Defining functional DNA elements in the human genome

With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional r...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 17; pp. 6131 - 6138
Main Authors Kellis, Manolis, Wold, Barbara, Snyderd, Michael P., Bernstein, Bradley E., Kundaje, Anshul, Marinov, Georgi K., Ward, Lucas D., Birney, Ewan, Crawford, Gregory E., Dekker, Job, Dunham, Ian, Elnitski, Laura L., Farnham, Peggy J., Feingold, Elise A., Gerstein, Mark, Giddings, Morgan C., Gilbert, David M., Gingeras, Thomas R., Green, Eric D., Guigo, Roderic, Hubbard, Tim, Kent, Jim, Lieb, Jason D., Myerst, Richard M., Pazin, Michael J., Ren, Bing, Stamatoyannopoulos, John A., Weng, Zhiping, White, Kevin P., Hardison, Ross C.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 29.04.2014
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1318948111

Cover

Loading…
Abstract With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.
AbstractList With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.
With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. [PUBLICATION ABSTRACT]
With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.
Author Myerst, Richard M.
Snyderd, Michael P.
Kent, Jim
Wold, Barbara
Hardison, Ross C.
White, Kevin P.
Gilbert, David M.
Birney, Ewan
Kellis, Manolis
Crawford, Gregory E.
Kundaje, Anshul
Farnham, Peggy J.
Gingeras, Thomas R.
Dunham, Ian
Green, Eric D.
Giddings, Morgan C.
Stamatoyannopoulos, John A.
Pazin, Michael J.
Ren, Bing
Elnitski, Laura L.
Gerstein, Mark
Weng, Zhiping
Dekker, Job
Bernstein, Bradley E.
Marinov, Georgi K.
Feingold, Elise A.
Guigo, Roderic
Lieb, Jason D.
Hubbard, Tim
Ward, Lucas D.
Author_xml – sequence: 1
  givenname: Manolis
  surname: Kellis
  fullname: Kellis, Manolis
– sequence: 2
  givenname: Barbara
  surname: Wold
  fullname: Wold, Barbara
– sequence: 3
  givenname: Michael P.
  surname: Snyderd
  fullname: Snyderd, Michael P.
– sequence: 4
  givenname: Bradley E.
  surname: Bernstein
  fullname: Bernstein, Bradley E.
– sequence: 5
  givenname: Anshul
  surname: Kundaje
  fullname: Kundaje, Anshul
– sequence: 6
  givenname: Georgi K.
  surname: Marinov
  fullname: Marinov, Georgi K.
– sequence: 7
  givenname: Lucas D.
  surname: Ward
  fullname: Ward, Lucas D.
– sequence: 8
  givenname: Ewan
  surname: Birney
  fullname: Birney, Ewan
– sequence: 9
  givenname: Gregory E.
  surname: Crawford
  fullname: Crawford, Gregory E.
– sequence: 10
  givenname: Job
  surname: Dekker
  fullname: Dekker, Job
– sequence: 11
  givenname: Ian
  surname: Dunham
  fullname: Dunham, Ian
– sequence: 12
  givenname: Laura L.
  surname: Elnitski
  fullname: Elnitski, Laura L.
– sequence: 13
  givenname: Peggy J.
  surname: Farnham
  fullname: Farnham, Peggy J.
– sequence: 14
  givenname: Elise A.
  surname: Feingold
  fullname: Feingold, Elise A.
– sequence: 15
  givenname: Mark
  surname: Gerstein
  fullname: Gerstein, Mark
– sequence: 16
  givenname: Morgan C.
  surname: Giddings
  fullname: Giddings, Morgan C.
– sequence: 17
  givenname: David M.
  surname: Gilbert
  fullname: Gilbert, David M.
– sequence: 18
  givenname: Thomas R.
  surname: Gingeras
  fullname: Gingeras, Thomas R.
– sequence: 19
  givenname: Eric D.
  surname: Green
  fullname: Green, Eric D.
– sequence: 20
  givenname: Roderic
  surname: Guigo
  fullname: Guigo, Roderic
– sequence: 21
  givenname: Tim
  surname: Hubbard
  fullname: Hubbard, Tim
– sequence: 22
  givenname: Jim
  surname: Kent
  fullname: Kent, Jim
– sequence: 23
  givenname: Jason D.
  surname: Lieb
  fullname: Lieb, Jason D.
– sequence: 24
  givenname: Richard M.
  surname: Myerst
  fullname: Myerst, Richard M.
– sequence: 25
  givenname: Michael J.
  surname: Pazin
  fullname: Pazin, Michael J.
– sequence: 26
  givenname: Bing
  surname: Ren
  fullname: Ren, Bing
– sequence: 27
  givenname: John A.
  surname: Stamatoyannopoulos
  fullname: Stamatoyannopoulos, John A.
– sequence: 28
  givenname: Zhiping
  surname: Weng
  fullname: Weng, Zhiping
– sequence: 29
  givenname: Kevin P.
  surname: White
  fullname: White, Kevin P.
– sequence: 30
  givenname: Ross C.
  surname: Hardison
  fullname: Hardison, Ross C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24753594$$D View this record in MEDLINE/PubMed
BookMark eNqNks1v1DAQxS1URLeFMycgEhcuacffzqVS1fIlVXCgnC2vY-96ldhLnCDx3-Ow2y5UQnCy5PnN03szc4KOYooOoecYzjBIer6NJp9hilXDFMb4EVpgaHAtWANHaAFAZK0YYcfoJOcNADRcwRN0TJjklDdsgdi18yGGuKr8FO0YUjRddf3psnKd610ccxViNa5dtZ56E6uVi6l3T9Fjb7rsnu3fU3T77u3t1Yf65vP7j1eXN7UVhI41NRwXX43lrVDMe6eWDWupd-WXcQxLK3CLW-lBCgkEGsOZN4pTy4h1S3qKLnay22nZu9YWO4Pp9HYIvRl-6GSC_rMSw1qv0nfNoIRraBF4sxcY0rfJ5VH3IVvXdSa6NGWNFdAyEsHh3yinTHFJOP8PlABlVMBs4PUDdJOmoYz4F0XLcIiaBV_-nvM-4N2WCsB3gB1SzoPz2obRzMsqsUOnMej5GvR8DfpwDaXv_EHfnfTfO17trcyFexpjjaUWBSzEix2xyWMaDl6plIQJcVDwJmmzGkLWX78QwAIAM0aB0Z8wRNEw
CitedBy_id crossref_primary_10_1177_0022034518801537
crossref_primary_10_1038_s41564_018_0189_4
crossref_primary_10_1007_s40484_018_0164_3
crossref_primary_10_3389_fcell_2022_1001701
crossref_primary_10_1016_j_tig_2015_03_010
crossref_primary_10_1289_EHP595
crossref_primary_10_1126_sciadv_ade3399
crossref_primary_10_1186_s12867_015_0042_8
crossref_primary_10_1186_s12915_019_0635_7
crossref_primary_10_1126_science_aan2261
crossref_primary_10_1111_dgd_12423
crossref_primary_10_1038_s41375_022_01697_9
crossref_primary_10_3389_fgene_2021_618189
crossref_primary_10_1152_ajpregu_00391_2017
crossref_primary_10_1007_s11692_018_9454_y
crossref_primary_10_1186_s13073_017_0452_y
crossref_primary_10_1038_s41576_020_00303_x
crossref_primary_10_2139_ssrn_3155603
crossref_primary_10_1007_s11692_016_9404_5
crossref_primary_10_1161_CIRCULATIONAHA_114_010696
crossref_primary_10_1016_j_gpb_2018_11_003
crossref_primary_10_1093_bfgp_elw043
crossref_primary_10_1111_pce_13472
crossref_primary_10_1016_j_gde_2015_11_002
crossref_primary_10_1139_gen_2019_0150
crossref_primary_10_1038_nrm_2016_138
crossref_primary_10_1242_dev_120048
crossref_primary_10_1186_s13059_021_02585_8
crossref_primary_10_1098_rstb_2014_0318
crossref_primary_10_1093_pcp_pcae121
crossref_primary_10_1016_j_xcrm_2023_101082
crossref_primary_10_2217_pgs_15_105
crossref_primary_10_1186_1755_8794_8_S2_S6
crossref_primary_10_2217_pgs_15_106
crossref_primary_10_1093_nar_gku1202
crossref_primary_10_1093_nar_gku1204
crossref_primary_10_1016_j_isci_2021_102048
crossref_primary_10_2217_pgs_15_111
crossref_primary_10_1038_s42003_023_05136_y
crossref_primary_10_1093_molbev_msad284
crossref_primary_10_1007_s00439_019_02091_9
crossref_primary_10_12688_f1000research_8288_1
crossref_primary_10_1007_s12064_018_0267_4
crossref_primary_10_1186_s12864_015_1958_6
crossref_primary_10_3389_fgene_2014_00476
crossref_primary_10_1002_eji_201546035
crossref_primary_10_1016_j_ajhg_2015_06_009
crossref_primary_10_1038_s41598_017_11487_4
crossref_primary_10_3389_fonc_2021_681576
crossref_primary_10_1038_srep26605
crossref_primary_10_1016_j_shpsc_2019_101243
crossref_primary_10_1038_s41588_022_01194_w
crossref_primary_10_1042_BST20201004
crossref_primary_10_1126_science_aan3269
crossref_primary_10_1101_gr_277715_123
crossref_primary_10_1371_journal_pone_0123624
crossref_primary_10_1093_gbe_evu098
crossref_primary_10_1371_journal_pgen_1004890
crossref_primary_10_1093_gbe_evu097
crossref_primary_10_1016_j_tig_2014_08_004
crossref_primary_10_1093_bfgp_ely004
crossref_primary_10_1126_sciadv_1500503
crossref_primary_10_1016_j_preteyeres_2016_06_001
crossref_primary_10_1038_s41467_021_22262_5
crossref_primary_10_1111_bph_12968
crossref_primary_10_1016_j_ajhg_2017_08_002
crossref_primary_10_7554_eLife_22194
crossref_primary_10_1002_ijc_32831
crossref_primary_10_1016_j_gpb_2019_04_006
crossref_primary_10_1016_j_molcel_2015_05_004
crossref_primary_10_1093_bioinformatics_btx679
crossref_primary_10_1038_s41593_019_0538_5
crossref_primary_10_7554_eLife_47014
crossref_primary_10_1016_j_jbiotec_2016_03_044
crossref_primary_10_1186_s13059_019_1634_2
crossref_primary_10_1007_s00018_015_1936_9
crossref_primary_10_1038_s41431_021_00915_9
crossref_primary_10_33590_emjrheumatol_10311482
crossref_primary_10_1101_gr_251561_119
crossref_primary_10_1371_journal_pgen_1008720
crossref_primary_10_1186_s13229_020_00333_6
crossref_primary_10_1073_pnas_1808833115
crossref_primary_10_1371_journal_pone_0194502
crossref_primary_10_1016_j_tig_2019_09_006
crossref_primary_10_1186_s12864_016_3198_9
crossref_primary_10_1038_509137e
crossref_primary_10_1038_s41440_019_0294_7
crossref_primary_10_1007_s11515_016_1433_z
crossref_primary_10_3390_cells12081191
crossref_primary_10_1161_CIRCRESAHA_116_302888
crossref_primary_10_1080_15476286_2020_1868165
crossref_primary_10_1093_nsr_nwaa079
crossref_primary_10_1038_s41588_020_0686_2
crossref_primary_10_3390_microarrays4020270
crossref_primary_10_2217_pgs_2017_0186
crossref_primary_10_1038_s41588_018_0062_7
crossref_primary_10_1093_bioinformatics_bty301
crossref_primary_10_1016_j_mrgentox_2018_05_005
crossref_primary_10_1016_j_xgen_2022_100171
crossref_primary_10_1186_s12864_022_08450_7
crossref_primary_10_1158_2159_8290_CD_16_0745
crossref_primary_10_1371_journal_pbio_1002112
crossref_primary_10_1038_s41588_020_0676_4
crossref_primary_10_1007_s00439_023_02519_3
crossref_primary_10_1016_j_arr_2021_101316
crossref_primary_10_1002_mds_28090
crossref_primary_10_1016_j_cell_2015_08_008
crossref_primary_10_1016_j_placenta_2015_11_001
crossref_primary_10_1038_s41576_021_00376_2
