Chromatin fiber polymorphism triggered by variations of DNA linker lengths

Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNA...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 22; pp. 8061 - 8066
Main Authors Collepardo-Guevara, Rosana, Schlick, Tamar
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.06.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin’s diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes.
AbstractList Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin's diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes.
The structure of the chromatin fiber remains one of the most fundamental open biological questions because structure dictates many template-directed processes. We use coarse-grained modeling to investigate systematically how variations in the linker DNA length that arise naturally for chromatin in different tissues, species, and cell cycle stages affect fiber architecture. We unravel a natural source of fiber polymorphism, in which irregular interdigitated 10-nm and compact 30-nm fibers coexist. These results suggest how structural diversity can be advantageous for gene regulation activity. Interesting DNA design applications also arise. Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin’s diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes.
Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin's diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes.Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin's diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes.
Author Schlick, Tamar
Collepardo-Guevara, Rosana
Author_xml – sequence: 1
  givenname: Rosana
  surname: Collepardo-Guevara
  fullname: Collepardo-Guevara, Rosana
– sequence: 2
  givenname: Tamar
  surname: Schlick
  fullname: Schlick, Tamar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24847063$$D View this record in MEDLINE/PubMed
BookMark eNqNkstv1DAQxi1URLeFMycgEhcu2874FfuCVC1vVXCAni0ncXa9JPHWzlba_x7voy1UQnCy5Pl9n-abmRNyNITBEfIc4QyhZOerwaYzZChUSRHxEZkgaJxKruGITABoOVWc8mNyktISALRQ8IQcU654CZJNyJfZIobejn4oWl-5WKxCt-lDXC186osx-vncRdcU1aa4sdFnMAypCG3x7utF0fnhZ5Z0bpiPi_SUPG5tl9yzw3tKrj68_zH7NL389vHz7OJyWkvKxilzUjdlU3HlQGukNZNNU9ZWYyWhrRrRSGZb2WiOyBvB8q_EuhZUcd62vGWn5O3ed7WuetfUbhij7cwq-t7GjQnWmz8rg1-YebgxHAQITbPBm4NBDNdrl0bT-1S7rrODC-tkUAEDpaRm_0aFQEmpovw_UCalQsoho68foMuwjkMe2o7Siood9fL3nHcBb5eXAbEH6hhSiq41tR93G8qxfWcQzPZIzPZIzP2RZN35A92t9d8Vrw6tbAt3NKKh1Ki8n0y82BPLNIZ43ysrS6F2gzw4tDYYO48-mavvFFACIGcMNfsFfeza2g
CitedBy_id crossref_primary_10_1091_mbc_E17_07_0449
crossref_primary_10_1016_j_bpj_2018_03_008
crossref_primary_10_1016_j_tig_2015_03_010
crossref_primary_10_1073_pnas_1720476115
crossref_primary_10_7554_eLife_91320_3
crossref_primary_10_1016_j_bpj_2021_01_008
crossref_primary_10_1088_0953_8984_27_6_064113
crossref_primary_10_1042_BSR20150087
crossref_primary_10_1088_1478_3975_13_3_035006
crossref_primary_10_15252_embr_201846960
crossref_primary_10_1016_j_bpj_2016_11_3201
crossref_primary_10_15252_embj_201899769
crossref_primary_10_1016_j_bpj_2019_11_004
crossref_primary_10_1042_BST20230721
crossref_primary_10_1021_acs_jpcb_6b03197
crossref_primary_10_1016_j_bpj_2017_01_003
crossref_primary_10_1016_j_cbpa_2019_01_022
crossref_primary_10_3389_fmolb_2022_1106588
crossref_primary_10_1093_nar_gkw514
crossref_primary_10_1073_pnas_1816424116
