Defining functional DNA elements in the human genome
With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional r...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 17; pp. 6131 - 6138 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
29.04.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1318948111 |
Cover
Loading…
Abstract | With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. |
---|---|
AbstractList | With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. [PUBLICATION ABSTRACT] With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. |
Author | Myerst, Richard M. Snyderd, Michael P. Kent, Jim Wold, Barbara Hardison, Ross C. White, Kevin P. Gilbert, David M. Birney, Ewan Kellis, Manolis Crawford, Gregory E. Kundaje, Anshul Farnham, Peggy J. Gingeras, Thomas R. Dunham, Ian Green, Eric D. Giddings, Morgan C. Stamatoyannopoulos, John A. Pazin, Michael J. Ren, Bing Elnitski, Laura L. Gerstein, Mark Weng, Zhiping Dekker, Job Bernstein, Bradley E. Marinov, Georgi K. Feingold, Elise A. Guigo, Roderic Lieb, Jason D. Hubbard, Tim Ward, Lucas D. |
Author_xml | – sequence: 1 givenname: Manolis surname: Kellis fullname: Kellis, Manolis – sequence: 2 givenname: Barbara surname: Wold fullname: Wold, Barbara – sequence: 3 givenname: Michael P. surname: Snyderd fullname: Snyderd, Michael P. – sequence: 4 givenname: Bradley E. surname: Bernstein fullname: Bernstein, Bradley E. – sequence: 5 givenname: Anshul surname: Kundaje fullname: Kundaje, Anshul – sequence: 6 givenname: Georgi K. surname: Marinov fullname: Marinov, Georgi K. – sequence: 7 givenname: Lucas D. surname: Ward fullname: Ward, Lucas D. – sequence: 8 givenname: Ewan surname: Birney fullname: Birney, Ewan – sequence: 9 givenname: Gregory E. surname: Crawford fullname: Crawford, Gregory E. – sequence: 10 givenname: Job surname: Dekker fullname: Dekker, Job – sequence: 11 givenname: Ian surname: Dunham fullname: Dunham, Ian – sequence: 12 givenname: Laura L. surname: Elnitski fullname: Elnitski, Laura L. – sequence: 13 givenname: Peggy J. surname: Farnham fullname: Farnham, Peggy J. – sequence: 14 givenname: Elise A. surname: Feingold fullname: Feingold, Elise A. – sequence: 15 givenname: Mark surname: Gerstein fullname: Gerstein, Mark – sequence: 16 givenname: Morgan C. surname: Giddings fullname: Giddings, Morgan C. – sequence: 17 givenname: David M. surname: Gilbert fullname: Gilbert, David M. – sequence: 18 givenname: Thomas R. surname: Gingeras fullname: Gingeras, Thomas R. – sequence: 19 givenname: Eric D. surname: Green fullname: Green, Eric D. – sequence: 20 givenname: Roderic surname: Guigo fullname: Guigo, Roderic – sequence: 21 givenname: Tim surname: Hubbard fullname: Hubbard, Tim – sequence: 22 givenname: Jim surname: Kent fullname: Kent, Jim – sequence: 23 givenname: Jason D. surname: Lieb fullname: Lieb, Jason D. – sequence: 24 givenname: Richard M. surname: Myerst fullname: Myerst, Richard M. – sequence: 25 givenname: Michael J. surname: Pazin fullname: Pazin, Michael J. – sequence: 26 givenname: Bing surname: Ren fullname: Ren, Bing – sequence: 27 givenname: John A. surname: Stamatoyannopoulos fullname: Stamatoyannopoulos, John A. – sequence: 28 givenname: Zhiping surname: Weng fullname: Weng, Zhiping – sequence: 29 givenname: Kevin P. surname: White fullname: White, Kevin P. – sequence: 30 givenname: Ross C. surname: Hardison fullname: Hardison, Ross C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24753594$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1v1DAQxS1URLeFMycgEhcuacffzqVS1fIlVXCgnC2vY-96ldhLnCDx3-Ow2y5UQnCy5PnN03szc4KOYooOoecYzjBIer6NJp9hilXDFMb4EVpgaHAtWANHaAFAZK0YYcfoJOcNADRcwRN0TJjklDdsgdi18yGGuKr8FO0YUjRddf3psnKd610ccxViNa5dtZ56E6uVi6l3T9Fjb7rsnu3fU3T77u3t1Yf65vP7j1eXN7UVhI41NRwXX43lrVDMe6eWDWupd-WXcQxLK3CLW-lBCgkEGsOZN4pTy4h1S3qKLnay22nZu9YWO4Pp9HYIvRl-6GSC_rMSw1qv0nfNoIRraBF4sxcY0rfJ5VH3IVvXdSa6NGWNFdAyEsHh3yinTHFJOP8PlABlVMBs4PUDdJOmoYz4F0XLcIiaBV_-nvM-4N2WCsB3gB1SzoPz2obRzMsqsUOnMej5GvR8DfpwDaXv_EHfnfTfO17trcyFexpjjaUWBSzEix2xyWMaDl6plIQJcVDwJmmzGkLWX78QwAIAM0aB0Z8wRNEw |
CitedBy_id | crossref_primary_10_1177_0022034518801537 crossref_primary_10_1038_s41564_018_0189_4 crossref_primary_10_1007_s40484_018_0164_3 crossref_primary_10_3389_fcell_2022_1001701 crossref_primary_10_1016_j_tig_2015_03_010 crossref_primary_10_1289_EHP595 crossref_primary_10_1126_sciadv_ade3399 crossref_primary_10_1186_s12867_015_0042_8 crossref_primary_10_1186_s12915_019_0635_7 crossref_primary_10_1126_science_aan2261 crossref_primary_10_1111_dgd_12423 crossref_primary_10_1038_s41375_022_01697_9 crossref_primary_10_3389_fgene_2021_618189 crossref_primary_10_1152_ajpregu_00391_2017 crossref_primary_10_1007_s11692_018_9454_y crossref_primary_10_1186_s13073_017_0452_y crossref_primary_10_1038_s41576_020_00303_x crossref_primary_10_2139_ssrn_3155603 crossref_primary_10_1007_s11692_016_9404_5 crossref_primary_10_1161_CIRCULATIONAHA_114_010696 crossref_primary_10_1016_j_gpb_2018_11_003 crossref_primary_10_1093_bfgp_elw043 crossref_primary_10_1111_pce_13472 crossref_primary_10_1016_j_gde_2015_11_002 crossref_primary_10_1139_gen_2019_0150 crossref_primary_10_1038_nrm_2016_138 crossref_primary_10_1242_dev_120048 crossref_primary_10_1186_s13059_021_02585_8 crossref_primary_10_1098_rstb_2014_0318 crossref_primary_10_1093_pcp_pcae121 crossref_primary_10_1016_j_xcrm_2023_101082 crossref_primary_10_2217_pgs_15_105 crossref_primary_10_1186_1755_8794_8_S2_S6 crossref_primary_10_2217_pgs_15_106 crossref_primary_10_1093_nar_gku1202 crossref_primary_10_1093_nar_gku1204 crossref_primary_10_1016_j_isci_2021_102048 crossref_primary_10_2217_pgs_15_111 crossref_primary_10_1038_s42003_023_05136_y crossref_primary_10_1093_molbev_msad284 crossref_primary_10_1007_s00439_019_02091_9 crossref_primary_10_12688_f1000research_8288_1 crossref_primary_10_1007_s12064_018_0267_4 crossref_primary_10_1186_s12864_015_1958_6 crossref_primary_10_3389_fgene_2014_00476 crossref_primary_10_1002_eji_201546035 crossref_primary_10_1016_j_ajhg_2015_06_009 crossref_primary_10_1038_s41598_017_11487_4 crossref_primary_10_3389_fonc_2021_681576 crossref_primary_10_1038_srep26605 crossref_primary_10_1016_j_shpsc_2019_101243 crossref_primary_10_1038_s41588_022_01194_w crossref_primary_10_1042_BST20201004 crossref_primary_10_1126_science_aan3269 crossref_primary_10_1101_gr_277715_123 crossref_primary_10_1371_journal_pone_0123624 crossref_primary_10_1093_gbe_evu098 crossref_primary_10_1371_journal_pgen_1004890 crossref_primary_10_1093_gbe_evu097 crossref_primary_10_1016_j_tig_2014_08_004 crossref_primary_10_1093_bfgp_ely004 crossref_primary_10_1126_sciadv_1500503 crossref_primary_10_1016_j_preteyeres_2016_06_001 crossref_primary_10_1038_s41467_021_22262_5 crossref_primary_10_1111_bph_12968 crossref_primary_10_1016_j_ajhg_2017_08_002 crossref_primary_10_7554_eLife_22194 crossref_primary_10_1002_ijc_32831 crossref_primary_10_1016_j_gpb_2019_04_006 crossref_primary_10_1016_j_molcel_2015_05_004 crossref_primary_10_1093_bioinformatics_btx679 crossref_primary_10_1038_s41593_019_0538_5 crossref_primary_10_7554_eLife_47014 crossref_primary_10_1016_j_jbiotec_2016_03_044 crossref_primary_10_1186_s13059_019_1634_2 crossref_primary_10_1007_s00018_015_1936_9 crossref_primary_10_1038_s41431_021_00915_9 crossref_primary_10_33590_emjrheumatol_10311482 crossref_primary_10_1101_gr_251561_119 crossref_primary_10_1371_journal_pgen_1008720 crossref_primary_10_1186_s13229_020_00333_6 crossref_primary_10_1073_pnas_1808833115 crossref_primary_10_1371_journal_pone_0194502 crossref_primary_10_1016_j_tig_2019_09_006 crossref_primary_10_1186_s12864_016_3198_9 crossref_primary_10_1038_509137e crossref_primary_10_1038_s41440_019_0294_7 crossref_primary_10_1007_s11515_016_1433_z crossref_primary_10_3390_cells12081191 crossref_primary_10_1161_CIRCRESAHA_116_302888 crossref_primary_10_1080_15476286_2020_1868165 crossref_primary_10_1093_nsr_nwaa079 crossref_primary_10_1038_s41588_020_0686_2 crossref_primary_10_3390_microarrays4020270 crossref_primary_10_2217_pgs_2017_0186 crossref_primary_10_1038_s41588_018_0062_7 crossref_primary_10_1093_bioinformatics_bty301 crossref_primary_10_1016_j_mrgentox_2018_05_005 crossref_primary_10_1016_j_xgen_2022_100171 crossref_primary_10_1186_s12864_022_08450_7 crossref_primary_10_1158_2159_8290_CD_16_0745 crossref_primary_10_1371_journal_pbio_1002112 crossref_primary_10_1038_s41588_020_0676_4 crossref_primary_10_1007_s00439_023_02519_3 crossref_primary_10_1016_j_arr_2021_101316 crossref_primary_10_1002_mds_28090 crossref_primary_10_1016_j_cell_2015_08_008 crossref_primary_10_1016_j_placenta_2015_11_001 crossref_primary_10_1038_s41576_021_00376_2 crossref_primary_10_1186_s12859_016_1150_2 crossref_primary_10_1186_s12916_019_1383_9 crossref_primary_10_1101_gr_211615_116 crossref_primary_10_1038_nature14378 crossref_primary_10_1186_s12864_015_2155_3 crossref_primary_10_1016_j_ymeth_2017_03_008 