crossref_primary_10_1186_s12859_016_1150_2
crossref_primary_10_1186_s12916_019_1383_9
crossref_primary_10_1101_gr_211615_116
crossref_primary_10_1038_nature14378
crossref_primary_10_1186_s12864_015_2155_3
crossref_primary_10_1016_j_ymeth_2017_03_008
crossref_primary_10_3389_fimmu_2018_01392
crossref_primary_10_1093_bioinformatics_bty204
crossref_primary_10_1111_evo_12627
crossref_primary_10_1038_s41598_021_84964_6
crossref_primary_10_1038_512009e
crossref_primary_10_1002_cam4_2145
crossref_primary_10_3389_fgene_2020_00106
crossref_primary_10_1126_scitranslmed_abf4077
crossref_primary_10_1126_science_aad3312
crossref_primary_10_7554_eLife_36317
crossref_primary_10_1093_bioinformatics_btv289
crossref_primary_10_1186_s12864_015_2279_5
crossref_primary_10_1016_j_taap_2018_09_013
crossref_primary_10_1128_mBio_00011_15
crossref_primary_10_1146_annurev_genom_121119_083418
crossref_primary_10_1007_s00439_015_1599_5
crossref_primary_10_1016_j_csbj_2020_06_011
crossref_primary_10_1038_s41467_018_07349_w
crossref_primary_10_1093_genetics_iyac087
crossref_primary_10_1007_s40778_015_0019_z
crossref_primary_10_1038_s41598_019_47797_y
crossref_primary_10_1038_nrg_2016_46
crossref_primary_10_1016_j_cell_2020_06_024
crossref_primary_10_1093_bioinformatics_btw288
crossref_primary_10_1111_jcmm_14646
crossref_primary_10_1038_s41467_020_19962_9
crossref_primary_10_1016_j_ecl_2017_07_001
crossref_primary_10_1134_S1062360421060035
crossref_primary_10_1016_j_cell_2018_01_029
crossref_primary_10_1016_j_physa_2018_03_021
crossref_primary_10_1016_j_tig_2023_02_002
crossref_primary_10_7554_eLife_69571
crossref_primary_10_1038_s41586_020_2559_3
crossref_primary_10_3390_genes15091185
crossref_primary_10_1080_01621459_2016_1149404
crossref_primary_10_1097_MOL_0000000000000159
crossref_primary_10_1038_ncomms15120
crossref_primary_10_1038_s41586_020_2449_8
crossref_primary_10_1002_ggn2_202200009
crossref_primary_10_1134_S207905971703011X
crossref_primary_10_1016_j_stemcr_2017_03_007
crossref_primary_10_1016_j_cll_2018_07_001
crossref_primary_10_1038_s41598_019_42404_6
crossref_primary_10_1038_s41591_018_0237_x
crossref_primary_10_1002_jcb_25226
crossref_primary_10_1111_tpj_13400
crossref_primary_10_3389_fcell_2021_591017
crossref_primary_10_1038_ng_3196
crossref_primary_10_1038_s41467_019_13212_3
crossref_primary_10_1016_j_jid_2021_08_445
crossref_primary_10_1093_nsr_nww025
crossref_primary_10_1111_tan_15020
crossref_primary_10_1038_s42003_019_0488_1
crossref_primary_10_1038_nrg3899
crossref_primary_10_17816_clinpract115063
crossref_primary_10_1093_molbev_msy150
crossref_primary_10_1016_j_cels_2017_07_004
crossref_primary_10_1093_molbev_msy035
crossref_primary_10_1093_jmcb_mjx059
crossref_primary_10_18632_oncotarget_16120
crossref_primary_10_3109_10428194_2014_982638
crossref_primary_10_1093_nar_gkw1263
crossref_primary_10_1146_annurev_genom_091416_035537
crossref_primary_10_1016_j_plrev_2021_03_004
crossref_primary_10_1038_s41420_022_01139_6
crossref_primary_10_1007_s12064_015_0215_5
crossref_primary_10_1371_journal_pgen_1005840
crossref_primary_10_1016_j_it_2015_11_006
crossref_primary_10_1182_blood_2015_10_677393
crossref_primary_10_1186_s13072_015_0021_9
crossref_primary_10_1073_pnas_1410434111
crossref_primary_10_1186_s12918_017_0389_1
crossref_primary_10_1093_molbev_msy046
crossref_primary_10_1016_j_mbs_2015_12_006
crossref_primary_10_1002_bies_202000262
crossref_primary_10_2217_epi_2017_0149
crossref_primary_10_5966_sctm_2014_0191
crossref_primary_10_1093_nargab_lqab052
crossref_primary_10_1101_gr_199760_115
crossref_primary_10_4161_21541264_2014_978173
crossref_primary_10_1093_gbe_evv152
crossref_primary_10_1002_pd_4533
crossref_primary_10_3390_ijms17050664
crossref_primary_10_1371_journal_pbio_2006643
crossref_primary_10_1080_10408398_2017_1392290
crossref_primary_10_3390_insects12070626
crossref_primary_10_1186_s12864_017_4151_2
crossref_primary_10_1111_mec_13742
crossref_primary_10_1242_dev_161208
crossref_primary_10_1093_bfgp_elab015
crossref_primary_10_1073_pnas_1525001113
crossref_primary_10_1093_gbe_evv021
crossref_primary_10_1186_s12864_019_5965_x
crossref_primary_10_1200_CCI_19_00109
crossref_primary_10_1159_000381851
crossref_primary_10_1038_s41559_017_0377_2
crossref_primary_10_1007_s00414_019_02044_x
crossref_primary_10_1155_2022_2411642
crossref_primary_10_1101_gr_193789_115
crossref_primary_10_1007_s40828_020_00126_7
crossref_primary_10_1093_bib_bbx131
crossref_primary_10_1002_jcp_24847
crossref_primary_10_2217_pgs_2020_0010
crossref_primary_10_3389_fgene_2020_587887
crossref_primary_10_1136_bmjpo_2023_001966
crossref_primary_10_1007_s00439_017_1798_3
crossref_primary_10_1016_j_biosystems_2023_104934
crossref_primary_10_1093_bfgp_elac032
crossref_primary_10_1016_j_celrep_2021_109896
crossref_primary_10_1002_wrna_1845
crossref_primary_10_1016_j_mrrev_2023_108457
crossref_primary_10_1371_journal_pone_0113492
crossref_primary_10_1155_2015_463016
crossref_primary_10_3389_fimmu_2023_1271879
crossref_primary_10_1186_s12864_017_4422_y
crossref_primary_10_1373_clinchem_2015_241190
crossref_primary_10_1038_ncomms6903
crossref_primary_10_1080_15476286_2017_1391443
crossref_primary_10_1016_j_copbio_2015_01_001
crossref_primary_10_18632_oncotarget_3019
crossref_primary_10_1016_j_ymeth_2015_10_020
crossref_primary_10_1038_s41431_019_0468_4
crossref_primary_10_1080_09500693_2024_2343435
crossref_primary_10_1016_j_tibs_2018_05_002
crossref_primary_10_7554_eLife_76065
crossref_primary_10_1007_s10577_022_09697_2
crossref_primary_10_1214_19_AOAS1244
crossref_primary_10_1101_gr_223263_117
crossref_primary_10_1111_php_12661
crossref_primary_10_2217_epi_15_107
crossref_primary_10_1016_j_gene_2024_149138
crossref_primary_10_1007_s10539_024_09977_7
crossref_primary_10_3390_ijms19040927
crossref_primary_10_1016_j_preteyeres_2017_03_003
crossref_primary_10_1111_pcmr_12286
crossref_primary_10_1038_s41467_021_23143_7
crossref_primary_10_1016_j_ajhg_2016_12_009
crossref_primary_10_1371_journal_pgen_1006174
crossref_primary_10_1002_bmb_20952
crossref_primary_10_1371_journal_pgen_1011513
crossref_primary_10_18699_VJ21_038
crossref_primary_10_1177_0162243916677835
crossref_primary_10_1182_blood_2014_11_567925
crossref_primary_10_3390_jpm10040169
crossref_primary_10_1002_bies_202300201
crossref_primary_10_1093_gbe_evab077
crossref_primary_10_3390_sym10040103
crossref_primary_10_3727_096504018X15234931503876
crossref_primary_10_1016_j_scr_2015_08_003
crossref_primary_10_3390_ijms232112977
crossref_primary_10_1155_2021_6650966
crossref_primary_10_1038_srep06737
crossref_primary_10_1134_S0006297914130021
crossref_primary_10_1186_s13059_019_1838_5
crossref_primary_10_1016_j_cbpa_2015_10_023
crossref_primary_10_1101_cshperspect_a037374
crossref_primary_10_1161_CIRCGENETICS_114_000909
crossref_primary_10_1007_s10784_025_09665_1
crossref_primary_10_1073_pnas_2123152119
crossref_primary_10_1093_nar_gkv642
crossref_primary_10_1186_1471_2164_16_S8_S3
crossref_primary_10_1016_j_exer_2017_05_002
crossref_primary_10_1109_JPROC_2015_2494198
crossref_primary_10_1016_j_dib_2015_10_023
crossref_primary_10_1016_j_ncrna_2024_06_013
crossref_primary_10_4137_BBI_S30525
crossref_primary_10_1016_j_csbj_2022_05_045
crossref_primary_10_1093_sysbio_syac050
crossref_primary_10_1186_s13059_015_0621_5
crossref_primary_10_3390_ijms18030456
crossref_primary_10_1038_ncomms16058
crossref_primary_10_1038_leu_2017_210
crossref_primary_10_1002_0471142905_hg0923s87
crossref_primary_10_1186_s12052_015_0050_7
crossref_primary_10_1038_nrg_2017_38
crossref_primary_10_7554_eLife_11615
crossref_primary_10_1073_pnas_1421397112
crossref_primary_10_1093_bib_bbw114
crossref_primary_10_1016_j_ajhg_2016_03_027
crossref_primary_10_1016_j_cbpa_2015_10_013
crossref_primary_10_1186_s13059_019_1860_7
crossref_primary_10_1007_s12264_014_1488_2
crossref_primary_10_1371_journal_pcbi_1007332
crossref_primary_10_1016_j_csbj_2018_02_003
crossref_primary_10_1097_TP_0000000000000836
crossref_primary_10_1039_C5DT04410C
crossref_primary_10_1186_s13059_023_03142_1
crossref_primary_10_1093_molbev_msx101
crossref_primary_10_1002_art_39476
crossref_primary_10_1007_s12539_024_00669_0
crossref_primary_10_1371_journal_pgen_1008160
crossref_primary_10_1093_database_baz020
crossref_primary_10_1016_j_molp_2015_02_009
crossref_primary_10_1242_dev_122820
crossref_primary_10_1016_j_it_2015_07_005
crossref_primary_10_1186_s13059_021_02503_y
crossref_primary_10_1111_cge_13193
crossref_primary_10_1186_s13059_016_0875_6
crossref_primary_10_1111_tan_13598
crossref_primary_10_1038_s41588_021_00863_6
crossref_primary_10_1016_j_yjmcc_2018_05_012
crossref_primary_10_1038_nbt_4030
crossref_primary_10_1371_journal_pgen_1009240
crossref_primary_10_1155_2018_9135073
crossref_primary_10_1002_ajmg_b_32325
crossref_primary_10_1371_journal_pgen_1007186
crossref_primary_10_1093_gbe_evad211
crossref_primary_10_1093_nar_gkad1079
crossref_primary_10_1016_j_isci_2020_101596
crossref_primary_10_3389_fgene_2023_1181956
crossref_primary_10_1016_j_celrep_2016_04_018
crossref_primary_10_1016_j_celrep_2018_02_008
crossref_primary_10_1038_s41467_017_01629_7
crossref_primary_10_3390_ph12020074
crossref_primary_10_1016_j_ajhg_2019_03_012
crossref_primary_10_1038_s41467_018_04948_5
crossref_primary_10_3390_ijms19010123
crossref_primary_10_1186_s12859_019_2708_6
crossref_primary_10_1371_journal_pcbi_1007337
crossref_primary_10_1142_S0219720021500141
crossref_primary_10_1073_pnas_1704117114
