/pnas.95.24.14173 10.1016/S0006-3495(86)83637-2 10.1074/jbc.M111.333104 10.1016/0022-2836(90)90342-J 10.1128/MCB.01647-07 10.1038/nsmb801 10.1016/j.ceb.2010.03.001 10.1126/science.187.4182.1202 10.1038/emboj.2012.35 10.1007/s00214-009-0561-9 10.1016/0022-2836(84)90046-9 10.1128/MCB.19.12.7944 10.1073/pnas.0604817103 10.1074/jbc.R111.305763 10.1139/O10-139 10.1042/BST20120349 10.1016/j.bpj.2011.07.044 10.1016/S0022-2836(82)80010-7 10.1083/jcb.99.1.42 10.1016/j.jmb.2008.04.025 10.1073/pnas.0601212103 10.1126/science.1103124 10.1126/science.1236083 10.1038/nature03686 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jun 3, 2014 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jun 3, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1315872111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts AGRICOLA MEDLINE MEDLINE - Academic Nucleic Acids Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Architecture |
DocumentTitleAlternate | Chromatin polymorphism by linker-length variations |
EISSN | 1091-6490 |
EndPage | 8066 |
ExternalDocumentID | PMC4050592 3337164651 24847063 10_1073_pnas_1315872111 111_22_8061 23775893 US201600143319 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM055164 – fundername: NIGMS NIH HHS grantid: R01 GM55164 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c623t-3e69d7db48e09912c36dd7ca91b60fbd5d63af6d94114d53b6061cc52844ff4f3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:13:29 EDT 2025 Thu Jul 10 22:12:03 EDT 2025 Fri Jul 11 04:46:53 EDT 2025 Fri Jul 11 00:52:45 EDT 2025 Mon Jun 30 08:30:10 EDT 2025 Wed Feb 19 01:51:56 EST 2025 Tue Jul 01 01:53:07 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Wed Nov 11 00:30:20 EST 2020 Thu May 29 08:40:52 EDT 2025 Sun Jun 29 02:22:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | coarse-grained modeling nonuniform NRL chromatin polymorphism chromatin bending and looping |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c623t-3e69d7db48e09912c36dd7ca91b60fbd5d63af6d94114d53b6061cc52844ff4f3 |
Notes | http://dx.doi.org/10.1073/pnas.1315872111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: R.C.-G. and T.S. designed research; R.C.-G. performed research; R.C.-G. analyzed data; and R.C.-G. and T.S. wrote the paper. Edited* by José N. Onuchic, Rice University, Houston, TX, and approved April 11, 2014 (received for review August 21, 2013) |
OpenAccessLink | https://www.pnas.org/content/pnas/111/22/8061.full.pdf |
PMID | 24847063 |
PQID | 1536982540 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4050592 proquest_miscellaneous_1551622824 pubmed_primary_24847063 crossref_citationtrail_10_1073_pnas_1315872111 jstor_primary_23775893 fao_agris_US201600143319 crossref_primary_10_1073_pnas_1315872111 pnas_primary_111_22_8061 proquest_miscellaneous_1803088693 proquest_miscellaneous_1536681240 proquest_journals_1536982540 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-03 |