crossref_primary_10_3389_fimmu_2018_01392 crossref_primary_10_1093_bioinformatics_bty204 crossref_primary_10_1111_evo_12627 crossref_primary_10_1038_s41598_021_84964_6 crossref_primary_10_1038_512009e crossref_primary_10_1002_cam4_2145 crossref_primary_10_3389_fgene_2020_00106 crossref_primary_10_1126_scitranslmed_abf4077 crossref_primary_10_1126_science_aad3312 crossref_primary_10_7554_eLife_36317 crossref_primary_10_1093_bioinformatics_btv289 crossref_primary_10_1186_s12864_015_2279_5 crossref_primary_10_1016_j_taap_2018_09_013 crossref_primary_10_1128_mBio_00011_15 crossref_primary_10_1146_annurev_genom_121119_083418 crossref_primary_10_1007_s00439_015_1599_5 crossref_primary_10_1016_j_csbj_2020_06_011 crossref_primary_10_1038_s41467_018_07349_w crossref_primary_10_1093_genetics_iyac087 crossref_primary_10_1007_s40778_015_0019_z crossref_primary_10_1038_s41598_019_47797_y crossref_primary_10_1038_nrg_2016_46 crossref_primary_10_1016_j_cell_2020_06_024 crossref_primary_10_1093_bioinformatics_btw288 crossref_primary_10_1111_jcmm_14646 crossref_primary_10_1038_s41467_020_19962_9 crossref_primary_10_1016_j_ecl_2017_07_001 crossref_primary_10_1134_S1062360421060035 crossref_primary_10_1016_j_cell_2018_01_029 crossref_primary_10_1016_j_physa_2018_03_021 crossref_primary_10_1016_j_tig_2023_02_002 crossref_primary_10_7554_eLife_69571 crossref_primary_10_1038_s41586_020_2559_3 crossref_primary_10_3390_genes15091185 crossref_primary_10_1080_01621459_2016_1149404 crossref_primary_10_1097_MOL_0000000000000159 crossref_primary_10_1038_ncomms15120 crossref_primary_10_1038_s41586_020_2449_8 crossref_primary_10_1002_ggn2_202200009 crossref_primary_10_1134_S207905971703011X crossref_primary_10_1016_j_stemcr_2017_03_007 crossref_primary_10_1016_j_cll_2018_07_001 crossref_primary_10_1038_s41598_019_42404_6 crossref_primary_10_1038_s41591_018_0237_x crossref_primary_10_1002_jcb_25226 crossref_primary_10_1111_tpj_13400 crossref_primary_10_3389_fcell_2021_591017 crossref_primary_10_1038_ng_3196 crossref_primary_10_1038_s41467_019_13212_3 crossref_primary_10_1016_j_jid_2021_08_445 crossref_primary_10_1093_nsr_nww025 crossref_primary_10_1111_tan_15020 crossref_primary_10_1038_s42003_019_0488_1 crossref_primary_10_1038_nrg3899 crossref_primary_10_17816_clinpract115063 crossref_primary_10_1093_molbev_msy150 crossref_primary_10_1016_j_cels_2017_07_004 crossref_primary_10_1093_molbev_msy035 crossref_primary_10_1093_jmcb_mjx059 crossref_primary_10_18632_oncotarget_16120 crossref_primary_10_3109_10428194_2014_982638 crossref_primary_10_1093_nar_gkw1263 crossref_primary_10_1146_annurev_genom_091416_035537 crossref_primary_10_1016_j_plrev_2021_03_004 crossref_primary_10_1038_s41420_022_01139_6 crossref_primary_10_1007_s12064_015_0215_5 crossref_primary_10_1371_journal_pgen_1005840 crossref_primary_10_1016_j_it_2015_11_006 crossref_primary_10_1182_blood_2015_10_677393 crossref_primary_10_1186_s13072_015_0021_9 crossref_primary_10_1073_pnas_1410434111 crossref_primary_10_1186_s12918_017_0389_1 crossref_primary_10_1093_molbev_msy046 crossref_primary_10_1016_j_mbs_2015_12_006 crossref_primary_10_1002_bies_202000262 crossref_primary_10_2217_epi_2017_0149 crossref_primary_10_5966_sctm_2014_0191 crossref_primary_10_1093_nargab_lqab052 crossref_primary_10_1101_gr_199760_115 crossref_primary_10_4161_21541264_2014_978173 crossref_primary_10_1093_gbe_evv152 crossref_primary_10_1002_pd_4533 crossref_primary_10_3390_ijms17050664 crossref_primary_10_1371_journal_pbio_2006643 crossref_primary_10_1080_10408398_2017_1392290 crossref_primary_10_3390_insects12070626 crossref_primary_10_1186_s12864_017_4151_2 crossref_primary_10_1111_mec_13742 crossref_primary_10_1242_dev_161208 crossref_primary_10_1093_bfgp_elab015 crossref_primary_10_1073_pnas_1525001113 crossref_primary_10_1093_gbe_evv021 crossref_primary_10_1186_s12864_019_5965_x crossref_primary_10_1200_CCI_19_00109 crossref_primary_10_1159_000381851 crossref_primary_10_1038_s41559_017_0377_2 crossref_primary_10_1007_s00414_019_02044_x crossref_primary_10_1155_2022_2411642 crossref_primary_10_1101_gr_193789_115 crossref_primary_10_1007_s40828_020_00126_7 crossref_primary_10_1093_bib_bbx131 crossref_primary_10_1002_jcp_24847 crossref_primary_10_2217_pgs_2020_0010 crossref_primary_10_3389_fgene_2020_587887 crossref_primary_10_1136_bmjpo_2023_001966 crossref_primary_10_1007_s00439_017_1798_3 crossref_primary_10_1016_j_biosystems_2023_104934 crossref_primary_10_1093_bfgp_elac032 crossref_primary_10_1016_j_celrep_2021_109896 crossref_primary_10_1002_wrna_1845 crossref_primary_10_1016_j_mrrev_2023_108457 crossref_primary_10_1371_journal_pone_0113492 crossref_primary_10_1155_2015_463016 crossref_primary_10_3389_fimmu_2023_1271879 crossref_primary_10_1186_s12864_017_4422_y crossref_primary_10_1373_clinchem_2015_241190 crossref_primary_10_1038_ncomms6903 crossref_primary_10_1080_15476286_2017_1391443 crossref_primary_10_1016_j_copbio_2015_01_001 crossref_primary_10_18632_oncotarget_3019 crossref_primary_10_1016_j_ymeth_2015_10_020 crossref_primary_10_1038_s41431_019_0468_4 crossref_primary_10_1080_09500693_2024_2343435 crossref_primary_10_1016_j_tibs_2018_05_002 crossref_primary_10_7554_eLife_76065 crossref_primary_10_1007_s10577_022_09697_2 crossref_primary_10_1214_19_AOAS1244 crossref_primary_10_1101_gr_223263_117 crossref_primary_10_1111_php_12661 crossref_primary_10_2217_epi_15_107 crossref_primary_10_1016_j_gene_2024_149138 crossref_primary_10_1007_s10539_024_09977_7 crossref_primary_10_3390_ijms19040927 crossref_primary_10_1016_j_preteyeres_2017_03_003 crossref_primary_10_1111_pcmr_12286 crossref_primary_10_1038_s41467_021_23143_7 crossref_primary_10_1016_j_ajhg_2016_12_009 crossref_primary_10_1371_journal_pgen_1006174 crossref_primary_10_1002_bmb_20952 crossref_primary_10_1371_journal_pgen_1011513 crossref_primary_10_18699_VJ21_038 crossref_primary_10_1177_0162243916677835 crossref_primary_10_1182_blood_2014_11_567925 crossref_primary_10_3390_jpm10040169 crossref_primary_10_1002_bies_202300201 crossref_primary_10_1093_gbe_evab077 crossref_primary_10_3390_sym10040103 crossref_primary_10_3727_096504018X15234931503876 crossref_primary_10_1016_j_scr_2015_08_003 crossref_primary_10_3390_ijms232112977 crossref_primary_10_1155_2021_6650966 crossref_primary_10_1038_srep06737 crossref_primary_10_1134_S0006297914130021 crossref_primary_10_1186_s13059_019_1838_5 crossref_primary_10_1016_j_cbpa_2015_10_023 crossref_primary_10_1101_cshperspect_a037374 crossref_primary_10_1161_CIRCGENETICS_114_000909 crossref_primary_10_1007_s10784_025_09665_1 crossref_primary_10_1073_pnas_2123152119 crossref_primary_10_1093_nar_gkv642 crossref_primary_10_1186_1471_2164_16_S8_S3 crossref_primary_10_1016_j_exer_2017_05_002 crossref_primary_10_1109_JPROC_2015_2494198 crossref_primary_10_1016_j_dib_2015_10_023 crossref_primary_10_1016_j_ncrna_2024_06_013 crossref_primary_10_4137_BBI_S30525 crossref_primary_10_1016_j_csbj_2022_05_045 crossref_primary_10_1093_sysbio_syac050 crossref_primary_10_1186_s13059_015_0621_5 crossref_primary_10_3390_ijms18030456 crossref_primary_10_1038_ncomms16058 crossref_primary_10_1038_leu_2017_210 crossref_primary_10_1002_0471142905_hg0923s87 crossref_primary_10_1186_s12052_015_0050_7 crossref_primary_10_1038_nrg_2017_38 crossref_primary_10_7554_eLife_11615 crossref_primary_10_1073_pnas_1421397112 crossref_primary_10_1093_bib_bbw114 crossref_primary_10_1016_j_ajhg_2016_03_027 crossref_primary_10_1016_j_cbpa_2015_10_013 crossref_primary_10_1186_s13059_019_1860_7 crossref_primary_10_1007_s12264_014_1488_2 crossref_primary_10_1371_journal_pcbi_1007332 crossref_primary_10_1016_j_csbj_2018_02_003 crossref_primary_10_1097_TP_0000000000000836 crossref_primary_10_1039_C5DT04410C crossref_primary_10_1186_s13059_023_03142_1 crossref_primary_10_1093_molbev_msx101 crossref_primary_10_1002_art_39476 crossref_primary_10_1007_s12539_024_00669_0 crossref_primary_10_1371_journal_pgen_1008160 crossref_primary_10_1093_database_baz020 crossref_primary_10_1016_j_molp_2015_02_009 crossref_primary_10_1242_dev_122820 crossref_primary_10_1016_j_it_2015_07_005 crossref_primary_10_1186_s13059_021_02503_y crossref_primary_10_1111_cge_13193 crossref_primary_10_1186_s13059_016_0875_6 crossref_primary_10_1111_tan_13598 crossref_primary_10_1038_s41588_021_00863_6 crossref_primary_10_1016_j_yjmcc_2018_05_012 crossref_primary_10_1038_nbt_4030 crossref_primary_10_1371_journal_pgen_1009240 crossref_primary_10_1155_2018_9135073 crossref_primary_10_1002_ajmg_b_32325 crossref_primary_10_1371_journal_pgen_1007186 crossref_primary_10_1093_gbe_evad211 crossref_primary_10_1093_nar_gkad1079 crossref_primary_10_1016_j_isci_2020_101596 crossref_primary_10_3389_fgene_2023_1181956 crossref_primary_10_1016_j_celrep_2016_04_018 crossref_primary_10_1016_j_celrep_2018_02_008 crossref_primary_10_1038_s41467_017_01629_7 crossref_primary_10_3390_ph12020074 