crossref_primary_10_1038_s41586_024_07510_0
crossref_primary_10_2217_epi_15_91
crossref_primary_10_1038_nrg_2017_75
crossref_primary_10_1101_gr_216911_116
crossref_primary_10_3390_cells8101281
crossref_primary_10_1038_s41598_019_55098_7
crossref_primary_10_1016_j_celrep_2019_08_020
crossref_primary_10_1007_s11892_014_0549_2
crossref_primary_10_3389_fgene_2021_664379
crossref_primary_10_1007_s00439_017_1771_1
crossref_primary_10_1021_acs_nanolett_8b04170
crossref_primary_10_1146_annurev_animal_090414_014900
crossref_primary_10_7554_eLife_09977
crossref_primary_10_1016_j_cels_2023_04_002
crossref_primary_10_1016_j_jconrel_2023_04_026
crossref_primary_10_1016_j_tig_2021_06_007
crossref_primary_10_1039_D0SC00480D
crossref_primary_10_1016_j_cytox_2021_100056
crossref_primary_10_3324_haematol_2021_266643
crossref_primary_10_3390_ijms22179589
crossref_primary_10_1186_s12859_018_2469_7
crossref_primary_10_1016_j_tig_2021_06_004
crossref_primary_10_1186_s12919_016_0040_y
crossref_primary_10_12688_f1000research_18966_1
crossref_primary_10_1053_j_gastro_2014_12_030
crossref_primary_10_1111_tpj_16373
crossref_primary_10_1146_annurev_animal_020518_114913
crossref_primary_10_12688_f1000research_8151_1
crossref_primary_10_1016_j_coisb_2016_12_019
crossref_primary_10_1146_annurev_vision_082114_035609
crossref_primary_10_1016_j_ajhg_2014_10_004
crossref_primary_10_1016_j_shpsa_2021_03_005
crossref_primary_10_1096_fj_201500124RR
crossref_primary_10_1073_pnas_1409762111
crossref_primary_10_1146_annurev_cellbio_100814_125249
crossref_primary_10_1101_gr_190538_115
crossref_primary_10_1177_2045894020913475
crossref_primary_10_1111_resp_13714
crossref_primary_10_3389_fmicb_2018_02178
crossref_primary_10_1002_ggn2_202300203
crossref_primary_10_1186_s12864_017_3481_4
crossref_primary_10_1371_journal_pone_0154181
crossref_primary_10_1016_j_gpb_2021_08_015
crossref_primary_10_1186_s12864_019_5709_y
crossref_primary_10_12688_f1000research_52350_2
crossref_primary_10_3390_ijms21010302
crossref_primary_10_1210_er_2016_1101
crossref_primary_10_23736_S0394_3410_19_03939_0
crossref_primary_10_3390_cells11121895
crossref_primary_10_1016_j_atherosclerosis_2016_08_034
crossref_primary_10_1093_hmg_ddab139
crossref_primary_10_1111_1755_0998_12933
crossref_primary_10_15252_embr_201439949
crossref_primary_10_1038_s41467_024_47346_w
crossref_primary_10_1016_j_ebiom_2018_07_042
crossref_primary_10_1038_nature15714
crossref_primary_10_1002_bies_201900066
crossref_primary_10_1016_j_celrep_2015_09_077
crossref_primary_10_1007_s12561_016_9151_2
crossref_primary_10_1016_j_celrep_2022_111630
crossref_primary_10_1038_ng_3680
crossref_primary_10_1016_j_nlm_2019_107034
crossref_primary_10_1161_CIRCULATIONAHA_114_013303
crossref_primary_10_1093_nar_gky510
crossref_primary_10_1093_nar_gkw691
crossref_primary_10_1038_s41598_020_57725_0
crossref_primary_10_1371_journal_pcbi_1006453
crossref_primary_10_7554_eLife_07571
crossref_primary_10_1111_oik_04171
crossref_primary_10_1074_jbc_M114_622878
crossref_primary_10_1007_s40495_018_0127_4
crossref_primary_10_1016_j_jse_2016_11_038
crossref_primary_10_1016_j_ajhg_2018_03_026
crossref_primary_10_1186_s12915_017_0460_9
crossref_primary_10_1101_gad_250902_114
crossref_primary_10_1016_j_csbj_2024_09_017
crossref_primary_10_1126_science_abk3512
crossref_primary_10_3390_horticulturae11010063
crossref_primary_10_1111_imr_12814
crossref_primary_10_1371_journal_pone_0208952
crossref_primary_10_1111_tpj_13059
crossref_primary_10_1186_s13073_014_0092_4
crossref_primary_10_1016_j_gene_2015_12_043
crossref_primary_10_1186_s12863_015_0313_x
crossref_primary_10_1172_JCI81568
crossref_primary_10_1167_iovs_18_25443
crossref_primary_10_1073_pnas_1424958112
crossref_primary_10_15406_ijmboa_2023_06_00147
crossref_primary_10_1093_database_baw030
crossref_primary_10_1016_j_dnarep_2020_102927
crossref_primary_10_1186_s12859_019_3049_1
crossref_primary_10_1016_j_chc_2019_08_007
crossref_primary_10_1186_s13059_017_1296_x
crossref_primary_10_1073_pnas_1523482113
crossref_primary_10_1177_0022022117736526
crossref_primary_10_1016_j_jtbi_2019_08_014
crossref_primary_10_1038_srep30851
crossref_primary_10_1111_gbb_12407
crossref_primary_10_1002_ajh_23952
crossref_primary_10_1016_j_ajhg_2022_01_017
crossref_primary_10_1159_000530929
crossref_primary_10_1016_j_toxlet_2022_04_003
crossref_primary_10_1016_j_tig_2016_06_004
crossref_primary_10_1101_gr_248658_119
crossref_primary_10_1038_s41467_019_08337_4
crossref_primary_10_1038_s41576_018_0050_x
crossref_primary_10_1002_ijc_31810
crossref_primary_10_1186_s13059_020_1937_3
crossref_primary_10_1007_s10539_022_09856_z
crossref_primary_10_1182_blood_2020005301
crossref_primary_10_1038_s41598_020_77586_x
crossref_primary_10_15252_embj_2020104983
crossref_primary_10_1525_elementa_2020_00072
crossref_primary_10_1038_s41467_023_37610_w
crossref_primary_10_1007_s10048_015_0445_1
crossref_primary_10_1002_humu_23049
crossref_primary_10_1016_j_csbj_2020_02_013
crossref_primary_10_1073_pnas_1514974112
crossref_primary_10_1002_ijc_29618
crossref_primary_10_1111_tpj_14370
Cites_doi 10.1038/nature11247
10.1038/nature08903
10.1016/j.cub.2012.10.002
10.1016/j.cub.2013.03.023
10.1038/nature08872
10.1126/science.1225057
10.1016/j.tig.2011.06.006
10.1016/j.cell.2008.06.030
10.1126/science.1202702
10.1126/science.1169050
10.1016/0092-8674(87)90584-8
10.1038/ni0706-692
10.1038/nature06340
10.1073/pnas.1221376110
10.1146/annurev-genom-082509-141651
10.1038/ni0804-768
10.1016/j.cell.2012.10.012
10.1016/S0378-1119(03)00556-0
10.1002/j.1460-2075.1987.tb02605.x
10.1038/ng.2504
10.1101/SQB.1956.021.01.017
10.1038/nature10530
10.1101/gr.5255506
10.1007/s10142-002-0065-3
10.1371/journal.pcbi.1001025
10.1016/S1046-2023(02)00006-3
10.1101/gr.161034.113
10.1371/journal.pbio.1000625
10.1101/gad.13.20.2713
10.1371/journal.pbio.1001369
10.1126/science.1146484
10.1016/S0065-2660(07)00013-2
10.1038/nature01262
10.1038/nature07730
10.1038/nature01644
10.1038/nmeth.1226
10.1016/j.cell.2013.01.035
10.1101/gr.3715005
10.1038/nbt.2137
10.1016/j.gde.2012.01.002
10.1038/nature05874
10.1371/journal.pgen.1002326
10.1038/nature10944
10.1016/j.cell.2008.01.014
10.1038/nrg1920
10.1126/science.1081331
10.1093/gbe/evt028
10.1093/nar/gkr917
10.1017/S1464793100005595
10.1186/1877-6566-7-2
10.1093/gbe/evt023
10.1038/nature11233
10.1126/science.1222794
10.1101/gr.116814.110
10.1086/426833
10.1073/pnas.0611223104
10.1038/nature11245
10.1038/nbt.2136
10.1016/S0952-7915(98)80174-X
10.1038/35057062
10.1534/genetics.111.134668
10.1242/dev.125.5.949
10.1371/journal.pbio.0050234
10.1146/annurev.bi.57.070188.001111
10.1038/nature09906
10.1126/science.1215040
10.1126/science.1088328
10.1016/S1046-2023(02)00005-1
10.1126/science.1105136
10.1073/pnas.86.8.2554
10.1126/science.1182213
10.1126/science.1233366
10.1126/science.1084337
10.1016/j.cell.2013.08.021
10.1073/pnas.0903103106
10.1101/gr.110882.110
10.1101/gr.817703
10.1016/j.cell.2009.01.002
10.1126/science.1174148
10.1056/NEJMoa1103070
10.1038/nrg3295
10.1073/pnas.0803697105
10.1038/nature03441
10.1038/nature02371
10.1101/gr.098921.109
10.1101/gr.136127.111
10.1038/nature10808
10.1038/nature04338
10.1101/gr.152710.112
10.1101/gr.155192.113
10.1038/nature01858
10.1101/gr.6929408
10.1038/nature09692
10.1146/annurev.ge.05.120171.001321
10.1093/molbev/mst045
10.1073/pnas.1016071107
10.1101/gad.1706508
10.1038/nmeth.1313
10.1007/s10539-014-9441-3
10.1073/pnas.0511238103
10.1371/journal.pcbi.0020130
10.1101/gr.144899.112
10.1038/nbt.1590
10.1038/nrg2683
10.1101/gad.1897310
10.1093/oxfordjournals.molbev.a004169
10.1093/nar/gki033
10.1101/gr.3642605
10.1006/dbio.1998.8991
10.1146/annurev-biochem-051410-092902
10.1101/gr.108795.110
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Apr 29, 2014
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Apr 29, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1318948111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

Virology and AIDS Abstracts
MEDLINE
Genetics Abstracts
AGRICOLA


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Defining functional DNA elements
EISSN 1091-6490
EndPage 6138
ExternalDocumentID PMC4035993
3301640041
24753594
10_1073_pnas_1318948111
111_17_6131
23772466
US201600144304
Genre Journal Article
Review
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: U54 HG006997
– fundername: NIGMS NIH HHS
  grantid: R01 GM083337
– fundername: NHGRI NIH HHS
  grantid: U41 HG007234
– fundername: NHGRI NIH HHS
  grantid: R01 HG004037
– fundername: NHGRI NIH HHS
  grantid: U54 HG006996
– fundername: NHGRI NIH HHS
  grantid: R01 HG003143
– fundername: NIA NIH HHS
  grantid: R01 AG016379
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: P30 CA045508
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c623t-3a519489c5d684ffe8b94d3fe1944510bc61d1d7f07670209a54fa853c42ceb3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:37:03 EDT 2025
Fri Jul 11 00:01:45 EDT 2025
Fri Jul 11 13:57:32 EDT 2025
Fri Jul 11 07:24:20 EDT 2025
Sat Aug 16 23:11:59 EDT 2025
Thu Apr 03 07:07:37 EDT 2025
Tue Jul 01 01:53:05 EDT 2025
Thu Apr 24 23:04:19 EDT 2025
Wed Nov 11 00:30:23 EST 2020
Thu May 29 08:40:45 EDT 2025
Wed Dec 27 19:14:44 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c623t-3a519489c5d684ffe8b94d3fe1944510bc61d1d7f07670209a54fa853c42ceb3
Notes http://dx.doi.org/10.1073/pnas.1318948111
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
3A.K., G.K.M., and L.D.W. contributed equally to this work.
