Extracellular respiration

Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term 'extracellular respiration' is elec...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 65; no. 1; pp. 1 - 11
Main Authors Gralnick, Jeffrey A, Newman, Dianne K
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.07.2007
Blackwell Publishing Ltd
Blackwell Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term 'extracellular respiration' is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as 'soluble' are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists.
AbstractList Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term 'extracellular respiration' is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as 'soluble' are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists.Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term 'extracellular respiration' is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as 'soluble' are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists.
Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term ‘extracellular respiration’ is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as ‘soluble’ are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists.
Summary Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best‐known example of what we will term ‘extracellular respiration’ is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as ‘soluble’ are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists.
Author Gralnick, Jeffrey A
Newman, Dianne K
AuthorAffiliation 5 Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
2 The BioTechnology Institute, University of Minnesota, Saint Paul, MN, USA
3 Division of Geological and Planetary Science, California Institute of Technology, Pasadena, CA, USA
4 Division of Biology, California Institute of Technology, Pasadena, CA, USA
1 Department of Microbiology, University of Minnesota, Saint Paul, MN, USA
AuthorAffiliation_xml – name: 1 Department of Microbiology, University of Minnesota, Saint Paul, MN, USA
– name: 4 Division of Biology, California Institute of Technology, Pasadena, CA, USA
– name: 3 Division of Geological and Planetary Science, California Institute of Technology, Pasadena, CA, USA
– name: 2 The BioTechnology Institute, University of Minnesota, Saint Paul, MN, USA
– name: 5 Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
Author_xml – sequence: 1
  fullname: Gralnick, Jeffrey A
– sequence: 2
  fullname: Newman, Dianne K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18850025$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17581115$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1PwjAYxxuDEVA_gBflorfNp-26dQdNDMGXBOJBTbw1pXRYMjZsQeHb2zkEPUkvbfL8nv_z8m8bNYqy0Ah1MITYn8tJiGnMApIyHhKAJASWJDxc7qHWJtBALUgZBJST1yZqOzcBwBRieoCaOGHc67AWOukt51YqneeLXNqO1W5mrJybsjhC-5nMnT5e34fo5bb33L0P-o93D92bfqBiQnkgU6WihLJ0lA4Z15jIIWieDVNKlcYMkwyPIhZTIBFJfN2UR0rFoKm_Rjzl9BBd17qzxXCqR0oXvqFczKyZSrsSpTTib6Qwb2JcfgjCIeKMeIGLtYAt3xfazcXUuGoiWehy4UQCccRxEv8L-jFiDIR68PR3S5teftbmgfM1IJ2SeWZloYzbcpwzAFJxvOaULZ2zOtsiIConxURUhonKMFE5Kb6dFMvtWjapysy_jfFLMPkuAle1wKfJ9WrnwmIweKhePv-szs9kKeTY-vlenkj1hcBHWRTRL1arvvA
CitedBy_id crossref_primary_10_1002_jctb_5284
crossref_primary_10_1016_j_scitotenv_2019_06_299
crossref_primary_10_1039_C8RA03846E
crossref_primary_10_1128_AEM_00500_11
crossref_primary_10_3389_fmicb_2017_02481
crossref_primary_10_1016_j_hydromet_2017_12_008
crossref_primary_10_1128_AEM_06803_11
crossref_primary_10_1016_j_copbio_2010_03_015
crossref_primary_10_1016_j_jpowsour_2023_233965
crossref_primary_10_1016_j_jhazmat_2017_08_071
crossref_primary_10_1007_s11368_013_0679_1
crossref_primary_10_1557_mrs_2015_99
crossref_primary_10_1021_acssynbio_8b00498
crossref_primary_10_1134_S0006297920080118
crossref_primary_10_1016_j_bioelechem_2019_04_022
crossref_primary_10_1002_bit_25723
crossref_primary_10_1016_j_jhazmat_2009_02_152
crossref_primary_10_1180_minmag_2012_076_3_25
crossref_primary_10_1002_elan_200800007
crossref_primary_10_1039_D3SC05293A
crossref_primary_10_1002_fuce_201700023
crossref_primary_10_1016_j_scitotenv_2020_138291
crossref_primary_10_1016_j_colsurfa_2017_02_023
crossref_primary_10_1074_jbc_M109_043455
crossref_primary_10_1111_j_1462_2920_2009_02137_x
crossref_primary_10_1007_s11814_010_0231_6
crossref_primary_10_1021_acs_analchem_9b03176
crossref_primary_10_4028_www_scientific_net_AMR_1130_347
crossref_primary_10_1016_j_crte_2010_10_005
crossref_primary_10_1073_pnas_2000802117
crossref_primary_10_1111_j_1365_2958_2010_07266_x
crossref_primary_10_1042_BJ20121467
crossref_primary_10_1111_1751_7915_12400
crossref_primary_10_1016_S1872_5813_14_60024_4
crossref_primary_10_3389_fmicb_2021_690918
crossref_primary_10_1016_j_ibiod_2009_08_001
crossref_primary_10_1002_anie_202424867
crossref_primary_10_1111_j_1462_2920_2011_02626_x
crossref_primary_10_1039_B917952F
crossref_primary_10_1007_s11274_019_2604_2
crossref_primary_10_1128_AEM_00840_08
crossref_primary_10_1016_j_enzmictec_2013_07_006
crossref_primary_10_1111_gbi_12172
crossref_primary_10_1002_bip_22169
crossref_primary_10_1128_spectrum_04081_23
crossref_primary_10_1111_mmi_15206
crossref_primary_10_1002_celc_201402141
crossref_primary_10_7554_eLife_81551
crossref_primary_10_1016_j_envpol_2022_119451
crossref_primary_10_1021_es200865u
crossref_primary_10_1128_AEM_01460_12
crossref_primary_10_1371_journal_pone_0091484
crossref_primary_10_1016_j_chemgeo_2015_10_039
crossref_primary_10_1111_1462_2920_12576
crossref_primary_10_3389_fmicb_2020_02003
crossref_primary_10_1128_AEM_03556_12
crossref_primary_10_1016_j_procbio_2011_10_029
crossref_primary_10_1016_j_jece_2024_115244
crossref_primary_10_1002_ente_201800377
crossref_primary_10_1111_gbi_12067
crossref_primary_10_1016_j_biortech_2022_127278
crossref_primary_10_1021_sb300042w
crossref_primary_10_3389_fmicb_2020_590049
crossref_primary_10_1021_jp8057349
crossref_primary_10_1007_s11274_013_1336_y
crossref_primary_10_1111_1758_2229_12113
crossref_primary_10_3389_fmicb_2014_00432
crossref_primary_10_1051_e3sconf_202019405034
crossref_primary_10_1016_j_cej_2014_02_102
crossref_primary_10_1016_j_corsci_2022_110159
crossref_primary_10_1016_j_chemosphere_2022_135986
crossref_primary_10_3390_ijms23105566
crossref_primary_10_1002_celc_202200907
crossref_primary_10_1021_acsnano_9b02032