PublicationDateYYYYMMDD | 2014-06-03 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 21288785 - Phys Life Rev. 2011 Mar;8(1):51-2; discussion 69-72 9826673 - Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14173-8 22722606 - Nat Rev Mol Cell Biol. 2012 Jul;13(7):436-47 3955173 - Biophys J. 1986 Jan;49(1):233-48 21961593 - Biophys J. 2011 Oct 5;101(7):1670-80 16506092 - Chromosome Res. 2006;14(1):5-16 21969536 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16992-7 12079350 - J Mol Biol. 2002 Jun 21;319(5):1097-113 20926298 - Trends Biochem Sci. 2011 Jan;36(1):1-6 11072233 - Biopolymers. 2001 Jan;58(1):106-15 6736132 - J Cell Biol. 1984 Jul;99(1 Pt 1):42-52 17849006 - PLoS One. 2007;2(9):e877 17754289 - Science. 1975 Mar 28;187(4182):1202-3 19298048 - J Phys Chem A. 2009 Apr 23;113(16):4045-59 17060627 - Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16236-41 15094034 - FEBS Lett. 2004 Apr 23;564(1-2):4-8 15339661 - Cell. 2004 Sep 3;118(5):555-66 16617109 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6506-11 23514142 - Biochem Soc Trans. 2013 Apr;41(2):494-500 6384525 - J Mol Biol. 1984 Aug 25;177(4):715-33 18195043 - Mol Cell Biol. 2008 Mar;28(6):1924-35 17320503 - Cell. 2007 Feb 23;128(4):651-4 2167381 - J Mol Biol. 1990 Aug 20;214(4):875-84 4128918 - Science. 1974 Jan 25;183(4122):330-2 20709077 - J Mol Biol. 2010 Nov 12;403(5):777-802 9556343 - Biochemistry. 1998 Mar 31;37(13):4299-304 15258568 - Nat Struct Mol Biol. 2004 Aug;11(8):763-9 18930918 - J Biol Chem. 2008 Dec 12;283(50):34532-40 15567867 - Science. 2004 Nov 26;306(5701):1571-3 19064912 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19732-7 22790986 - Nucleic Acids Res. 2012 Oct;40(18):8803-17 19377481 - Nat Struct Mol Biol. 2009 May;16(5):534-40 22473209 - EMBO J. 2012 May 16;31(10):2416-26 7077669 - J Mol Biol. 1982 Jan 25;154(3):515-23 17981824 - J Biochem. 2008 Feb;143(2):145-53 16714106 - Curr Opin Struct Biol. 2006 Jun;16(3):336-43 16001076 - Nature. 2005 Jul 7;436(7047):138-41 23270812 - Curr Opin Genet Dev. 2013 Apr;23(2):89-95 12820979 - Mol Cell. 2003 Jun;11(6):1685-92 3755397 - EMBO J. 1986 Jun;5(6):1395-402 19651606 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13317-22 24200812 - Science. 2013 Nov 22;342(6161):948-53 20346642 - Curr Opin Cell Biol. 2010 Jun;22(3):291-7 18485363 - J Mol Biol. 2008 Jun 13;379(4):772-86 10618382 - Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):127-32 20232933 - J Biomol Struct Dyn. 2010 Jun;27(6):781-93 22157002 - J Biol Chem. 2012 Feb 17;287(8):5183-91 22343941 - EMBO J. 2012 Apr 4;31(7):1644-53 9813118 - J Mol Biol. 1998 Nov 27;284(2):287-96 21326360 - Biochem Cell Biol. 2011 Feb;89(1):24-34 16328430 - Histochem Cell Biol. 2006 Jan;125(1-2):43-51 10567520 - Mol Cell Biol. 1999 Dec;19(12):7944-50 23045397 - Mol Cell Biol. 2012 Dec;32(24):4892-7 22518845 - J Biol Chem. 2012 Jun 8;287(24):20248-57 9305837 - Nature. 1997 Sep 18;389(6648):251-60 |