Author contributions: M.K., B.W., M.P.S., B.E.B., and R.C.H. designed research; M.K., B.W., M.P.S., B.E.B., A.K., G.K.M., L.D.W., and R.C.H. performed research; A.K., G.K.M., and L.D.W. contributed computational analysis and tools; M.K., B.W., M.P.S., B.E.B., E.B., G.E.C., J.D., I.D., L.L.E., P.J.F., E.A.F., M.G., M.C.G., D.M.G., T.R.G., E.D.G., R.G., T.H., J.K., J.D.L., R.M.M., M.J.P., B.R., J.A.S., Z.W., K.P.W., and R.C.H. contributed to manuscript discussions and ideas; and M.K., B.W., M.P.S., B.E.B., and R.C.H. wrote the paper.
2M.K., B.W., M.P.S., B.E.B., and R.C.H. contributed equally to this work.
Edited by Robert Haselkorn, University of Chicago, Chicago, IL, and approved January 29, 2014 (received for review October 16, 2013)
OpenAccessLink https://www.pnas.org/content/pnas/111/17/6131.full.pdf
PMID 24753594
PQID 1523948285
PQPubID 42026
PageCount 8
ParticipantIDs proquest_miscellaneous_1803095650
proquest_miscellaneous_1520343603
pubmed_primary_24753594
jstor_primary_23772466
proquest_journals_1523948285
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4035993
crossref_citationtrail_10_1073_pnas_1318948111
proquest_miscellaneous_1534857255
fao_agris_US201600144304
crossref_primary_10_1073_pnas_1318948111
pnas_primary_111_17_6131
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-29
PublicationDateYYYYMMDD 2014-04-29
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Kellis M (e_1_3_3_43_2) 2003; 423
ENCODE Project Consortium (e_1_3_3_69_2) 2012; 489
Xu J (e_1_3_3_109_2) 2010; 24
de Souza FS (e_1_3_3_83_2) 2013; 30
Melnikov A (e_1_3_3_39_2) 2012; 30
Dimas AS (e_1_3_3_94_2) 2009; 325
Hesselberth JR (e_1_3_3_116_2) 2009; 6
Meader S (e_1_3_3_89_2) 2010; 20
Ernst J (e_1_3_3_35_2) 2011; 473
Pfeiffer BD (e_1_3_3_40_2) 2008; 105
Olovnikov I (e_1_3_3_53_2) 2012; 22
Jones FC (e_1_3_3_5_2) 2012; 484
Lynch M (e_1_3_3_78_2) 2007
Patwardhan RP (e_1_3_3_38_2) 2012; 30
Li Q (e_1_3_3_99_2) 2011; 5
Ward LD (e_1_3_3_93_2) 2013; 340
Costas J (e_1_3_3_18_2) 2003; 310
Gregory TR (e_1_3_3_74_2) 2001; 76
Vakhrusheva OA (e_1_3_3_24_2) 2013; 5
Ran FA (e_1_3_3_113_2) 2013; 154
Kleinjan DA (e_1_3_3_11_2) 2005; 76
Mattick JS (e_1_3_3_29_2) 2013; 7
Talbert PB (e_1_3_3_105_2) 2006; 7
Elnitski L (e_1_3_3_49_2) 2003; 13
Lindblad-Toh K (e_1_3_3_87_2) 2005; 438
Lander ES (e_1_3_3_1_2) 2001; 409
Nardone J (e_1_3_3_58_2) 2004; 5
Bartel DP (e_1_3_3_50_2) 2009; 136
Marinov GK (e_1_3_3_102_2) 2014
Graur D (e_1_3_3_26_2) 2013; 5
Cliften P (e_1_3_3_46_2) 2003; 301
Cheng Y (e_1_3_3_70_2) 2009; 19
Visel A (e_1_3_3_37_2) 2009; 457
Davydov EV (e_1_3_3_115_2) 2010; 6
Degner JF (e_1_3_3_97_2) 2012; 482
Pickrell JK (e_1_3_3_98_2) 2010; 464
Scally A (e_1_3_3_91_2) 2012; 13
Stark A (e_1_3_3_42_2) 2007; 450
Rada-Iglesias A (e_1_3_3_63_2) 2011; 470
Lohmueller KE (e_1_3_3_92_2) 2011; 7
Tuan DY (e_1_3_3_107_2) 1989; 86
Grossman SR (e_1_3_3_6_2) 2013; 152
Battle A (e_1_3_3_96_2) 2014; 24
Germain PL (e_1_3_3_31_2) 2014
Chan YF (e_1_3_3_10_2) 2010; 327
Fraser HB (e_1_3_3_7_2) 2013; 23
Doolittle WF (e_1_3_3_25_2) 2013; 110
Horak CE (e_1_3_3_66_2) 2002; 2
King DC (e_1_3_3_106_2) 2005; 15
Hindorff LA (e_1_3_3_13_2) 2009; 106
McGaughey DM (e_1_3_3_23_2) 2008; 18
Kheradpour P (e_1_3_3_36_2) 2013; 23
Lowe CB (e_1_3_3_81_2) 2011; 333
ENCODE Project Consortium (e_1_3_3_67_2) 2004; 306
Jeong S (e_1_3_3_8_2) 2008; 132
Boffelli D (e_1_3_3_47_2) 2003; 299
Clark MB (e_1_3_3_85_2) 2011; 9
Ponting CP (e_1_3_3_4_2) 2011; 21
Weinmann AS (e_1_3_3_61_2) 2002; 26
Carr PA (e_1_3_3_114_2) 2009; 27
Mortazavi A (e_1_3_3_103_2) 2008; 5
Henikoff S (e_1_3_3_71_2) 2011; 27
Gerstein MB (e_1_3_3_111_2) 2012; 489
Thomas JW (e_1_3_3_45_2) 2003; 424
Nobrega MA (e_1_3_3_21_2) 2003; 302
Niu DK (e_1_3_3_30_2) 2012; 430
Weiner A (e_1_3_3_72_2) 2012; 10
Keightley PD (e_1_3_3_75_2) 2012; 190
Hamosh A (e_1_3_3_32_2) 2005; 33
Eddy SR (e_1_3_3_28_2) 2013; 23
Moses AM (e_1_3_3_19_2) 2006; 2
Berns K (e_1_3_3_34_2) 2004; 428
Gross DS (e_1_3_3_59_2) 1988; 57
Amsterdam A (e_1_3_3_33_2) 1999; 13
Dermitzakis ET (e_1_3_3_17_2) 2002; 19
Aravin AA (e_1_3_3_52_2) 2007; 318
Ward LD (e_1_3_3_16_2) 2012; 40
Djebali S (e_1_3_3_104_2) 2012; 489
Siepel A (e_1_3_3_48_2) 2005; 15
Maurano MT (e_1_3_3_14_2) 2012; 337
McClintock B (e_1_3_3_82_2) 1956; 21
Parker SC (e_1_3_3_88_2) 2009; 324
Johnson KD (e_1_3_3_62_2) 2002; 26
Creyghton MP (e_1_3_3_64_2) 2010; 107
Thomas CA (e_1_3_3_73_2) 1971; 5
Lindblad-Toh K (e_1_3_3_3_2) 2011; 478
Ehret CF (e_1_3_3_76_2) 1963; 23
Rinn JL (e_1_3_3_51_2) 2012; 81
Ozsolak F (e_1_3_3_65_2) 2008; 22
Agarwal S (e_1_3_3_55_2) 1998; 10
Sankaran VG (e_1_3_3_110_2) 2011; 365
Trynka G (e_1_3_3_112_2) 2013; 45
Nishihara H (e_1_3_3_84_2) 2006; 16
Kleinjan DA (e_1_3_3_12_2) 2008; 61
Ward LD (e_1_3_3_90_2) 2012; 337
Bodine DM (e_1_3_3_108_2) 1987; 6
Jacquier A (e_1_3_3_86_2) 2009; 10
Ludwig MZ (e_1_3_3_20_2) 1998; 125
Xie X (e_1_3_3_44_2) 2005; 434
Grosveld F (e_1_3_3_54_2) 1987; 51
Carroll SB (e_1_3_3_9_2) 2008; 134
Montgomery SB (e_1_3_3_95_2) 2010; 464
Waterston RH (e_1_3_3_2_2) 2002; 420
Lowe CB (e_1_3_3_80_2) 2007; 104
Ahituv N (e_1_3_3_22_2) 2007; 5
Schaub MA (e_1_3_3_15_2) 2012; 22
MacArthur DG (e_1_3_3_41_2) 2012; 335
Lovén J (e_1_3_3_100_2) 2012; 151
Kamal M (e_1_3_3_79_2) 2006; 103
Birney E (e_1_3_3_68_2) 2007; 447
Eddy SR (e_1_3_3_27_2) 2012; 22
Noonan JP (e_1_3_3_57_2) 2010; 11
Ohno S (e_1_3_3_77_2) 1972; 23
Lakshmanan G (e_1_3_3_56_2) 1998; 204
Li CC (e_1_3_3_60_2) 2006; 7
Islam S (e_1_3_3_101_2) 2011; 21
12775844 - Science. 2003 Jul 4;301(5629):71-6
23415221 - Cell. 2013 Feb 14;152(4):703-13
16024819 - Genome Res. 2005 Aug;15(8):1034-50
9449677 - Development. 1998 Mar;125(5):949-58
14073743 - J Ultrastruct Res. 1963 Oct;23:SUPPL6:1-42
17803355 - PLoS Biol. 2007 Sep;5(9):e234
21160473 - Nature. 2011 Feb 10;470(7333):279-83
22371084 - Nat Biotechnol. 2012 Mar;30(3):271-7
22345605 - Genetics. 2012 Feb;190(2):295-304
20010598 - Nat Biotechnol. 2009 Dec;27(12):1151-62
3690667 - Cell. 1987 Dec 24;51(6):975-85
15549674 - Am J Hum Genet. 2005 Jan;76(1):8-32
18516045 - Nat Methods. 2008 Jul;5(7):621-8
23137679 - Curr Biol. 2012 Nov 6;22(21):R898-9
16717141 - Genome Res. 2006 Jul;16(7):864-74
23512712 - Genome Res. 2013 May;23(5):800-11
23263488 - Nat Genet. 2013 Feb;45(2):124-30
25107292 - Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):E3365