crossref_primary_10_1007_s00253_010_2820_z
crossref_primary_10_1007_s10295_019_02165_7
crossref_primary_10_1111_j_1758_2229_2009_00035_x
crossref_primary_10_1016_j_chemosphere_2017_02_143
crossref_primary_10_1021_acsenergylett_6b00435
crossref_primary_10_1002_ange_202424867
crossref_primary_10_1007_s11368_009_0113_x
crossref_primary_10_1128_jb_00322_22
crossref_primary_10_1128_AEM_02425_09
crossref_primary_10_1007_s00253_011_3653_0
crossref_primary_10_1128_MRA_00862_21
crossref_primary_10_3389_fmicb_2023_1197299
crossref_primary_10_5194_bg_18_2091_2021
crossref_primary_10_1016_j_jddst_2022_104093
crossref_primary_10_1016_j_apenergy_2016_11_005
crossref_primary_10_1039_C5CP05152E
crossref_primary_10_1016_j_copbio_2009_09_006
crossref_primary_10_3390_microorganisms10061219
crossref_primary_10_1021_acsearthspacechem_7b00042
crossref_primary_10_1016_j_procbio_2012_07_032
crossref_primary_10_1016_j_jbiotec_2012_11_013
crossref_primary_10_1016_j_scitotenv_2020_143076
crossref_primary_10_1002_cssc_201100737
crossref_primary_10_1016_j_biotechadv_2009_01_004
crossref_primary_10_1111_j_1574_6976_2009_00191_x
crossref_primary_10_1021_cs3003808
crossref_primary_10_1111_j_1365_2672_2012_05276_x
crossref_primary_10_1016_j_biortech_2018_01_133
crossref_primary_10_1128_AEM_00023_10
crossref_primary_10_1016_j_freeradbiomed_2019_01_036
crossref_primary_10_1021_acs_est_7b02531
crossref_primary_10_1021_acs_jpclett_4c01991
crossref_primary_10_1039_C5RA08742B
crossref_primary_10_1111_1751_7915_14236
crossref_primary_10_20964_2022_10_11
crossref_primary_10_1098_rsfs_2014_0091
crossref_primary_10_1007_s11814_010_0142_6
crossref_primary_10_1016_j_jpowsour_2014_10_168
crossref_primary_10_1016_j_matlet_2019_03_036
crossref_primary_10_1128_MMBR_00135_20
crossref_primary_10_1021_acs_jpcb_5b03419
crossref_primary_10_1016_j_corsci_2022_110608
crossref_primary_10_1088_2053_1591_ad63fd
crossref_primary_10_1128_JB_00514_08
crossref_primary_10_1007_s11356_019_07323_z
crossref_primary_10_1016_j_actbio_2018_01_007
crossref_primary_10_1016_j_envint_2019_105245
crossref_primary_10_1016_j_electacta_2016_03_074
crossref_primary_10_1039_c2cp41185g
crossref_primary_10_1016_j_jinorgbio_2013_10_024
crossref_primary_10_1016_j_scitotenv_2020_140536
crossref_primary_10_1016_j_csbj_2020_11_021
crossref_primary_10_3389_fmicb_2019_00410
crossref_primary_10_1016_j_ibiod_2010_02_004
crossref_primary_10_1073_pnas_1209829109
crossref_primary_10_3390_nano12091496
crossref_primary_10_1016_j_biortech_2013_02_103
crossref_primary_10_1039_c3cp53759e
crossref_primary_10_3390_min5030397
crossref_primary_10_1016_j_jbiosc_2017_03_016
crossref_primary_10_1039_b823237g
crossref_primary_10_1021_acs_est_6b00066
crossref_primary_10_1016_j_jelechem_2019_113464
crossref_primary_10_1073_pnas_1009645107
crossref_primary_10_1021_acsbiomaterials_1c01645
crossref_primary_10_1016_j_enzmictec_2016_07_012
crossref_primary_10_1007_s40243_016_0080_2
crossref_primary_10_1016_j_mib_2010_02_002
crossref_primary_10_1134_S0012496613060112
crossref_primary_10_1016_j_isci_2022_104491
crossref_primary_10_1016_j_cej_2023_148366
crossref_primary_10_1111_1462_2920_16314
crossref_primary_10_1134_S0006297914130094
crossref_primary_10_1016_j_watres_2024_122403
crossref_primary_10_1039_b806498a
crossref_primary_10_1128_AEM_03478_16
crossref_primary_10_1039_C4MB00386A
crossref_primary_10_1016_j_jinorgbio_2021_111509
crossref_primary_10_1093_database_baq012
crossref_primary_10_1016_j_bej_2023_108928
crossref_primary_10_3390_ijms18010108
crossref_primary_10_1371_journal_pone_0191289
crossref_primary_10_3390_min12040460
crossref_primary_10_1016_j_scitotenv_2021_149539
crossref_primary_10_1016_j_tim_2011_05_001
crossref_primary_10_1080_01490451_2016_1197985
crossref_primary_10_1016_j_biortech_2013_09_115
crossref_primary_10_1016_j_bioelechem_2021_107826
crossref_primary_10_1021_acssuschemeng_7b04641
crossref_primary_10_1111_mmi_14647
crossref_primary_10_1016_j_cej_2024_148886
crossref_primary_10_1093_femsec_fiy081
crossref_primary_10_1007_s00253_011_3577_8
crossref_primary_10_1016_j_electacta_2019_134838
crossref_primary_10_1039_D1EM00108F
crossref_primary_10_1016_j_coelec_2024_101556
crossref_primary_10_1039_c1ee02511b
crossref_primary_10_1089_dna_2021_0551
crossref_primary_10_1016_j_gca_2011_11_030
crossref_primary_10_1099_mic_0_000382
crossref_primary_10_1128_AEM_02134_18
crossref_primary_10_1111_j_1472_4669_2009_00226_x
crossref_primary_10_1128_JB_00925_09
crossref_primary_10_1128_MMBR_00001_09
crossref_primary_10_1038_s41598_018_37025_4
crossref_primary_10_1002_celc_201402211
crossref_primary_10_3389_fmicb_2015_00121
crossref_primary_10_4155_bfs_10_7
crossref_primary_10_1111_1751_7915_12340
crossref_primary_10_1002_cbic_201600339
crossref_primary_10_1007_s00253_008_1451_0
crossref_primary_10_1007_s11814_014_0286_x
crossref_primary_10_1021_es5017312
crossref_primary_10_1099_mic_0_000294
crossref_primary_10_1128_AEM_05365_11
crossref_primary_10_1074_jbc_M111_262113
crossref_primary_10_7554_eLife_48054
crossref_primary_10_1007_s10123_023_00429_y
crossref_primary_10_1093_lambio_ovae105
crossref_primary_10_1007_s11274_019_2647_4
crossref_primary_10_3389_fmicb_2024_1374800
crossref_primary_10_1021_acs_nanolett_2c04018
crossref_primary_10_1021_acssuschemeng_9b04229
crossref_primary_10_1016_j_jcis_2014_02_026
crossref_primary_10_1021_acssynbio_6b00374
crossref_primary_10_1038_ismej_2008_48
crossref_primary_10_1128_AEM_01615_16
crossref_primary_10_1016_j_tibtech_2008_11_005
crossref_primary_10_1111_j_1472_4669_2008_00148_x
crossref_primary_10_3389_fmicb_2019_00464
crossref_primary_10_1016_j_ibiod_2015_03_034
crossref_primary_10_1016_j_elecom_2013_11_001
crossref_primary_10_1016_j_jhazmat_2009_05_136
crossref_primary_10_1128_AEM_02852_20
crossref_primary_10_1111_1462_2920_15235
crossref_primary_10_1016_j_jpowsour_2008_02_074
crossref_primary_10_1021_acsnano_5b07826
crossref_primary_10_1128_JB_00347_18
crossref_primary_10_1038_srep31143
crossref_primary_10_1021_es403968e
crossref_primary_10_1016_j_matdes_2019_108256
crossref_primary_10_1042_BST20120130
crossref_primary_10_1111_j_1472_4669_2008_00159_x
crossref_primary_10_1073_pnas_1718810115
crossref_primary_10_1016_j_soilbio_2014_01_010
crossref_primary_10_1039_c1ee01753e
crossref_primary_10_3390_microorganisms9030560
crossref_primary_10_1021_acs_jnatprod_9b01086