crossref_primary_10_1016_j_ajhg_2019_03_012 crossref_primary_10_1038_s41467_018_04948_5 crossref_primary_10_3390_ijms19010123 crossref_primary_10_1186_s12859_019_2708_6 crossref_primary_10_1371_journal_pcbi_1007337 crossref_primary_10_1142_S0219720021500141 crossref_primary_10_1073_pnas_1704117114 crossref_primary_10_1038_s41586_024_07510_0 crossref_primary_10_2217_epi_15_91 crossref_primary_10_1038_nrg_2017_75 crossref_primary_10_1101_gr_216911_116 crossref_primary_10_3390_cells8101281 crossref_primary_10_1038_s41598_019_55098_7 crossref_primary_10_1016_j_celrep_2019_08_020 crossref_primary_10_1007_s11892_014_0549_2 crossref_primary_10_3389_fgene_2021_664379 crossref_primary_10_1007_s00439_017_1771_1 crossref_primary_10_1021_acs_nanolett_8b04170 crossref_primary_10_1146_annurev_animal_090414_014900 crossref_primary_10_7554_eLife_09977 crossref_primary_10_1016_j_cels_2023_04_002 crossref_primary_10_1016_j_jconrel_2023_04_026 crossref_primary_10_1016_j_tig_2021_06_007 crossref_primary_10_1039_D0SC00480D crossref_primary_10_1016_j_cytox_2021_100056 crossref_primary_10_3324_haematol_2021_266643 crossref_primary_10_3390_ijms22179589 crossref_primary_10_1186_s12859_018_2469_7 crossref_primary_10_1016_j_tig_2021_06_004 crossref_primary_10_1186_s12919_016_0040_y crossref_primary_10_12688_f1000research_18966_1 crossref_primary_10_1053_j_gastro_2014_12_030 crossref_primary_10_1111_tpj_16373 crossref_primary_10_1146_annurev_animal_020518_114913 crossref_primary_10_12688_f1000research_8151_1 crossref_primary_10_1016_j_coisb_2016_12_019 crossref_primary_10_1146_annurev_vision_082114_035609 crossref_primary_10_1016_j_ajhg_2014_10_004 crossref_primary_10_1016_j_shpsa_2021_03_005 crossref_primary_10_1096_fj_201500124RR crossref_primary_10_1073_pnas_1409762111 crossref_primary_10_1146_annurev_cellbio_100814_125249 crossref_primary_10_1101_gr_190538_115 crossref_primary_10_1177_2045894020913475 crossref_primary_10_1111_resp_13714 crossref_primary_10_3389_fmicb_2018_02178 crossref_primary_10_1002_ggn2_202300203 crossref_primary_10_1186_s12864_017_3481_4 crossref_primary_10_1371_journal_pone_0154181 crossref_primary_10_1016_j_gpb_2021_08_015 crossref_primary_10_1186_s12864_019_5709_y crossref_primary_10_12688_f1000research_52350_2 crossref_primary_10_3390_ijms21010302 crossref_primary_10_1210_er_2016_1101 crossref_primary_10_23736_S0394_3410_19_03939_0 crossref_primary_10_3390_cells11121895 crossref_primary_10_1016_j_atherosclerosis_2016_08_034 crossref_primary_10_1093_hmg_ddab139 crossref_primary_10_1111_1755_0998_12933 crossref_primary_10_15252_embr_201439949 crossref_primary_10_1038_s41467_024_47346_w crossref_primary_10_1016_j_ebiom_2018_07_042 crossref_primary_10_1038_nature15714 crossref_primary_10_1002_bies_201900066 crossref_primary_10_1016_j_celrep_2015_09_077 crossref_primary_10_1007_s12561_016_9151_2 crossref_primary_10_1016_j_celrep_2022_111630 crossref_primary_10_1038_ng_3680 crossref_primary_10_1016_j_nlm_2019_107034 crossref_primary_10_1161_CIRCULATIONAHA_114_013303 crossref_primary_10_1093_nar_gky510 crossref_primary_10_1093_nar_gkw691 crossref_primary_10_1038_s41598_020_57725_0 crossref_primary_10_1371_journal_pcbi_1006453 crossref_primary_10_7554_eLife_07571 crossref_primary_10_1111_oik_04171 crossref_primary_10_1074_jbc_M114_622878 crossref_primary_10_1007_s40495_018_0127_4 crossref_primary_10_1016_j_jse_2016_11_038 crossref_primary_10_1016_j_ajhg_2018_03_026 crossref_primary_10_1186_s12915_017_0460_9 crossref_primary_10_1101_gad_250902_114 crossref_primary_10_1016_j_csbj_2024_09_017 crossref_primary_10_1126_science_abk3512 crossref_primary_10_3390_horticulturae11010063 crossref_primary_10_1111_imr_12814 crossref_primary_10_1371_journal_pone_0208952 crossref_primary_10_1111_tpj_13059 crossref_primary_10_1186_s13073_014_0092_4 crossref_primary_10_1016_j_gene_2015_12_043 crossref_primary_10_1186_s12863_015_0313_x crossref_primary_10_1172_JCI81568 crossref_primary_10_1167_iovs_18_25443 crossref_primary_10_1073_pnas_1424958112 crossref_primary_10_15406_ijmboa_2023_06_00147 crossref_primary_10_1093_database_baw030 crossref_primary_10_1016_j_dnarep_2020_102927 crossref_primary_10_1186_s12859_019_3049_1 crossref_primary_10_1016_j_chc_2019_08_007 crossref_primary_10_1186_s13059_017_1296_x crossref_primary_10_1073_pnas_1523482113 crossref_primary_10_1177_0022022117736526 crossref_primary_10_1016_j_jtbi_2019_08_014 crossref_primary_10_1038_srep30851 crossref_primary_10_1111_gbb_12407 crossref_primary_10_1002_ajh_23952 crossref_primary_10_1016_j_ajhg_2022_01_017 crossref_primary_10_1159_000530929 crossref_primary_10_1016_j_toxlet_2022_04_003 crossref_primary_10_1016_j_tig_2016_06_004 crossref_primary_10_1101_gr_248658_119 crossref_primary_10_1038_s41467_019_08337_4 crossref_primary_10_1038_s41576_018_0050_x crossref_primary_10_1002_ijc_31810 crossref_primary_10_1186_s13059_020_1937_3 crossref_primary_10_1007_s10539_022_09856_z crossref_primary_10_1182_blood_2020005301 crossref_primary_10_1038_s41598_020_77586_x crossref_primary_10_15252_embj_2020104983 crossref_primary_10_1525_elementa_2020_00072 crossref_primary_10_1038_s41467_023_37610_w crossref_primary_10_1007_s10048_015_0445_1 crossref_primary_10_1002_humu_23049 crossref_primary_10_1016_j_csbj_2020_02_013 crossref_primary_10_1073_pnas_1514974112 crossref_primary_10_1002_ijc_29618 crossref_primary_10_1111_tpj_14370 |
Cites_doi | 10.1038/nature11247 10.1038/nature08903 10.1016/j.cub.2012.10.002 10.1016/j.cub.2013.03.023 10.1038/nature08872 10.1126/science.1225057 10.1016/j.tig.2011.06.006 10.1016/j.cell.2008.06.030 10.1126/science.1202702 10.1126/science.1169050 10.1016/0092-8674(87)90584-8 10.1038/ni0706-692 10.1038/nature06340 10.1073/pnas.1221376110 10.1146/annurev-genom-082509-141651 10.1038/ni0804-768 10.1016/j.cell.2012.10.012 10.1016/S0378-1119(03)00556-0 10.1002/j.1460-2075.1987.tb02605.x 10.1038/ng.2504 10.1101/SQB.1956.021.01.017 10.1038/nature10530 10.1101/gr.5255506 10.1007/s10142-002-0065-3 10.1371/journal.pcbi.1001025 10.1016/S1046-2023(02)00006-3 10.1101/gr.161034.113 10.1371/journal.pbio.1000625 10.1101/gad.13.20.2713 10.1371/journal.pbio.1001369 10.1126/science.1146484 10.1016/S0065-2660(07)00013-2 10.1038/nature01262 10.1038/nature07730 10.1038/nature01644 10.1038/nmeth.1226 10.1016/j.cell.2013.01.035 10.1101/gr.3715005 10.1038/nbt.2137 10.1016/j.gde.2012.01.002 10.1038/nature05874 10.1371/journal.pgen.1002326 10.1038/nature10944 10.1016/j.cell.2008.01.014 10.1038/nrg1920 10.1126/science.1081331 10.1093/gbe/evt028 10.1093/nar/gkr917 10.1017/S1464793100005595 10.1186/1877-6566-7-2 10.1093/gbe/evt023 10.1038/nature11233 10.1126/science.1222794 10.1101/gr.116814.110 10.1086/426833 10.1073/pnas.0611223104 10.1038/nature11245 10.1038/nbt.2136 10.1016/S0952-7915(98)80174-X 10.1038/35057062 10.1534/genetics.111.134668 10.1242/dev.125.5.949 10.1371/journal.pbio.0050234 10.1146/annurev.bi.57.070188.001111 10.1038/nature09906 10.1126/science.1215040 10.1126/science.1088328 10.1016/S1046-2023(02)00005-1 10.1126/science.1105136 10.1073/pnas.86.8.2554 10.1126/science.1182213 10.1126/science.1233366 10.1126/science.1084337 10.1016/j.cell.2013.08.021 10.1073/pnas.0903103106 10.1101/gr.110882.110 10.1101/gr.817703 10.1016/j.cell.2009.01.002 10.1126/science.1174148 10.1056/NEJMoa1103070 10.1038/nrg3295 10.1073/pnas.0803697105 10.1038/nature03441 10.1038/nature02371 10.1101/gr.098921.109 10.1101/gr.136127.111 10.1038/nature10808 10.1038/nature04338 10.1101/gr.152710.112 10.1101/gr.155192.113 10.1038/nature01858 10.1101/gr.6929408 10.1038/nature09692 10.1146/annurev.ge.05.120171.001321 10.1093/molbev/mst045 10.1073/pnas.1016071107 10.1101/gad.1706508 10.1038/nmeth.1313 10.1007/s10539-014-9441-3 10.1073/pnas.0511238103 10.1371/journal.pcbi.0020130 10.1101/gr.144899.112 10.1038/nbt.1590 10.1038/nrg2683 10.1101/gad.1897310 10.1093/oxfordjournals.molbev.a004169 10.1093/nar/gki033 10.1101/gr.3642605 10.1006/dbio.1998.8991 10.1146/annurev-biochem-051410-092902 10.1101/gr.108795.110 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Apr 29, 2014 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Apr 29, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1318948111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE Genetics Abstracts AGRICOLA MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Defining functional DNA elements |
EISSN | 1091-6490 |
EndPage | 6138 |
ExternalDocumentID | PMC4035993 3301640041 24753594 10_1073_pnas_1318948111 111_17_6131 23772466 US201600144304 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: U54 HG006997 – fundername: NIGMS NIH HHS grantid: R01 GM083337 – fundername: NHGRI NIH HHS grantid: U41 HG007234 – fundername: NHGRI NIH HHS grantid: R01 HG004037 – fundername: NHGRI NIH HHS grantid: U54 HG006996 – fundername: NHGRI NIH HHS grantid: R01 HG003143 – fundername: NIA NIH HHS grantid: R01 AG016379 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NCI NIH HHS grantid: P30 CA045508 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c623t-3a519489c5d684ffe8b94d3fe1944510bc61d1d7f07670209a54fa853c42ceb3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:37:03 EDT 2025 Fri Jul 11 00:01:45 EDT 2025 Fri Jul 11 13:57:32 EDT 2025 Fri Jul 11 07:24:20 EDT 2025 Sat Aug 16 23:11:59 EDT 2025 Thu Apr 03 07:07:37 EDT 2025 Tue Jul 01 01:53:05 EDT 2025 Thu Apr 24 23:04:19 EDT 2025 Wed Nov 11 00:30:23 EST 2020 Thu May 29 08:40:45 EDT 2025 Wed Dec 27 19:14:44 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c623t-3a519489c5d684ffe8b94d3fe1944510bc61d1d7f07670209a54fa853c42ceb3 |
Notes | http://dx.doi.org/10.1073/pnas.1318948111 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 3A.K., G.K.M., and L.D.W. contributed equally to this work. Author contributions: M.K., B.W., M.P.S., B.E.B., and R.C.H. designed research; M.K., B.W., M.P.S., B.E.B., A.K., G.K.M., L.D.W., and R.C.H. performed research; A.K., G.K.M., and L.D.W. contributed computational analysis and tools; M.K., B.W., M.P.S., B.E.B., E.B., G.E.C., J.D., I.D., L.L.E., P.J.F., E.A.F., M.G., M.C.G., D.M.G., T.R.G., E.D.G., R.G., T.H., J.K., J.D.L., R.M.M., M.J.P., B.R., J.A.S., Z.W., K.P.W., and R.C.H. contributed to manuscript discussions and ideas; and M.K., B.W., M.P.S., B.E.B., and R.C.H. wrote the paper. 2M.K., B.W., M.P.S., B.E.B., and R.C.H. contributed equally to this work. Edited by Robert Haselkorn, University of Chicago, Chicago, IL, and approved January 29, 2014 (received for review October 16, 2013) |
OpenAccessLink | https://www.pnas.org/content/pnas/111/17/6131.full.pdf |
PMID | 24753594 |
PQID | 1523948285 |
PQPubID | 42026 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1803095650 proquest_miscellaneous_1520343603 pubmed_primary_24753594 jstor_primary_23772466 proquest_journals_1523948285 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4035993 crossref_citationtrail_10_1073_pnas_1318948111 proquest_miscellaneous_1534857255 fao_agris_US201600144304 crossref_primary_10_1073_pnas_1318948111 pnas_primary_111_17_6131 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-29 |
PublicationDateYYYYMMDD | 2014-04-29 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Kellis M (e_1_3_3_43_2) 2003; 423 ENCODE Project Consortium (e_1_3_3_69_2) 2012; 489 Xu J (e_1_3_3_109_2) 2010; 24 de Souza FS (e_1_3_3_83_2) 2013; 30 Melnikov A (e_1_3_3_39_2) 2012; 30 Dimas AS (e_1_3_3_94_2) 2009; 325 Hesselberth JR (e_1_3_3_116_2) 2009; 6 Meader S (e_1_3_3_89_2) 2010; 20 Ernst J (e_1_3_3_35_2) 2011; 473 Pfeiffer BD (e_1_3_3_40_2) 2008; 105 Olovnikov I (e_1_3_3_53_2) 2012; 22 Jones FC (e_1_3_3_5_2) 2012; 484 Lynch M (e_1_3_3_78_2) 2007 Patwardhan RP (e_1_3_3_38_2) 2012; 30 Li Q (e_1_3_3_99_2) 2011; 5 Ward LD (e_1_3_3_93_2) 2013; 340 Costas J (e_1_3_3_18_2) 2003; 310 Gregory TR (e_1_3_3_74_2) 2001; 76 Vakhrusheva OA (e_1_3_3_24_2) 2013; 5 Ran FA (e_1_3_3_113_2) 2013; 154 Kleinjan DA (e_1_3_3_11_2) 2005; 76 Mattick JS (e_1_3_3_29_2) 2013; 7 Talbert PB (e_1_3_3_105_2) 2006; 7 Elnitski L (e_1_3_3_49_2) 2003; 13 Lindblad-Toh K (e_1_3_3_87_2) 2005; 438 Lander ES (e_1_3_3_1_2) 2001; 409 Nardone J (e_1_3_3_58_2) 2004; 5 Bartel DP (e_1_3_3_50_2) 2009; 136 Marinov GK (e_1_3_3_102_2) 2014 Graur D (e_1_3_3_26_2) 2013; 5 Cliften P (e_1_3_3_46_2) 2003; 301 Cheng Y (e_1_3_3_70_2) 2009; 19 Visel A (e_1_3_3_37_2) 2009; 457 Davydov EV (e_1_3_3_115_2) 2010; 6 Degner JF (e_1_3_3_97_2) 2012; 482 Pickrell JK (e_1_3_3_98_2) 2010; 464 Scally A (e_1_3_3_91_2) 2012; 13 Stark A (e_1_3_3_42_2) 2007; 450 Rada-Iglesias A (e_1_3_3_63_2) 2011; 470 Lohmueller KE (e_1_3_3_92_2) 2011; 7 Tuan DY (e_1_3_3_107_2) 1989; 86 Grossman SR (e_1_3_3_6_2) 2013; 152 Battle A (e_1_3_3_96_2) 2014; 24 Germain PL (e_1_3_3_31_2) 2014 Chan YF (e_1_3_3_10_2) 2010; 327 Fraser HB (e_1_3_3_7_2) 2013; 23 Doolittle WF (e_1_3_3_25_2) 2013; 110 Horak CE (e_1_3_3_66_2) 2002; 2 King DC (e_1_3_3_106_2) 2005; 15 Hindorff LA (e_1_3_3_13_2) 2009; 106 McGaughey DM (e_1_3_3_23_2) 2008; 18 Kheradpour P (e_1_3_3_36_2) 2013; 23 Lowe CB (e_1_3_3_81_2) 2011; 333 ENCODE Project Consortium (e_1_3_3_67_2) 2004; 306 Jeong S (e_1_3_3_8_2) 2008; 132 Boffelli D (e_1_3_3_47_2) 2003; 299 Clark MB (e_1_3_3_85_2) 2011; 9 Ponting CP (e_1_3_3_4_2) 2011; 21 Weinmann AS (e_1_3_3_61_2) 2002; 26 Carr PA (e_1_3_3_114_2) 2009; 27 Mortazavi A (e_1_3_3_103_2) 2008; 5 Henikoff S (e_1_3_3_71_2) 2011; 27 Gerstein MB (e_1_3_3_111_2) 2012; 489 Thomas JW (e_1_3_3_45_2) 2003; 424 Nobrega MA (e_1_3_3_21_2) 2003; 302 Niu DK (e_1_3_3_30_2) 2012; 430 Weiner A (e_1_3_3_72_2) 2012; 10 Keightley PD (e_1_3_3_75_2) 2012; 190 Hamosh A (e_1_3_3_32_2) 2005; 33 Eddy SR (e_1_3_3_28_2) 2013; 23 Moses AM (e_1_3_3_19_2) 2006; 2 Berns K (e_1_3_3_34_2) 2004; 428 Gross DS (e_1_3_3_59_2) 1988; 57 Amsterdam A (e_1_3_3_33_2) 1999; 13 Dermitzakis ET (e_1_3_3_17_2) 2002; 19 Aravin AA (e_1_3_3_52_2) 2007; 318 Ward LD (e_1_3_3_16_2) 2012; 40 Djebali S (e_1_3_3_104_2) 2012; 489 Siepel A (e_1_3_3_48_2) 2005; 15 Maurano MT (e_1_3_3_14_2) 2012; 337 McClintock B (e_1_3_3_82_2) 1956; 21 Parker SC (e_1_3_3_88_2) 2009; 324 Johnson KD (e_1_3_3_62_2) 2002; 26 Creyghton MP (e_1_3_3_64_2) 2010; 107 Thomas CA (e_1_3_3_73_2) 1971; 5 Lindblad-Toh K (e_1_3_3_3_2) 2011; 478 Ehret CF (e_1_3_3_76_2) 1963; 23 Rinn JL (e_1_3_3_51_2) 2012; 81 Ozsolak F (e_1_3_3_65_2) 2008; 22 Agarwal S (e_1_3_3_55_2) 1998; 10 Sankaran VG (e_1_3_3_110_2) 2011; 365 Trynka G (e_1_3_3_112_2) 2013; 45 Nishihara H (e_1_3_3_84_2) 2006; 16 Kleinjan DA (e_1_3_3_12_2) 2008; 61 Ward LD (e_1_3_3_90_2) 2012; 337 Bodine DM (e_1_3_3_108_2) 1987; 6 Jacquier A (e_1_3_3_86_2) 2009; 10 Ludwig MZ (e_1_3_3_20_2) 1998; 125 Xie X (e_1_3_3_44_2) 2005; 434 Grosveld F (e_1_3_3_54_2) 1987; 51 Carroll SB (e_1_3_3_9_2) 2008; 134 Montgomery SB (e_1_3_3_95_2) 2010; 464 Waterston RH (e_1_3_3_2_2) 2002; 420 Lowe CB (e_1_3_3_80_2) 2007; 104 Ahituv N (e_1_3_3_22_2) 2007; 5 Schaub MA (e_1_3_3_15_2) 2012; 22 MacArthur DG (e_1_3_3_41_2) 2012; 335 Lovén J (e_1_3_3_100_2) 2012; 151 Kamal M (e_1_3_3_79_2) 2006; 103 Birney E (e_1_3_3_68_2) 2007; 447 Eddy SR (e_1_3_3_27_2) 2012; 22 Noonan JP (e_1_3_3_57_2) 2010; 11 Ohno S (e_1_3_3_77_2) 1972; 23 Lakshmanan G (e_1_3_3_56_2) 1998; 204 Li CC (e_1_3_3_60_2) 2006; 7 Islam S (e_1_3_3_101_2) 2011; 21 12775844 - Science. 2003 Jul 4;301(5629):71-6 23415221 - Cell. 2013 Feb 14;152(4):703-13 16024819 - Genome Res. 2005 Aug;15(8):1034-50 9449677 - Development. 1998 Mar;125(5):949-58 14073743 - J Ultrastruct Res. 1963 Oct;23:SUPPL6:1-42 17803355 - PLoS Biol. 2007 Sep;5(9):e234 21160473 - Nature. 2011 Feb 10;470(7333):279-83 22371084 - Nat Biotechnol. 2012 Mar;30(3):271-7 22345605 - Genetics. 2012 Feb;190(2):295-304 20010598 - Nat Biotechnol. 2009 Dec;27(12):1151-62 3690667 - Cell. 1987 Dec 24;51(6):975-85 15549674 - Am J Hum Genet. 2005 Jan;76(1):8-32 18516045 - Nat Methods. 2008 Jul;5(7):621-8 23137679 - Curr Biol. 2012 Nov 6;22(21):R898-9 16717141 - Genome Res. 2006 Jul;16(7):864-74 23512712 - Genome Res. 2013 May;23(5):800-11 23263488 - Nat Genet. 2013 Feb;45(2):124-30 25107292 - Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):E3365 23992846 - Cell. 2013 Sep 12;154(6):1380-9 21875934 - Genome Res. 2011 Nov;21(11):1769-76 12192590 - Funct Integr Genomics. 2002 Sep;2(4-5):171-80 21879898 - N Engl J Med. 2011 Sep 1;365(9):807-14 15608251 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D514-7 22955986 - Genome Res. 2012 Sep;22(9):1748-59 9882482 - Dev Biol. 1998 Dec 15;204(2):451-63 14563999 - Science. 2003 Oct 17;302(5644):413 19056895 - Genes Dev. 2008 Nov 15;22(22):3172-83 23268340 - Biochem Biophys Res Commun. 2013 Jan 25;430(4):1340-3 12466850 - Nature. 2002 Dec 5;420(6915):520-62 22955828 - Science. 2012 Sep 7;337(6099):1190-5 19305407 - Nat Methods. 2009 Apr;6(4):283-9 16097657 - Annu Rev Genet. 1971;5:237-56 22955619 - Nature. 2012 Sep 6;489(7414):91-100 3052270 - Annu Rev Biochem. 1988;57:159-97 12529307 - Genome Res. 2003 Jan;13(1):64-72 22663078 - Annu Rev Biochem. 2012;81:145-66 2704733 - Proc Natl Acad Sci U S A. 1989 Apr;86(8):2554-8 20007865 - Science. 2010 Jan 15;327(5963):302-5 21543516 - Genome Res. 2011 Jul;21(7):1160-7 18614008 - Cell. 2008 Jul 11;134(1):25-36 11237011 - Nature. 2001 Feb 15;409(6822):860-921 15735639 - Nature. 2005 Mar 17;434(7031):338-45 22955616 - Nature. 2012 Sep 6;489(7414):57-74 18621688 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9715-20 17040121 - PLoS Comput Biol. 2006 Oct;2(10):e130 17571346 - Nature. 2007 Jun 14;447(7146):799-816 19212405 - Nature. 2009 Feb 12;457(7231):854-8 22371081 - Nat Biotechnol. 2012 Mar;30(3):265-70 22965354 - Nat Rev Genet. 2012 Oct;13(10):745-53 19286520 - Science. 2009 Apr 17;324(5925):389-92 22912562 - PLoS Biol. 2012;10(7):e1001369 25275169 - Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):E3366 23431001 - Genome Biol Evol. 2013;5(3):578-90 20220758 - Nature. 2010 Apr 1;464(7289):768-72 17975059 - Science. 2007 Nov 2;318(5851):761-4 15282556 - Nat Immunol. 2004 Aug;5(8):768-74 12054902 - Methods. 2002 Jan;26(1):27-36 22956687 - Science. 2012 Sep 28;337(6102):1675-8 16341006 - Nature. 2005 Dec 8;438(7069):803-19 21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6 22349141 - Curr Opin Genet Dev. 2012 Apr;22(2):164-71 20220756 - Nature. 2010 Apr 1;464(7289):773-7 21765801 - PLoS Biol. 2011 Jul;9(7):e1000625; discussion e1001102 18071029 - Genome Res. 2008 Feb;18(2):252-60 23479647 - Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5294-300 18282513 - Adv Genet. 2008;61:339-88 21764166 - Trends Genet. 2011 Oct;27(10):389-96 16477033 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2740-5 15042092 - Nature. 2004 Mar 25;428(6981):431-7 20693480 - Genome Res. 2010 Oct;20(10):1335-43 21852499 - Science. 2011 Aug 19;333(6045):1019-24 20438361 - Annu Rev Genomics Hum Genet. 2010;11:1-23 17463089 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):8005-10 16024817 - Genome Res. 2005 Aug;15(8):1051-60 23418180 - Genome Biol Evol. 2013;5(3):532-41 21993624 - Nature. 2011 Oct 27;478(7370):476-82 12801649 - Gene. 2003 May 22;310:215-20 19474294 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7 16983375 - Nat Rev Genet. 2006 Oct;7(10):793-803 24092820 - Genome Res. 2014 Jan;24(1):14-24 19887574 - Genome Res. 2009 Dec;19(12):2172-84 21441907 - Nature. 2011 May 5;473(7345):43-9 16785883 - Nat Immunol. 2006 Jul;7(7):692-7 22344438 - Science. 2012 Feb 17;335(6070):823-8 22481358 - Nature. 2012 Apr 5;484(7392):55-61 22064851 - Nucleic Acids Res. 2012 Jan;40(Database issue):D930-4 22022285 - PLoS Genet. 2011 Oct;7(10):e1002326 19644074 - Science. 2009 Sep 4;325(5945):1246-50 5065367 - Brookhaven Symp Biol. 1972;23:366-70 10541557 - Genes Dev. 1999 Oct 15;13(20):2713-24 12917688 - Nature. 2003 Aug 14;424(6950):788-93 12054903 - Methods. 2002 Jan;26(1):37-47 20395365 - Genes Dev. 2010 Apr 15;24(8):783-98 12610304 - Science. 2003 Feb 28;299(5611):1391-4 13433592 - Cold Spring Harb Symp Quant Biol. 1956;21:197-216 23661743 - Science. 2013 May 10;340(6133):682 12748633 - Nature. 2003 May 15;423(6937):241-54 19167326 - Cell. 2009 Jan 23;136(2):215-33 15499007 - Science. 2004 Oct 22;306(5696):636-40 23578867 - Curr Biol. 2013 Apr 8;23(7):R259-61 12082130 - Mol Biol Evol. 2002 Jul;19(7):1114-21 19920851 - Nat Rev Genet. 2009 Dec;10(12):833-44 9638372 - Curr Opin Immunol. 1998 Jun;10(3):345-52 17994088 - Nature. 2007 Nov 8;450(7167):219-32 22307276 - Nature. 2012 Feb 16;482(7385):390-4 23101621 - Cell. 2012 Oct 26;151(3):476-82 23539138 - Genome Res. 2013 Jul;23(7):1089-96 11325054 - Biol Rev Camb Philos Soc. 2001 Feb;76(1):65-101 22955620 - Nature. 2012 Sep 6;489(7414):101-8 3691478 - EMBO J. 1987 Oct;6(10):2997-3004 23486611 - Mol Biol Evol. 2013 Jun;30(6):1239-51 21152010 - PLoS Comput Biol. 2010;6(12):e1001025 24299736 - Genome Res. 2014 Mar;24(3):496-510 18329365 - Cell. 2008 Mar 7;132(5):783-93 |
References_xml | – volume: 489 start-page: 57 year: 2012 ident: e_1_3_3_69_2 article-title: An integrated encyclopedia of DNA elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 464 start-page: 773 year: 2010 ident: e_1_3_3_95_2 article-title: Transcriptome genetics using second generation sequencing in a Caucasian population publication-title: Nature doi: 10.1038/nature08903 – volume: 22 start-page: R898 year: 2012 ident: e_1_3_3_27_2 article-title: The C-value paradox, junk DNA and ENCODE publication-title: Curr Biol doi: 10.1016/j.cub.2012.10.002 – volume: 23 start-page: R259 year: 2013 ident: e_1_3_3_28_2 article-title: The ENCODE project: Missteps overshadowing a success publication-title: Curr Biol doi: 10.1016/j.cub.2013.03.023 – volume: 430 start-page: 1340 year: 2012 ident: e_1_3_3_30_2 article-title: Can ENCODE tell us how much junk DNA we carry in our genome? publication-title: Biochem Biophys Res Commun – volume: 464 start-page: 768 year: 2010 ident: e_1_3_3_98_2 article-title: Understanding mechanisms underlying human gene expression variation with RNA sequencing publication-title: Nature doi: 10.1038/nature08872 – volume: 337 start-page: 1675 year: 2012 ident: e_1_3_3_90_2 article-title: Evidence of abundant purifying selection in humans for recently acquired regulatory functions publication-title: Science doi: 10.1126/science.1225057 – volume: 27 start-page: 389 year: 2011 ident: e_1_3_3_71_2 article-title: Histone modification: Cause or cog? publication-title: Trends Genet doi: 10.1016/j.tig.2011.06.006 – volume: 134 start-page: 25 year: 2008 ident: e_1_3_3_9_2 article-title: Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution publication-title: Cell doi: 10.1016/j.cell.2008.06.030 – volume: 333 start-page: 1019 year: 2011 ident: e_1_3_3_81_2 article-title: Three periods of regulatory innovation during vertebrate evolution publication-title: Science doi: 10.1126/science.1202702 – volume: 324 start-page: 389 year: 2009 ident: e_1_3_3_88_2 article-title: Local DNA topography correlates with functional noncoding regions of the human genome publication-title: Science doi: 10.1126/science.1169050 – volume: 51 start-page: 975 year: 1987 ident: e_1_3_3_54_2 article-title: Position-independent, high-level expression of the human beta-globin gene in transgenic mice publication-title: Cell doi: 10.1016/0092-8674(87)90584-8 – volume: 7 start-page: 692 year: 2006 ident: e_1_3_3_60_2 article-title: Pursuing gene regulation ‘logic’ via RNA interference and chromatin immunoprecipitation publication-title: Nat Immunol doi: 10.1038/ni0706-692 – volume: 450 start-page: 219 year: 2007 ident: e_1_3_3_42_2 article-title: Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures publication-title: Nature doi: 10.1038/nature06340 – volume: 110 start-page: 5294 year: 2013 ident: e_1_3_3_25_2 article-title: Is junk DNA bunk? A critique of ENCODE publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1221376110 – volume: 11 start-page: 1 year: 2010 ident: e_1_3_3_57_2 article-title: Genomics of long-range regulatory elements publication-title: Annu Rev Genomics Hum Genet doi: 10.1146/annurev-genom-082509-141651 – volume: 5 start-page: 768 year: 2004 ident: e_1_3_3_58_2 article-title: Bioinformatics for the ‘bench biologist’: How to find regulatory regions in genomic DNA publication-title: Nat Immunol doi: 10.1038/ni0804-768 – volume: 151 start-page: 476 year: 2012 ident: e_1_3_3_100_2 article-title: Revisiting global gene expression analysis publication-title: Cell doi: 10.1016/j.cell.2012.10.012 – volume: 310 start-page: 215 year: 2003 ident: e_1_3_3_18_2 article-title: Turnover of binding sites for transcription factors involved in early Drosophila development publication-title: Gene doi: 10.1016/S0378-1119(03)00556-0 – volume: 6 start-page: 2997 year: 1987 ident: e_1_3_3_108_2 article-title: An enhancer element lies 3′ to the human A gamma globin gene publication-title: EMBO J doi: 10.1002/j.1460-2075.1987.tb02605.x – volume: 45 start-page: 124 year: 2013 ident: e_1_3_3_112_2 article-title: Chromatin marks identify critical cell types for fine mapping complex trait variants publication-title: Nat Genet doi: 10.1038/ng.2504 – volume: 21 start-page: 197 year: 1956 ident: e_1_3_3_82_2 article-title: Controlling elements and the gene publication-title: Cold Spring Harb Symp Quant Biol doi: 10.1101/SQB.1956.021.01.017 – volume: 478 start-page: 476 year: 2011 ident: e_1_3_3_3_2 article-title: A high-resolution map of human evolutionary constraint using 29 mammals publication-title: Nature doi: 10.1038/nature10530 – volume: 16 start-page: 864 year: 2006 ident: e_1_3_3_84_2 article-title: Functional noncoding sequences derived from SINEs in the mammalian genome publication-title: Genome Res doi: 10.1101/gr.5255506 – volume: 2 start-page: 171 year: 2002 ident: e_1_3_3_66_2 article-title: Global analysis of gene expression in yeast publication-title: Funct Integr Genomics doi: 10.1007/s10142-002-0065-3 – volume: 6 start-page: e1001025 year: 2010 ident: e_1_3_3_115_2 article-title: Identifying a high fraction of the human genome to be under selective constraint using GERP++ publication-title: PLOS Comput Biol doi: 10.1371/journal.pcbi.1001025 – volume: 26 start-page: 37 year: 2002 ident: e_1_3_3_61_2 article-title: Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation publication-title: Methods doi: 10.1016/S1046-2023(02)00006-3 – volume: 23 start-page: 1–42 year: 1963 ident: e_1_3_3_76_2 article-title: Origin, development and maturation of organelles and organelle systems of the cell surface in Paramecium publication-title: J Ultrastruct Res – year: 2014 ident: e_1_3_3_102_2 article-title: From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing publication-title: Genome Res doi: 10.1101/gr.161034.113 – volume: 9 start-page: e1000625 year: 2011 ident: e_1_3_3_85_2 article-title: The reality of pervasive transcription publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000625 – volume: 13 start-page: 2713 year: 1999 ident: e_1_3_3_33_2 article-title: A large-scale insertional mutagenesis screen in zebrafish publication-title: Genes Dev doi: 10.1101/gad.13.20.2713 – volume: 10 start-page: e1001369 year: 2012 ident: e_1_3_3_72_2 article-title: Systematic dissection of roles for chromatin regulators in a yeast stress response publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001369 – volume: 318 start-page: 761 year: 2007 ident: e_1_3_3_52_2 article-title: The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race publication-title: Science doi: 10.1126/science.1146484 – volume: 61 start-page: 339 year: 2008 ident: e_1_3_3_12_2 article-title: Long-range gene control and genetic disease publication-title: Adv Genet doi: 10.1016/S0065-2660(07)00013-2 – volume: 420 start-page: 520 year: 2002 ident: e_1_3_3_2_2 article-title: Initial sequencing and comparative analysis of the mouse genome publication-title: Nature doi: 10.1038/nature01262 – volume: 457 start-page: 854 year: 2009 ident: e_1_3_3_37_2 article-title: ChIP-seq accurately predicts tissue-specific activity of enhancers publication-title: Nature doi: 10.1038/nature07730 – volume: 423 start-page: 241 year: 2003 ident: e_1_3_3_43_2 article-title: Sequencing and comparison of yeast species to identify genes and regulatory elements publication-title: Nature doi: 10.1038/nature01644 – volume: 5 start-page: 621 year: 2008 ident: e_1_3_3_103_2 article-title: Mapping and quantifying mammalian transcriptomes by RNA-Seq publication-title: Nat Methods doi: 10.1038/nmeth.1226 – volume: 152 start-page: 703 year: 2013 ident: e_1_3_3_6_2 article-title: Identifying recent adaptations in large-scale genomic data publication-title: Cell doi: 10.1016/j.cell.2013.01.035 – volume: 15 start-page: 1034 year: 2005 ident: e_1_3_3_48_2 article-title: Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes publication-title: Genome Res doi: 10.1101/gr.3715005 – volume: 30 start-page: 271 year: 2012 ident: e_1_3_3_39_2 article-title: Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay publication-title: Nat Biotechnol doi: 10.1038/nbt.2137 – volume: 22 start-page: 164 year: 2012 ident: e_1_3_3_53_2 article-title: Small RNA in the nucleus: The RNA-chromatin ping-pong publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2012.01.002 – volume: 447 start-page: 799 year: 2007 ident: e_1_3_3_68_2 article-title: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project publication-title: Nature doi: 10.1038/nature05874 – volume: 7 start-page: e1002326 year: 2011 ident: e_1_3_3_92_2 article-title: Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002326 – volume: 484 start-page: 55 year: 2012 ident: e_1_3_3_5_2 article-title: The genomic basis of adaptive evolution in threespine sticklebacks publication-title: Nature doi: 10.1038/nature10944 – volume: 132 start-page: 783 year: 2008 ident: e_1_3_3_8_2 article-title: The evolution of gene regulation underlies a morphological difference between two Drosophila sister species publication-title: Cell doi: 10.1016/j.cell.2008.01.014 – volume-title: The Origins of Genome Architecture year: 2007 ident: e_1_3_3_78_2 – volume: 7 start-page: 793 year: 2006 ident: e_1_3_3_105_2 article-title: Spreading of silent chromatin: Inaction at a distance publication-title: Nat Rev Genet doi: 10.1038/nrg1920 – volume: 299 start-page: 1391 year: 2003 ident: e_1_3_3_47_2 article-title: Phylogenetic shadowing of primate sequences to find functional regions of the human genome publication-title: Science doi: 10.1126/science.1081331 – volume: 5 start-page: 578 year: 2013 ident: e_1_3_3_26_2 article-title: On the immortality of television sets: “Function” in the human genome according to the evolution-free gospel of ENCODE publication-title: Genome Biol Evol doi: 10.1093/gbe/evt028 – volume: 40 start-page: D930 year: 2012 ident: e_1_3_3_16_2 article-title: HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr917 – volume: 76 start-page: 65 year: 2001 ident: e_1_3_3_74_2 article-title: Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma publication-title: Biol Rev Camb Philos Soc doi: 10.1017/S1464793100005595 – volume: 7 start-page: 2 year: 2013 ident: e_1_3_3_29_2 article-title: The extent of functionality in the human genome publication-title: HUGO J doi: 10.1186/1877-6566-7-2 – volume: 5 start-page: 532 year: 2013 ident: e_1_3_3_24_2 article-title: Genome-Level Analysis of Selective Constraint without Apparent Sequence Conservation publication-title: Genome Biol Evol doi: 10.1093/gbe/evt023 – volume: 489 start-page: 101 year: 2012 ident: e_1_3_3_104_2 article-title: Landscape of transcription in human cells publication-title: Nature doi: 10.1038/nature11233 – volume: 337 start-page: 1190 year: 2012 ident: e_1_3_3_14_2 article-title: Systematic localization of common disease-associated variation in regulatory DNA publication-title: Science doi: 10.1126/science.1222794 – volume: 21 start-page: 1769 year: 2011 ident: e_1_3_3_4_2 article-title: What fraction of the human genome is functional? publication-title: Genome Res doi: 10.1101/gr.116814.110 – volume: 76 start-page: 8 year: 2005 ident: e_1_3_3_11_2 article-title: Long-range control of gene expression: Emerging mechanisms and disruption in disease publication-title: Am J Hum Genet doi: 10.1086/426833 – volume: 104 start-page: 8005 year: 2007 ident: e_1_3_3_80_2 article-title: Thousands of human mobile element fragments undergo strong purifying selection near developmental genes publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0611223104 – volume: 489 start-page: 91 year: 2012 ident: e_1_3_3_111_2 article-title: Architecture of the human regulatory network derived from ENCODE data publication-title: Nature doi: 10.1038/nature11245 – volume: 30 start-page: 265 year: 2012 ident: e_1_3_3_38_2 article-title: Massively parallel functional dissection of mammalian enhancers in vivo publication-title: Nat Biotechnol doi: 10.1038/nbt.2136 – volume: 10 start-page: 345 year: 1998 ident: e_1_3_3_55_2 article-title: Long-range transcriptional regulation of cytokine gene expression publication-title: Curr Opin Immunol doi: 10.1016/S0952-7915(98)80174-X – volume: 409 start-page: 860 year: 2001 ident: e_1_3_3_1_2 article-title: Initial sequencing and analysis of the human genome publication-title: Nature doi: 10.1038/35057062 – volume: 190 start-page: 295 year: 2012 ident: e_1_3_3_75_2 article-title: Rates and fitness consequences of new mutations in humans publication-title: Genetics doi: 10.1534/genetics.111.134668 – volume: 125 start-page: 949 year: 1998 ident: e_1_3_3_20_2 article-title: Functional analysis of eve stripe 2 enhancer evolution in Drosophila: Rules governing conservation and change publication-title: Development doi: 10.1242/dev.125.5.949 – volume: 5 start-page: e234 year: 2007 ident: e_1_3_3_22_2 article-title: Deletion of ultraconserved elements yields viable mice publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050234 – volume: 57 start-page: 159 year: 1988 ident: e_1_3_3_59_2 article-title: Nuclease hypersensitive sites in chromatin publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.57.070188.001111 – volume: 473 start-page: 43 year: 2011 ident: e_1_3_3_35_2 article-title: Mapping and analysis of chromatin state dynamics in nine human cell types publication-title: Nature doi: 10.1038/nature09906 – volume: 335 start-page: 823 year: 2012 ident: e_1_3_3_41_2 article-title: A systematic survey of loss-of-function variants in human protein-coding genes publication-title: Science doi: 10.1126/science.1215040 – volume: 302 start-page: 413 year: 2003 ident: e_1_3_3_21_2 article-title: Scanning human gene deserts for long-range enhancers publication-title: Science doi: 10.1126/science.1088328 – volume: 26 start-page: 27 year: 2002 ident: e_1_3_3_62_2 article-title: Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation publication-title: Methods doi: 10.1016/S1046-2023(02)00005-1 – volume: 306 start-page: 636 year: 2004 ident: e_1_3_3_67_2 article-title: The ENCODE (ENCyclopedia Of DNA Elements) Project publication-title: Science doi: 10.1126/science.1105136 – volume: 23 start-page: 366 year: 1972 ident: e_1_3_3_77_2 article-title: So much “junk” DNA in our genome publication-title: Brookhaven Symp Biol – volume: 86 start-page: 2554 year: 1989 ident: e_1_3_3_107_2 article-title: An erythroid-specific, developmental-stage-independent enhancer far upstream of the human “beta-like globin” genes publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.86.8.2554 – volume: 327 start-page: 302 year: 2010 ident: e_1_3_3_10_2 article-title: Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer publication-title: Science doi: 