23992846 - Cell. 2013 Sep 12;154(6):1380-9
21875934 - Genome Res. 2011 Nov;21(11):1769-76
12192590 - Funct Integr Genomics. 2002 Sep;2(4-5):171-80
21879898 - N Engl J Med. 2011 Sep 1;365(9):807-14
15608251 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D514-7
22955986 - Genome Res. 2012 Sep;22(9):1748-59
9882482 - Dev Biol. 1998 Dec 15;204(2):451-63
14563999 - Science. 2003 Oct 17;302(5644):413
19056895 - Genes Dev. 2008 Nov 15;22(22):3172-83
23268340 - Biochem Biophys Res Commun. 2013 Jan 25;430(4):1340-3
12466850 - Nature. 2002 Dec 5;420(6915):520-62
22955828 - Science. 2012 Sep 7;337(6099):1190-5
19305407 - Nat Methods. 2009 Apr;6(4):283-9
16097657 - Annu Rev Genet. 1971;5:237-56
22955619 - Nature. 2012 Sep 6;489(7414):91-100
3052270 - Annu Rev Biochem. 1988;57:159-97
12529307 - Genome Res. 2003 Jan;13(1):64-72
22663078 - Annu Rev Biochem. 2012;81:145-66
2704733 - Proc Natl Acad Sci U S A. 1989 Apr;86(8):2554-8
20007865 - Science. 2010 Jan 15;327(5963):302-5
21543516 - Genome Res. 2011 Jul;21(7):1160-7
18614008 - Cell. 2008 Jul 11;134(1):25-36
11237011 - Nature. 2001 Feb 15;409(6822):860-921
15735639 - Nature. 2005 Mar 17;434(7031):338-45
22955616 - Nature. 2012 Sep 6;489(7414):57-74
18621688 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9715-20
17040121 - PLoS Comput Biol. 2006 Oct;2(10):e130
17571346 - Nature. 2007 Jun 14;447(7146):799-816
19212405 - Nature. 2009 Feb 12;457(7231):854-8
22371081 - Nat Biotechnol. 2012 Mar;30(3):265-70
22965354 - Nat Rev Genet. 2012 Oct;13(10):745-53
19286520 - Science. 2009 Apr 17;324(5925):389-92
22912562 - PLoS Biol. 2012;10(7):e1001369
25275169 - Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):E3366
23431001 - Genome Biol Evol. 2013;5(3):578-90
20220758 - Nature. 2010 Apr 1;464(7289):768-72
17975059 - Science. 2007 Nov 2;318(5851):761-4
15282556 - Nat Immunol. 2004 Aug;5(8):768-74
12054902 - Methods. 2002 Jan;26(1):27-36
22956687 - Science. 2012 Sep 28;337(6102):1675-8
16341006 - Nature. 2005 Dec 8;438(7069):803-19
21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6
22349141 - Curr Opin Genet Dev. 2012 Apr;22(2):164-71
20220756 - Nature. 2010 Apr 1;464(7289):773-7
21765801 - PLoS Biol. 2011 Jul;9(7):e1000625; discussion e1001102
18071029 - Genome Res. 2008 Feb;18(2):252-60
23479647 - Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5294-300
18282513 - Adv Genet. 2008;61:339-88
21764166 - Trends Genet. 2011 Oct;27(10):389-96
16477033 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2740-5
15042092 - Nature. 2004 Mar 25;428(6981):431-7
20693480 - Genome Res. 2010 Oct;20(10):1335-43
21852499 - Science. 2011 Aug 19;333(6045):1019-24
20438361 - Annu Rev Genomics Hum Genet. 2010;11:1-23
17463089 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):8005-10
16024817 - Genome Res. 2005 Aug;15(8):1051-60
23418180 - Genome Biol Evol. 2013;5(3):532-41
21993624 - Nature. 2011 Oct 27;478(7370):476-82
12801649 - Gene. 2003 May 22;310:215-20
19474294 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7
16983375 - Nat Rev Genet. 2006 Oct;7(10):793-803
24092820 - Genome Res. 2014 Jan;24(1):14-24
19887574 - Genome Res. 2009 Dec;19(12):2172-84
21441907 - Nature. 2011 May 5;473(7345):43-9
16785883 - Nat Immunol. 2006 Jul;7(7):692-7
22344438 - Science. 2012 Feb 17;335(6070):823-8
22481358 - Nature. 2012 Apr 5;484(7392):55-61
22064851 - Nucleic Acids Res. 2012 Jan;40(Database issue):D930-4
22022285 - PLoS Genet. 2011 Oct;7(10):e1002326
19644074 - Science. 2009 Sep 4;325(5945):1246-50
5065367 - Brookhaven Symp Biol. 1972;23:366-70
10541557 - Genes Dev. 1999 Oct 15;13(20):2713-24
12917688 - Nature. 2003 Aug 14;424(6950):788-93
12054903 - Methods. 2002 Jan;26(1):37-47
20395365 - Genes Dev. 2010 Apr 15;24(8):783-98
12610304 - Science. 2003 Feb 28;299(5611):1391-4
13433592 - Cold Spring Harb Symp Quant Biol. 1956;21:197-216
23661743 - Science. 2013 May 10;340(6133):682
12748633 - Nature. 2003 May 15;423(6937):241-54
19167326 - Cell. 2009 Jan 23;136(2):215-33
15499007 - Science. 2004 Oct 22;306(5696):636-40
23578867 - Curr Biol. 2013 Apr 8;23(7):R259-61
12082130 - Mol Biol Evol. 2002 Jul;19(7):1114-21
19920851 - Nat Rev Genet. 2009 Dec;10(12):833-44
9638372 - Curr Opin Immunol. 1998 Jun;10(3):345-52
17994088 - Nature. 2007 Nov 8;450(7167):219-32
22307276 - Nature. 2012 Feb 16;482(7385):390-4
23101621 - Cell. 2012 Oct 26;151(3):476-82
23539138 - Genome Res. 2013 Jul;23(7):1089-96
11325054 - Biol Rev Camb Philos Soc. 2001 Feb;76(1):65-101
22955620 - Nature. 2012 Sep 6;489(7414):101-8
3691478 - EMBO J. 1987 Oct;6(10):2997-3004
23486611 - Mol Biol Evol. 2013 Jun;30(6):1239-51
21152010 - PLoS Comput Biol. 2010;6(12):e1001025
24299736 - Genome Res. 2014 Mar;24(3):496-510
18329365 - Cell. 2008 Mar 7;132(5):783-93
References_xml – volume: 489
  start-page: 57
  year: 2012
  ident: e_1_3_3_69_2
  article-title: An integrated encyclopedia of DNA elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 464
  start-page: 773
  year: 2010
  ident: e_1_3_3_95_2
  article-title: Transcriptome genetics using second generation sequencing in a Caucasian population
  publication-title: Nature
  doi: 10.1038/nature08903
– volume: 22
  start-page: R898
  year: 2012
  ident: e_1_3_3_27_2
  article-title: The C-value paradox, junk DNA and ENCODE
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2012.10.002
– volume: 23
  start-page: R259
  year: 2013
  ident: e_1_3_3_28_2
  article-title: The ENCODE project: Missteps overshadowing a success
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2013.03.023
– volume: 430
  start-page: 1340
  year: 2012
  ident: e_1_3_3_30_2
  article-title: Can ENCODE tell us how much junk DNA we carry in our genome?
  publication-title: Biochem Biophys Res Commun
– volume: 464
  start-page: 768
  year: 2010
  ident: e_1_3_3_98_2
  article-title: Understanding mechanisms underlying human gene expression variation with RNA sequencing
  publication-title: Nature
  doi: 10.1038/nature08872
– volume: 337
  start-page: 1675
  year: 2012
  ident: e_1_3_3_90_2
  article-title: Evidence of abundant purifying selection in humans for recently acquired regulatory functions
  publication-title: Science
  doi: 10.1126/science.1225057
– volume: 27
  start-page: 389
  year: 2011
  ident: e_1_3_3_71_2
  article-title: Histone modification: Cause or cog?