crossref_primary_10_1128_AEM_00544_09
crossref_primary_10_1016_j_watres_2013_06_056
crossref_primary_10_1039_C8CP03898H
crossref_primary_10_1080_08927014_2019_1646731
crossref_primary_10_1021_pr3007914
crossref_primary_10_1038_s41467_020_17897_9
crossref_primary_10_1016_j_jhazmat_2019_121495
crossref_primary_10_1080_08927014_2012_710324
crossref_primary_10_1007_s10529_016_2128_x
crossref_primary_10_1038_s41467_019_11681_0
crossref_primary_10_1039_b717196j
Cites_doi 10.1111/j.1462-2920.2006.01065.x
10.2138/rmg.2005.59.5
10.1128/JB.187.10.3293-3301.2005
10.1128/JB.187.13.4505-4513.2005
10.1099/13500872-140-8-1953
10.1016/S0005-2736(97)00034-5
10.1128/JB.184.6.1806-1810.2002
10.1046/j.1365-2958.2003.03339.x
10.1186/1467-4866-6-77
10.1128/JB.185.7.2096-2103.2003
10.1016/0304-4203(86)90055-1
10.1128/JB.184.1.142-151.2002
10.1128/JB.180.23.6292-6297.1998
10.1128/AEM.69.6.3636-3639.2003
10.1111/j.1365-2958.2005.04628.x
10.1128/jb.174.11.3429-3438.1992
10.1128/JB.188.8.3138-3142.2006
10.1128/AEM.68.11.5585-5594.2002
10.1128/AEM.71.4.2186-2189.2005
10.1016/j.tibtech.2005.04.008
10.1016/j.bbamcr.2004.02.005
10.1111/j.1365-2958.1987.tb00534.x
10.3354/meps167291
10.1038/nbt716
10.1042/bj20020597
10.1046/j.1472-765X.2003.01389.x
10.1038/nrmicro1490
10.1021/ja063526d
10.1128/AEM.68.5.2436-2444.2002
10.1007/BF00172503
10.1146/annurev.pa.12.040172.002033
10.1074/jbc.M302582200
10.1128/JB.188.8.2792-2800.2006
10.1007/s00253-003-1412-6
10.1128/AEM.01444-06
10.1007/s00203-002-0472-9
10.1126/science.1059567
10.1111/j.1574-6968.1993.tb06576.x
10.1021/es050778q
10.1097/00010694-199911000-00003
10.1186/1467-4866-5-13
10.1097/00010694-200111000-00007
10.1007/978-3-662-03736-2_2
10.1023/A:1005674107841
10.1111/j.1365-2958.2007.05783.x
10.1046/j.1365-2958.2001.02257.x
10.1128/AEM.71.9.5607-5609.2005
10.1126/science.1066771
10.1099/mic.0.28864-0
10.1128/AEM.66.9.3743-3749.2000
10.1128/AEM.71.12.8634-8641.2005
10.1007/s00253-004-1564-z
10.1016/j.tim.2005.07.009
10.1128/MMBR.55.2.259-287.1991
10.1038/35011098
10.1007/s00248-003-0004-4
10.1126/science.288.5464.333
10.1007/PL00000796
10.1021/es048563o
10.1128/aem.54.6.1472-1480.1988
10.1111/j.1472-4669.2006.00071.x
10.1371/journal.pbio.0040268
10.1002/j.1460-2075.1989.tb08338.x
10.1128/jb.179.4.1143-1152.1997
10.1201/9780824744458
10.1126/science.240.4857.1319
10.1128/AEM.64.4.1504-1509.1998
10.1038/nature03661
10.1128/AEM.71.11.7453-7460.2005
10.1073/pnas.0604517103
10.1146/annurev.mi.48.100194.001523
10.1021/es980272q
10.1146/annurev.micro.60.080805.142053
10.1002/jctb.280340103
10.1007/s00410-002-0418-x
10.1016/0005-2728(85)90248-8
10.1046/j.1365-2958.1996.389922.x
10.1046/j.1365-2958.2002.02797.x
10.1128/AEM.71.8.4414-4426.2005
10.1128/AEM.62.1.288-291.1996
10.1128/JB.184.3.846-848.2002
10.1016/j.resmic.2005.07.012
10.1128/AEM.70.3.1405-1412.2004
10.1007/BF00290916
10.1146/annurev.genet.38.072902.091138
10.4319/lo.1980.25.6.1054
10.1126/science.1097396
10.1111/j.1432-1033.1969.tb00548.x
10.1016/j.gca.2006.10.002
10.1046/j.1529-8817.1999.3510008.x
10.1128/JB.01966-05
10.1128/AEM.70.9.5373-5382.2004
10.1128/JB.184.1.313-317.2002
10.1146/annurev.mi.38.100184.002503
10.1046/j.1462-5814.2003.00268.x
10.1128/AEM.67.10.4471-4478.2001
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright_xml – notice: 2007 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
DOI 10.1111/j.1365-2958.2007.05778.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 11
ExternalDocumentID PMC2804852
17581115
18850025
10_1111_j_1365_2958_2007_05778_x
MMI5778
US201300783544
Genre reviewArticle
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Howard Hughes Medical Institute
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FBQ
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XFK
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
ALVPJ
HGLYW
OIG
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c6238-a9cc47359d9b58e12ab0e8fb933ce1512f1d456302427175984cc60e34ccd8983
IEDL.DBID DR2
ISSN 0950-382X
IngestDate Thu Aug 21 18:34:44 EDT 2025
Fri Jul 11 08:22:34 EDT 2025
Fri Jul 11 05:18:01 EDT 2025
Mon Jul 21 05:51:50 EDT 2025
Mon Jul 21 09:13:10 EDT 2025
Thu Apr 24 23:01:02 EDT 2025
Tue Jul 01 03:38:02 EDT 2025
Wed Aug 20 07:27:23 EDT 2025
Wed Dec 27 19:24:19 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Microbiology
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6238-a9cc47359d9b58e12ab0e8fb933ce1512f1d456302427175984cc60e34ccd8983
Notes http://dx.doi.org/10.1111/j.1365-2958.2007.05778.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2007.05778.x
PMID 17581115
PQID 47361023
PQPubID 24069
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2804852
proquest_miscellaneous_70648176
proquest_miscellaneous_47361023
pubmed_primary_17581115
pascalfrancis_primary_18850025
crossref_primary_10_1111_j_1365_2958_2007_05778_x
crossref_citationtrail_10_1111_j_1365_2958_2007_05778_x
wiley_primary_10_1111_j_1365_2958_2007_05778_x_MMI5778
fao_agris_US201300783544
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2007
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: July 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2007
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell Science
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell Science
References 1987; 1
2004; 63
2004; 64
2006; 72
1991; 55
1985; 806
1999; 164
2004; 5
2007; 71
2003; 278
2005; 23
1969; 8
2006; 60
2004; 70
2003; 369
2005; 187
2004; 38
2002; 184
2001; 292
2000; 405
2002; 43
1994; 140
2003; 47
1996; 62
2003; 5
2005; 71
2000; 288
2004; 1693
2007; 65
1972; 12
2005; 39
2001; 58
1998; 167
2006; 128
1998; 180
1997; 179
2001; 166
1980; 25
2004; 49
2002; 295
2004; 48
2000; 66
2000; 22
2005; 435
1989; 8
2002; 178
1988; 54
1998
2006; 152
2006; 8
2003; 37
1986; 19
1994
2006; 4
1994; 48
1988; 240
2002
1888; 46
2001; 67
1998; 64
2004; 304
2006; 157
1998; 1326
1992; 174
2002; 20
1984; 38
2002; 68
1984; 34
1999; 35
2003; 69
2005; 6
2001; 39
1889; 3
2005; 59
1993; 114
1998; 32
1993; 159
2003; 144
2005; 56
2006; 188
2006; 103
2005; 13
2003; 185
1996; 44
e_1_2_8_26_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
Turick C.E. (e_1_2_8_95_1) 1996; 44
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
Beijerinck M.W. (e_1_2_8_3_1) 1888; 46
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_71_1
e_1_2_8_28_1