10.1126/science.1182213 – volume: 5 start-page: 27 year: 2011 ident: e_1_3_3_99_2 article-title: Measuring reproducibility of high-throughput experiments publication-title: Ann Appl Stat – volume: 340 start-page: 682 year: 2013 ident: e_1_3_3_93_2 article-title: Response to comment on “Evidence of abundant purifying selection in humans for recently acquired regulatory functions” publication-title: Science doi: 10.1126/science.1233366 – volume: 301 start-page: 71 year: 2003 ident: e_1_3_3_46_2 article-title: Finding functional features in Saccharomyces genomes by phylogenetic footprinting publication-title: Science doi: 10.1126/science.1084337 – volume: 154 start-page: 1380 year: 2013 ident: e_1_3_3_113_2 article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity publication-title: Cell doi: 10.1016/j.cell.2013.08.021 – volume: 106 start-page: 9362 year: 2009 ident: e_1_3_3_13_2 article-title: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0903103106 – volume: 21 start-page: 1160 year: 2011 ident: e_1_3_3_101_2 article-title: Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq publication-title: Genome Res doi: 10.1101/gr.110882.110 – volume: 13 start-page: 64 year: 2003 ident: e_1_3_3_49_2 article-title: Distinguishing regulatory DNA from neutral sites publication-title: Genome Res doi: 10.1101/gr.817703 – volume: 136 start-page: 215 year: 2009 ident: e_1_3_3_50_2 article-title: MicroRNAs: Target recognition and regulatory functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 325 start-page: 1246 year: 2009 ident: e_1_3_3_94_2 article-title: Common regulatory variation impacts gene expression in a cell type-dependent manner publication-title: Science doi: 10.1126/science.1174148 – volume: 365 start-page: 807 year: 2011 ident: e_1_3_3_110_2 article-title: A functional element necessary for fetal hemoglobin silencing publication-title: N Engl J Med doi: 10.1056/NEJMoa1103070 – volume: 13 start-page: 745 year: 2012 ident: e_1_3_3_91_2 article-title: Revising the human mutation rate: Implications for understanding human evolution publication-title: Nat Rev Genet doi: 10.1038/nrg3295 – volume: 105 start-page: 9715 year: 2008 ident: e_1_3_3_40_2 article-title: Tools for neuroanatomy and neurogenetics in Drosophila publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0803697105 – volume: 434 start-page: 338 year: 2005 ident: e_1_3_3_44_2 article-title: Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals publication-title: Nature doi: 10.1038/nature03441 – volume: 428 start-page: 431 year: 2004 ident: e_1_3_3_34_2 article-title: A large-scale RNAi screen in human cells identifies new components of the p53 pathway publication-title: Nature doi: 10.1038/nature02371 – volume: 19 start-page: 2172 year: 2009 ident: e_1_3_3_70_2 article-title: Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression publication-title: Genome Res doi: 10.1101/gr.098921.109 – volume: 22 start-page: 1748 year: 2012 ident: e_1_3_3_15_2 article-title: Linking disease associations with regulatory information in the human genome publication-title: Genome Res doi: 10.1101/gr.136127.111 – volume: 482 start-page: 390 year: 2012 ident: e_1_3_3_97_2 article-title: DNase I sensitivity QTLs are a major determinant of human expression variation publication-title: Nature doi: 10.1038/nature10808 – volume: 438 start-page: 803 year: 2005 ident: e_1_3_3_87_2 article-title: Genome sequence, comparative analysis and haplotype structure of the domestic dog publication-title: Nature doi: 10.1038/nature04338 – volume: 23 start-page: 1089 year: 2013 ident: e_1_3_3_7_2 article-title: Gene expression drives local adaptation in humans publication-title: Genome Res doi: 10.1101/gr.152710.112 – volume: 24 start-page: 14 year: 2014 ident: e_1_3_3_96_2 article-title: Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals publication-title: Genome Res doi: 10.1101/gr.155192.113 – volume: 424 start-page: 788 year: 2003 ident: e_1_3_3_45_2 article-title: Comparative analyses of multi-species sequences from targeted genomic regions publication-title: Nature doi: 10.1038/nature01858 – volume: 18 start-page: 252 year: 2008 ident: e_1_3_3_23_2 article-title: Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b publication-title: Genome Res doi: 10.1101/gr.6929408 – volume: 470 start-page: 279 year: 2011 ident: e_1_3_3_63_2 article-title: A unique chromatin signature uncovers early developmental enhancers in humans publication-title: Nature doi: 10.1038/nature09692 – volume: 5 start-page: 237 year: 1971 ident: e_1_3_3_73_2 article-title: The genetic organization of chromosomes publication-title: Annu Rev Genet doi: 10.1146/annurev.ge.05.120171.001321 – volume: 30 start-page: 1239 year: 2013 ident: e_1_3_3_83_2 article-title: Exaptation of transposable elements into novel cis-regulatory elements: Is the evidence always strong? publication-title: Mol Biol Evol doi: 10.1093/molbev/mst045 – volume: 107 start-page: 21931 year: 2010 ident: e_1_3_3_64_2 article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1016071107 – volume: 22 start-page: 3172 year: 2008 ident: e_1_3_3_65_2 article-title: Chromatin structure analyses identify miRNA promoters publication-title: Genes Dev doi: 10.1101/gad.1706508 – volume: 6 start-page: 283 year: 2009 ident: e_1_3_3_116_2 article-title: Global mapping of protein-DNA interactions in vivo by digital genomic footprinting publication-title: Nat Methods doi: 10.1038/nmeth.1313 – year: 2014 ident: e_1_3_3_31_2 article-title: Junk or functional DNA?: ENCODE and the function controversy publication-title: Biology & Philosophy doi: 10.1007/s10539-014-9441-3 – volume: 103 start-page: 2740 year: 2006 ident: e_1_3_3_79_2 article-title: A large family of ancient repeat elements in the human genome is under strong selection publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0511238103 – volume: 2 start-page: e130 year: 2006 ident: e_1_3_3_19_2 article-title: Large-scale turnover of functional transcription factor binding sites in Drosophila publication-title: PLOS Comput Biol doi: 10.1371/journal.pcbi.0020130 – volume: 23 start-page: 800 year: 2013 ident: e_1_3_3_36_2 article-title: Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay publication-title: Genome Res doi: 10.1101/gr.144899.112 – volume: 27 start-page: 1151 year: 2009 ident: e_1_3_3_114_2 article-title: Genome engineering publication-title: Nat Biotechnol doi: 10.1038/nbt.1590 – volume: 10 start-page: 833 year: 2009 ident: e_1_3_3_86_2 article-title: The complex eukaryotic transcriptome: Unexpected pervasive transcription and novel small RNAs publication-title: Nat Rev Genet doi: 10.1038/nrg2683 – volume: 24 start-page: 783 year: 2010 ident: e_1_3_3_109_2 article-title: Transcriptional silencing of gamma-globin by BCL11A involves long-range interactions and cooperation with SOX6 publication-title: Genes Dev doi: 10.1101/gad.1897310 – volume: 19 start-page: 1114 year: 2002 ident: e_1_3_3_17_2 article-title: Evolution of transcription factor binding sites in Mammalian gene regulatory regions: Conservation and turnover publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a004169 – volume: 33 start-page: D514 year: 2005 ident: e_1_3_3_32_2 article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders publication-title: Nucleic Acids Res doi: 10.1093/nar/gki033 – volume: 15 start-page: 1051 year: 2005 ident: e_1_3_3_106_2 article-title: Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences publication-title: Genome Res doi: 10.1101/gr.3642605 – volume: 204 start-page: 451 year: 1998 ident: e_1_3_3_56_2 article-title: Partial rescue of GATA-3 by yeast artificial chromosome transgenes publication-title: Dev Biol doi: 10.1006/dbio.1998.8991 – volume: 81 start-page: 145 year: 2012 ident: e_1_3_3_51_2 article-title: Genome regulation by long noncoding RNAs publication-title: Annu Rev Biochem doi: 10.1146/annurev-biochem-051410-092902 – volume: 20 start-page: 1335 year: 2010 ident: e_1_3_3_89_2 article-title: Massive turnover of functional sequence in human and other mammalian genomes publication-title: Genome Res doi: 10.1101/gr.108795.110 – reference: 23431001 - Genome Biol Evol. 2013;5(3):578-90 – reference: 9882482 - Dev Biol. 1998 Dec 15;204(2):451-63 – reference: 20693480 - Genome Res. 2010 Oct;20(10):1335-43 – reference: 20395365 - Genes Dev. 2010 Apr 15;24(8):783-98 – reference: 14563999 - Science. 2003 Oct 17;302(5644):413 – reference: 21852499 - Science. 2011 Aug 19;333(6045):1019-24 – reference: 23415221 - Cell. 2013 Feb 14;152(4):703-13 – reference: 20010598 - Nat Biotechnol. 2009 Dec;27(12):1151-62 – reference: 21152010 - PLoS Comput Biol. 2010;6(12):e1001025 – reference: 23418180 - Genome Biol Evol. 2013;5(3):532-41 – reference: 21441907 - Nature. 2011 May 5;473(7345):43-9 – reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74 – reference: 21879898 - N Engl J Med. 2011 Sep 1;365(9):807-14 – reference: 23486611 - Mol Biol Evol. 2013 Jun;30(6):1239-51 – reference: 23992846 - Cell. 2013 Sep 12;154(6):1380-9 – reference: 3690667 - Cell. 1987 Dec 24;51(6):975-85 – reference: 12917688 - Nature. 2003 Aug 14;424(6950):788-93 – reference: 23512712 - Genome Res. 2013 May;23(5):800-11 – reference: 22955620 - Nature. 2012 Sep 6;489(7414):101-8 – reference: 19644074 - Science. 2009 Sep 4;325(5945):1246-50 – reference: 19920851 - Nat Rev Genet. 2009 Dec;10(12):833-44 – reference: 20220756 - Nature. 2010 Apr 1;464(7289):773-7 – reference: 16983375 - Nat Rev Genet. 2006 Oct;7(10):793-803 – reference: 23263488 - Nat Genet. 2013 Feb;45(2):124-30 – reference: 21160473 - Nature. 2011 Feb 10;470(7333):279-83 – reference: 22022285 - PLoS Genet. 2011 Oct;7(10):e1002326 – reference: 22371084 - Nat Biotechnol. 2012 Mar;30(3):271-7 – reference: 18621688 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9715-20 – reference: 20438361 - Annu Rev Genomics Hum Genet. 2010;11:1-23 – reference: 23539138 - Genome Res. 2013 Jul;23(7):1089-96 – reference: 22956687 - Science. 2012 Sep 28;337(6102):1675-8 – reference: 17975059 - Science. 2007 Nov 2;318(5851):761-4 – reference: 13433592 - Cold Spring Harb Symp Quant Biol. 1956;21:197-216 – reference: 19167326 - Cell. 2009 Jan 23;136(2):215-33 – reference: 12466850 - Nature. 2002 Dec 5;420(6915):520-62 – reference: 23101621 - Cell. 2012 Oct 26;151(3):476-82 – reference: 24092820 - Genome Res. 2014 Jan;24(1):14-24 – reference: 16477033 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2740-5 – reference: 25275169 - Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):E3366 – reference: 17994088 - Nature. 2007 Nov 8;450(7167):219-32 – reference: 15608251 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D514-7 – reference: 18614008 - Cell. 2008 Jul 11;134(1):25-36 – reference: 16024819 - Genome Res. 2005 Aug;15(8):1034-50 – reference: 19887574 - Genome Res. 2009 Dec;19(12):2172-84 – reference: 22064851 - Nucleic Acids Res. 2012 Jan;40(Database issue):D930-4 – reference: 19286520 - Science. 2009 Apr 17;324(5925):389-92 – reference: 18329365 - Cell. 2008 Mar 7;132(5):783-93 – reference: 22344438 - Science. 2012 Feb 17;335(6070):823-8 – reference: 9449677 - Development. 1998 Mar;125(5):949-58 – reference: 15735639 - Nature. 2005 Mar 17;434(7031):338-45 – reference: 12082130 - Mol Biol Evol. 2002 Jul;19(7):1114-21 – reference: 2704733 - Proc Natl Acad Sci U S A. 1989 Apr;86(8):2554-8 – reference: 12610304 - Science. 2003 Feb 28;299(5611):1391-4 – reference: 15549674 - Am J Hum Genet. 2005 Jan;76(1):8-32 – reference: 22345605 - Genetics. 2012 Feb;190(2):295-304 – reference: 15282556 - Nat Immunol. 2004 Aug;5(8):768-74 – reference: 10541557 - Genes Dev. 1999 Oct 15;13(20):2713-24 – reference: 3691478 - EMBO J. 1987 Oct;6(10):2997-3004 – reference: 21993624 - Nature. 2011 Oct 27;478(7370):476-82 – reference: 21765801 - PLoS Biol. 2011 Jul;9(7):e1000625; discussion e1001102 – reference: 16024817 - Genome Res. 2005 Aug;15(8):1051-60 – reference: 12748633 - Nature. 2003 May 15;423(6937):241-54 – reference: 18071029 - Genome Res. 2008 Feb;18(2):252-60 – reference: 12529307 - Genome Res. 2003 Jan;13(1):64-72 – reference: 12054903 - Methods. 2002 Jan;26(1):37-47 – reference: 17040121 - PLoS Comput Biol. 2006 Oct;2(10):e130 – reference: 23578867 - Curr Biol. 2013 Apr 8;23(7):R259-61 – reference: 22307276 - Nature. 2012 Feb 16;482(7385):390-4 – reference: 23479647 - Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5294-300 – reference: 11237011 - Nature. 2001 Feb 15;409(6822):860-921 – reference: 23268340 - Biochem Biophys Res Commun. 2013 Jan 25;430(4):1340-3 – reference: 17463089 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):8005-10 – reference: 22912562 - PLoS Biol. 2012;10(7):e1001369 – reference: 9638372 - Curr Opin Immunol. 1998 Jun;10(3):345-52 – reference: 18516045 - Nat Methods. 2008 Jul;5(7):621-8 – reference: 21875934 - Genome Res. 2011 Nov;21(11):1769-76 – reference: 15499007 - Science. 2004 Oct 22;306(5696):636-40 – reference: 17803355 - PLoS Biol. 2007 Sep;5(9):e234 – reference: 16341006 - Nature. 2005 Dec 8;438(7069):803-19 – reference: 22663078 - Annu Rev Biochem. 2012;81:145-66 – reference: 22955828 - Science. 2012 Sep 7;337(6099):1190-5 – reference: 21543516 - Genome Res. 2011 Jul;21(7):1160-7 – reference: 5065367 - Brookhaven Symp Biol. 1972;23:366-70 – reference: 12775844 - Science. 2003 Jul 4;301(5629):71-6 – reference: 19305407 - Nat Methods. 2009 Apr;6(4):283-9 – reference: 20007865 - Science. 2010 Jan 15;327(5963):302-5 – reference: 16785883 - Nat Immunol. 2006 Jul;7(7):692-7 – reference: 22965354 - Nat Rev Genet. 2012 Oct;13(10):745-53 – reference: 12801649 - Gene. 2003 May 22;310:215-20 – reference: 21764166 - Trends Genet. 2011 Oct;27(10):389-96 – reference: 19212405 - Nature. 2009 Feb 12;457(7231):854-8 – reference: 22481358 - Nature. 2012 Apr 5;484(7392):55-61 – reference: 11325054 - Biol Rev Camb Philos Soc. 2001 Feb;76(1):65-101 – reference: 23661743 - Science. 2013 May 10;340(6133):682 – reference: 22955619 - Nature. 2012 Sep 6;489(7414):91-100 – reference: 16097657 - Annu Rev Genet. 1971;5:237-56 – reference: 25107292 - Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):E3365 – reference: 15042092 - Nature. 2004 Mar 25;428(6981):431-7 – reference: 23137679 - Curr Biol. 2012 Nov 6;22(21):R898-9 – reference: 24299736 - Genome Res. 2014 Mar;24(3):496-510 – reference: 12192590 - Funct Integr Genomics. 2002 Sep;2(4-5):171-80 – reference: 22349141 - Curr Opin Genet Dev. 2012 Apr;22(2):164-71 – reference: 22371081 - Nat Biotechnol. 2012 Mar;30(3):265-70 – reference: 19474294 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7 – reference: 12054902 - Methods. 2002 Jan;26(1):27-36 – reference: 14073743 - J Ultrastruct Res. 1963 Oct;23:SUPPL6:1-42 – reference: 3052270 - Annu Rev Biochem. 1988;57:159-97 – reference: 22955986 - Genome Res. 2012 Sep;22(9):1748-59 – reference: 17571346 - Nature. 2007 Jun 14;447(7146):799-816 – reference: 18282513 - Adv Genet. 2008;61:339-88 – reference: 21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6 – reference: 19056895 - Genes Dev. 2008 Nov 15;22(22):3172-83 – reference: 16717141 - Genome Res. 2006 Jul;16(7):864-74 – reference: 20220758 - Nature. 2010 Apr 1;464(7289):768-72 |
SSID | ssj0009580 |
Score | 2.6153119 |
SecondaryResourceType | review_article |
Snippet | With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6131 |
SubjectTerms | binding sites Biochemistry Biological Evolution Biological Sciences chromatin Deoxyribonucleic acid Disease - genetics DNA DNA - genetics Evolution Evolutionary genetics Genes Genome, Human - genetics Genomes Genomics human diseases Human genetics Human genome Human subjects Humans messenger RNA nucleotide sequences PERSPECTIVE Regulatory Sequences, Nucleic Acid - genetics RNA Software transcription factors |
Title | Defining functional DNA elements in the human genome |
URI | https://www.jstor.org/stable/23772466 http://www.pnas.org/content/111/17/6131.abstract https://www.ncbi.nlm.nih.gov/pubmed/24753594 https://www.proquest.com/docview/1523948285 https://www.proquest.com/docview/1520343603 https://www.proquest.com/docview/1534857255 https://www.proquest.com/docview/1803095650 https://pubmed.ncbi.nlm.nih.gov/PMC4035993 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELa68cIL2oCxsIGCxMNQlZLYTuw8Vmwwgagq0Ym-RYnjQKUpRWv3AOLHc5fYTjp1FfASpcnlkvrO57N99x0hr0NepgrcoUDD8B5wFYaBzFMWCCWLVJR5zEpMTv48SS6v-Md5PB8MfvezS9bFSP3amlfyP1KFayBXzJL9B8k6pnABzkG-cAQJw_GvZHyuq6a-wxBHJ7Oodz4ZD3UbE76yQYxtIT6EY92EJpi60WtlYwUmdnFw3KWamP6_GgbD6aQrXPwJsTzbxeq8Xl4vnHf-1VSiNnsZbhGn_lnqNpLeBOsPpyO3HKBvwFE1lTdxgx-N1cWovygRNbEstDN9u761b40pjJC8zaF21tjYXqN2omdcwfOIegM1_JRbBwGwWli5uM5XI3hCIh6NYbqJrE0ZTC14kuyRBxTO0Kx_mEc9yGbZJjCZr7TAUIK9vcN7w6fZq_KlDW5FxFwg3TZ7uRuE2_NqZgfkkZmO-ONWtw7JQNePyaFtRP_MoJK_eUK4VTa_UzYflM23yuYvah80yG-UzW-V7SmZvb-YvbsMTMmNQIEfvA5YDh49l6mKy0TyqtLQY3nJKg1XOZjvQiVRGZWiCkUiYKaR5jGvcnD5FKdKF-yI7NfLWh8TP0qoLLBWAaOKA8cCiKMkFVVaVEpq6pGRbbNMGTh6rIpynTVhEYJl2HJZ18geOXMP_GiRWO4nPQYhZPk3GCezqy8UURRx5YCF3CNHjWQcC6sE8EzDxbGGiXEkMtQ5j5xa8WWm98PbYsrgbVTGHnnlboNtxg23vNbL24YmZJwlIdtFw7iMBczsd9BI3AiFqVfokWet1nTfz0XM4hT-mNjQJ0eA-PGbd-rF9wZHniN8Z8qe39ckJ-Rh17dPyf765la_ABd8XbxsesofZQDV7w |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defining+functional+DNA+elements+in+the+human+genome&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kellis%2C+Manolis&rft.au=Wold%2C+Barbara&rft.au=Snyderd%2C+Michael+P.&rft.au=Bernstein%2C+Bradley+E.&rft.date=2014-04-29&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=111&rft.issue=17&rft.spage=6131&rft.epage=6138&rft_id=info:doi/10.1073%2Fpnas.1318948111&rft.externalDocID=23772466 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F17.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F17.cover.gif |