References_xml | – ident: e_1_3_3_16_2 doi: 10.1016/j.gde.2012.11.006 – ident: e_1_3_3_48_2 doi: 10.1016/S1097-2765(03)00197-7 – ident: e_1_3_3_4_2 doi: 10.1016/j.sbi.2006.05.007 – ident: e_1_3_3_36_2 doi: 10.1021/jp810375d – ident: e_1_3_3_9_2 doi: 10.1021/bi973117h – ident: e_1_3_3_34_2 doi: 10.1002/1097-0282(200101)58:1<106::AID-BIP100>3.0.CO;2-# – ident: e_1_3_3_32_2 doi: 10.1038/emboj.2012.80 – ident: e_1_3_3_47_2 doi: 10.1016/j.cell.2004.08.011 – ident: e_1_3_3_19_2 doi: 10.1093/jb/mvm214 – ident: e_1_3_3_30_2 doi: 10.1093/nar/gks600 – ident: e_1_3_3_54_2 doi: 10.1080/073911010010524945 – ident: e_1_3_3_55_2 doi: 10.1007/s10577-005-1026-1 – ident: e_1_3_3_18_2 doi: 10.1073/pnas.0810057105 – ident: e_1_3_3_46_2 doi: 10.1016/j.plrev.2011.01.005 – ident: e_1_3_3_13_2 doi: 10.1016/j.cell.2007.02.008 – ident: e_1_3_3_11_2 doi: 10.1038/nsmb.1590 – ident: e_1_3_3_17_2 doi: 10.1007/s00418-005-0093-x – ident: e_1_3_3_44_2 doi: 10.1016/S0014-5793(04)00258-3 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.0903280106 – ident: e_1_3_3_38_2 doi: 10.1074/jbc.M806479200 – ident: e_1_3_3_6_2 doi: 10.1073/pnas.97.1.127 – ident: e_1_3_3_40_2 doi: 10.1073/pnas.1108268108 – ident: e_1_3_3_22_2 doi: 10.1128/MCB.01127-12 – ident: e_1_3_3_1_2 doi: 10.1038/38444 – ident: e_1_3_3_2_2 doi: 10.1016/S0022-2836(02)00386-8 – ident: e_1_3_3_42_2 doi: 10.1002/j.1460-2075.1986.tb04373.x – ident: e_1_3_3_3_2 doi: 10.1126/science.183.4122.330 – ident: e_1_3_3_15_2 doi: 10.1038/nrm3382 – ident: e_1_3_3_14_2 doi: 10.1016/j.tibs.2010.09.002 – ident: e_1_3_3_25_2 doi: 10.1371/journal.pone.0000877 – ident: e_1_3_3_26_2 doi: 10.1016/j.jmb.2010.07.057 – ident: e_1_3_3_56_2 doi: 10.1006/jmbi.1998.2170 – ident: e_1_3_3_37_2 doi: 10.1073/pnas.95.24.14173 – ident: e_1_3_3_39_2 doi: 10.1016/S0006-3495(86)83637-2 – ident: e_1_3_3_41_2 doi: 10.1074/jbc.M111.333104 – ident: e_1_3_3_50_2 doi: 10.1016/0022-2836(90)90342-J – ident: e_1_3_3_23_2 doi: 10.1128/MCB.01647-07 – ident: e_1_3_3_52_2 doi: 10.1038/nsmb801 – ident: e_1_3_3_43_2 doi: 10.1016/j.ceb.2010.03.001 – ident: e_1_3_3_49_2 doi: 10.1126/science.187.4182.1202 – ident: e_1_3_3_20_2 doi: 10.1038/emboj.2012.35 – ident: e_1_3_3_27_2 doi: 10.1007/s00214-009-0561-9 – ident: e_1_3_3_51_2 doi: 10.1016/0022-2836(84)90046-9 – ident: e_1_3_3_33_2 doi: 10.1128/MCB.19.12.7944 – ident: e_1_3_3_35_2 doi: 10.1073/pnas.0604817103 – ident: e_1_3_3_21_2 doi: 10.1074/jbc.R111.305763 – ident: e_1_3_3_24_2 doi: 10.1139/O10-139 – ident: e_1_3_3_28_2 doi: 10.1042/BST20120349 – ident: e_1_3_3_29_2 doi: 10.1016/j.bpj.2011.07.044 – ident: e_1_3_3_31_2 doi: 10.1016/S0022-2836(82)80010-7 – ident: e_1_3_3_5_2 doi: 10.1083/jcb.99.1.42 – ident: e_1_3_3_53_2 doi: 10.1016/j.jmb.2008.04.025 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.0601212103 – ident: e_1_3_3_7_2 doi: 10.1126/science.1103124 – ident: e_1_3_3_45_2 doi: 10.1126/science.1236083 – ident: e_1_3_3_8_2 doi: 10.1038/nature03686 – reference: 16001076 - Nature. 2005 Jul 7;436(7047):138-41 – reference: 17754289 - Science. 