Lovley D.R. (e_1_2_8_46_1) 1988; 54
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
Stevenson F.J. (e_1_2_8_88_1) 1994
e_1_2_8_93_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
Lovley D.R. (e_1_2_8_49_1) 2004
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
Winogradsky S. (e_1_2_8_99_1) 1889; 3
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – volume: 1326
  start-page: 307
  year: 1998
  end-page: 318
  article-title: Isolation and sequence of , a gene encoding a decaheme outer membrane cytochrome of MR‐1, and detection of homologs in other strains of
  publication-title: Biochim Biophys Acta
– volume: 43
  start-page: 1005
  year: 2002
  end-page: 1021
  article-title: Behaviour of topological marker proteins targeted to the Tat protein transport pathway
  publication-title: Mol Microbiol
– volume: 435
  start-page: 1098
  year: 2005
  end-page: 1101
  article-title: Extracellular electron transfer via microbial nanowires
  publication-title: Nature
– volume: 6
  start-page: 77
  year: 2005
  end-page: 84
  article-title: Cell adhesion of to iron oxide minerals: effect of different single crystal faces
  publication-title: Geochem Trans
– volume: 164
  start-page: 790
  year: 1999
  end-page: 802
  article-title: Macromolecular properties of soil humic substances: fact, fiction, and opinion
  publication-title: Soil Sci
– volume: 8
  start-page: 1805
  year: 2006
  end-page: 1815
  article-title: Microarray and genetic analysis of electron transfer to electrodes in
  publication-title: Environ Microbiol
– volume: 288
  start-page: 333
  year: 2000
  end-page: 335
  article-title: Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXphi
  publication-title: Science
– volume: 48
  start-page: 178
  year: 2004
  end-page: 190
  article-title: Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments
  publication-title: Microbiol Ecol
– volume: 152
  start-page: 2257
  year: 2006
  end-page: 2264
  article-title: A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in
  publication-title: Microbiology
– volume: 46
  start-page: 725
  year: 1888
  end-page: 804
  article-title: Die bacterien der papilionaceenknöllchen
  publication-title: Bot Ztg
– volume: 64
  start-page: 702
  year: 2004
  end-page: 711
  article-title: Quinone‐respiration improves dechlorination of carbon tetrachloride by anaerobic sludge
  publication-title: Appl Microbiol Biotechnol
– volume: 32
  start-page: 2984
  year: 1998
  end-page: 2989
  article-title: Quinone moieties act as electron acceptors in the reduction of humic substances by humics‐reducing microorganisms
  publication-title: Environ Sci Technol
– volume: 44
  start-page: 683
  year: 1996
  end-page: 688
  article-title: Isolation of hexavalent chromium‐reducing anaerobes from hexavalent‐chromium‐contaminated and noncontaminated environments
  publication-title: Appl Microbiol Biotechnol
– volume: 369
  start-page: 153
  year: 2003
  end-page: 161
  article-title: Biochemical and genetic characterization of PpcA, a periplasmic ‐type cytochrome in
  publication-title: Biochem J
– volume: 188
  start-page: 3138
  year: 2006
  end-page: 3142
  article-title: Two putative ‐type multiheme cytochromes required for the expression of OmcB, an outer membrane protein essential for optimal Fe(III) reduction in
  publication-title: J Bacteriol
– volume: 13
  start-page: 421
  year: 2005
  end-page: 428
  article-title: Geomicrobiology of manganese(II) oxidation
  publication-title: Trend Microbiol
– volume: 103
  start-page: 11358
  year: 2006
  end-page: 11363
  article-title: Electrically conductive bacterial nanowires produced by strain MR‐1 and other microorganisms
  publication-title: Proc Natl Acad Sci USA
– volume: 34
  start-page: 3
  year: 1984
  end-page: 12
  article-title: Electron transfer coupling in microbial fuel cells – comparison of redox mediator reduction rates and respiratory rates of bacteria
  publication-title: J Chem Technol Biotechnol
– volume: 71
  start-page: 2186
  year: 2005
  end-page: 2189
  article-title: Evidence for involvement of an electron shuttle in electricity generation by
  publication-title: Appl Environ Microbiol
– volume: 4
  start-page: 123
  year: 2006
  end-page: 136
  article-title: Microbial fuel cell energy from an ocean cold seep
  publication-title: Geobiology
– volume: 37
  start-page: 254
  year: 2003
  end-page: 258
  article-title: Cell surface exposure of the outer membrane cytochromes of MR‐1
  publication-title: Let Appl Microbiol
– volume: 49
  start-page: 219
  year: 2004
  end-page: 286
– volume: 63
  start-page: 672
  year: 2004
  end-page: 681
  article-title: Enrichment of microbial community generating electricity using a fuel‐cell‐type electrochemical cell
  publication-title: Appl Microbiol Biotechnol
– volume: 8
  start-page: 450
  year: 1969
  end-page: 454
  article-title: The polarity of proton translocation in some photosynthetic microorganisms
  publication-title: Euro J Biochem
– volume: 69
  start-page: 3636
  year: 2003
  end-page: 3639
  article-title: Microbial reduction and precipitation of vanadium by
  publication-title: Appl Environ Microbiol
– volume: 68
  start-page: 5585
  year: 2002
  end-page: 5594
  article-title: MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of MR‐1
  publication-title: Appl Environ Microbiol
– volume: 144
  start-page: 523
  year: 2003
  end-page: 547
  article-title: Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton
  publication-title: Contrib Mineral Petrol
– volume: 157
  start-page: 49
  year: 2006
  end-page: 56
  article-title: Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria
  publication-title: Res Microbiol
– volume: 179
  start-page: 1143
  year: 1997
  end-page: 1152
  article-title: Cloning and sequence of , a gene encoding a tetraheme cytochrome required for reduction of iron(III), fumarate, and nitrate by MR‐1
  publication-title: J Bacteriol
– volume: 240
  start-page: 1319
  year: 1988
  end-page: 1321
  article-title: Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor
  publication-title: Science
– volume: 60
  start-page: 107
  year: 2006
  end-page: 130
  article-title: Arsenic and selenium in microbial metabolism
  publication-title: Ann Rev Microbiol
– volume: 22
  start-page: 1301
  year: 2000
  end-page: 1304
  article-title: Electricity production in biofuel cell using modified graphite electrode with Neutral Red
  publication-title: Biotechnol Let
– volume: 295
  start-page: 483
  year: 2002
  end-page: 485
  article-title: Electrode‐reducing microorganisms that harvest energy from marine sediments
  publication-title: Science
– volume: 66
  start-page: 3743
  year: 2000
  end-page: 3749
  article-title: Direct and Fe(II)‐mediated reduction of technetium by Fe(III)‐reducing bacteria
  publication-title: Appl Environ Microbiol
– start-page: 9
  year: 1998
  end-page: 39
– year: 2002
– volume: 166
  start-page: 810
  year: 2001
  end-page: 832
  article-title: The supramolecular structure of humic substances
  publication-title: Soil Sci
– volume: 3
  start-page: 49
  year: 1889
  end-page: 60
  article-title: Recherches physiologiques sur les sulfobacteries
  publication-title: Annals l'Institut Pasteur
– volume: 292
  start-page: 1360
  year: 2001
  end-page: 1363
  article-title: Bacterial recognition of mineral surfaces: nanoscale interactions between and alpha‐FeOOH
  publication-title: Science
– volume: 23
  start-page: 291
  year: 2005
  end-page: 298
  article-title: Microbial fuel cells: novel biotechnology for energy generation
  publication-title: Trend Biotechnol
– volume: 185
  start-page: 2096
  year: 2003
  end-page: 2103
  article-title: OmcB, a ‐type polyheme cytochrome, involved in Fe(III) reduction in
  publication-title: J Bacteriol
– volume: 184
  start-page: 142
  year: 2002
  end-page: 151
  article-title: Dissimilatory Fe(III) and Mn(IV) reduction by requires , a homolog of the ( ) type II protein secretion gene
  publication-title: J Bacteriol
– volume: 38
  start-page: 175
  year: 2004
  end-page: 202
  article-title: The genetics of geochemistry
  publication-title: Ann Rev Gen
– volume: 114
  start-page: 215
  year: 1993
  end-page: 222
  article-title: Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by MR‐1
  publication-title: FEMS Microbiol Let
– volume: 25
  start-page: 1054
  year: 1980
  end-page: 1063
  article-title: Dimethylsulfoxide in marine and freshwaters
  publication-title: Limnol Oceanogr
– volume: 1
  start-page: 107
  year: 1987
  end-page: 116
  article-title: Export and secretion of the lipoprotein pullulanase by
  publication-title: Mol Microbiol
– volume: 71
  start-page: 543
  year: 2007
  end-page: 555
  article-title: Electron tunneling properties of outer‐membrane decaheme cytochromes from
  publication-title: Geochim Cosmochim Acta
– volume: 48
  start-page: 311
  year: 1994
  end-page: 343
  article-title: Iron and manganese in anaerobic respiration – environmental significance, physiology, and regulation
  publication-title: Ann Rev Microbiol
– volume: 19
  start-page: 343
  year: 1986
  end-page: 353
  article-title: Photooxidation of dimethylsulfide in aqueous solution
  publication-title: Mar Chem
– volume: 278
  start-page: 27758
  year: 2003
  end-page: 27765
  article-title: Characterization of the MR‐1 decaheme cytochrome MtrA
  publication-title: J Biol Chem
– volume: 64
  start-page: 1504
  year: 1998
  end-page: 1509
  article-title: Recovery of humic‐reducing bacteria from a diversity of environments
  publication-title: Appl Environ Microbiol
– volume: 39
  start-page: 722
  year: 2001
  end-page: 730
  article-title: MtrC, an outer membrane decahaem cytochrome required for metal reduction in MR‐1
  publication-title: Mol Microbiol
– volume: 71
  start-page: 8634
  year: 2005
  end-page: 8641
  article-title: Outer membrane ‐type cytochromes required for Fe(III) and Mn(IV) oxide reduction in
  publication-title: Appl Environ Microbiol
– volume: 70
  start-page: 5373
  year: 2004
  end-page: 5382
  article-title: Biofuel cells select for microbial consortia that self‐mediate electron transfer
  publication-title: Appl Environ Microbiol
– year: 1994
– volume: 405
  start-page: 94
  year: 2000
  end-page: 97
  article-title: A role for excreted quinones in extracellular electron transfer
  publication-title: Nature
– volume: 806
  start-page: 410
  year: 1985
  end-page: 417
  article-title: Periplasmic location of the terminal reductase in trimethylamine ‐oxide and dimethylsulphoxide respiration in the photosynthetic bacterium
  publication-title: Biochim Biophys Acta
– volume: 188
  start-page: 2792
  year: 2006
  end-page: 2800
  article-title: DNA microarray and proteomic analyses of the RpoS regulon in
  publication-title: J Bacteriol
– volume: 103
  start-page: 4669
  year: 2006
  end-page: 4674
  article-title: Extracellular respiration of dimethyl sulfoxide by strain MR‐1
  publication-title: Proc Natl Acad Sci USA
– volume: 47
  start-page: 993
  year: 2003
  end-page: 1006
  article-title: Identification of a novel Gsp‐related pathway required for the secretion of the manganese‐oxidizing factor of strain GB‐1
  publication-title: Mol Microbiol
– volume: 58
  start-page: 1562
  year: 2001
  end-page: 1571
  article-title: Extracellular electron transfer
  publication-title: Cell Mol Life Sci
– volume: 4
  start-page: e268
  year: 2006
  article-title: c‐Type cytochrome‐dependent formation of U(IV) nanoparticles by Shewanella oneidensis
  publication-title: PLoS Biol
– volume: 5
  start-page: 203
  year: 2003
  end-page: 223
  article-title: The contribution of melanin to microbial pathogenesis
  publication-title: Cell Microbiol
– volume: 38
  start-page: 515
  year: 1984
  end-page: 550
  article-title: Biology of iron‐depositing and manganese‐depositing bacteria
  publication-title: Ann Rev Microbiol
– volume: 65
  year: 2007
  article-title: Bacterial metal (hydr)oxide respiration: a key role for multiheme ‐type cytochromes
  publication-title: Mol Microbiol
– volume: 12
  start-page: 353
  year: 1972
  article-title: Pharmacology of dimethyl sulfoxide
  publication-title: Ann Rev Pharm
– volume: 140
  start-page: 1953
  year: 1994
  end-page: 1958
  article-title: Isolation and characterization of a strain of – a bacterium which grows autotrophically with dimethylsulfide as electron donor
  publication-title: Microbiology-UK
– volume: 304
  start-page: 1623
  year: 2004
  end-page: 1627
  article-title: Carbon sequestration impacts on global climate change and food security
  publication-title: Science