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2011.06.006
– volume: 134
  start-page: 25
  year: 2008
  ident: e_1_3_3_9_2
  article-title: Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.030
– volume: 333
  start-page: 1019
  year: 2011
  ident: e_1_3_3_81_2
  article-title: Three periods of regulatory innovation during vertebrate evolution
  publication-title: Science
  doi: 10.1126/science.1202702
– volume: 324
  start-page: 389
  year: 2009
  ident: e_1_3_3_88_2
  article-title: Local DNA topography correlates with functional noncoding regions of the human genome
  publication-title: Science
  doi: 10.1126/science.1169050
– volume: 51
  start-page: 975
  year: 1987
  ident: e_1_3_3_54_2
  article-title: Position-independent, high-level expression of the human beta-globin gene in transgenic mice
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90584-8
– volume: 7
  start-page: 692
  year: 2006
  ident: e_1_3_3_60_2
  article-title: Pursuing gene regulation ‘logic’ via RNA interference and chromatin immunoprecipitation
  publication-title: Nat Immunol
  doi: 10.1038/ni0706-692
– volume: 450
  start-page: 219
  year: 2007
  ident: e_1_3_3_42_2
  article-title: Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures
  publication-title: Nature
  doi: 10.1038/nature06340
– volume: 110
  start-page: 5294
  year: 2013
  ident: e_1_3_3_25_2
  article-title: Is junk DNA bunk? A critique of ENCODE
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1221376110
– volume: 11
  start-page: 1
  year: 2010
  ident: e_1_3_3_57_2
  article-title: Genomics of long-range regulatory elements
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev-genom-082509-141651
– volume: 5
  start-page: 768
  year: 2004
  ident: e_1_3_3_58_2
  article-title: Bioinformatics for the ‘bench biologist’: How to find regulatory regions in genomic DNA
  publication-title: Nat Immunol
  doi: 10.1038/ni0804-768
– volume: 151
  start-page: 476
  year: 2012
  ident: e_1_3_3_100_2
  article-title: Revisiting global gene expression analysis
  publication-title: Cell
  doi: 10.1016/j.cell.2012.10.012
– volume: 310
  start-page: 215
  year: 2003
  ident: e_1_3_3_18_2
  article-title: Turnover of binding sites for transcription factors involved in early Drosophila development
  publication-title: Gene
  doi: 10.1016/S0378-1119(03)00556-0
– volume: 6
  start-page: 2997
  year: 1987
  ident: e_1_3_3_108_2
  article-title: An enhancer element lies 3′ to the human A gamma globin gene
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1987.tb02605.x
– volume: 45
  start-page: 124
  year: 2013
  ident: e_1_3_3_112_2
  article-title: Chromatin marks identify critical cell types for fine mapping complex trait variants
  publication-title: Nat Genet
  doi: 10.1038/ng.2504
– volume: 21
  start-page: 197
  year: 1956
  ident: e_1_3_3_82_2
  article-title: Controlling elements and the gene
  publication-title: Cold Spring Harb Symp Quant Biol
  doi: 10.1101/SQB.1956.021.01.017
– volume: 478
  start-page: 476
  year: 2011
  ident: e_1_3_3_3_2
  article-title: A high-resolution map of human evolutionary constraint using 29 mammals
  publication-title: Nature
  doi: 10.1038/nature10530
– volume: 16
  start-page: 864
  year: 2006
  ident: e_1_3_3_84_2
  article-title: Functional noncoding sequences derived from SINEs in the mammalian genome
  publication-title: Genome Res
  doi: 10.1101/gr.5255506
– volume: 2
  start-page: 171
  year: 2002
  ident: e_1_3_3_66_2
  article-title: Global analysis of gene expression in yeast
  publication-title: Funct Integr Genomics
  doi: 10.1007/s10142-002-0065-3
– volume: 6
  start-page: e1001025
  year: 2010
  ident: e_1_3_3_115_2
  article-title: Identifying a high fraction of the human genome to be under selective constraint using GERP++
  publication-title: PLOS Comput Biol
  doi: 10.1371/journal.pcbi.1001025
– volume: 26
  start-page: 37
  year: 2002
  ident: e_1_3_3_61_2
  article-title: Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation
  publication-title: Methods
  doi: 10.1016/S1046-2023(02)00006-3
– volume: 23
  start-page: 1–42
  year: 1963
  ident: e_1_3_3_76_2
  article-title: Origin, development and maturation of organelles and organelle systems of the cell surface in Paramecium
  publication-title: J Ultrastruct Res
– year: 2014
  ident: e_1_3_3_102_2
  article-title: From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing
  publication-title: Genome Res
  doi: 10.1101/gr.161034.113
– volume: 9
  start-page: e1000625
  year: 2011
  ident: e_1_3_3_85_2
  article-title: The reality of pervasive transcription
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000625
– volume: 13
  start-page: 2713
  year: 1999
  ident: e_1_3_3_33_2
  article-title: A large-scale insertional mutagenesis screen in zebrafish
  publication-title: Genes Dev
  doi: 10.1101/gad.13.20.2713
– volume: 10
  start-page: e1001369
  year: 2012
  ident: e_1_3_3_72_2
  article-title: Systematic dissection of roles for chromatin regulators in a yeast stress response
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001369
– volume: 318
  start-page: 761
  year: 2007
  ident: e_1_3_3_52_2
  article-title: The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race
  publication-title: Science
  doi: 10.1126/science.1146484
– volume: 61
  start-page: 339
  year: 2008
  ident: e_1_3_3_12_2
  article-title: Long-range gene control and genetic disease
  publication-title: Adv Genet
  doi: 10.1016/S0065-2660(07)00013-2
– volume: 420
  start-page: 520
  year: 2002
  ident: e_1_3_3_2_2
  article-title: Initial sequencing and comparative analysis of the mouse genome
  publication-title: Nature
  doi: 10.1038/nature01262
– volume: 457
  start-page: 854
  year: 2009
  ident: e_1_3_3_37_2
  article-title: ChIP-seq accurately predicts tissue-specific activity of enhancers
  publication-title: Nature
  doi: 10.1038/nature07730
– volume: 423
  start-page: 241
  year: 2003
  ident: e_1_3_3_43_2
  article-title: Sequencing and comparison of yeast species to identify genes and regulatory elements
  publication-title: Nature
  doi: 10.1038/nature01644
– volume: 5
  start-page: 621
  year: 2008
  ident: e_1_3_3_103_2
  article-title: Mapping and quantifying mammalian transcriptomes by RNA-Seq
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1226
– volume: 152
  start-page: 703
  year: 2013
  ident: e_1_3_3_6_2
  article-title: Identifying recent adaptations in large-scale genomic data
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.035
– volume: 15
  start-page: 1034
  year: 2005
  ident: e_1_3_3_48_2
  article-title: Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes
  publication-title: Genome Res
  doi: 10.1101/gr.3715005
– volume: 30
  start-page: 271
  year: 2012
  ident: e_1_3_3_39_2
  article-title: Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2137
– volume: 22
  start-page: 164
  year: 2012
  ident: e_1_3_3_53_2
  article-title: Small RNA in the nucleus: The RNA-chromatin ping-pong
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2012.01.002
– volume: 447
  start-page: 799
  year: 2007
  ident: e_1_3_3_68_2
  article-title: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  publication-title: Nature
  doi: 10.1038/nature05874
– volume: 7
  start-page: e1002326
  year: 2011
  ident: e_1_3_3_92_2
  article-title: Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002326
– volume: 484
  start-page: 55
  year: 2012
  ident: e_1_3_3_5_2
  article-title: The genomic basis of adaptive evolution in threespine sticklebacks
  publication-title: Nature
  doi: 10.1038/nature10944
– volume: 132
  start-page: 783
  year: 2008
  ident: e_1_3_3_8_2
  article-title: The evolution of gene regulation underlies a morphological difference between two Drosophila sister species
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.014
– volume-title: The Origins of Genome Architecture
  year: 2007
  ident: e_1_3_3_78_2
– volume: 7
  start-page: 793
  year: 2006
  ident: e_1_3_3_105_2
  article-title: Spreading of silent chromatin: Inaction at a distance
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1920
– volume: 299
  start-page: 1391
  year: 2003
  ident: e_1_3_3_47_2
  article-title: Phylogenetic shadowing of primate sequences to find functional regions of the human genome
  publication-title: Science
  doi: 10.1126/science.1081331
– volume: 5
  start-page: 578
  year: 2013
  ident: e_1_3_3_26_2
  article-title: On the immortality of television sets: “Function” in the human genome according to the evolution-free gospel of ENCODE
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evt028
– volume: 40
  start-page: D930
  year: 2012
  ident: e_1_3_3_16_2
  article-title: HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr917
– volume: 76
  start-page: 65
  year: 2001
  ident: e_1_3_3_74_2
  article-title: Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma
  publication-title: Biol Rev Camb Philos Soc
  doi: 10.1017/S1464793100005595
– volume: 7
  start-page: 2
  year: 2013
  ident: e_1_3_3_29_2
  article-title: The extent of functionality in the human genome
  publication-title: HUGO J
  doi: 10.1186/1877-6566-7-2
– volume: 5
  start-page: 532
  year: 2013
  ident: e_1_3_3_24_2
  article-title: Genome-Level Analysis of Selective Constraint without Apparent Sequence Conservation
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evt023
– volume: 489
  start-page: 101
  year: 2012
  ident: e_1_3_3_104_2
  article-title: Landscape of transcription in human cells
  publication-title: Nature
  doi: 10.1038/nature11233
– volume: 337
  start-page: 1190
  year: 2012
  ident: e_1_3_3_14_2
  article-title: Systematic localization of common disease-associated variation in regulatory DNA
  publication-title: Science
  doi: 10.1126/science.1222794
– volume: 21
  start-page: 1769
  year: 2011
  ident: e_1_3_3_4_2
  article-title: What fraction of the human genome is functional?
  publication-title: Genome Res
  doi: 10.1101/gr.116814.110
– volume: 76
  start-page: 8
  year: 2005
  ident: e_1_3_3_11_2
  article-title: Long-range control of gene expression: Emerging mechanisms and disruption in disease
  publication-title: Am J Hum Genet
  doi: 10.1086/426833
– volume: 104
  start-page: 8005
  year: 2007
  ident: e_1_3_3_80_2
  article-title: Thousands of human mobile element fragments undergo strong purifying selection near developmental genes
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0611223104
– volume: 489
  start-page: 91
  year: 2012
  ident: e_1_3_3_111_2
  article-title: Architecture of the human regulatory network derived from ENCODE data
  publication-title: Nature
  doi: 10.1038/nature11245
– volume: 30
  start-page: 265
  year: 2012
  ident: e_1_3_3_38_2
  article-title: Massively parallel functional dissection of mammalian enhancers in vivo
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2136
– volume: 10
  start-page: 345
  year: 1998
  ident: e_1_3_3_55_2
  article-title: Long-range transcriptional regulation of cytokine gene expression
  publication-title: Curr Opin Immunol
  doi: 10.1016/S0952-7915(98)80174-X
– volume: 409
  start-page: 860
  year: 2001
  ident: e_1_3_3_1_2
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
  doi: 10.1038/35057062
– volume: 190
  start-page: 295
  year: 2012
  ident: e_1_3_3_75_2
  article-title: Rates and fitness consequences of new mutations in humans
  publication-title: Genetics
  doi: 10.1534/genetics.111.134668
– volume: 125
  start-page: 949
  year: 1998
  ident: e_1_3_3_20_2
  article-title: Functional analysis of eve stripe 2 enhancer evolution in Drosophila: Rules governing conservation and change
  publication-title: Development
  doi: 10.1242/dev.125.5.949
– volume: 5
  start-page: e234
  year: 2007
  ident: e_1_3_3_22_2
  article-title: Deletion of ultraconserved elements yields viable mice
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050234
– volume: 57
  start-page: 159
  year: 1988
  ident: e_1_3_3_59_2
  article-title: Nuclease hypersensitive sites in chromatin
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.bi.57.070188.001111
– volume: 473
  start-page: 43
  year: 2011
  ident: e_1_3_3_35_2
  article-title: Mapping and analysis of chromatin state dynamics in nine human cell types
  publication-title: Nature
  doi: 10.1038/nature09906
– volume: 335
  start-page: 823
  year: 2012
  ident: e_1_3_3_41_2
  article-title: A systematic survey of loss-of-function variants in human protein-coding genes
  publication-title: Science
  doi: 10.1126/science.1215040
– volume: 302
  start-page: 413
  year: 2003
  ident: e_1_3_3_21_2
  article-title: Scanning human gene deserts for long-range enhancers
  publication-title: Science
  doi: 10.1126/science.1088328
– volume: 26
  start-page: 27
  year: 2002
  ident: e_1_3_3_62_2
  article-title: Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation
  publication-title: Methods
  doi: 10.1016/S1046-2023(02)00005-1
– volume: 306
  start-page: 636
  year: 2004
  ident: e_1_3_3_67_2
  article-title: The ENCODE (ENCyclopedia Of DNA Elements) Project
  publication-title: Science
  doi: 10.1126/science.1105136
– volume: 23
  start-page: 366
  year: 1972
  ident: e_1_3_3_77_2
  article-title: So much “junk” DNA in our genome
  publication-title: Brookhaven Symp Biol
– volume: 86
  start-page: 2554
  year: 1989
  ident: e_1_3_3_107_2
  article-title: An erythroid-specific, developmental-stage-independent enhancer far upstream of the human “beta-like globin” genes
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.86.8.2554
– volume: 327
  start-page: 302
  year: 2010
  ident: e_1_3_3_10_2
  article-title: Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer
  publication-title: Science
  doi: 10.1126/science.1182213
– volume: 5
  start-page: 27
  year: 2011
  ident: e_1_3_3_99_2
  article-title: Measuring reproducibility of high-throughput experiments
  publication-title: Ann Appl Stat
– volume: 340
  start-page: 682
  year: 2013
  ident: e_1_3_3_93_2
  article-title: Response to comment on “Evidence of abundant purifying selection in humans for recently acquired regulatory functions”
  publication-title: Science
  doi: 10.1126/science.1233366
– volume: 301
  start-page: 71
  year: 2003
  ident: e_1_3_3_46_2
  article-title: Finding functional features in Saccharomyces genomes by phylogenetic footprinting
  publication-title: Science
  doi: 10.1126/science.1084337
– volume: 154
  start-page: 1380
  year: 2013
  ident: e_1_3_3_113_2
  article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.021
– volume: 106
  start-page: 9362
  year: 2009
  ident: e_1_3_3_13_2
  article-title: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0903103106
– volume: 21
  start-page: 1160
  year: 2011
  ident: e_1_3_3_101_2
  article-title: Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
  publication-title: Genome Res
  doi: 10.1101/gr.110882.110
– volume: 13
  start-page: 64
  year: 2003
  ident: e_1_3_3_49_2
  article-title: Distinguishing regulatory DNA from neutral sites
  publication-title: Genome Res
  doi: 10.1101/gr.817703
– volume: 136
  start-page: 215
  year: 2009
  ident: e_1_3_3_50_2
  article-title: MicroRNAs: Target recognition and regulatory functions
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 325
  start-page: 1246
  year: 2009
  ident: e_1_3_3_94_2
  article-title: Common regulatory variation impacts gene expression in a cell type-dependent manner
  publication-title: Science
  doi: 10.1126/science.1174148
– volume: 365
  start-page: 807
  year: 2011
  ident: e_1_3_3_110_2
  article-title: A functional element necessary for fetal hemoglobin silencing
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1103070
– volume: 13
  start-page: 745
  year: 2012
  ident: e_1_3_3_91_2
  article-title: Revising the human mutation rate: Implications for understanding human evolution
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3295
– volume: 105
  start-page: 9715
  year: 2008
  ident: e_1_3_3_40_2
  article-title: Tools for neuroanatomy and neurogenetics in Drosophila
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0803697105
– volume: 434
  start-page: 338
  year: 2005
  ident: e_1_3_3_44_2
  article-title: Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals
  publication-title: Nature
  doi: 10.1038/nature03441
– volume: 428
  start-page: 431
  year: 2004
  ident: e_1_3_3_34_2
  article-title: A large-scale RNAi screen in human cells identifies new components of the p53 pathway
  publication-title: Nature
  doi: 10.1038/nature02371
– volume: 19
  start-page: 2172
  year: 2009
  ident: e_1_3_3_70_2
  article-title: Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression
  publication-title: Genome Res
  doi: 10.1101/gr.098921.109
– volume: 22
  start-page: 1748
  year: 2012
  ident: e_1_3_3_15_2
  article-title: Linking disease associations with regulatory information in the human genome
  publication-title: Genome Res
  doi: 10.1101/gr.136127.111
– volume: 482
  start-page: 390
  year: 2012
  ident: e_1_3_3_97_2
  article-title: DNase I sensitivity QTLs are a major determinant of human expression variation
  publication-title: Nature
  doi: 10.1038/nature10808
– volume: 438
  start-page: 803
  year: 2005
  ident: e_1_3_3_87_2
  article-title: Genome sequence, comparative analysis and haplotype structure of the domestic dog
  publication-title: Nature
  doi: 10.1038/nature04338
– volume: 23
  start-page: 1089
  year: 2013
  ident: e_1_3_3_7_2
  article-title: Gene expression drives local adaptation in humans
  publication-title: Genome Res
  doi: 10.1101/gr.152710.112
– volume: 24
  start-page: 14
  year: 2014
  ident: e_1_3_3_96_2
  article-title: Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals
  publication-title: Genome Res
  doi: 10.1101/gr.155192.113
– volume: 424
  start-page: 788
  year: 2003
  ident: e_1_3_3_45_2
  article-title: Comparative analyses of multi-species sequences from targeted genomic regions
  publication-title: Nature
  doi: 10.1038/nature01858
– volume: 18
  start-page: 252
  year: 2008
  ident: e_1_3_3_23_2
  article-title: Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b
  publication-title: Genome Res
  doi: 10.1101/gr.6929408
– volume: 470
  start-page: 279
  year: 2011
  ident: e_1_3_3_63_2
  article-title: A unique chromatin signature uncovers early developmental enhancers in humans
  publication-title: Nature
  doi: 10.1038/nature09692
– volume: 5
  start-page: 237
  year: 1971
  ident: e_1_3_3_73_2
  article-title: The genetic organization of chromosomes
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.ge.05.120171.001321
– volume: 30
  start-page: 1239
  year: 2013
  ident: e_1_3_3_83_2
  article-title: Exaptation of transposable elements into novel cis-regulatory elements: Is the evidence always strong?
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst045
– volume: 107
  start-page: 21931
  year: 2010
  ident: e_1_3_3_64_2
  article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1016071107
– volume: 22
  start-page: 3172
  year: 2008
  ident: e_1_3_3_65_2
  article-title: Chromatin structure analyses identify miRNA promoters
  publication-title: Genes Dev
  doi: 10.1101/gad.1706508
– volume: 6
  start-page: 283
  year: 2009
  ident: e_1_3_3_116_2
  article-title: Global mapping of protein-DNA interactions in vivo by digital genomic footprinting
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1313
– year: 2014
  ident: e_1_3_3_31_2
  article-title: Junk or functional DNA?: ENCODE and the function controversy
  publication-title: Biology & Philosophy
  doi: 10.1007/s10539-014-9441-3
– volume: 103
  start-page: 2740
  year: 2006
  ident: e_1_3_3_79_2
  article-title: A large family of ancient repeat elements in the human genome is under strong selection
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0511238103
– volume: 2
  start-page: e130
  year: 2006
  ident: e_1_3_3_19_2
  article-title: Large-scale turnover of functional transcription factor binding sites in Drosophila
  publication-title: PLOS Comput Biol
  doi: 10.1371/journal.pcbi.0020130
– volume: 23
  start-page: 800
  year: 2013
  ident: e_1_3_3_36_2
  article-title: Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay
  publication-title: Genome Res
  doi: 10.1101/gr.144899.112
– volume: 27
  start-page: 1151
  year: 2009
  ident: e_1_3_3_114_2
  article-title: Genome engineering
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1590
– volume: 10
  start-page: 833
  year: 2009
  ident: e_1_3_3_86_2
  article-title: The complex eukaryotic transcriptome: Unexpected pervasive transcription and novel small RNAs
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2683
– volume: 24
  start-page: 783
  year: 2010
  ident: e_1_3_3_109_2
  article-title: Transcriptional silencing of gamma-globin by BCL11A involves long-range interactions and cooperation with SOX6