1975 Mar 28;187(4182):1202-3 – reference: 20709077 - J Mol Biol. 2010 Nov 12;403(5):777-802 – reference: 19298048 - J Phys Chem A. 2009 Apr 23;113(16):4045-59 – reference: 23270812 - Curr Opin Genet Dev. 2013 Apr;23(2):89-95 – reference: 18930918 - J Biol Chem. 2008 Dec 12;283(50):34532-40 – reference: 22157002 - J Biol Chem. 2012 Feb 17;287(8):5183-91 – reference: 23045397 - Mol Cell Biol. 2012 Dec;32(24):4892-7 – reference: 9826673 - Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14173-8 – reference: 18485363 - J Mol Biol. 2008 Jun 13;379(4):772-86 – reference: 12079350 - J Mol Biol. 2002 Jun 21;319(5):1097-113 – reference: 16328430 - Histochem Cell Biol. 2006 Jan;125(1-2):43-51 – reference: 15339661 - Cell. 2004 Sep 3;118(5):555-66 – reference: 19064912 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19732-7 – reference: 15567867 - Science. 2004 Nov 26;306(5701):1571-3 – reference: 15258568 - Nat Struct Mol Biol. 2004 Aug;11(8):763-9 – reference: 15094034 - FEBS Lett. 2004 Apr 23;564(1-2):4-8 – reference: 24200812 - Science. 2013 Nov 22;342(6161):948-53 – reference: 9305837 - Nature. 1997 Sep 18;389(6648):251-60 – reference: 4128918 - Science. 1974 Jan 25;183(4122):330-2 – reference: 20926298 - Trends Biochem Sci. 2011 Jan;36(1):1-6 – reference: 6736132 - J Cell Biol. 1984 Jul;99(1 Pt 1):42-52 – reference: 16714106 - Curr Opin Struct Biol. 2006 Jun;16(3):336-43 – reference: 6384525 - J Mol Biol. 1984 Aug 25;177(4):715-33 – reference: 2167381 - J Mol Biol. 1990 Aug 20;214(4):875-84 – reference: 21326360 - Biochem Cell Biol. 2011 Feb;89(1):24-34 – reference: 21969536 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16992-7 – reference: 7077669 - J Mol Biol. 1982 Jan 25;154(3):515-23 – reference: 10618382 - Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):127-32 – reference: 22518845 - J Biol Chem. 2012 Jun 8;287(24):20248-57 – reference: 20346642 - Curr Opin Cell Biol. 2010 Jun;22(3):291-7 – reference: 21288785 - Phys Life Rev. 2011 Mar;8(1):51-2; discussion 69-72 – reference: 22343941 - EMBO J. 2012 Apr 4;31(7):1644-53 – reference: 18195043 - Mol Cell Biol. 2008 Mar;28(6):1924-35 – reference: 9813118 - J Mol Biol. 1998 Nov 27;284(2):287-96 – reference: 10567520 - Mol Cell Biol. 1999 Dec;19(12):7944-50 – reference: 20232933 - J Biomol Struct Dyn. 2010 Jun;27(6):781-93 – reference: 16617109 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6506-11 – reference: 22722606 - Nat Rev Mol Cell Biol. 2012 Jul;13(7):436-47 – reference: 17060627 - Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16236-41 – reference: 22790986 - Nucleic Acids Res. 2012 Oct;40(18):8803-17 – reference: 19377481 - Nat Struct Mol Biol. 2009 May;16(5):534-40 – reference: 23514142 - Biochem Soc Trans. 2013 Apr;41(2):494-500 – reference: 21961593 - Biophys J. 2011 Oct 5;101(7):1670-80 – reference: 17320503 - Cell. 2007 Feb 23;128(4):651-4 – reference: 22473209 - EMBO J. 2012 May 16;31(10):2416-26 – reference: 11072233 - Biopolymers. 2001 Jan;58(1):106-15 – reference: 9556343 - Biochemistry. 1998 Mar 31;37(13):4299-304 – reference: 3955173 - Biophys J. 1986 Jan;49(1):233-48 – reference: 17981824 - J Biochem. 2008 Feb;143(2):145-53 – reference: 16506092 - Chromosome Res. 2006;14(1):5-16 – reference: 19651606 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13317-22 – reference: 12820979 - Mol Cell. 2003 Jun;11(6):1685-92 – reference: 17849006 - PLoS One. 2007;2(9):e877 – reference: 3755397 - EMBO J. 1986 Jun;5(6):1395-402 |