crossref_primary_10_1103_PhysRevLett_123_208103
crossref_primary_10_1016_j_celrep_2020_108614
crossref_primary_10_1002_1873_3468_13370
crossref_primary_10_1093_nar_gkx562
crossref_primary_10_1038_s41576_018_0089_8
crossref_primary_10_7554_eLife_91320
crossref_primary_10_1088_0953_8984_27_6_064109
crossref_primary_10_1103_PhysRevE_93_042409
crossref_primary_10_1016_j_gde_2015_11_006
crossref_primary_10_7498_aps_66_150201
crossref_primary_10_1088_0953_8984_27_3_033101
crossref_primary_10_1002_cbic_202200450
crossref_primary_10_1021_jacs_5b04086
crossref_primary_10_1016_j_sbi_2018_11_003
crossref_primary_10_1016_j_ceb_2024_102398
crossref_primary_10_1016_j_bpj_2016_04_024
crossref_primary_10_1038_srep14891
crossref_primary_10_1098_rsif_2021_0229
crossref_primary_10_1101_cshperspect_a040675
crossref_primary_10_7554_eLife_87672_3
crossref_primary_10_1016_j_sbi_2022_102506
crossref_primary_10_1016_j_ceb_2020_02_016
crossref_primary_10_1186_s13100_020_0202_3
crossref_primary_10_1021_acs_jctc_8b00299
crossref_primary_10_1016_j_bpj_2022_09_013
crossref_primary_10_1017_S0033583522000038
crossref_primary_10_1021_acs_jpcb_7b04917
crossref_primary_10_1038_s41467_023_42072_1
crossref_primary_10_1146_annurev_physchem_071119_040043
crossref_primary_10_1002_wcms_1434
crossref_primary_10_1126_science_aag0025
crossref_primary_10_1074_jbc_RA118_006412
crossref_primary_10_1371_journal_pcbi_1005365
crossref_primary_10_1016_j_csbj_2022_09_020
crossref_primary_10_1016_j_sbi_2015_04_002
crossref_primary_10_1016_j_jmb_2020_10_017
crossref_primary_10_1016_j_sbi_2020_06_016
crossref_primary_10_1016_j_molcel_2018_09_027
crossref_primary_10_1042_EBC20180065
crossref_primary_10_1016_j_jmb_2015_12_004
crossref_primary_10_1016_j_ceb_2022_02_001
crossref_primary_10_1093_nar_gky207
crossref_primary_10_1016_j_sbi_2016_01_013
crossref_primary_10_1093_nar_gkv215
crossref_primary_10_1016_j_sbi_2020_06_021
crossref_primary_10_1016_j_bpj_2022_02_009
crossref_primary_10_7554_eLife_72062
crossref_primary_10_1016_j_sbi_2015_11_011
crossref_primary_10_1042_EBC20180054
crossref_primary_10_1016_j_bpj_2019_08_019
crossref_primary_10_1038_s41467_021_23090_3
crossref_primary_10_1016_j_bpj_2018_10_007
crossref_primary_10_1002_wcms_1454
crossref_primary_10_7554_eLife_87672
crossref_primary_10_1016_j_febslet_2015_04_023
crossref_primary_10_1016_j_jmb_2020_166744
crossref_primary_10_1093_nar_gku491
crossref_primary_10_1002_bies_201400144
crossref_primary_10_1016_j_molcel_2021_06_006
crossref_primary_10_1016_j_csbj_2020_09_034
crossref_primary_10_1016_j_jmb_2020_166792
crossref_primary_10_1016_j_ceb_2019_02_003
crossref_primary_10_1016_j_sbi_2019_03_004
crossref_primary_10_1038_s44318_025_00407_2
crossref_primary_10_1016_j_bpj_2016_08_046
crossref_primary_10_1093_nar_gkz234
crossref_primary_10_1002_cbin_10672
crossref_primary_10_1126_sciadv_abn5626
crossref_primary_10_3389_fmolb_2020_00015
crossref_primary_10_1016_j_sbi_2021_06_004
crossref_primary_10_1073_pnas_1910044117
crossref_primary_10_1016_j_celrep_2023_113134
crossref_primary_10_1146_annurev_biophys_062920_063639
crossref_primary_10_1016_j_cell_2015_05_048
crossref_primary_10_1016_j_cis_2016_02_002
crossref_primary_10_1021_acs_jpcb_7b00998
crossref_primary_10_1093_nar_gkw1240
crossref_primary_10_1186_s13059_020_02095_z
crossref_primary_10_3390_ijms232214488
crossref_primary_10_1038_s41467_023_39907_2
crossref_primary_10_1371_journal_pone_0177372
crossref_primary_10_1016_j_jmb_2021_166902
crossref_primary_10_1016_j_jmb_2017_09_002
crossref_primary_10_1093_nar_gkad1121
crossref_primary_10_1042_BST20170388
crossref_primary_10_1016_j_molcel_2023_08_017
crossref_primary_10_1002_bies_202200043
Cites_doi 10.1016/j.gde.2012.11.006
10.1016/S1097-2765(03)00197-7
10.1016/j.sbi.2006.05.007
10.1021/jp810375d
10.1021/bi973117h
10.1002/1097-0282(200101)58:1<106::AID-BIP100>3.0.CO;2-#
10.1038/emboj.2012.80
10.1016/j.cell.2004.08.011
10.1093/jb/mvm214
10.1093/nar/gks600
10.1080/073911010010524945
10.1007/s10577-005-1026-1
10.1073/pnas.0810057105
10.1016/j.plrev.2011.01.005
10.1016/j.cell.2007.02.008
10.1038/nsmb.1590
10.1007/s00418-005-0093-x
10.1016/S0014-5793(04)00258-3
10.1073/pnas.0903280106
10.1074/jbc.M806479200
10.1073/pnas.97.1.127
10.1073/pnas.1108268108
10.1128/MCB.01127-12
10.1038/38444
10.1016/S0022-2836(02)00386-8
10.1002/j.1460-2075.1986.tb04373.x
10.1126/science.183.4122.330
10.1038/nrm3382
10.1016/j.tibs.2010.09.002
10.1371/journal.pone.0000877
10.1016/j.jmb.2010.07.057
10.1006/jmbi.1998.2170
10.1073/pnas.95.24.14173
10.1016/S0006-3495(86)83637-2
10.1074/jbc.M111.333104
10.1016/0022-2836(90)90342-J
10.1128/MCB.01647-07
10.1038/nsmb801
10.1016/j.ceb.2010.03.001
10.1126/science.187.4182.1202
10.1038/emboj.2012.35
10.1007/s00214-009-0561-9
10.1016/0022-2836(84)90046-9
10.1128/MCB.19.12.7944
10.1073/pnas.0604817103
10.1074/jbc.R111.305763
10.1139/O10-139
10.1042/BST20120349
10.1016/j.bpj.2011.07.044
10.1016/S0022-2836(82)80010-7
10.1083/jcb.99.1.42
10.1016/j.jmb.2008.04.025
10.1073/pnas.0601212103
10.1126/science.1103124
10.1126/science.1236083
10.1038/nature03686
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jun 3, 2014
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jun 3, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1315872111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Virology and AIDS Abstracts
AGRICOLA

MEDLINE

MEDLINE - Academic
Nucleic Acids Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Architecture
DocumentTitleAlternate Chromatin polymorphism by linker-length variations
EISSN 1091-6490
EndPage 8066
ExternalDocumentID PMC4050592
3337164651
24847063
10_1073_pnas_1315872111
111_22_8061
23775893
US201600143319
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM055164
– fundername: NIGMS NIH HHS
  grantid: R01 GM55164
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c623t-3e69d7db48e09912c36dd7ca91b60fbd5d63af6d94114d53b6061cc52844ff4f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:13:29 EDT 2025
Thu Jul 10 22:12:03 EDT 2025
Fri Jul 11 04:46:53 EDT 2025
Fri Jul 11 00:52:45 EDT 2025
Mon Jun 30 08:30:10 EDT 2025
Wed Feb 19 01:51:56 EST 2025
Tue Jul 01 01:53:07 EDT 2025
Thu Apr 24 23:08:56 EDT 2025
Wed Nov 11 00:30:20 EST 2020
Thu May 29 08:40:52 EDT 2025
Sun Jun 29 02:22:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords coarse-grained modeling
nonuniform NRL
chromatin polymorphism
chromatin bending and looping
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c623t-3e69d7db48e09912c36dd7ca91b60fbd5d63af6d94114d53b6061cc52844ff4f3
Notes http://dx.doi.org/10.1073/pnas.1315872111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: R.C.-G. and T.S. designed research; R.C.-G. performed research; R.C.-G. analyzed data; and R.C.-G. and T.S. wrote the paper.
Edited* by José N. Onuchic, Rice University, Houston, TX, and approved April 11, 2014 (received for review August 21, 2013)
OpenAccessLink https://www.pnas.org/content/pnas/111/22/8061.full.pdf
PMID 24847063
PQID 1536982540
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4050592
proquest_miscellaneous_1551622824
pubmed_primary_24847063
crossref_citationtrail_10_1073_pnas_1315872111
jstor_primary_23775893
fao_agris_US201600143319
crossref_primary_10_1073_pnas_1315872111
pnas_primary_111_22_8061
proquest_miscellaneous_1803088693
proquest_miscellaneous_1536681240
proquest_journals_1536982540
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-03
PublicationDateYYYYMMDD 2014-06-03
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
21288785 - Phys Life Rev. 2011 Mar;8(1):51-2; discussion 69-72
9826673 - Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14173-8
22722606 - Nat Rev Mol Cell Biol. 2012 Jul;13(7):436-47
3955173 - Biophys J. 1986 Jan;49(1):233-48
21961593 - Biophys J. 2011 Oct 5;101(7):1670-80
16506092 - Chromosome Res. 2006;14(1):5-16
21969536 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16992-7
12079350 - J Mol Biol. 2002 Jun 21;319(5):1097-113
20926298 - Trends Biochem Sci. 2011 Jan;36(1):1-6
11072233 - Biopolymers. 2001 Jan;58(1):106-15
6736132 - J Cell Biol. 1984 Jul;99(1 Pt 1):42-52
17849006 - PLoS One. 2007;2(9):e877
17754289 - Science. 1975 Mar 28;187(4182):1202-3
19298048 - J Phys Chem A. 2009 Apr 23;113(16):4045-59
17060627 - Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16236-41
15094034 - FEBS Lett. 2004 Apr 23;564(1-2):4-8
15339661 - Cell. 2004 Sep 3;118(5):555-66
16617109 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6506-11
23514142 - Biochem Soc Trans. 2013 Apr;41(2):494-500
6384525 - J Mol Biol. 1984 Aug 25;177(4):715-33
18195043 - Mol Cell Biol. 2008 Mar;28(6):1924-35
17320503 - Cell. 2007 Feb 23;128(4):651-4
2167381 - J Mol Biol. 1990 Aug 20;214(4):875-84
4128918 - Science. 1974 Jan 25;183(4122):330-2
20709077 - J Mol Biol. 2010 Nov 12;403(5):777-802
9556343 - Biochemistry. 1998 Mar 31;37(13):4299-304
15258568 - Nat Struct Mol Biol. 2004 Aug;11(8):763-9
18930918 - J Biol Chem. 2008 Dec 12;283(50):34532-40
15567867 - Science. 2004 Nov 26;306(5701):1571-3
19064912 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19732-7
22790986 - Nucleic Acids Res. 2012 Oct;40(18):8803-17
19377481 - Nat Struct Mol Biol. 2009 May;16(5):534-40
22473209 - EMBO J. 2012 May 16;31(10):2416-26
7077669 - J Mol Biol. 1982 Jan 25;154(3):515-23
17981824 - J Biochem. 2008 Feb;143(2):145-53
16714106 - Curr Opin Struct Biol. 2006 Jun;16(3):336-43
16001076 - Nature. 2005 Jul 7;436(7047):138-41
23270812 - Curr Opin Genet Dev. 2013 Apr;23(2):89-95
12820979 - Mol Cell. 2003 Jun;11(6):1685-92
3755397 - EMBO J. 1986 Jun;5(6):1395-402
19651606 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13317-22
24200812 - Science. 2013 Nov 22;342(6161):948-53
20346642 - Curr Opin Cell Biol. 2010 Jun;22(3):291-7
18485363 - J Mol Biol. 2008 Jun 13;379(4):772-86
10618382 - Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):127-32
20232933 - J Biomol Struct Dyn. 2010 Jun;27(6):781-93
22157002 - J Biol Chem. 2012 Feb 17;287(8):5183-91
22343941 - EMBO J. 2012 Apr 4;31(7):1644-53
9813118 - J Mol Biol. 1998 Nov 27;284(2):287-96
21326360 - Biochem Cell Biol. 2011 Feb;89(1):24-34
16328430 - Histochem Cell Biol. 2006 Jan;125(1-2):43-51
10567520 - Mol Cell Biol. 1999 Dec;19(12):7944-50
23045397 - Mol Cell Biol. 2012 Dec;32(24):4892-7
22518845 - J Biol Chem. 2012 Jun 8;287(24):20248-57
9305837 - Nature. 1997 Sep 18;389(6648):251-60
References_xml – ident: e_1_3_3_16_2
  doi: 10.1016/j.gde.2012.11.006
– ident: e_1_3_3_48_2
  doi: 10.1016/S1097-2765(03)00197-7
– ident: e_1_3_3_4_2
  doi: 10.1016/j.sbi.2006.05.007
– ident: e_1_3_3_36_2
  doi: 10.1021/jp810375d
– ident: e_1_3_3_9_2
  doi: 10.1021/bi973117h
– ident: e_1_3_3_34_2
  doi: 10.1002/1097-0282(200101)58:1<106::AID-BIP100>3.0.CO;2-#
– ident: e_1_3_3_32_2
  doi: 10.1038/emboj.2012.80
– ident: e_1_3_3_47_2
  doi: 10.1016/j.cell.2004.08.011
– ident: e_1_3_3_19_2
  doi: 10.1093/jb/mvm214
– ident: e_1_3_3_30_2
  doi: 10.1093/nar/gks600
– ident: e_1_3_3_54_2
  doi: 10.1080/073911010010524945
– ident: e_1_3_3_55_2
  doi: 10.1007/s10577-005-1026-1
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.0810057105
– ident: e_1_3_3_46_2
  doi: 10.1016/j.plrev.2011.01.005
– ident: e_1_3_3_13_2
  doi: 10.1016/j.cell.2007.02.008
– ident: e_1_3_3_11_2
  doi: 10.1038/nsmb.1590
– ident: e_1_3_3_17_2
  doi: 10.1007/s00418-005-0093-x
– ident: e_1_3_3_44_2
  doi: 10.1016/S0014-5793(04)00258-3
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.0903280106
– ident: e_1_3_3_38_2
  doi: 10.1074/jbc.M806479200
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.97.1.127
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.1108268108
– ident: e_1_3_3_22_2
  doi: 10.1128/MCB.01127-12
– ident: e_1_3_3_1_2
  doi: 10.1038/38444
– ident: e_1_3_3_2_2
  doi: 10.1016/S0022-2836(02)00386-8
– ident: e_1_3_3_42_2
  doi: 10.1002/j.1460-2075.1986.tb04373.x
– ident: e_1_3_3_3_2
  doi: 10.1126/science.183.4122.330
– ident: e_1_3_3_15_2
  doi: 10.1038/nrm3382
– ident: e_1_3_3_14_2
  doi: 10.1016/j.tibs.2010.09.002
– ident: e_1_3_3_25_2
  doi: 10.1371/journal.pone.0000877
– ident: e_1_3_3_26_2
  doi: 10.1016/j.jmb.2010.07.057
– ident: e_1_3_3_56_2
  doi: 10.1006/jmbi.1998.2170
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.95.24.14173
– ident: e_1_3_3_39_2
  doi: 10.1016/S0006-3495(86)83637-2
– ident: e_1_3_3_41_2
  doi: 10.1074/jbc.M111.333104
– ident: e_1_3_3_50_2
  doi: 10.1016/0022-2836(90)90342-J
– ident: e_1_3_3_23_2
  doi: 10.1128/MCB.01647-07
– ident: e_1_3_3_52_2
  doi: 10.1038/nsmb801
– ident: e_1_3_3_43_2
  doi: 10.1016/j.ceb.2010.03.001
– ident: e_1_3_3_49_2
  doi: 10.1126/science.187.4182.1202
– ident: e_1_3_3_20_2
  doi: 10.1038/emboj.2012.35
– ident: e_1_3_3_27_2
  doi: 10.1007/s00214-009-0561-9
– ident: e_1_3_3_51_2
  doi: 10.1016/0022-2836(84)90046-9
– ident: e_1_3_3_33_2
  doi: 10.1128/MCB.19.12.7944
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.0604817103
– ident: e_1_3_3_21_2
  doi: 10.1074/jbc.R111.305763
– ident: e_1_3_3_24_2
  doi: 10.1139/O10-139
– ident: e_1_3_3_28_2
  doi: 10.1042/BST20120349
– ident: e_1_3_3_29_2
  doi: 10.1016/j.bpj.2011.07.044
– ident: e_1_3_3_31_2
  doi: 10.1016/S0022-2836(82)80010-7
– ident: e_1_3_3_5_2
  doi: 10.1083/jcb.99.1.42
– ident: e_1_3_3_53_2
  doi: 10.1016/j.jmb.2008.04.025
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.0601212103
– ident: e_1_3_3_7_2
  doi: 10.1126/science.1103124
– ident: e_1_3_3_45_2
  doi: 10.1126/science.1236083
– ident: e_1_3_3_8_2
  doi: 10.1038/nature03686
– reference: 16001076 - Nature. 2005 Jul 7;436(7047):138-41
– reference: 17754289 - Science. 1975 Mar 28;187(4182):1202-3
– reference: 20709077 - J Mol Biol. 2010 Nov 12;403(5):777-802