  publication-title: Genes Dev
  doi: 10.1101/gad.1897310
– volume: 19
  start-page: 1114
  year: 2002
  ident: e_1_3_3_17_2
  article-title: Evolution of transcription factor binding sites in Mammalian gene regulatory regions: Conservation and turnover
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a004169
– volume: 33
  start-page: D514
  year: 2005
  ident: e_1_3_3_32_2
  article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki033
– volume: 15
  start-page: 1051
  year: 2005
  ident: e_1_3_3_106_2
  article-title: Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences
  publication-title: Genome Res
  doi: 10.1101/gr.3642605
– volume: 204
  start-page: 451
  year: 1998
  ident: e_1_3_3_56_2
  article-title: Partial rescue of GATA-3 by yeast artificial chromosome transgenes
  publication-title: Dev Biol
  doi: 10.1006/dbio.1998.8991
– volume: 81
  start-page: 145
  year: 2012
  ident: e_1_3_3_51_2
  article-title: Genome regulation by long noncoding RNAs
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-051410-092902
– volume: 20
  start-page: 1335
  year: 2010
  ident: e_1_3_3_89_2
  article-title: Massive turnover of functional sequence in human and other mammalian genomes
  publication-title: Genome Res
  doi: 10.1101/gr.108795.110
– reference: 23431001 - Genome Biol Evol. 2013;5(3):578-90
– reference: 9882482 - Dev Biol. 1998 Dec 15;204(2):451-63
– reference: 20693480 - Genome Res. 2010 Oct;20(10):1335-43
– reference: 20395365 - Genes Dev. 2010 Apr 15;24(8):783-98
– reference: 14563999 - Science. 2003 Oct 17;302(5644):413
– reference: 21852499 - Science. 2011 Aug 19;333(6045):1019-24
– reference: 23415221 - Cell. 2013 Feb 14;152(4):703-13
– reference: 20010598 - Nat Biotechnol. 2009 Dec;27(12):1151-62
– reference: 21152010 - PLoS Comput Biol. 2010;6(12):e1001025
– reference: 23418180 - Genome Biol Evol. 2013;5(3):532-41
– reference: 21441907 - Nature. 2011 May 5;473(7345):43-9
– reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74
– reference: 21879898 - N Engl J Med. 2011 Sep 1;365(9):807-14
– reference: 23486611 - Mol Biol Evol. 2013 Jun;30(6):1239-51
– reference: 23992846 - Cell. 2013 Sep 12;154(6):1380-9
– reference: 3690667 - Cell. 1987 Dec 24;51(6):975-85
– reference: 12917688 - Nature. 2003 Aug 14;424(6950):788-93
– reference: 23512712 - Genome Res. 2013 May;23(5):800-11
– reference: 22955620 - Nature. 2012 Sep 6;489(7414):101-8
– reference: 19644074 - Science. 2009 Sep 4;325(5945):1246-50
– reference: 19920851 - Nat Rev Genet. 2009 Dec;10(12):833-44
– reference: 20220756 - Nature. 2010 Apr 1;464(7289):773-7
– reference: 16983375 - Nat Rev Genet. 2006 Oct;7(10):793-803
– reference: 23263488 - Nat Genet. 2013 Feb;45(2):124-30
– reference: 21160473 - Nature. 2011 Feb 10;470(7333):279-83
– reference: 22022285 - PLoS Genet. 2011 Oct;7(10):e1002326
– reference: 22371084 - Nat Biotechnol. 2012 Mar;30(3):271-7
– reference: 18621688 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9715-20
– reference: 20438361 - Annu Rev Genomics Hum Genet. 2010;11:1-23
– reference: 23539138 - Genome Res. 2013 Jul;23(7):1089-96
– reference: 22956687 - Science. 2012 Sep 28;337(6102):1675-8
– reference: 17975059 - Science. 2007 Nov 2;318(5851):761-4
– reference: 13433592 - Cold Spring Harb Symp Quant Biol. 1956;21:197-216
– reference: 19167326 - Cell. 2009 Jan 23;136(2):215-33
– reference: 12466850 - Nature. 2002 Dec 5;420(6915):520-62
– reference: 23101621 - Cell. 2012 Oct 26;151(3):476-82
– reference: 24092820 - Genome Res. 2014 Jan;24(1):14-24
– reference: 16477033 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2740-5
– reference: 25275169 - Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):E3366
– reference: 17994088 - Nature. 2007 Nov 8;450(7167):219-32
– reference: 15608251 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D514-7
– reference: 18614008 - Cell. 2008 Jul 11;134(1):25-36
– reference: 16024819 - Genome Res. 2005 Aug;15(8):1034-50
– reference: 19887574 - Genome Res. 2009 Dec;19(12):2172-84
– reference: 22064851 - Nucleic Acids Res. 2012 Jan;40(Database issue):D930-4
– reference: 19286520 - Science. 2009 Apr 17;324(5925):389-92
– reference: 18329365 - Cell. 2008 Mar 7;132(5):783-93
– reference: 22344438 - Science. 2012 Feb 17;335(6070):823-8
– reference: 9449677 - Development. 1998 Mar;125(5):949-58
– reference: 15735639 - Nature. 2005 Mar 17;434(7031):338-45
– reference: 12082130 - Mol Biol Evol. 2002 Jul;19(7):1114-21
– reference: 2704733 - Proc Natl Acad Sci U S A. 1989 Apr;86(8):2554-8
– reference: 12610304 - Science. 2003 Feb 28;299(5611):1391-4
– reference: 15549674 - Am J Hum Genet. 2005 Jan;76(1):8-32
– reference: 22345605 - Genetics. 2012 Feb;190(2):295-304
– reference: 15282556 - Nat Immunol. 2004 Aug;5(8):768-74
– reference: 10541557 - Genes Dev. 1999 Oct 15;13(20):2713-24
– reference: 3691478 - EMBO J. 1987 Oct;6(10):2997-3004
– reference: 21993624 - Nature. 2011 Oct 27;478(7370):476-82
– reference: 21765801 - PLoS Biol. 2011 Jul;9(7):e1000625; discussion e1001102
– reference: 16024817 - Genome Res. 2005 Aug;15(8):1051-60
– reference: 12748633 - Nature. 2003 May 15;423(6937):241-54
– reference: 18071029 - Genome Res. 2008 Feb;18(2):252-60
– reference: 12529307 - Genome Res. 2003 Jan;13(1):64-72
– reference: 12054903 - Methods. 2002 Jan;26(1):37-47
– reference: 17040121 - PLoS Comput Biol. 2006 Oct;2(10):e130
– reference: 23578867 - Curr Biol. 2013 Apr 8;23(7):R259-61
– reference: 22307276 - Nature. 2012 Feb 16;482(7385):390-4
– reference: 23479647 - Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5294-300
– reference: 11237011 - Nature. 2001 Feb 15;409(6822):860-921
– reference: 23268340 - Biochem Biophys Res Commun. 2013 Jan 25;430(4):1340-3
– reference: 17463089 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):8005-10
– reference: 22912562 - PLoS Biol. 2012;10(7):e1001369
– reference: 9638372 - Curr Opin Immunol. 1998 Jun;10(3):345-52
– reference: 18516045 - Nat Methods. 2008 Jul;5(7):621-8
– reference: 21875934 - Genome Res. 2011 Nov;21(11):1769-76
– reference: 15499007 - Science. 2004 Oct 22;306(5696):636-40
– reference: 17803355 - PLoS Biol. 2007 Sep;5(9):e234
– reference: 16341006 - Nature. 2005 Dec 8;438(7069):803-19
– reference: 22663078 - Annu Rev Biochem. 2012;81:145-66
– reference: 22955828 - Science. 2012 Sep 7;337(6099):1190-5
– reference: 21543516 - Genome Res. 2011 Jul;21(7):1160-7
– reference: 5065367 - Brookhaven Symp Biol. 1972;23:366-70
– reference: 12775844 - Science. 2003 Jul 4;301(5629):71-6
– reference: 19305407 - Nat Methods. 2009 Apr;6(4):283-9
– reference: 20007865 - Science. 2010 Jan 15;327(5963):302-5
– reference: 16785883 - Nat Immunol. 2006 Jul;7(7):692-7
– reference: 22965354 - Nat Rev Genet. 2012 Oct;13(10):745-53
– reference: 12801649 - Gene. 2003 May 22;310:215-20
– reference: 21764166 - Trends Genet. 2011 Oct;27(10):389-96
– reference: 19212405 - Nature. 2009 Feb 12;457(7231):854-8
– reference: 22481358 - Nature. 2012 Apr 5;484(7392):55-61
– reference: 11325054 - Biol Rev Camb Philos Soc. 2001 Feb;76(1):65-101
– reference: 23661743 - Science. 2013 May 10;340(6133):682
– reference: 22955619 - Nature. 2012 Sep 6;489(7414):91-100
– reference: 16097657 - Annu Rev Genet. 1971;5:237-56
– reference: 25107292 - Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):E3365
– reference: 15042092 - Nature. 2004 Mar 25;428(6981):431-7
– reference: 23137679 - Curr Biol. 2012 Nov 6;22(21):R898-9
– reference: 24299736 - Genome Res. 2014 Mar;24(3):496-510
– reference: 12192590 - Funct Integr Genomics. 2002 Sep;2(4-5):171-80
– reference: 22349141 - Curr Opin Genet Dev. 2012 Apr;22(2):164-71
– reference: 22371081 - Nat Biotechnol. 2012 Mar;30(3):265-70
– reference: 19474294 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7
– reference: 12054902 - Methods. 2002 Jan;26(1):27-36
– reference: 14073743 - J Ultrastruct Res. 1963 Oct;23:SUPPL6:1-42
– reference: 3052270 - Annu Rev Biochem. 1988;57:159-97
– reference: 22955986 - Genome Res. 2012 Sep;22(9):1748-59
– reference: 17571346 - Nature. 2007 Jun 14;447(7146):799-816
– reference: 18282513 - Adv Genet. 2008;61:339-88
– reference: 21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6
– reference: 19056895 - Genes Dev. 2008 Nov 15;22(22):3172-83
– reference: 16717141 - Genome Res. 2006 Jul;16(7):864-74
– reference: 20220758 - Nature. 2010 Apr 1;464(7289):768-72
SSID ssj0009580
Score 2.6153119
SecondaryResourceType review_article
Snippet With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6131
SubjectTerms binding sites
Biochemistry
Biological Evolution
Biological Sciences
chromatin
Deoxyribonucleic acid
Disease - genetics
DNA
DNA - genetics
Evolution
Evolutionary genetics
Genes
Genome, Human - genetics
Genomes
Genomics
human diseases
Human genetics
Human genome
Human subjects
Humans
messenger RNA
nucleotide sequences
PERSPECTIVE
Regulatory Sequences, Nucleic Acid - genetics
RNA
Software
transcription factors
Title Defining functional DNA elements in the human genome
URI https://www.jstor.org/stable/23772466
http://www.pnas.org/content/111/17/6131.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24753594
https://www.proquest.com/docview/1523948285
https://www.proquest.com/docview/1520343603
https://www.proquest.com/docview/1534857255
https://www.proquest.com/docview/1803095650
https://pubmed.ncbi.nlm.nih.gov/PMC4035993
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELa68cIL2oCxsIGCxMNQlZLYTuw8Vmwwgagq0Ym-RYnjQKUpRWv3AOLHc5fYTjp1FfASpcnlkvrO57N99x0hr0NepgrcoUDD8B5wFYaBzFMWCCWLVJR5zEpMTv48SS6v-Md5PB8MfvezS9bFSP3amlfyP1KFayBXzJL9B8k6pnABzkG-cAQJw_GvZHyuq6a-wxBHJ7Oodz4ZD3UbE76yQYxtIT6EY92EJpi60WtlYwUmdnFw3KWamP6_GgbD6aQrXPwJsTzbxeq8Xl4vnHf-1VSiNnsZbhGn_lnqNpLeBOsPpyO3HKBvwFE1lTdxgx-N1cWovygRNbEstDN9u761b40pjJC8zaF21tjYXqN2omdcwfOIegM1_JRbBwGwWli5uM5XI3hCIh6NYbqJrE0ZTC14kuyRBxTO0Kx_mEc9yGbZJjCZr7TAUIK9vcN7w6fZq_KlDW5FxFwg3TZ7uRuE2_NqZgfkkZmO-ONWtw7JQNePyaFtRP_MoJK_eUK4VTa_UzYflM23yuYvah80yG-UzW-V7SmZvb-YvbsMTMmNQIEfvA5YDh49l6mKy0TyqtLQY3nJKg1XOZjvQiVRGZWiCkUiYKaR5jGvcnD5FKdKF-yI7NfLWh8TP0qoLLBWAaOKA8cCiKMkFVVaVEpq6pGRbbNMGTh6rIpynTVhEYJl2HJZ18geOXMP_GiRWO4nPQYhZPk3GCezqy8UURRx5YCF3CNHjWQcC6sE8EzDxbGGiXEkMtQ5j5xa8WWm98PbYsrgbVTGHnnlboNtxg23vNbL24YmZJwlIdtFw7iMBczsd9BI3AiFqVfokWet1nTfz0XM4hT-mNjQJ0eA-PGbd-rF9wZHniN8Z8qe39ckJ-Rh17dPyf765la_ABd8XbxsesofZQDV7w
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defining+functional+DNA+elements+in+the+human+genome&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kellis%2C+Manolis&rft.au=Wold%2C+Barbara&rft.au=Snyderd%2C+Michael+P.&rft.au=Bernstein%2C+Bradley+E.&rft.date=2014-04-29&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=111&rft.issue=17&rft.spage=6131&rft.epage=6138&rft_id=info:doi/10.1073%2Fpnas.1318948111&rft.externalDocID=23772466
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F17.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F17.cover.gif