SSID | ssj0009580 |
Score | 2.4654279 |
Snippet | Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it... The structure of the chromatin fiber remains one of the most fundamental open biological questions because structure dictates many template-directed processes.... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8061 |
SubjectTerms | Algorithms Animals Architecture Bending Biological Sciences Cell cycle Chromatin Chromatin - chemistry Chromatin - genetics Chromosomes Conformity Deoxyribonucleic acid DNA DNA - chemistry DNA - genetics Fibers Gene Expression Regulation Genetic polymorphism Histones Histones - chemistry interphase Models, Chemical Molecular Conformation Monte Carlo method Monte Carlo simulation Nucleic Acid Conformation Nucleosomes Nucleosomes - chemistry nucleotide sequences Polymorphism Polymorphism, Genetic Protein Structure, Quaternary Rats Static Electricity |
Title | Chromatin fiber polymorphism triggered by variations of DNA linker lengths |
URI | https://www.jstor.org/stable/23775893 http://www.pnas.org/content/111/22/8061.abstract https://www.ncbi.nlm.nih.gov/pubmed/24847063 https://www.proquest.com/docview/1536982540 https://www.proquest.com/docview/1536681240 https://www.proquest.com/docview/1551622824 https://www.proquest.com/docview/1803088693 https://pubmed.ncbi.nlm.nih.gov/PMC4050592 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68cILYsBYYCAj8TBUpSS24ySPFWxUUymT1kp9ixLbWSeNZFpTJPjrucvvjjENXqrKdpzI9-XuO-d8R8h7obTLE2BuynG0DaBQdiI1s6XDjK-kYSrBrYGvMzlZiNOltxwMpr2opU2RjNSvO8-V_I9UoQ3kiqdk_0Gy7aTQAP9BvvALEobfB8kYM9si48yGKQZ-YMUFcOVh5bDyRQF-9wVW4kSG-QNc4i7o7fNsPMQvt3AJFlIpVus-Rz1rbdq6iSCYNVuG4-4ASq0V1kN7eDbryhmXOxGYwzG3v2wM3Ldip_k6zloLcK5WV3UF93n8Pb7pbz24ogyR4n11ysDEieoQdKtOa-VZ4Yax4fUoANIAplD2NSW29a1u3fuHRgcVhGWIs3g9crnrBeixup3xaj7Yz75FJ4vpNJofL-c75BEDp6EM85z0UzAH1YGk-qGbRE8-_3hr-i2OspPGeROsihlwYehd3sjtoNoeS5k_JU9q94KOK6zskYHJnpG9RlT0qM4y_uE5OW3BQ0vw0D54aAsemvykHXhonlIAD63AQ2vwvCCLk-P5p4ldF9awFbDdwuZGhtrXiQgMOAguU1xq7as4dBPppIn2tORxKnUowFvWHodW6SrlAZURaSpSvk92szwzB4QaDQQTZjNBCB1-HAjjx7GUBoiRckJhkVGzlJGqs85j8ZOrqIx-8HmECxp1a2-Ro_aC6yrhyt-HHoBsovgCzGG0OGeYLBHTVYJVsch-KbB2CsZ98IxDDteUs7RTg__LWIRotMhhI9Wofsnhbh6XIe6iOBZ513aDCsbvanFm8k01BtP43T_GcyVjARP3jAkweVQg8SlfVmDqnl8AjQR3wiL-FszaAZgmfrsnu1yV6eIFFqsM2asH3Pc1edy954dkt7jZmDdAuovkbfku_QZsrtRf |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromatin+fiber+polymorphism+triggered+by+variations+of+DNA+linker+lengths&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Collepardo-Guevara%2C+Rosana&rft.au=Schlick%2C+Tamar&rft.date=2014-06-03&rft.issn=0027-8424&rft.volume=111&rft.issue=22+p.8061-8066&rft.spage=8061&rft.epage=8066&rft_id=info:doi/10.1073%2Fpnas.1315872111&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F22.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F22.cover.gif |