– reference: 19298048 - J Phys Chem A. 2009 Apr 23;113(16):4045-59
– reference: 23270812 - Curr Opin Genet Dev. 2013 Apr;23(2):89-95
– reference: 18930918 - J Biol Chem. 2008 Dec 12;283(50):34532-40
– reference: 22157002 - J Biol Chem. 2012 Feb 17;287(8):5183-91
– reference: 23045397 - Mol Cell Biol. 2012 Dec;32(24):4892-7
– reference: 9826673 - Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14173-8
– reference: 18485363 - J Mol Biol. 2008 Jun 13;379(4):772-86
– reference: 12079350 - J Mol Biol. 2002 Jun 21;319(5):1097-113
– reference: 16328430 - Histochem Cell Biol. 2006 Jan;125(1-2):43-51
– reference: 15339661 - Cell. 2004 Sep 3;118(5):555-66
– reference: 19064912 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19732-7
– reference: 15567867 - Science. 2004 Nov 26;306(5701):1571-3
– reference: 15258568 - Nat Struct Mol Biol. 2004 Aug;11(8):763-9
– reference: 15094034 - FEBS Lett. 2004 Apr 23;564(1-2):4-8
– reference: 24200812 - Science. 2013 Nov 22;342(6161):948-53
– reference: 9305837 - Nature. 1997 Sep 18;389(6648):251-60
– reference: 4128918 - Science. 1974 Jan 25;183(4122):330-2
– reference: 20926298 - Trends Biochem Sci. 2011 Jan;36(1):1-6
– reference: 6736132 - J Cell Biol. 1984 Jul;99(1 Pt 1):42-52
– reference: 16714106 - Curr Opin Struct Biol. 2006 Jun;16(3):336-43
– reference: 6384525 - J Mol Biol. 1984 Aug 25;177(4):715-33
– reference: 2167381 - J Mol Biol. 1990 Aug 20;214(4):875-84
– reference: 21326360 - Biochem Cell Biol. 2011 Feb;89(1):24-34
– reference: 21969536 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16992-7
– reference: 7077669 - J Mol Biol. 1982 Jan 25;154(3):515-23
– reference: 10618382 - Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):127-32
– reference: 22518845 - J Biol Chem. 2012 Jun 8;287(24):20248-57
– reference: 20346642 - Curr Opin Cell Biol. 2010 Jun;22(3):291-7
– reference: 21288785 - Phys Life Rev. 2011 Mar;8(1):51-2; discussion 69-72
– reference: 22343941 - EMBO J. 2012 Apr 4;31(7):1644-53
– reference: 18195043 - Mol Cell Biol. 2008 Mar;28(6):1924-35
– reference: 9813118 - J Mol Biol. 1998 Nov 27;284(2):287-96
– reference: 10567520 - Mol Cell Biol. 1999 Dec;19(12):7944-50
– reference: 20232933 - J Biomol Struct Dyn. 2010 Jun;27(6):781-93
– reference: 16617109 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6506-11
– reference: 22722606 - Nat Rev Mol Cell Biol. 2012 Jul;13(7):436-47
– reference: 17060627 - Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16236-41
– reference: 22790986 - Nucleic Acids Res. 2012 Oct;40(18):8803-17
– reference: 19377481 - Nat Struct Mol Biol. 2009 May;16(5):534-40
– reference: 23514142 - Biochem Soc Trans. 2013 Apr;41(2):494-500
– reference: 21961593 - Biophys J. 2011 Oct 5;101(7):1670-80
– reference: 17320503 - Cell. 2007 Feb 23;128(4):651-4
– reference: 22473209 - EMBO J. 2012 May 16;31(10):2416-26
– reference: 11072233 - Biopolymers. 2001 Jan;58(1):106-15
– reference: 9556343 - Biochemistry. 1998 Mar 31;37(13):4299-304
– reference: 3955173 - Biophys J. 1986 Jan;49(1):233-48
– reference: 17981824 - J Biochem. 2008 Feb;143(2):145-53
– reference: 16506092 - Chromosome Res. 2006;14(1):5-16
– reference: 19651606 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13317-22
– reference: 12820979 - Mol Cell. 2003 Jun;11(6):1685-92
– reference: 17849006 - PLoS One. 2007;2(9):e877
– reference: 3755397 - EMBO J. 1986 Jun;5(6):1395-402
SSID ssj0009580
Score 2.4654279
Snippet Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it...
The structure of the chromatin fiber remains one of the most fundamental open biological questions because structure dictates many template-directed processes....
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8061
SubjectTerms Algorithms
Animals
Architecture
Bending
Biological Sciences
Cell cycle
Chromatin
Chromatin - chemistry
Chromatin - genetics
Chromosomes
Conformity
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - genetics
Fibers
Gene Expression Regulation
Genetic polymorphism
Histones
Histones - chemistry
interphase
Models, Chemical
Molecular Conformation
Monte Carlo method
Monte Carlo simulation
Nucleic Acid Conformation
Nucleosomes
Nucleosomes - chemistry
nucleotide sequences
Polymorphism
Polymorphism, Genetic
Protein Structure, Quaternary
Rats
Static Electricity
Title Chromatin fiber polymorphism triggered by variations of DNA linker lengths
URI https://www.jstor.org/stable/23775893
http://www.pnas.org/content/111/22/8061.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24847063
https://www.proquest.com/docview/1536982540
https://www.proquest.com/docview/1536681240
https://www.proquest.com/docview/1551622824
https://www.proquest.com/docview/1803088693
https://pubmed.ncbi.nlm.nih.gov/PMC4050592
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68cILYsBYYCAj8TBUpSS24ySPFWxUUymT1kp9ixLbWSeNZFpTJPjrucvvjjENXqrKdpzI9-XuO-d8R8h7obTLE2BuynG0DaBQdiI1s6XDjK-kYSrBrYGvMzlZiNOltxwMpr2opU2RjNSvO8-V_I9UoQ3kiqdk_0Gy7aTQAP9BvvALEobfB8kYM9si48yGKQZ-YMUFcOVh5bDyRQF-9wVW4kSG-QNc4i7o7fNsPMQvt3AJFlIpVus-Rz1rbdq6iSCYNVuG4-4ASq0V1kN7eDbryhmXOxGYwzG3v2wM3Ldip_k6zloLcK5WV3UF93n8Pb7pbz24ogyR4n11ysDEieoQdKtOa-VZ4Yax4fUoANIAplD2NSW29a1u3fuHRgcVhGWIs3g9crnrBeixup3xaj7Yz75FJ4vpNJofL-c75BEDp6EM85z0UzAH1YGk-qGbRE8-_3hr-i2OspPGeROsihlwYehd3sjtoNoeS5k_JU9q94KOK6zskYHJnpG9RlT0qM4y_uE5OW3BQ0vw0D54aAsemvykHXhonlIAD63AQ2vwvCCLk-P5p4ldF9awFbDdwuZGhtrXiQgMOAguU1xq7as4dBPppIn2tORxKnUowFvWHodW6SrlAZURaSpSvk92szwzB4QaDQQTZjNBCB1-HAjjx7GUBoiRckJhkVGzlJGqs85j8ZOrqIx-8HmECxp1a2-Ro_aC6yrhyt-HHoBsovgCzGG0OGeYLBHTVYJVsch-KbB2CsZ98IxDDteUs7RTg__LWIRotMhhI9Wofsnhbh6XIe6iOBZ513aDCsbvanFm8k01BtP43T_GcyVjARP3jAkweVQg8SlfVmDqnl8AjQR3wiL-FszaAZgmfrsnu1yV6eIFFqsM2asH3Pc1edy954dkt7jZmDdAuovkbfku_QZsrtRf
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromatin+fiber+polymorphism+triggered+by+variations+of+DNA+linker+lengths&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Collepardo-Guevara%2C+Rosana&rft.au=Schlick%2C+Tamar&rft.date=2014-06-03&rft.issn=0027-8424&rft.volume=111&rft.issue=22+p.8061-8066&rft.spage=8061&rft.epage=8066&rft_id=info:doi/10.1073%2Fpnas.1315872111&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F22.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F22.cover.gif