– volume: 178
  start-page: 450
  year: 2002
  end-page: 456
  article-title: Localization of Mn(II)‐oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine sp strain SG‐1
  publication-title: Arch Microbiol
– volume: 174
  start-page: 3429
  year: 1992
  end-page: 3438
  article-title: Localization of cytochromes to the outer‐membrane of anaerobically grown MR‐1
  publication-title: J Bacteriol
– volume: 180
  start-page: 6292
  year: 1998
  end-page: 6297
  article-title: encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction
  publication-title: J Bacteriol
– volume: 59
  start-page: 85
  year: 2005
  end-page: 108
  article-title: Geomicrobiological cycling of iron
  publication-title: Rev Mineral Geochem
– volume: 39
  start-page: 9009
  year: 2005
  end-page: 9015
  article-title: Molecular structure in soil humic substances: the new view
  publication-title: Environ Sci Technol
– volume: 5
  start-page: 13
  year: 2004
  end-page: 32
  article-title: Acid mine drainage biogeochemistry at Iron Mountain, California
  publication-title: Geochem Trans
– volume: 4
  start-page: 752
  year: 2006
  end-page: 764
  article-title: Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction
  publication-title: Nat Rev Microbiol
– volume: 187
  start-page: 4505
  year: 2005
  end-page: 4513
  article-title: OmcF, a putative ‐type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in
  publication-title: J Bacteriol
– volume: 8
  start-page: 2149
  year: 1989
  end-page: 2170
  article-title: The photosynthetic reaction center from the purple bacterium
  publication-title: EMBO J
– volume: 54
  start-page: 1472
  year: 1988
  end-page: 1480
  article-title: Novel mode of microbial energy metabolism – organic carbon oxidation coupled to dissimilatory reduction of iron or manganese
  publication-title: Appl Environ Microbiol
– volume: 128
  start-page: 13978
  year: 2006
  end-page: 13979
  article-title: High‐affinity binding and direct electron transfer to solid metals by the MR‐1 outer membrane ‐type cytochrome OmcA
  publication-title: J Am Chem Soc
– volume: 187
  start-page: 3293
  year: 2005
  end-page: 3301
  article-title: Respiration and growth of MR‐1 using vanadate as the sole electron acceptor
  publication-title: J Bacteriol
– volume: 56
  start-page: 1347
  year: 2005
  end-page: 1357
  article-title: Anaerobic regulation by an atypical Arc system in
  publication-title: Mol Microbiol
– volume: 70
  start-page: 1405
  year: 2004
  end-page: 1412
  article-title: Vanadium(V) reduction by MR‐1 requires menaquinone and cytochromes from the cytoplasmic and outer membranes
  publication-title: Appl Environ Microbiol
– volume: 184
  start-page: 1806
  year: 2002
  end-page: 1810
  article-title: Protective role of in efflux of the electron shuttle anthraquinone‐2,6‐disulfonate
  publication-title: J Bacteriol
– volume: 55
  start-page: 259
  year: 1991
  end-page: 287
  article-title: Dissimilatory Fe(III) and Mn(IV) reduction
  publication-title: Microbiol Rev
– volume: 71
  start-page: 7453
  year: 2005
  end-page: 7460
  article-title: Global transcriptional profiling of MR‐1 during Cr(VI) and U(VI) reduction
  publication-title: Appl Environ Microbiol
– volume: 167
  start-page: 291
  year: 1998
  end-page: 296
  article-title: Particulate dimethyl sulphoxide in seawater: production by microplankton
  publication-title: Mar Ecol Prog Ser
– volume: 159
  start-page: 336
  year: 1993
  end-page: 344
  article-title: gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals
  publication-title: Arch Microbiol
– volume: 67
  start-page: 4471
  year: 2001
  end-page: 4478
  article-title: Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors
  publication-title: Appl Environ Microbiol
– volume: 35
  start-page: 8
  year: 1999
  end-page: 18
  article-title: Intracellular dimethylsulfoxide (DMSO) in unicellular marine algae: speculations on its origin and possible biological role
  publication-title: J Phycol
– volume: 68
  start-page: 2436
  year: 2002
  end-page: 2444
  article-title: Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by BrY
  publication-title: Appl Environ Microbiol
– volume: 184
  start-page: 846
  year: 2002
  end-page: 848
  article-title: Role of menaquinones in Fe(III) reduction by membrane fractions of
  publication-title: J Bacteriol
– volume: 20
  start-page: 821
  year: 2002
  end-page: 825
  article-title: Harnessing microbially generated power on the seafloor
  publication-title: Nat Biotechnol
– volume: 184
  start-page: 313
  year: 2002
  end-page: 317
  article-title: The high molecular weight cytochrome Cyc2 of is an outer membrane protein
  publication-title: J Bacteriol
– volume: 188
  start-page: 4705
  year: 2006
  end-page: 4714
  article-title: Isolation of a high‐affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme ‐type cytochromes of MR‐1
  publication-title: J Bacteriol
– volume: 72
  start-page: 7345
  year: 2006
  end-page: 7348
  article-title: Biofilm and nanowire production leads to increased current in fuel cells
  publication-title: Appl Environ Microbiol
– volume: 62
  start-page: 288
  year: 1996
  end-page: 291
  article-title: Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms
  publication-title: Appl Environ Microbiol
– volume: 71
  start-page: 4414
  year: 2005
  end-page: 4426
  article-title: MR‐1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms
  publication-title: Appl Environ Microbiol
– volume: 39
  start-page: 3401
  year: 2005
  end-page: 3408
  article-title: Microbial phenazine production enhances electron transfer in biofuel cells
  publication-title: Environ Sci Technol
– volume: 1693
  start-page: 5
  year: 2004
  end-page: 13
  article-title: Sorting of lipoproteins to the outer membrane in
  publication-title: Biochim Biophys Acta Mol Cell Res
– volume: 71
  start-page: 5607
  year: 2005
  end-page: 5609
  article-title: Selenite and tellurite reduction by
  publication-title: Appl Environ Microbiol
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1462-2920.2006.01065.x
– ident: e_1_2_8_34_1
  doi: 10.2138/rmg.2005.59.5
– ident: e_1_2_8_11_1
  doi: 10.1128/JB.187.10.3293-3301.2005
– ident: e_1_2_8_35_1
  doi: 10.1128/JB.187.13.4505-4513.2005
– ident: e_1_2_8_29_1
  doi: 10.1099/13500872-140-8-1953
– ident: e_1_2_8_59_1
  doi: 10.1016/S0005-2736(97)00034-5
– ident: e_1_2_8_85_1
  doi: 10.1128/JB.184.6.1806-1810.2002
– ident: e_1_2_8_19_1
  doi: 10.1046/j.1365-2958.2003.03339.x
– ident: e_1_2_8_64_1
  doi: 10.1186/1467-4866-6-77
– ident: e_1_2_8_40_1
  doi: 10.1128/JB.185.7.2096-2103.2003
– ident: e_1_2_8_9_1
  doi: 10.1016/0304-4203(86)90055-1
– start-page: 219
  volume-title: Advances in Microbial Physiology
  year: 2004
  ident: e_1_2_8_49_1
– ident: e_1_2_8_20_1
  doi: 10.1128/JB.184.1.142-151.2002
– ident: e_1_2_8_4_1
  doi: 10.1128/JB.180.23.6292-6297.1998
– ident: e_1_2_8_10_1
  doi: 10.1128/AEM.69.6.3636-3639.2003
– ident: e_1_2_8_27_1
  doi: 10.1111/j.1365-2958.2005.04628.x
– ident: e_1_2_8_56_1
  doi: 10.1128/jb.174.11.3429-3438.1992
– ident: e_1_2_8_36_1
  doi: 10.1128/JB.188.8.3138-3142.2006
– ident: e_1_2_8_60_1
  doi: 10.1128/AEM.68.11.5585-5594.2002
– ident: e_1_2_8_7_1
  doi: 10.1128/AEM.71.4.2186-2189.2005
– ident: e_1_2_8_72_1
  doi: 10.1016/j.tibtech.2005.04.008
– ident: e_1_2_8_94_1
  doi: 10.1016/j.bbamcr.2004.02.005
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1365-2958.1987.tb00534.x
– ident: e_1_2_8_86_1
  doi: 10.3354/meps167291
– ident: e_1_2_8_93_1
  doi: 10.1038/nbt716
– volume: 46
  start-page: 725
  year: 1888
  ident: e_1_2_8_3_1
  article-title: Die bacterien der papilionaceenknöllchen
  publication-title: Bot Ztg
– ident: e_1_2_8_44_1
  doi: 10.1042/bj20020597
– ident: e_1_2_8_61_1
  doi: 10.1046/j.1472-765X.2003.01389.x
– ident: e_1_2_8_97_1
  doi: 10.1038/nrmicro1490
– ident: e_1_2_8_100_1
  doi: 10.1021/ja063526d
– ident: e_1_2_8_96_1
  doi: 10.1128/AEM.68.5.2436-2444.2002
– volume: 44
  start-page: 683
  year: 1996
  ident: e_1_2_8_95_1
  article-title: Isolation of hexavalent chromium‐reducing anaerobes from hexavalent‐chromium‐contaminated and noncontaminated environments
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/BF00172503
– ident: e_1_2_8_16_1
  doi: 10.1146/annurev.pa.12.040172.002033
– ident: e_1_2_8_71_1
  doi: 10.1074/jbc.M302582200
– ident: e_1_2_8_68_1
  doi: 10.1128/JB.188.8.2792-2800.2006
– ident: e_1_2_8_37_1
  doi: 10.1007/s00253-003-1412-6
– volume: 3
  start-page: 49
  year: 1889
  ident: e_1_2_8_99_1
  article-title: Recherches physiologiques sur les sulfobacteries
  publication-title: Annals l'Institut Pasteur
– ident: e_1_2_8_76_1
  doi: 10.1128/AEM.01444-06
– ident: e_1_2_8_24_1
  doi: 10.1007/s00203-002-0472-9
– ident: e_1_2_8_50_1
  doi: 10.1126/science.1059567
– ident: e_1_2_8_57_1
  doi: 10.1111/j.1574-6968.1993.tb06576.x
– ident: e_1_2_8_90_1
  doi: 10.1021/es050778q
– ident: e_1_2_8_91_1
  doi: 10.1097/00010694-199911000-00003
– ident: e_1_2_8_21_1
  doi: 10.1186/1467-4866-5-13
– ident: e_1_2_8_70_1
  doi: 10.1097/00010694-200111000-00007
– ident: e_1_2_8_52_1
  doi: 10.1007/978-3-662-03736-2_2
– ident: e_1_2_8_69_1
  doi: 10.1023/A:1005674107841
– ident: e_1_2_8_84_1
  doi: 10.1111/j.1365-2958.2007.05783.x
– ident: e_1_2_8_5_1
  doi: 10.1046/j.1365-2958.2001.02257.x
– ident: e_1_2_8_38_1
  doi: 10.1128/AEM.71.9.5607-5609.2005
– ident: e_1_2_8_8_1
  doi: 10.1126/science.1066771
– ident: e_1_2_8_55_1
  doi: 10.1099/mic.0.28864-0
– ident: e_1_2_8_43_1
  doi: 10.1128/AEM.66.9.3743-3749.2000
– ident: e_1_2_8_54_1
  doi: 10.1128/AEM.71.12.8634-8641.2005
– ident: e_1_2_8_13_1
  doi: 10.1007/s00253-004-1564-z
– ident: e_1_2_8_92_1
  doi: 10.1016/j.tim.2005.07.009
– ident: e_1_2_8_45_1
  doi: 10.1128/MMBR.55.2.259-287.1991
– ident: e_1_2_8_66_1
  doi: 10.1038/35011098
– ident: e_1_2_8_31_1
  doi: 10.1007/s00248-003-0004-4
– ident: e_1_2_8_17_1
  doi: 10.1126/science.288.5464.333
– ident: e_1_2_8_30_1
  doi: 10.1007/PL00000796
– ident: e_1_2_8_74_1
  doi: 10.1021/es048563o
– volume: 54
  start-page: 1472
  year: 1988
  ident: e_1_2_8_46_1
  article-title: Novel mode of microbial energy metabolism – organic carbon oxidation coupled to dissimilatory reduction of iron or manganese
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.54.6.1472-1480.1988
– ident: e_1_2_8_77_1
  doi: 10.1111/j.1472-4669.2006.00071.x
– ident: e_1_2_8_53_1
  doi: 10.1371/journal.pbio.0040268
– ident: e_1_2_8_18_1
  doi: 10.1002/j.1460-2075.1989.tb08338.x
– ident: e_1_2_8_58_1
  doi: 10.1128/jb.179.4.1143-1152.1997
– ident: e_1_2_8_22_1
  doi: 10.1201/9780824744458
– ident: e_1_2_8_62_1
  doi: 10.1126/science.240.4857.1319
– ident: e_1_2_8_14_1
  doi: 10.1128/AEM.64.4.1504-1509.1998
– ident: e_1_2_8_75_1
  doi: 10.1038/nature03661
– ident: e_1_2_8_6_1
  doi: 10.1128/AEM.71.11.7453-7460.2005
– ident: e_1_2_8_26_1
  doi: 10.1073/pnas.0604517103
– ident: e_1_2_8_65_1
  doi: 10.1146/annurev.mi.48.100194.001523
– ident: e_1_2_8_82_1
  doi: 10.1021/es980272q
– ident: e_1_2_8_89_1
  doi: 10.1146/annurev.micro.60.080805.142053
– ident: e_1_2_8_78_1
  doi: 10.1002/jctb.280340103
– ident: e_1_2_8_33_1
  doi: 10.1007/s00410-002-0418-x
– ident: e_1_2_8_51_1
  doi: 10.1016/0005-2728(85)90248-8
– ident: e_1_2_8_28_1
  doi: 10.1046/j.1365-2958.1996.389922.x
– ident: e_1_2_8_87_1
  doi: 10.1046/j.1365-2958.2002.02797.x
– ident: e_1_2_8_42_1
  doi: 10.1128/AEM.71.8.4414-4426.2005
– ident: e_1_2_8_48_1
  doi: 10.1128/AEM.62.1.288-291.1996
– volume-title: Humus Chemistry: Genesis, Composition, Reactions
  year: 1994
  ident: e_1_2_8_88_1
– ident: e_1_2_8_79_1
  doi: 10.1128/JB.184.3.846-848.2002
– ident: e_1_2_8_80_1
  doi: 10.1016/j.resmic.2005.07.012
– ident: e_1_2_8_63_1
  doi: 10.1128/AEM.70.3.1405-1412.2004
– ident: e_1_2_8_47_1
  doi: 10.1007/BF00290916
– ident: e_1_2_8_15_1
  doi: 10.1146/annurev.genet.38.072902.091138
– ident: e_1_2_8_2_1
  doi: 10.4319/lo.1980.25.6.1054
– ident: e_1_2_8_39_1
  doi: 10.1126/science.1097396
– ident: e_1_2_8_81_1
  doi: 10.1111/j.1432-1033.1969.tb00548.x
– ident: e_1_2_8_98_1
  doi: 10.1016/j.gca.2006.10.002
– ident: e_1_2_8_41_1
  doi: 10.1046/j.1529-8817.1999.3510008.x
– ident: e_1_2_8_83_1
  doi: 10.1128/JB.01966-05
– ident: e_1_2_8_73_1
  doi: 10.1128/AEM.70.9.5373-5382.2004
– ident: e_1_2_8_101_1
  doi: 10.1128/JB.184.1.313-317.2002
– ident: e_1_2_8_25_1
  doi: 10.1146/annurev.mi.38.100184.002503
– ident: e_1_2_8_67_1
  doi: 10.1046/j.1462-5814.2003.00268.x
– ident: e_1_2_8_12_1
  doi: 10.1128/AEM.67.10.4471-4478.2001
SSID ssj0013063
Score 2.39802
Snippet Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve...
Summary Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological and medical sciences
Cytochrome c Group - genetics
Cytochrome c Group - metabolism
Electron Transport
Ferric Compounds - metabolism
Fundamental and applied biological sciences. Psychology
Geobacter - enzymology
Geobacter - metabolism
Manganese Compounds - metabolism
Microbiology
Oxidation-Reduction
Oxides - metabolism
Shewanella - enzymology
Shewanella - metabolism
Title Extracellular respiration
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2007.05778.x
https://www.ncbi.nlm.nih.gov/pubmed/17581115
https://www.proquest.com/docview/47361023
https://www.proquest.com/docview/70648176
https://pubmed.ncbi.nlm.nih.gov/PMC2804852
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BJSQu0PLa0FL2wDWrxI5j-1hVfSEtB2ClvVm24wBqlUX7kAq_nhknu9vAIlWISxIpthWPZ8af7ck3AO9qlbmaVzZlTldpIfKQWhlCqlwmHZc8-CoGyH4oLyfF-6mYdvFP9C9Myw-x2XAjy4j-mgzcukXfyGOElhaqYyIUUqoR4Ul6QfjoI9seKHRJ1bQgOlk27Qf17GyoN1M9rO2M4ibtAkVXtzkvdoHSP2Mr72LeOGmdP4XrdXfbWJXr0WrpRv7nb0yQ_0ce-_Ckw7bDk1YZD-BBaJ7Bozbb5Y_nkJzd4rfSSQGFvg7n3SE_KsYLmJyffT69TLvMDKlHuKRSq72nnMW60k6okDPrsqBqpzn3gTBEnVcFMY8hAMD1otCq8L7MAsdbpbTiL2GvmTVhAEPvHRO25DXT6E9wscgs50zaGh1DpYo8AbkeBeM72nLKnnFj7ixfsOOGOk5JNaWJHTe3CeSbmt9b6o571BngQBv7BT2smXxipDhZ3BwrEjjujf62TaUEQccE3q7VwaCNkjhtE2arhUFRlUSR8fcSEpGhymWZwKtWfbat44IOvxhblz3F2hQgfvD-m-bb18gTzhS6Z8ESKKPe3FsIZjy-oqfX_1rxEB6vt8Cz_Aj2lvNVeIPYbemOo1Xi9WKa_wKs9DKC
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RQguvKHh0e4BjlklThzbBw6Ittql3R6gK-3N2I4DCJRF3V2x5a_xV_gxzOSx20CRKqQeOCVSYssaz9P58g3A80JGtkhyEzKr8jDlsQ-N8D6UNhI2EYl3eQWQPc4G4_TNhE824Ef7L0zND7E6cCPLqPw1GTgdSHetvIJoKS4bKkIuhOwvG4TloT_7hvXb7OVwDzf7BWMH-yevB2HTYiB0GPdlaJRz1HxX5cpy6WNmbORlYbHMd56CYRHnKVFoYSTDwocrmTqXRT7BSy6VTHDeTbhGDcWJuH_vLVt_wmjauClOBLZs0oURXbjyTmzcLMyUkJpmhptV1F02LkqD_0Rzns-yqzB5cBt-tgKu0TGf-4u57bvvv3FP_qc7cAduNel771Vtb3dhw5f34Hrd0PPsPgT7SxQOfQwhdG_vtMExoO4_gPGVrOshbJXT0m9DzznLuMmSgil0mVgPM5MkTJgCfV8u0zgA0W67dg0zOzUI-aLPVWgoaE2Cpr6hQleC1ssA4tXIrzU7ySXGbKNmafMBg4gev2OkqVF1_pcGsNNRt_WcUnLKjgPYbfVPoxsicZrSTxczjaLKiAXk728ITH5lLLIAHtX6up4da1ZcMc4uOpq8eoEo0LtPyk8fKyp0JjECcRZAVinqpYWgR6Mh3T3-14G7cGNwMjrSR8Pjwydwsz3xj-KnsDU_XfhnmKrO7U7lEnrw_qot4BfcrI1L
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RSAuvKHh0e4BjlklThzbBw6I7apLaYWAlfZmbMcBBMpW3V2x5afxV_gzzOSx20CRKqQeOCVSYssaz9P58g3A00JGtkhyEzKr8jDlsQ-N8D6UNhI2EYl3eQWQPcr2x-mrCZ9swI_2X5iaH2J14EaWUflrMvDjvOgaeYXQUlw2TIRcCNlfNgDLA3_6Dcu32fPRAPf6GWPDvfcv98Omw0DoMOzL0CjnqPeuypXl0sfM2MjLwmKV7zzFwiLOU2LQwkCGdQ9XMnUui3yCl1wqmeC8m3AlzSJFbSMGb9n6C0bTxU1x4q9lky6K6NyVd0LjZmGmBNQ0M9yrom6ycV4W_CeY82ySXUXJ4U342cq3Bsd86S_mtu--_0Y9-X9uwC240STvvRe1td2GDV_egat1O8_TuxDsLVE29CmEsL29kwbFgJp_D8aXsq77sFVOS78NPecs4yZLCqbQYWI1zEySMGEK9Hy5TOMARLvr2jW87NQe5Ks-U5-hoDUJmrqGCl0JWi8DiFcjj2tukguM2UbF0uYjhhA9fsdIUaPq9C8NYKejbes5peSUGwew26qfRidE4jSlny5mGkWVEQfI398QmPrKWGQBPKjVdT07Vqy4YpxddBR59QIRoHeflJ8_VUToTGL84SyArNLTCwtBHx6O6O7hvw7chWtvBkP9enR08Aiut8f9UfwYtuYnC_8E89S53akcQg8-XLYB_AJ1vIv6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+respiration&rft.jtitle=Molecular+microbiology&rft.au=Gralnick%2C+Jeffrey+A&rft.au=Newman%2C+Dianne+K&rft.date=2007-07-01&rft.issn=0950-382X&rft.volume=65&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1111%2Fj.1365-2958.2007.05778.x&rft_id=info%3Apmid%2F17581115&rft.externalDocID=17581115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon