Extracellular respiration
Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term 'extracellular respiration' is elec...
Saved in:
Published in | Molecular microbiology Vol. 65; no. 1; pp. 1 - 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.07.2007
Blackwell Publishing Ltd Blackwell Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term 'extracellular respiration' is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as 'soluble' are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists. |
---|---|
AbstractList | Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term 'extracellular respiration' is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as 'soluble' are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists.Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term 'extracellular respiration' is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as 'soluble' are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists. Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term ‘extracellular respiration’ is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as ‘soluble’ are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists. Summary Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best‐known example of what we will term ‘extracellular respiration’ is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as ‘soluble’ are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists. |
Author | Gralnick, Jeffrey A Newman, Dianne K |
AuthorAffiliation | 5 Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA 2 The BioTechnology Institute, University of Minnesota, Saint Paul, MN, USA 3 Division of Geological and Planetary Science, California Institute of Technology, Pasadena, CA, USA 4 Division of Biology, California Institute of Technology, Pasadena, CA, USA 1 Department of Microbiology, University of Minnesota, Saint Paul, MN, USA |
AuthorAffiliation_xml | – name: 1 Department of Microbiology, University of Minnesota, Saint Paul, MN, USA – name: 4 Division of Biology, California Institute of Technology, Pasadena, CA, USA – name: 3 Division of Geological and Planetary Science, California Institute of Technology, Pasadena, CA, USA – name: 2 The BioTechnology Institute, University of Minnesota, Saint Paul, MN, USA – name: 5 Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA |
Author_xml | – sequence: 1 fullname: Gralnick, Jeffrey A – sequence: 2 fullname: Newman, Dianne K |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18850025$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17581115$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1PwjAYxxuDEVA_gBflorfNp-26dQdNDMGXBOJBTbw1pXRYMjZsQeHb2zkEPUkvbfL8nv_z8m8bNYqy0Ah1MITYn8tJiGnMApIyHhKAJASWJDxc7qHWJtBALUgZBJST1yZqOzcBwBRieoCaOGHc67AWOukt51YqneeLXNqO1W5mrJybsjhC-5nMnT5e34fo5bb33L0P-o93D92bfqBiQnkgU6WihLJ0lA4Z15jIIWieDVNKlcYMkwyPIhZTIBFJfN2UR0rFoKm_Rjzl9BBd17qzxXCqR0oXvqFczKyZSrsSpTTib6Qwb2JcfgjCIeKMeIGLtYAt3xfazcXUuGoiWehy4UQCccRxEv8L-jFiDIR68PR3S5teftbmgfM1IJ2SeWZloYzbcpwzAFJxvOaULZ2zOtsiIConxURUhonKMFE5Kb6dFMvtWjapysy_jfFLMPkuAle1wKfJ9WrnwmIweKhePv-szs9kKeTY-vlenkj1hcBHWRTRL1arvvA |
CitedBy_id | crossref_primary_10_1002_jctb_5284 crossref_primary_10_1016_j_scitotenv_2019_06_299 crossref_primary_10_1039_C8RA03846E crossref_primary_10_1128_AEM_00500_11 crossref_primary_10_3389_fmicb_2017_02481 crossref_primary_10_1016_j_hydromet_2017_12_008 crossref_primary_10_1128_AEM_06803_11 crossref_primary_10_1016_j_copbio_2010_03_015 crossref_primary_10_1016_j_jpowsour_2023_233965 crossref_primary_10_1016_j_jhazmat_2017_08_071 crossref_primary_10_1007_s11368_013_0679_1 crossref_primary_10_1557_mrs_2015_99 crossref_primary_10_1021_acssynbio_8b00498 crossref_primary_10_1134_S0006297920080118 crossref_primary_10_1016_j_bioelechem_2019_04_022 crossref_primary_10_1002_bit_25723 crossref_primary_10_1016_j_jhazmat_2009_02_152 crossref_primary_10_1180_minmag_2012_076_3_25 crossref_primary_10_1002_elan_200800007 crossref_primary_10_1039_D3SC05293A crossref_primary_10_1002_fuce_201700023 crossref_primary_10_1016_j_scitotenv_2020_138291 crossref_primary_10_1016_j_colsurfa_2017_02_023 crossref_primary_10_1074_jbc_M109_043455 crossref_primary_10_1111_j_1462_2920_2009_02137_x crossref_primary_10_1007_s11814_010_0231_6 crossref_primary_10_1021_acs_analchem_9b03176 crossref_primary_10_4028_www_scientific_net_AMR_1130_347 crossref_primary_10_1016_j_crte_2010_10_005 crossref_primary_10_1073_pnas_2000802117 crossref_primary_10_1111_j_1365_2958_2010_07266_x crossref_primary_10_1042_BJ20121467 crossref_primary_10_1111_1751_7915_12400 crossref_primary_10_1016_S1872_5813_14_60024_4 crossref_primary_10_3389_fmicb_2021_690918 crossref_primary_10_1016_j_ibiod_2009_08_001 crossref_primary_10_1002_anie_202424867 crossref_primary_10_1111_j_1462_2920_2011_02626_x crossref_primary_10_1039_B917952F crossref_primary_10_1007_s11274_019_2604_2 crossref_primary_10_1128_AEM_00840_08 crossref_primary_10_1016_j_enzmictec_2013_07_006 crossref_primary_10_1111_gbi_12172 crossref_primary_10_1002_bip_22169 crossref_primary_10_1128_spectrum_04081_23 crossref_primary_10_1111_mmi_15206 crossref_primary_10_1002_celc_201402141 crossref_primary_10_7554_eLife_81551 crossref_primary_10_1016_j_envpol_2022_119451 crossref_primary_10_1021_es200865u crossref_primary_10_1128_AEM_01460_12 crossref_primary_10_1371_journal_pone_0091484 crossref_primary_10_1016_j_chemgeo_2015_10_039 crossref_primary_10_1111_1462_2920_12576 crossref_primary_10_3389_fmicb_2020_02003 crossref_primary_10_1128_AEM_03556_12 crossref_primary_10_1016_j_procbio_2011_10_029 crossref_primary_10_1016_j_jece_2024_115244 crossref_primary_10_1002_ente_201800377 crossref_primary_10_1111_gbi_12067 crossref_primary_10_1016_j_biortech_2022_127278 crossref_primary_10_1021_sb300042w crossref_primary_10_3389_fmicb_2020_590049 crossref_primary_10_1021_jp8057349 crossref_primary_10_1007_s11274_013_1336_y crossref_primary_10_1111_1758_2229_12113 crossref_primary_10_3389_fmicb_2014_00432 crossref_primary_10_1051_e3sconf_202019405034 crossref_primary_10_1016_j_cej_2014_02_102 crossref_primary_10_1016_j_corsci_2022_110159 crossref_primary_10_1016_j_chemosphere_2022_135986 crossref_primary_10_3390_ijms23105566 crossref_primary_10_1002_celc_202200907 crossref_primary_10_1021_acsnano_9b02032 crossref_primary_10_1007_s00253_010_2820_z crossref_primary_10_1007_s10295_019_02165_7 crossref_primary_10_1111_j_1758_2229_2009_00035_x crossref_primary_10_1016_j_chemosphere_2017_02_143 crossref_primary_10_1021_acsenergylett_6b00435 crossref_primary_10_1002_ange_202424867 crossref_primary_10_1007_s11368_009_0113_x crossref_primary_10_1128_jb_00322_22 crossref_primary_10_1128_AEM_02425_09 crossref_primary_10_1007_s00253_011_3653_0 crossref_primary_10_1128_MRA_00862_21 crossref_primary_10_3389_fmicb_2023_1197299 crossref_primary_10_5194_bg_18_2091_2021 crossref_primary_10_1016_j_jddst_2022_104093 crossref_primary_10_1016_j_apenergy_2016_11_005 crossref_primary_10_1039_C5CP05152E crossref_primary_10_1016_j_copbio_2009_09_006 crossref_primary_10_3390_microorganisms10061219 crossref_primary_10_1021_acsearthspacechem_7b00042 crossref_primary_10_1016_j_procbio_2012_07_032 crossref_primary_10_1016_j_jbiotec_2012_11_013 crossref_primary_10_1016_j_scitotenv_2020_143076 crossref_primary_10_1002_cssc_201100737 crossref_primary_10_1016_j_biotechadv_2009_01_004 crossref_primary_10_1111_j_1574_6976_2009_00191_x crossref_primary_10_1021_cs3003808 crossref_primary_10_1111_j_1365_2672_2012_05276_x crossref_primary_10_1016_j_biortech_2018_01_133 crossref_primary_10_1128_AEM_00023_10 crossref_primary_10_1016_j_freeradbiomed_2019_01_036 crossref_primary_10_1021_acs_est_7b02531 crossref_primary_10_1021_acs_jpclett_4c01991 crossref_primary_10_1039_C5RA08742B crossref_primary_10_1111_1751_7915_14236 crossref_primary_10_20964_2022_10_11 crossref_primary_10_1098_rsfs_2014_0091 crossref_primary_10_1007_s11814_010_0142_6 crossref_primary_10_1016_j_jpowsour_2014_10_168 crossref_primary_10_1016_j_matlet_2019_03_036 crossref_primary_10_1128_MMBR_00135_20 crossref_primary_10_1021_acs_jpcb_5b03419 crossref_primary_10_1016_j_corsci_2022_110608 crossref_primary_10_1088_2053_1591_ad63fd crossref_primary_10_1128_JB_00514_08 crossref_primary_10_1007_s11356_019_07323_z crossref_primary_10_1016_j_actbio_2018_01_007 crossref_primary_10_1016_j_envint_2019_105245 crossref_primary_10_1016_j_electacta_2016_03_074 crossref_primary_10_1039_c2cp41185g crossref_primary_10_1016_j_jinorgbio_2013_10_024 crossref_primary_10_1016_j_scitotenv_2020_140536 crossref_primary_10_1016_j_csbj_2020_11_021 crossref_primary_10_3389_fmicb_2019_00410 crossref_primary_10_1016_j_ibiod_2010_02_004 crossref_primary_10_1073_pnas_1209829109 crossref_primary_10_3390_nano12091496 crossref_primary_10_1016_j_biortech_2013_02_103 crossref_primary_10_1039_c3cp53759e crossref_primary_10_3390_min5030397 crossref_primary_10_1016_j_jbiosc_2017_03_016 crossref_primary_10_1039_b823237g crossref_primary_10_1021_acs_est_6b00066 crossref_primary_10_1016_j_jelechem_2019_113464 crossref_primary_10_1073_pnas_1009645107 crossref_primary_10_1021_acsbiomaterials_1c01645 crossref_primary_10_1016_j_enzmictec_2016_07_012 crossref_primary_10_1007_s40243_016_0080_2 crossref_primary_10_1016_j_mib_2010_02_002 crossref_primary_10_1134_S0012496613060112 crossref_primary_10_1016_j_isci_2022_104491 crossref_primary_10_1016_j_cej_2023_148366 crossref_primary_10_1111_1462_2920_16314 crossref_primary_10_1134_S0006297914130094 crossref_primary_10_1016_j_watres_2024_122403 crossref_primary_10_1039_b806498a crossref_primary_10_1128_AEM_03478_16 crossref_primary_10_1039_C4MB00386A crossref_primary_10_1016_j_jinorgbio_2021_111509 crossref_primary_10_1093_database_baq012 crossref_primary_10_1016_j_bej_2023_108928 crossref_primary_10_3390_ijms18010108 crossref_primary_10_1371_journal_pone_0191289 crossref_primary_10_3390_min12040460 crossref_primary_10_1016_j_scitotenv_2021_149539 crossref_primary_10_1016_j_tim_2011_05_001 crossref_primary_10_1080_01490451_2016_1197985 crossref_primary_10_1016_j_biortech_2013_09_115 crossref_primary_10_1016_j_bioelechem_2021_107826 crossref_primary_10_1021_acssuschemeng_7b04641 crossref_primary_10_1111_mmi_14647 crossref_primary_10_1016_j_cej_2024_148886 crossref_primary_10_1093_femsec_fiy081 crossref_primary_10_1007_s00253_011_3577_8 crossref_primary_10_1016_j_electacta_2019_134838 crossref_primary_10_1039_D1EM00108F crossref_primary_10_1016_j_coelec_2024_101556 crossref_primary_10_1039_c1ee02511b crossref_primary_10_1089_dna_2021_0551 crossref_primary_10_1016_j_gca_2011_11_030 crossref_primary_10_1099_mic_0_000382 crossref_primary_10_1128_AEM_02134_18 crossref_primary_10_1111_j_1472_4669_2009_00226_x crossref_primary_10_1128_JB_00925_09 crossref_primary_10_1128_MMBR_00001_09 crossref_primary_10_1038_s41598_018_37025_4 crossref_primary_10_1002_celc_201402211 crossref_primary_10_3389_fmicb_2015_00121 crossref_primary_10_4155_bfs_10_7 crossref_primary_10_1111_1751_7915_12340 crossref_primary_10_1002_cbic_201600339 crossref_primary_10_1007_s00253_008_1451_0 crossref_primary_10_1007_s11814_014_0286_x crossref_primary_10_1021_es5017312 crossref_primary_10_1099_mic_0_000294 crossref_primary_10_1128_AEM_05365_11 crossref_primary_10_1074_jbc_M111_262113 crossref_primary_10_7554_eLife_48054 crossref_primary_10_1007_s10123_023_00429_y crossref_primary_10_1093_lambio_ovae105 crossref_primary_10_1007_s11274_019_2647_4 crossref_primary_10_3389_fmicb_2024_1374800 crossref_primary_10_1021_acs_nanolett_2c04018 crossref_primary_10_1021_acssuschemeng_9b04229 crossref_primary_10_1016_j_jcis_2014_02_026 crossref_primary_10_1021_acssynbio_6b00374 crossref_primary_10_1038_ismej_2008_48 crossref_primary_10_1128_AEM_01615_16 crossref_primary_10_1016_j_tibtech_2008_11_005 crossref_primary_10_1111_j_1472_4669_2008_00148_x crossref_primary_10_3389_fmicb_2019_00464 crossref_primary_10_1016_j_ibiod_2015_03_034 crossref_primary_10_1016_j_elecom_2013_11_001 crossref_primary_10_1016_j_jhazmat_2009_05_136 crossref_primary_10_1128_AEM_02852_20 crossref_primary_10_1111_1462_2920_15235 crossref_primary_10_1016_j_jpowsour_2008_02_074 crossref_primary_10_1021_acsnano_5b07826 crossref_primary_10_1128_JB_00347_18 crossref_primary_10_1038_srep31143 crossref_primary_10_1021_es403968e crossref_primary_10_1016_j_matdes_2019_108256 crossref_primary_10_1042_BST20120130 crossref_primary_10_1111_j_1472_4669_2008_00159_x crossref_primary_10_1073_pnas_1718810115 crossref_primary_10_1016_j_soilbio_2014_01_010 crossref_primary_10_1039_c1ee01753e crossref_primary_10_3390_microorganisms9030560 crossref_primary_10_1021_acs_jnatprod_9b01086 crossref_primary_10_1128_AEM_00544_09 crossref_primary_10_1016_j_watres_2013_06_056 crossref_primary_10_1039_C8CP03898H crossref_primary_10_1080_08927014_2019_1646731 crossref_primary_10_1021_pr3007914 crossref_primary_10_1038_s41467_020_17897_9 crossref_primary_10_1016_j_jhazmat_2019_121495 crossref_primary_10_1080_08927014_2012_710324 crossref_primary_10_1007_s10529_016_2128_x crossref_primary_10_1038_s41467_019_11681_0 crossref_primary_10_1039_b717196j |
Cites_doi | 10.1111/j.1462-2920.2006.01065.x 10.2138/rmg.2005.59.5 10.1128/JB.187.10.3293-3301.2005 10.1128/JB.187.13.4505-4513.2005 10.1099/13500872-140-8-1953 10.1016/S0005-2736(97)00034-5 10.1128/JB.184.6.1806-1810.2002 10.1046/j.1365-2958.2003.03339.x 10.1186/1467-4866-6-77 10.1128/JB.185.7.2096-2103.2003 10.1016/0304-4203(86)90055-1 10.1128/JB.184.1.142-151.2002 10.1128/JB.180.23.6292-6297.1998 10.1128/AEM.69.6.3636-3639.2003 10.1111/j.1365-2958.2005.04628.x 10.1128/jb.174.11.3429-3438.1992 10.1128/JB.188.8.3138-3142.2006 10.1128/AEM.68.11.5585-5594.2002 10.1128/AEM.71.4.2186-2189.2005 10.1016/j.tibtech.2005.04.008 10.1016/j.bbamcr.2004.02.005 10.1111/j.1365-2958.1987.tb00534.x 10.3354/meps167291 10.1038/nbt716 10.1042/bj20020597 10.1046/j.1472-765X.2003.01389.x 10.1038/nrmicro1490 10.1021/ja063526d 10.1128/AEM.68.5.2436-2444.2002 10.1007/BF00172503 10.1146/annurev.pa.12.040172.002033 10.1074/jbc.M302582200 10.1128/JB.188.8.2792-2800.2006 10.1007/s00253-003-1412-6 10.1128/AEM.01444-06 10.1007/s00203-002-0472-9 10.1126/science.1059567 10.1111/j.1574-6968.1993.tb06576.x 10.1021/es050778q 10.1097/00010694-199911000-00003 10.1186/1467-4866-5-13 10.1097/00010694-200111000-00007 10.1007/978-3-662-03736-2_2 10.1023/A:1005674107841 10.1111/j.1365-2958.2007.05783.x 10.1046/j.1365-2958.2001.02257.x 10.1128/AEM.71.9.5607-5609.2005 10.1126/science.1066771 10.1099/mic.0.28864-0 10.1128/AEM.66.9.3743-3749.2000 10.1128/AEM.71.12.8634-8641.2005 10.1007/s00253-004-1564-z 10.1016/j.tim.2005.07.009 10.1128/MMBR.55.2.259-287.1991 10.1038/35011098 10.1007/s00248-003-0004-4 10.1126/science.288.5464.333 10.1007/PL00000796 10.1021/es048563o 10.1128/aem.54.6.1472-1480.1988 10.1111/j.1472-4669.2006.00071.x 10.1371/journal.pbio.0040268 10.1002/j.1460-2075.1989.tb08338.x 10.1128/jb.179.4.1143-1152.1997 10.1201/9780824744458 10.1126/science.240.4857.1319 10.1128/AEM.64.4.1504-1509.1998 10.1038/nature03661 10.1128/AEM.71.11.7453-7460.2005 10.1073/pnas.0604517103 10.1146/annurev.mi.48.100194.001523 10.1021/es980272q 10.1146/annurev.micro.60.080805.142053 10.1002/jctb.280340103 10.1007/s00410-002-0418-x 10.1016/0005-2728(85)90248-8 10.1046/j.1365-2958.1996.389922.x 10.1046/j.1365-2958.2002.02797.x 10.1128/AEM.71.8.4414-4426.2005 10.1128/AEM.62.1.288-291.1996 10.1128/JB.184.3.846-848.2002 10.1016/j.resmic.2005.07.012 10.1128/AEM.70.3.1405-1412.2004 10.1007/BF00290916 10.1146/annurev.genet.38.072902.091138 10.4319/lo.1980.25.6.1054 10.1126/science.1097396 10.1111/j.1432-1033.1969.tb00548.x 10.1016/j.gca.2006.10.002 10.1046/j.1529-8817.1999.3510008.x 10.1128/JB.01966-05 10.1128/AEM.70.9.5373-5382.2004 10.1128/JB.184.1.313-317.2002 10.1146/annurev.mi.38.100184.002503 10.1046/j.1462-5814.2003.00268.x 10.1128/AEM.67.10.4471-4478.2001 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
DOI | 10.1111/j.1365-2958.2007.05778.x |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2958 |
EndPage | 11 |
ExternalDocumentID | PMC2804852 17581115 18850025 10_1111_j_1365_2958_2007_05778_x MMI5778 US201300783544 |
Genre | reviewArticle Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ABTAH ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEQTP AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FBQ FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XFK XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG ALVPJ HGLYW OIG AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c6238-a9cc47359d9b58e12ab0e8fb933ce1512f1d456302427175984cc60e34ccd8983 |
IEDL.DBID | DR2 |
ISSN | 0950-382X |
IngestDate | Thu Aug 21 18:34:44 EDT 2025 Fri Jul 11 08:22:34 EDT 2025 Fri Jul 11 05:18:01 EDT 2025 Mon Jul 21 05:51:50 EDT 2025 Mon Jul 21 09:13:10 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Tue Jul 01 03:38:02 EDT 2025 Wed Aug 20 07:27:23 EDT 2025 Wed Dec 27 19:24:19 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Microbiology |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6238-a9cc47359d9b58e12ab0e8fb933ce1512f1d456302427175984cc60e34ccd8983 |
Notes | http://dx.doi.org/10.1111/j.1365-2958.2007.05778.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2007.05778.x |
PMID | 17581115 |
PQID | 47361023 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2804852 proquest_miscellaneous_70648176 proquest_miscellaneous_47361023 pubmed_primary_17581115 pascalfrancis_primary_18850025 crossref_primary_10_1111_j_1365_2958_2007_05778_x crossref_citationtrail_10_1111_j_1365_2958_2007_05778_x wiley_primary_10_1111_j_1365_2958_2007_05778_x_MMI5778 fao_agris_US201300783544 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2007 |
PublicationDateYYYYMMDD | 2007-07-01 |
PublicationDate_xml | – month: 07 year: 2007 text: July 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Mol Microbiol |
PublicationYear | 2007 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell Science |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell Science |
References | 1987; 1 2004; 63 2004; 64 2006; 72 1991; 55 1985; 806 1999; 164 2004; 5 2007; 71 2003; 278 2005; 23 1969; 8 2006; 60 2004; 70 2003; 369 2005; 187 2004; 38 2002; 184 2001; 292 2000; 405 2002; 43 1994; 140 2003; 47 1996; 62 2003; 5 2005; 71 2000; 288 2004; 1693 2007; 65 1972; 12 2005; 39 2001; 58 1998; 167 2006; 128 1998; 180 1997; 179 2001; 166 1980; 25 2004; 49 2002; 295 2004; 48 2000; 66 2000; 22 2005; 435 1989; 8 2002; 178 1988; 54 1998 2006; 152 2006; 8 2003; 37 1986; 19 1994 2006; 4 1994; 48 1988; 240 2002 1888; 46 2001; 67 1998; 64 2004; 304 2006; 157 1998; 1326 1992; 174 2002; 20 1984; 38 2002; 68 1984; 34 1999; 35 2003; 69 2005; 6 2001; 39 1889; 3 2005; 59 1993; 114 1998; 32 1993; 159 2003; 144 2005; 56 2006; 188 2006; 103 2005; 13 2003; 185 1996; 44 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 Turick C.E. (e_1_2_8_95_1) 1996; 44 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 Beijerinck M.W. (e_1_2_8_3_1) 1888; 46 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_71_1 e_1_2_8_28_1 Lovley D.R. (e_1_2_8_46_1) 1988; 54 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 Stevenson F.J. (e_1_2_8_88_1) 1994 e_1_2_8_93_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 Lovley D.R. (e_1_2_8_49_1) 2004 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 Winogradsky S. (e_1_2_8_99_1) 1889; 3 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_50_1 |
References_xml | – volume: 1326 start-page: 307 year: 1998 end-page: 318 article-title: Isolation and sequence of , a gene encoding a decaheme outer membrane cytochrome of MR‐1, and detection of homologs in other strains of publication-title: Biochim Biophys Acta – volume: 43 start-page: 1005 year: 2002 end-page: 1021 article-title: Behaviour of topological marker proteins targeted to the Tat protein transport pathway publication-title: Mol Microbiol – volume: 435 start-page: 1098 year: 2005 end-page: 1101 article-title: Extracellular electron transfer via microbial nanowires publication-title: Nature – volume: 6 start-page: 77 year: 2005 end-page: 84 article-title: Cell adhesion of to iron oxide minerals: effect of different single crystal faces publication-title: Geochem Trans – volume: 164 start-page: 790 year: 1999 end-page: 802 article-title: Macromolecular properties of soil humic substances: fact, fiction, and opinion publication-title: Soil Sci – volume: 8 start-page: 1805 year: 2006 end-page: 1815 article-title: Microarray and genetic analysis of electron transfer to electrodes in publication-title: Environ Microbiol – volume: 288 start-page: 333 year: 2000 end-page: 335 article-title: Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXphi publication-title: Science – volume: 48 start-page: 178 year: 2004 end-page: 190 article-title: Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments publication-title: Microbiol Ecol – volume: 152 start-page: 2257 year: 2006 end-page: 2264 article-title: A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in publication-title: Microbiology – volume: 46 start-page: 725 year: 1888 end-page: 804 article-title: Die bacterien der papilionaceenknöllchen publication-title: Bot Ztg – volume: 64 start-page: 702 year: 2004 end-page: 711 article-title: Quinone‐respiration improves dechlorination of carbon tetrachloride by anaerobic sludge publication-title: Appl Microbiol Biotechnol – volume: 32 start-page: 2984 year: 1998 end-page: 2989 article-title: Quinone moieties act as electron acceptors in the reduction of humic substances by humics‐reducing microorganisms publication-title: Environ Sci Technol – volume: 44 start-page: 683 year: 1996 end-page: 688 article-title: Isolation of hexavalent chromium‐reducing anaerobes from hexavalent‐chromium‐contaminated and noncontaminated environments publication-title: Appl Microbiol Biotechnol – volume: 369 start-page: 153 year: 2003 end-page: 161 article-title: Biochemical and genetic characterization of PpcA, a periplasmic ‐type cytochrome in publication-title: Biochem J – volume: 188 start-page: 3138 year: 2006 end-page: 3142 article-title: Two putative ‐type multiheme cytochromes required for the expression of OmcB, an outer membrane protein essential for optimal Fe(III) reduction in publication-title: J Bacteriol – volume: 13 start-page: 421 year: 2005 end-page: 428 article-title: Geomicrobiology of manganese(II) oxidation publication-title: Trend Microbiol – volume: 103 start-page: 11358 year: 2006 end-page: 11363 article-title: Electrically conductive bacterial nanowires produced by strain MR‐1 and other microorganisms publication-title: Proc Natl Acad Sci USA – volume: 34 start-page: 3 year: 1984 end-page: 12 article-title: Electron transfer coupling in microbial fuel cells – comparison of redox mediator reduction rates and respiratory rates of bacteria publication-title: J Chem Technol Biotechnol – volume: 71 start-page: 2186 year: 2005 end-page: 2189 article-title: Evidence for involvement of an electron shuttle in electricity generation by publication-title: Appl Environ Microbiol – volume: 4 start-page: 123 year: 2006 end-page: 136 article-title: Microbial fuel cell energy from an ocean cold seep publication-title: Geobiology – volume: 37 start-page: 254 year: 2003 end-page: 258 article-title: Cell surface exposure of the outer membrane cytochromes of MR‐1 publication-title: Let Appl Microbiol – volume: 49 start-page: 219 year: 2004 end-page: 286 – volume: 63 start-page: 672 year: 2004 end-page: 681 article-title: Enrichment of microbial community generating electricity using a fuel‐cell‐type electrochemical cell publication-title: Appl Microbiol Biotechnol – volume: 8 start-page: 450 year: 1969 end-page: 454 article-title: The polarity of proton translocation in some photosynthetic microorganisms publication-title: Euro J Biochem – volume: 69 start-page: 3636 year: 2003 end-page: 3639 article-title: Microbial reduction and precipitation of vanadium by publication-title: Appl Environ Microbiol – volume: 68 start-page: 5585 year: 2002 end-page: 5594 article-title: MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of MR‐1 publication-title: Appl Environ Microbiol – volume: 144 start-page: 523 year: 2003 end-page: 547 article-title: Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton publication-title: Contrib Mineral Petrol – volume: 157 start-page: 49 year: 2006 end-page: 56 article-title: Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria publication-title: Res Microbiol – volume: 179 start-page: 1143 year: 1997 end-page: 1152 article-title: Cloning and sequence of , a gene encoding a tetraheme cytochrome required for reduction of iron(III), fumarate, and nitrate by MR‐1 publication-title: J Bacteriol – volume: 240 start-page: 1319 year: 1988 end-page: 1321 article-title: Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor publication-title: Science – volume: 60 start-page: 107 year: 2006 end-page: 130 article-title: Arsenic and selenium in microbial metabolism publication-title: Ann Rev Microbiol – volume: 22 start-page: 1301 year: 2000 end-page: 1304 article-title: Electricity production in biofuel cell using modified graphite electrode with Neutral Red publication-title: Biotechnol Let – volume: 295 start-page: 483 year: 2002 end-page: 485 article-title: Electrode‐reducing microorganisms that harvest energy from marine sediments publication-title: Science – volume: 66 start-page: 3743 year: 2000 end-page: 3749 article-title: Direct and Fe(II)‐mediated reduction of technetium by Fe(III)‐reducing bacteria publication-title: Appl Environ Microbiol – start-page: 9 year: 1998 end-page: 39 – year: 2002 – volume: 166 start-page: 810 year: 2001 end-page: 832 article-title: The supramolecular structure of humic substances publication-title: Soil Sci – volume: 3 start-page: 49 year: 1889 end-page: 60 article-title: Recherches physiologiques sur les sulfobacteries publication-title: Annals l'Institut Pasteur – volume: 292 start-page: 1360 year: 2001 end-page: 1363 article-title: Bacterial recognition of mineral surfaces: nanoscale interactions between and alpha‐FeOOH publication-title: Science – volume: 23 start-page: 291 year: 2005 end-page: 298 article-title: Microbial fuel cells: novel biotechnology for energy generation publication-title: Trend Biotechnol – volume: 185 start-page: 2096 year: 2003 end-page: 2103 article-title: OmcB, a ‐type polyheme cytochrome, involved in Fe(III) reduction in publication-title: J Bacteriol – volume: 184 start-page: 142 year: 2002 end-page: 151 article-title: Dissimilatory Fe(III) and Mn(IV) reduction by requires , a homolog of the ( ) type II protein secretion gene publication-title: J Bacteriol – volume: 38 start-page: 175 year: 2004 end-page: 202 article-title: The genetics of geochemistry publication-title: Ann Rev Gen – volume: 114 start-page: 215 year: 1993 end-page: 222 article-title: Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by MR‐1 publication-title: FEMS Microbiol Let – volume: 25 start-page: 1054 year: 1980 end-page: 1063 article-title: Dimethylsulfoxide in marine and freshwaters publication-title: Limnol Oceanogr – volume: 1 start-page: 107 year: 1987 end-page: 116 article-title: Export and secretion of the lipoprotein pullulanase by publication-title: Mol Microbiol – volume: 71 start-page: 543 year: 2007 end-page: 555 article-title: Electron tunneling properties of outer‐membrane decaheme cytochromes from publication-title: Geochim Cosmochim Acta – volume: 48 start-page: 311 year: 1994 end-page: 343 article-title: Iron and manganese in anaerobic respiration – environmental significance, physiology, and regulation publication-title: Ann Rev Microbiol – volume: 19 start-page: 343 year: 1986 end-page: 353 article-title: Photooxidation of dimethylsulfide in aqueous solution publication-title: Mar Chem – volume: 278 start-page: 27758 year: 2003 end-page: 27765 article-title: Characterization of the MR‐1 decaheme cytochrome MtrA publication-title: J Biol Chem – volume: 64 start-page: 1504 year: 1998 end-page: 1509 article-title: Recovery of humic‐reducing bacteria from a diversity of environments publication-title: Appl Environ Microbiol – volume: 39 start-page: 722 year: 2001 end-page: 730 article-title: MtrC, an outer membrane decahaem cytochrome required for metal reduction in MR‐1 publication-title: Mol Microbiol – volume: 71 start-page: 8634 year: 2005 end-page: 8641 article-title: Outer membrane ‐type cytochromes required for Fe(III) and Mn(IV) oxide reduction in publication-title: Appl Environ Microbiol – volume: 70 start-page: 5373 year: 2004 end-page: 5382 article-title: Biofuel cells select for microbial consortia that self‐mediate electron transfer publication-title: Appl Environ Microbiol – year: 1994 – volume: 405 start-page: 94 year: 2000 end-page: 97 article-title: A role for excreted quinones in extracellular electron transfer publication-title: Nature – volume: 806 start-page: 410 year: 1985 end-page: 417 article-title: Periplasmic location of the terminal reductase in trimethylamine ‐oxide and dimethylsulphoxide respiration in the photosynthetic bacterium publication-title: Biochim Biophys Acta – volume: 188 start-page: 2792 year: 2006 end-page: 2800 article-title: DNA microarray and proteomic analyses of the RpoS regulon in publication-title: J Bacteriol – volume: 103 start-page: 4669 year: 2006 end-page: 4674 article-title: Extracellular respiration of dimethyl sulfoxide by strain MR‐1 publication-title: Proc Natl Acad Sci USA – volume: 47 start-page: 993 year: 2003 end-page: 1006 article-title: Identification of a novel Gsp‐related pathway required for the secretion of the manganese‐oxidizing factor of strain GB‐1 publication-title: Mol Microbiol – volume: 58 start-page: 1562 year: 2001 end-page: 1571 article-title: Extracellular electron transfer publication-title: Cell Mol Life Sci – volume: 4 start-page: e268 year: 2006 article-title: c‐Type cytochrome‐dependent formation of U(IV) nanoparticles by Shewanella oneidensis publication-title: PLoS Biol – volume: 5 start-page: 203 year: 2003 end-page: 223 article-title: The contribution of melanin to microbial pathogenesis publication-title: Cell Microbiol – volume: 38 start-page: 515 year: 1984 end-page: 550 article-title: Biology of iron‐depositing and manganese‐depositing bacteria publication-title: Ann Rev Microbiol – volume: 65 year: 2007 article-title: Bacterial metal (hydr)oxide respiration: a key role for multiheme ‐type cytochromes publication-title: Mol Microbiol – volume: 12 start-page: 353 year: 1972 article-title: Pharmacology of dimethyl sulfoxide publication-title: Ann Rev Pharm – volume: 140 start-page: 1953 year: 1994 end-page: 1958 article-title: Isolation and characterization of a strain of – a bacterium which grows autotrophically with dimethylsulfide as electron donor publication-title: Microbiology-UK – volume: 304 start-page: 1623 year: 2004 end-page: 1627 article-title: Carbon sequestration impacts on global climate change and food security publication-title: Science – volume: 178 start-page: 450 year: 2002 end-page: 456 article-title: Localization of Mn(II)‐oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine sp strain SG‐1 publication-title: Arch Microbiol – volume: 174 start-page: 3429 year: 1992 end-page: 3438 article-title: Localization of cytochromes to the outer‐membrane of anaerobically grown MR‐1 publication-title: J Bacteriol – volume: 180 start-page: 6292 year: 1998 end-page: 6297 article-title: encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction publication-title: J Bacteriol – volume: 59 start-page: 85 year: 2005 end-page: 108 article-title: Geomicrobiological cycling of iron publication-title: Rev Mineral Geochem – volume: 39 start-page: 9009 year: 2005 end-page: 9015 article-title: Molecular structure in soil humic substances: the new view publication-title: Environ Sci Technol – volume: 5 start-page: 13 year: 2004 end-page: 32 article-title: Acid mine drainage biogeochemistry at Iron Mountain, California publication-title: Geochem Trans – volume: 4 start-page: 752 year: 2006 end-page: 764 article-title: Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction publication-title: Nat Rev Microbiol – volume: 187 start-page: 4505 year: 2005 end-page: 4513 article-title: OmcF, a putative ‐type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in publication-title: J Bacteriol – volume: 8 start-page: 2149 year: 1989 end-page: 2170 article-title: The photosynthetic reaction center from the purple bacterium publication-title: EMBO J – volume: 54 start-page: 1472 year: 1988 end-page: 1480 article-title: Novel mode of microbial energy metabolism – organic carbon oxidation coupled to dissimilatory reduction of iron or manganese publication-title: Appl Environ Microbiol – volume: 128 start-page: 13978 year: 2006 end-page: 13979 article-title: High‐affinity binding and direct electron transfer to solid metals by the MR‐1 outer membrane ‐type cytochrome OmcA publication-title: J Am Chem Soc – volume: 187 start-page: 3293 year: 2005 end-page: 3301 article-title: Respiration and growth of MR‐1 using vanadate as the sole electron acceptor publication-title: J Bacteriol – volume: 56 start-page: 1347 year: 2005 end-page: 1357 article-title: Anaerobic regulation by an atypical Arc system in publication-title: Mol Microbiol – volume: 70 start-page: 1405 year: 2004 end-page: 1412 article-title: Vanadium(V) reduction by MR‐1 requires menaquinone and cytochromes from the cytoplasmic and outer membranes publication-title: Appl Environ Microbiol – volume: 184 start-page: 1806 year: 2002 end-page: 1810 article-title: Protective role of in efflux of the electron shuttle anthraquinone‐2,6‐disulfonate publication-title: J Bacteriol – volume: 55 start-page: 259 year: 1991 end-page: 287 article-title: Dissimilatory Fe(III) and Mn(IV) reduction publication-title: Microbiol Rev – volume: 71 start-page: 7453 year: 2005 end-page: 7460 article-title: Global transcriptional profiling of MR‐1 during Cr(VI) and U(VI) reduction publication-title: Appl Environ Microbiol – volume: 167 start-page: 291 year: 1998 end-page: 296 article-title: Particulate dimethyl sulphoxide in seawater: production by microplankton publication-title: Mar Ecol Prog Ser – volume: 159 start-page: 336 year: 1993 end-page: 344 article-title: gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals publication-title: Arch Microbiol – volume: 67 start-page: 4471 year: 2001 end-page: 4478 article-title: Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors publication-title: Appl Environ Microbiol – volume: 35 start-page: 8 year: 1999 end-page: 18 article-title: Intracellular dimethylsulfoxide (DMSO) in unicellular marine algae: speculations on its origin and possible biological role publication-title: J Phycol – volume: 68 start-page: 2436 year: 2002 end-page: 2444 article-title: Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by BrY publication-title: Appl Environ Microbiol – volume: 184 start-page: 846 year: 2002 end-page: 848 article-title: Role of menaquinones in Fe(III) reduction by membrane fractions of publication-title: J Bacteriol – volume: 20 start-page: 821 year: 2002 end-page: 825 article-title: Harnessing microbially generated power on the seafloor publication-title: Nat Biotechnol – volume: 184 start-page: 313 year: 2002 end-page: 317 article-title: The high molecular weight cytochrome Cyc2 of is an outer membrane protein publication-title: J Bacteriol – volume: 188 start-page: 4705 year: 2006 end-page: 4714 article-title: Isolation of a high‐affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme ‐type cytochromes of MR‐1 publication-title: J Bacteriol – volume: 72 start-page: 7345 year: 2006 end-page: 7348 article-title: Biofilm and nanowire production leads to increased current in fuel cells publication-title: Appl Environ Microbiol – volume: 62 start-page: 288 year: 1996 end-page: 291 article-title: Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms publication-title: Appl Environ Microbiol – volume: 71 start-page: 4414 year: 2005 end-page: 4426 article-title: MR‐1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms publication-title: Appl Environ Microbiol – volume: 39 start-page: 3401 year: 2005 end-page: 3408 article-title: Microbial phenazine production enhances electron transfer in biofuel cells publication-title: Environ Sci Technol – volume: 1693 start-page: 5 year: 2004 end-page: 13 article-title: Sorting of lipoproteins to the outer membrane in publication-title: Biochim Biophys Acta Mol Cell Res – volume: 71 start-page: 5607 year: 2005 end-page: 5609 article-title: Selenite and tellurite reduction by publication-title: Appl Environ Microbiol – ident: e_1_2_8_32_1 doi: 10.1111/j.1462-2920.2006.01065.x – ident: e_1_2_8_34_1 doi: 10.2138/rmg.2005.59.5 – ident: e_1_2_8_11_1 doi: 10.1128/JB.187.10.3293-3301.2005 – ident: e_1_2_8_35_1 doi: 10.1128/JB.187.13.4505-4513.2005 – ident: e_1_2_8_29_1 doi: 10.1099/13500872-140-8-1953 – ident: e_1_2_8_59_1 doi: 10.1016/S0005-2736(97)00034-5 – ident: e_1_2_8_85_1 doi: 10.1128/JB.184.6.1806-1810.2002 – ident: e_1_2_8_19_1 doi: 10.1046/j.1365-2958.2003.03339.x – ident: e_1_2_8_64_1 doi: 10.1186/1467-4866-6-77 – ident: e_1_2_8_40_1 doi: 10.1128/JB.185.7.2096-2103.2003 – ident: e_1_2_8_9_1 doi: 10.1016/0304-4203(86)90055-1 – start-page: 219 volume-title: Advances in Microbial Physiology year: 2004 ident: e_1_2_8_49_1 – ident: e_1_2_8_20_1 doi: 10.1128/JB.184.1.142-151.2002 – ident: e_1_2_8_4_1 doi: 10.1128/JB.180.23.6292-6297.1998 – ident: e_1_2_8_10_1 doi: 10.1128/AEM.69.6.3636-3639.2003 – ident: e_1_2_8_27_1 doi: 10.1111/j.1365-2958.2005.04628.x – ident: e_1_2_8_56_1 doi: 10.1128/jb.174.11.3429-3438.1992 – ident: e_1_2_8_36_1 doi: 10.1128/JB.188.8.3138-3142.2006 – ident: e_1_2_8_60_1 doi: 10.1128/AEM.68.11.5585-5594.2002 – ident: e_1_2_8_7_1 doi: 10.1128/AEM.71.4.2186-2189.2005 – ident: e_1_2_8_72_1 doi: 10.1016/j.tibtech.2005.04.008 – ident: e_1_2_8_94_1 doi: 10.1016/j.bbamcr.2004.02.005 – ident: e_1_2_8_23_1 doi: 10.1111/j.1365-2958.1987.tb00534.x – ident: e_1_2_8_86_1 doi: 10.3354/meps167291 – ident: e_1_2_8_93_1 doi: 10.1038/nbt716 – volume: 46 start-page: 725 year: 1888 ident: e_1_2_8_3_1 article-title: Die bacterien der papilionaceenknöllchen publication-title: Bot Ztg – ident: e_1_2_8_44_1 doi: 10.1042/bj20020597 – ident: e_1_2_8_61_1 doi: 10.1046/j.1472-765X.2003.01389.x – ident: e_1_2_8_97_1 doi: 10.1038/nrmicro1490 – ident: e_1_2_8_100_1 doi: 10.1021/ja063526d – ident: e_1_2_8_96_1 doi: 10.1128/AEM.68.5.2436-2444.2002 – volume: 44 start-page: 683 year: 1996 ident: e_1_2_8_95_1 article-title: Isolation of hexavalent chromium‐reducing anaerobes from hexavalent‐chromium‐contaminated and noncontaminated environments publication-title: Appl Microbiol Biotechnol doi: 10.1007/BF00172503 – ident: e_1_2_8_16_1 doi: 10.1146/annurev.pa.12.040172.002033 – ident: e_1_2_8_71_1 doi: 10.1074/jbc.M302582200 – ident: e_1_2_8_68_1 doi: 10.1128/JB.188.8.2792-2800.2006 – ident: e_1_2_8_37_1 doi: 10.1007/s00253-003-1412-6 – volume: 3 start-page: 49 year: 1889 ident: e_1_2_8_99_1 article-title: Recherches physiologiques sur les sulfobacteries publication-title: Annals l'Institut Pasteur – ident: e_1_2_8_76_1 doi: 10.1128/AEM.01444-06 – ident: e_1_2_8_24_1 doi: 10.1007/s00203-002-0472-9 – ident: e_1_2_8_50_1 doi: 10.1126/science.1059567 – ident: e_1_2_8_57_1 doi: 10.1111/j.1574-6968.1993.tb06576.x – ident: e_1_2_8_90_1 doi: 10.1021/es050778q – ident: e_1_2_8_91_1 doi: 10.1097/00010694-199911000-00003 – ident: e_1_2_8_21_1 doi: 10.1186/1467-4866-5-13 – ident: e_1_2_8_70_1 doi: 10.1097/00010694-200111000-00007 – ident: e_1_2_8_52_1 doi: 10.1007/978-3-662-03736-2_2 – ident: e_1_2_8_69_1 doi: 10.1023/A:1005674107841 – ident: e_1_2_8_84_1 doi: 10.1111/j.1365-2958.2007.05783.x – ident: e_1_2_8_5_1 doi: 10.1046/j.1365-2958.2001.02257.x – ident: e_1_2_8_38_1 doi: 10.1128/AEM.71.9.5607-5609.2005 – ident: e_1_2_8_8_1 doi: 10.1126/science.1066771 – ident: e_1_2_8_55_1 doi: 10.1099/mic.0.28864-0 – ident: e_1_2_8_43_1 doi: 10.1128/AEM.66.9.3743-3749.2000 – ident: e_1_2_8_54_1 doi: 10.1128/AEM.71.12.8634-8641.2005 – ident: e_1_2_8_13_1 doi: 10.1007/s00253-004-1564-z – ident: e_1_2_8_92_1 doi: 10.1016/j.tim.2005.07.009 – ident: e_1_2_8_45_1 doi: 10.1128/MMBR.55.2.259-287.1991 – ident: e_1_2_8_66_1 doi: 10.1038/35011098 – ident: e_1_2_8_31_1 doi: 10.1007/s00248-003-0004-4 – ident: e_1_2_8_17_1 doi: 10.1126/science.288.5464.333 – ident: e_1_2_8_30_1 doi: 10.1007/PL00000796 – ident: e_1_2_8_74_1 doi: 10.1021/es048563o – volume: 54 start-page: 1472 year: 1988 ident: e_1_2_8_46_1 article-title: Novel mode of microbial energy metabolism – organic carbon oxidation coupled to dissimilatory reduction of iron or manganese publication-title: Appl Environ Microbiol doi: 10.1128/aem.54.6.1472-1480.1988 – ident: e_1_2_8_77_1 doi: 10.1111/j.1472-4669.2006.00071.x – ident: e_1_2_8_53_1 doi: 10.1371/journal.pbio.0040268 – ident: e_1_2_8_18_1 doi: 10.1002/j.1460-2075.1989.tb08338.x – ident: e_1_2_8_58_1 doi: 10.1128/jb.179.4.1143-1152.1997 – ident: e_1_2_8_22_1 doi: 10.1201/9780824744458 – ident: e_1_2_8_62_1 doi: 10.1126/science.240.4857.1319 – ident: e_1_2_8_14_1 doi: 10.1128/AEM.64.4.1504-1509.1998 – ident: e_1_2_8_75_1 doi: 10.1038/nature03661 – ident: e_1_2_8_6_1 doi: 10.1128/AEM.71.11.7453-7460.2005 – ident: e_1_2_8_26_1 doi: 10.1073/pnas.0604517103 – ident: e_1_2_8_65_1 doi: 10.1146/annurev.mi.48.100194.001523 – ident: e_1_2_8_82_1 doi: 10.1021/es980272q – ident: e_1_2_8_89_1 doi: 10.1146/annurev.micro.60.080805.142053 – ident: e_1_2_8_78_1 doi: 10.1002/jctb.280340103 – ident: e_1_2_8_33_1 doi: 10.1007/s00410-002-0418-x – ident: e_1_2_8_51_1 doi: 10.1016/0005-2728(85)90248-8 – ident: e_1_2_8_28_1 doi: 10.1046/j.1365-2958.1996.389922.x – ident: e_1_2_8_87_1 doi: 10.1046/j.1365-2958.2002.02797.x – ident: e_1_2_8_42_1 doi: 10.1128/AEM.71.8.4414-4426.2005 – ident: e_1_2_8_48_1 doi: 10.1128/AEM.62.1.288-291.1996 – volume-title: Humus Chemistry: Genesis, Composition, Reactions year: 1994 ident: e_1_2_8_88_1 – ident: e_1_2_8_79_1 doi: 10.1128/JB.184.3.846-848.2002 – ident: e_1_2_8_80_1 doi: 10.1016/j.resmic.2005.07.012 – ident: e_1_2_8_63_1 doi: 10.1128/AEM.70.3.1405-1412.2004 – ident: e_1_2_8_47_1 doi: 10.1007/BF00290916 – ident: e_1_2_8_15_1 doi: 10.1146/annurev.genet.38.072902.091138 – ident: e_1_2_8_2_1 doi: 10.4319/lo.1980.25.6.1054 – ident: e_1_2_8_39_1 doi: 10.1126/science.1097396 – ident: e_1_2_8_81_1 doi: 10.1111/j.1432-1033.1969.tb00548.x – ident: e_1_2_8_98_1 doi: 10.1016/j.gca.2006.10.002 – ident: e_1_2_8_41_1 doi: 10.1046/j.1529-8817.1999.3510008.x – ident: e_1_2_8_83_1 doi: 10.1128/JB.01966-05 – ident: e_1_2_8_73_1 doi: 10.1128/AEM.70.9.5373-5382.2004 – ident: e_1_2_8_101_1 doi: 10.1128/JB.184.1.313-317.2002 – ident: e_1_2_8_25_1 doi: 10.1146/annurev.mi.38.100184.002503 – ident: e_1_2_8_67_1 doi: 10.1046/j.1462-5814.2003.00268.x – ident: e_1_2_8_12_1 doi: 10.1128/AEM.67.10.4471-4478.2001 |
SSID | ssj0013063 |
Score | 2.39802 |
Snippet | Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve... Summary Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological and medical sciences Cytochrome c Group - genetics Cytochrome c Group - metabolism Electron Transport Ferric Compounds - metabolism Fundamental and applied biological sciences. Psychology Geobacter - enzymology Geobacter - metabolism Manganese Compounds - metabolism Microbiology Oxidation-Reduction Oxides - metabolism Shewanella - enzymology Shewanella - metabolism |
Title | Extracellular respiration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2007.05778.x https://www.ncbi.nlm.nih.gov/pubmed/17581115 https://www.proquest.com/docview/47361023 https://www.proquest.com/docview/70648176 https://pubmed.ncbi.nlm.nih.gov/PMC2804852 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BJSQu0PLa0FL2wDWrxI5j-1hVfSEtB2ClvVm24wBqlUX7kAq_nhknu9vAIlWISxIpthWPZ8af7ck3AO9qlbmaVzZlTldpIfKQWhlCqlwmHZc8-CoGyH4oLyfF-6mYdvFP9C9Myw-x2XAjy4j-mgzcukXfyGOElhaqYyIUUqoR4Ul6QfjoI9seKHRJ1bQgOlk27Qf17GyoN1M9rO2M4ibtAkVXtzkvdoHSP2Mr72LeOGmdP4XrdXfbWJXr0WrpRv7nb0yQ_0ce-_Ckw7bDk1YZD-BBaJ7Bozbb5Y_nkJzd4rfSSQGFvg7n3SE_KsYLmJyffT69TLvMDKlHuKRSq72nnMW60k6okDPrsqBqpzn3gTBEnVcFMY8hAMD1otCq8L7MAsdbpbTiL2GvmTVhAEPvHRO25DXT6E9wscgs50zaGh1DpYo8AbkeBeM72nLKnnFj7ixfsOOGOk5JNaWJHTe3CeSbmt9b6o571BngQBv7BT2smXxipDhZ3BwrEjjujf62TaUEQccE3q7VwaCNkjhtE2arhUFRlUSR8fcSEpGhymWZwKtWfbat44IOvxhblz3F2hQgfvD-m-bb18gTzhS6Z8ESKKPe3FsIZjy-oqfX_1rxEB6vt8Cz_Aj2lvNVeIPYbemOo1Xi9WKa_wKs9DKC |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RQguvKHh0e4BjlklThzbBw6Ittql3R6gK-3N2I4DCJRF3V2x5a_xV_gxzOSx20CRKqQeOCVSYssaz9P58g3A80JGtkhyEzKr8jDlsQ-N8D6UNhI2EYl3eQWQPc4G4_TNhE824Ef7L0zND7E6cCPLqPw1GTgdSHetvIJoKS4bKkIuhOwvG4TloT_7hvXb7OVwDzf7BWMH-yevB2HTYiB0GPdlaJRz1HxX5cpy6WNmbORlYbHMd56CYRHnKVFoYSTDwocrmTqXRT7BSy6VTHDeTbhGDcWJuH_vLVt_wmjauClOBLZs0oURXbjyTmzcLMyUkJpmhptV1F02LkqD_0Rzns-yqzB5cBt-tgKu0TGf-4u57bvvv3FP_qc7cAduNel771Vtb3dhw5f34Hrd0PPsPgT7SxQOfQwhdG_vtMExoO4_gPGVrOshbJXT0m9DzznLuMmSgil0mVgPM5MkTJgCfV8u0zgA0W67dg0zOzUI-aLPVWgoaE2Cpr6hQleC1ssA4tXIrzU7ySXGbKNmafMBg4gev2OkqVF1_pcGsNNRt_WcUnLKjgPYbfVPoxsicZrSTxczjaLKiAXk728ITH5lLLIAHtX6up4da1ZcMc4uOpq8eoEo0LtPyk8fKyp0JjECcRZAVinqpYWgR6Mh3T3-14G7cGNwMjrSR8Pjwydwsz3xj-KnsDU_XfhnmKrO7U7lEnrw_qot4BfcrI1L |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RSAuvKHh0e4BjlklThzbBw6I7apLaYWAlfZmbMcBBMpW3V2x5afxV_gzzOSx20CRKqQeOCVSYssaz9P58g3A00JGtkhyEzKr8jDlsQ-N8D6UNhI2EYl3eQWQPcr2x-mrCZ9swI_2X5iaH2J14EaWUflrMvDjvOgaeYXQUlw2TIRcCNlfNgDLA3_6Dcu32fPRAPf6GWPDvfcv98Omw0DoMOzL0CjnqPeuypXl0sfM2MjLwmKV7zzFwiLOU2LQwkCGdQ9XMnUui3yCl1wqmeC8m3AlzSJFbSMGb9n6C0bTxU1x4q9lky6K6NyVd0LjZmGmBNQ0M9yrom6ycV4W_CeY82ySXUXJ4U342cq3Bsd86S_mtu--_0Y9-X9uwC240STvvRe1td2GDV_egat1O8_TuxDsLVE29CmEsL29kwbFgJp_D8aXsq77sFVOS78NPecs4yZLCqbQYWI1zEySMGEK9Hy5TOMARLvr2jW87NQe5Ks-U5-hoDUJmrqGCl0JWi8DiFcjj2tukguM2UbF0uYjhhA9fsdIUaPq9C8NYKejbes5peSUGwew26qfRidE4jSlny5mGkWVEQfI398QmPrKWGQBPKjVdT07Vqy4YpxddBR59QIRoHeflJ8_VUToTGL84SyArNLTCwtBHx6O6O7hvw7chWtvBkP9enR08Aiut8f9UfwYtuYnC_8E89S53akcQg8-XLYB_AJ1vIv6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+respiration&rft.jtitle=Molecular+microbiology&rft.au=Gralnick%2C+Jeffrey+A&rft.au=Newman%2C+Dianne+K&rft.date=2007-07-01&rft.issn=0950-382X&rft.volume=65&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1111%2Fj.1365-2958.2007.05778.x&rft_id=info%3Apmid%2F17581115&rft.externalDocID=17581115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |