Mitochondrial Damage‐Induced Innate Immune Activation in Vascular Smooth Muscle Cells Promotes Chronic Kidney Disease‐Associated Plaque Vulnerability

Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that atherosclerotic plaques in CKD may be vulnerable. However, its cause and mechanism remain obscure. Here, it is shown that apolipoprotein E‐deficient (ApoE...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 8; no. 5; pp. 2002738 - n/a
Main Authors Bi, Xianjin, Du, Changhong, Wang, Xinmiao, Wang, Xue‐Yue, Han, Wenhao, Wang, Yue, Qiao, Yu, Zhu, Yingguo, Ran, Li, Liu, Yong, Xiong, Jiachuan, Huang, Yinghui, Liu, Mingying, Liu, Chi, Zeng, Chunyu, Wang, Junping, Yang, Ke, Zhao, Jinghong
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.03.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that atherosclerotic plaques in CKD may be vulnerable. However, its cause and mechanism remain obscure. Here, it is shown that apolipoprotein E‐deficient (ApoE−/−) mouse with CKD (CKD/ApoE−/− mouse) is a useful model for investigating the pathogenesis of plaque vulnerability, and premature senescence and phenotypic switching of vascular smooth muscle cells (VSMCs) contributes to CKD‐associated plaque vulnerability. Subsequently, VSMC phenotypes in patients with CKD and CKD/ApoE−/− mice are comprehensively investigated. Using multi‐omics analysis and targeted and VSMC‐specific gene knockout mice, VSMCs are identified as both type‐I‐interferon (IFN‐I)‐responsive and IFN‐I‐productive cells. Mechanistically, mitochondrial damage resulting from CKD‐induced oxidative stress primes the cyclic GMP‐AMP synthase‐stimulator of interferon genes (cGAS‐STING) pathway to trigger IFN‐I response in VSMCs. Enhanced IFN‐I response then induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner, resulting in the loss of fibrous cap VSMCs and fibrous cap thinning. Conversely, blocking IFN‐I response remarkably attenuates CKD‐associated plaque vulnerability. These findings reveal that IFN‐I response in VSMCs through immune sensing of mitochondrial damage is essential for the pathogenesis of CKD‐associated plaque vulnerability. Mitigating IFN‐I response may hold promise for the treatment of CKD‐associated cardiovascular diseases. Oxidative stress‐induced mitochondrial damage under chronic kidney disease (CKD) milieu primes the cyclic GMP‐AMP synthase‐stimulator of interferon genes (cGAS‐STING) pathway in vascular smooth muscle cells (VSMCs) to trigger type‐I‐interferon response, which induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner and finally results in plaque vulnerability.
AbstractList Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that atherosclerotic plaques in CKD may be vulnerable. However, its cause and mechanism remain obscure. Here, it is shown that apolipoprotein E‐deficient (ApoE −/− ) mouse with CKD (CKD/ApoE −/− mouse) is a useful model for investigating the pathogenesis of plaque vulnerability, and premature senescence and phenotypic switching of vascular smooth muscle cells (VSMCs) contributes to CKD‐associated plaque vulnerability. Subsequently, VSMC phenotypes in patients with CKD and CKD/ApoE −/− mice are comprehensively investigated. Using multi‐omics analysis and targeted and VSMC‐specific gene knockout mice, VSMCs are identified as both type‐I‐interferon (IFN‐I)‐responsive and IFN‐I‐productive cells. Mechanistically, mitochondrial damage resulting from CKD‐induced oxidative stress primes the cyclic GMP‐AMP synthase‐stimulator of interferon genes (cGAS‐STING) pathway to trigger IFN‐I response in VSMCs. Enhanced IFN‐I response then induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner, resulting in the loss of fibrous cap VSMCs and fibrous cap thinning. Conversely, blocking IFN‐I response remarkably attenuates CKD‐associated plaque vulnerability. These findings reveal that IFN‐I response in VSMCs through immune sensing of mitochondrial damage is essential for the pathogenesis of CKD‐associated plaque vulnerability. Mitigating IFN‐I response may hold promise for the treatment of CKD‐associated cardiovascular diseases. Oxidative stress‐induced mitochondrial damage under chronic kidney disease (CKD) milieu primes the cyclic GMP‐AMP synthase‐stimulator of interferon genes (cGAS‐STING) pathway in vascular smooth muscle cells (VSMCs) to trigger type‐I‐interferon response, which induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner and finally results in plaque vulnerability.
Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that atherosclerotic plaques in CKD may be vulnerable. However, its cause and mechanism remain obscure. Here, it is shown that apolipoprotein E‐deficient (ApoE−/−) mouse with CKD (CKD/ApoE−/− mouse) is a useful model for investigating the pathogenesis of plaque vulnerability, and premature senescence and phenotypic switching of vascular smooth muscle cells (VSMCs) contributes to CKD‐associated plaque vulnerability. Subsequently, VSMC phenotypes in patients with CKD and CKD/ApoE−/− mice are comprehensively investigated. Using multi‐omics analysis and targeted and VSMC‐specific gene knockout mice, VSMCs are identified as both type‐I‐interferon (IFN‐I)‐responsive and IFN‐I‐productive cells. Mechanistically, mitochondrial damage resulting from CKD‐induced oxidative stress primes the cyclic GMP‐AMP synthase‐stimulator of interferon genes (cGAS‐STING) pathway to trigger IFN‐I response in VSMCs. Enhanced IFN‐I response then induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner, resulting in the loss of fibrous cap VSMCs and fibrous cap thinning. Conversely, blocking IFN‐I response remarkably attenuates CKD‐associated plaque vulnerability. These findings reveal that IFN‐I response in VSMCs through immune sensing of mitochondrial damage is essential for the pathogenesis of CKD‐associated plaque vulnerability. Mitigating IFN‐I response may hold promise for the treatment of CKD‐associated cardiovascular diseases.
Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that atherosclerotic plaques in CKD may be vulnerable. However, its cause and mechanism remain obscure. Here, it is shown that apolipoprotein E-deficient (ApoE-/-) mouse with CKD (CKD/ApoE-/- mouse) is a useful model for investigating the pathogenesis of plaque vulnerability, and premature senescence and phenotypic switching of vascular smooth muscle cells (VSMCs) contributes to CKD-associated plaque vulnerability. Subsequently, VSMC phenotypes in patients with CKD and CKD/ApoE-/- mice are comprehensively investigated. Using multi-omics analysis and targeted and VSMC-specific gene knockout mice, VSMCs are identified as both type-I-interferon (IFN-I)-responsive and IFN-I-productive cells. Mechanistically, mitochondrial damage resulting from CKD-induced oxidative stress primes the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway to trigger IFN-I response in VSMCs. Enhanced IFN-I response then induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner, resulting in the loss of fibrous cap VSMCs and fibrous cap thinning. Conversely, blocking IFN-I response remarkably attenuates CKD-associated plaque vulnerability. These findings reveal that IFN-I response in VSMCs through immune sensing of mitochondrial damage is essential for the pathogenesis of CKD-associated plaque vulnerability. Mitigating IFN-I response may hold promise for the treatment of CKD-associated cardiovascular diseases.Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that atherosclerotic plaques in CKD may be vulnerable. However, its cause and mechanism remain obscure. Here, it is shown that apolipoprotein E-deficient (ApoE-/-) mouse with CKD (CKD/ApoE-/- mouse) is a useful model for investigating the pathogenesis of plaque vulnerability, and premature senescence and phenotypic switching of vascular smooth muscle cells (VSMCs) contributes to CKD-associated plaque vulnerability. Subsequently, VSMC phenotypes in patients with CKD and CKD/ApoE-/- mice are comprehensively investigated. Using multi-omics analysis and targeted and VSMC-specific gene knockout mice, VSMCs are identified as both type-I-interferon (IFN-I)-responsive and IFN-I-productive cells. Mechanistically, mitochondrial damage resulting from CKD-induced oxidative stress primes the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway to trigger IFN-I response in VSMCs. Enhanced IFN-I response then induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner, resulting in the loss of fibrous cap VSMCs and fibrous cap thinning. Conversely, blocking IFN-I response remarkably attenuates CKD-associated plaque vulnerability. These findings reveal that IFN-I response in VSMCs through immune sensing of mitochondrial damage is essential for the pathogenesis of CKD-associated plaque vulnerability. Mitigating IFN-I response may hold promise for the treatment of CKD-associated cardiovascular diseases.
Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that atherosclerotic plaques in CKD may be vulnerable. However, its cause and mechanism remain obscure. Here, it is shown that apolipoprotein E‐deficient (ApoE−/−) mouse with CKD (CKD/ApoE−/− mouse) is a useful model for investigating the pathogenesis of plaque vulnerability, and premature senescence and phenotypic switching of vascular smooth muscle cells (VSMCs) contributes to CKD‐associated plaque vulnerability. Subsequently, VSMC phenotypes in patients with CKD and CKD/ApoE−/− mice are comprehensively investigated. Using multi‐omics analysis and targeted and VSMC‐specific gene knockout mice, VSMCs are identified as both type‐I‐interferon (IFN‐I)‐responsive and IFN‐I‐productive cells. Mechanistically, mitochondrial damage resulting from CKD‐induced oxidative stress primes the cyclic GMP‐AMP synthase‐stimulator of interferon genes (cGAS‐STING) pathway to trigger IFN‐I response in VSMCs. Enhanced IFN‐I response then induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner, resulting in the loss of fibrous cap VSMCs and fibrous cap thinning. Conversely, blocking IFN‐I response remarkably attenuates CKD‐associated plaque vulnerability. These findings reveal that IFN‐I response in VSMCs through immune sensing of mitochondrial damage is essential for the pathogenesis of CKD‐associated plaque vulnerability. Mitigating IFN‐I response may hold promise for the treatment of CKD‐associated cardiovascular diseases. Oxidative stress‐induced mitochondrial damage under chronic kidney disease (CKD) milieu primes the cyclic GMP‐AMP synthase‐stimulator of interferon genes (cGAS‐STING) pathway in vascular smooth muscle cells (VSMCs) to trigger type‐I‐interferon response, which induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner and finally results in plaque vulnerability.
Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that atherosclerotic plaques in CKD may be vulnerable. However, its cause and mechanism remain obscure. Here, it is shown that apolipoprotein E-deficient (ApoE ) mouse with CKD (CKD/ApoE mouse) is a useful model for investigating the pathogenesis of plaque vulnerability, and premature senescence and phenotypic switching of vascular smooth muscle cells (VSMCs) contributes to CKD-associated plaque vulnerability. Subsequently, VSMC phenotypes in patients with CKD and CKD/ApoE mice are comprehensively investigated. Using multi-omics analysis and targeted and VSMC-specific gene knockout mice, VSMCs are identified as both type-I-interferon (IFN-I)-responsive and IFN-I-productive cells. Mechanistically, mitochondrial damage resulting from CKD-induced oxidative stress primes the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway to trigger IFN-I response in VSMCs. Enhanced IFN-I response then induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner, resulting in the loss of fibrous cap VSMCs and fibrous cap thinning. Conversely, blocking IFN-I response remarkably attenuates CKD-associated plaque vulnerability. These findings reveal that IFN-I response in VSMCs through immune sensing of mitochondrial damage is essential for the pathogenesis of CKD-associated plaque vulnerability. Mitigating IFN-I response may hold promise for the treatment of CKD-associated cardiovascular diseases.
Abstract Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that atherosclerotic plaques in CKD may be vulnerable. However, its cause and mechanism remain obscure. Here, it is shown that apolipoprotein E‐deficient (ApoE−/−) mouse with CKD (CKD/ApoE−/− mouse) is a useful model for investigating the pathogenesis of plaque vulnerability, and premature senescence and phenotypic switching of vascular smooth muscle cells (VSMCs) contributes to CKD‐associated plaque vulnerability. Subsequently, VSMC phenotypes in patients with CKD and CKD/ApoE−/− mice are comprehensively investigated. Using multi‐omics analysis and targeted and VSMC‐specific gene knockout mice, VSMCs are identified as both type‐I‐interferon (IFN‐I)‐responsive and IFN‐I‐productive cells. Mechanistically, mitochondrial damage resulting from CKD‐induced oxidative stress primes the cyclic GMP‐AMP synthase‐stimulator of interferon genes (cGAS‐STING) pathway to trigger IFN‐I response in VSMCs. Enhanced IFN‐I response then induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner, resulting in the loss of fibrous cap VSMCs and fibrous cap thinning. Conversely, blocking IFN‐I response remarkably attenuates CKD‐associated plaque vulnerability. These findings reveal that IFN‐I response in VSMCs through immune sensing of mitochondrial damage is essential for the pathogenesis of CKD‐associated plaque vulnerability. Mitigating IFN‐I response may hold promise for the treatment of CKD‐associated cardiovascular diseases.
Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that atherosclerotic plaques in CKD may be vulnerable. However, its cause and mechanism remain obscure. Here, it is shown that apolipoprotein E‐deficient (ApoE −/− ) mouse with CKD (CKD/ApoE −/− mouse) is a useful model for investigating the pathogenesis of plaque vulnerability, and premature senescence and phenotypic switching of vascular smooth muscle cells (VSMCs) contributes to CKD‐associated plaque vulnerability. Subsequently, VSMC phenotypes in patients with CKD and CKD/ApoE −/− mice are comprehensively investigated. Using multi‐omics analysis and targeted and VSMC‐specific gene knockout mice, VSMCs are identified as both type‐I‐interferon (IFN‐I)‐responsive and IFN‐I‐productive cells. Mechanistically, mitochondrial damage resulting from CKD‐induced oxidative stress primes the cyclic GMP‐AMP synthase‐stimulator of interferon genes (cGAS‐STING) pathway to trigger IFN‐I response in VSMCs. Enhanced IFN‐I response then induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner, resulting in the loss of fibrous cap VSMCs and fibrous cap thinning. Conversely, blocking IFN‐I response remarkably attenuates CKD‐associated plaque vulnerability. These findings reveal that IFN‐I response in VSMCs through immune sensing of mitochondrial damage is essential for the pathogenesis of CKD‐associated plaque vulnerability. Mitigating IFN‐I response may hold promise for the treatment of CKD‐associated cardiovascular diseases.
Author Wang, Xue‐Yue
Bi, Xianjin
Xiong, Jiachuan
Huang, Yinghui
Zhu, Yingguo
Wang, Yue
Qiao, Yu
Liu, Chi
Wang, Xinmiao
Zeng, Chunyu
Yang, Ke
Ran, Li
Zhao, Jinghong
Wang, Junping
Du, Changhong
Liu, Yong
Liu, Mingying
Han, Wenhao
AuthorAffiliation 3 Laboratory of Stem Cell & Developmental Biology Department of Histology and Embryology College of Basic Medical Sciences Army Medical University (Third Military Medical University) Chongqing 400038 China
1 Department of Nephrology the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing Kidney Center of PLA Xinqiao Hospital Army Medical University (Third Military Medical University) Chongqing 400037 China
4 Department of Cardiology Daping Hospital Army Medical University (Third Military Medical University) Chongqing 400042 China
2 State Key Laboratory of Trauma Burns and Combined Injury Institute of Combined Injury Chongqing Engineering Research Center for Nanomedicine College of Preventive Medicine Army Medical University (Third Military Medical University) Chongqing 400038 China
AuthorAffiliation_xml – name: 4 Department of Cardiology Daping Hospital Army Medical University (Third Military Medical University) Chongqing 400042 China
– name: 3 Laboratory of Stem Cell & Developmental Biology Department of Histology and Embryology College of Basic Medical Sciences Army Medical University (Third Military Medical University) Chongqing 400038 China
– name: 1 Department of Nephrology the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing Kidney Center of PLA Xinqiao Hospital Army Medical University (Third Military Medical University) Chongqing 400037 China
– name: 2 State Key Laboratory of Trauma Burns and Combined Injury Institute of Combined Injury Chongqing Engineering Research Center for Nanomedicine College of Preventive Medicine Army Medical University (Third Military Medical University) Chongqing 400038 China
Author_xml – sequence: 1
  givenname: Xianjin
  orcidid: 0000-0002-8481-4305
  surname: Bi
  fullname: Bi, Xianjin
  organization: Army Medical University (Third Military Medical University)
– sequence: 2
  givenname: Changhong
  orcidid: 0000-0002-1537-0325
  surname: Du
  fullname: Du, Changhong
  organization: Army Medical University (Third Military Medical University)
– sequence: 3
  givenname: Xinmiao
  orcidid: 0000-0002-1791-3258
  surname: Wang
  fullname: Wang, Xinmiao
  organization: Army Medical University (Third Military Medical University)
– sequence: 4
  givenname: Xue‐Yue
  surname: Wang
  fullname: Wang, Xue‐Yue
  organization: Army Medical University (Third Military Medical University)
– sequence: 5
  givenname: Wenhao
  surname: Han
  fullname: Han, Wenhao
  organization: Army Medical University (Third Military Medical University)
– sequence: 6
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
  organization: Army Medical University (Third Military Medical University)
– sequence: 7
  givenname: Yu
  surname: Qiao
  fullname: Qiao, Yu
  organization: Army Medical University (Third Military Medical University)
– sequence: 8
  givenname: Yingguo
  orcidid: 0000-0002-1760-6469
  surname: Zhu
  fullname: Zhu, Yingguo
  organization: Army Medical University (Third Military Medical University)
– sequence: 9
  givenname: Li
  surname: Ran
  fullname: Ran, Li
  organization: Army Medical University (Third Military Medical University)
– sequence: 10
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
  organization: Army Medical University (Third Military Medical University)
– sequence: 11
  givenname: Jiachuan
  surname: Xiong
  fullname: Xiong, Jiachuan
  organization: Army Medical University (Third Military Medical University)
– sequence: 12
  givenname: Yinghui
  surname: Huang
  fullname: Huang, Yinghui
  organization: Army Medical University (Third Military Medical University)
– sequence: 13
  givenname: Mingying
  surname: Liu
  fullname: Liu, Mingying
  organization: Army Medical University (Third Military Medical University)
– sequence: 14
  givenname: Chi
  surname: Liu
  fullname: Liu, Chi
  organization: Army Medical University (Third Military Medical University)
– sequence: 15
  givenname: Chunyu
  surname: Zeng
  fullname: Zeng, Chunyu
  organization: Army Medical University (Third Military Medical University)
– sequence: 16
  givenname: Junping
  surname: Wang
  fullname: Wang, Junping
  organization: Army Medical University (Third Military Medical University)
– sequence: 17
  givenname: Ke
  orcidid: 0000-0001-9743-8786
  surname: Yang
  fullname: Yang, Ke
  email: jobsyangkk@163.com
  organization: Army Medical University (Third Military Medical University)
– sequence: 18
  givenname: Jinghong
  orcidid: 0000-0001-9750-3285
  surname: Zhao
  fullname: Zhao, Jinghong
  email: zhaojh@tmmu.edu.cn
  organization: Army Medical University (Third Military Medical University)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33717842$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhkeoiJbSLUtkiQ2bFF9jzwYpSrhEtKJSIVvLY3saVx67tWeCsuMR2PJ6PAlOk1ZtJWDlI5__fOei_3m1F2KwVfUSwWMEIX6rzCofY4hLzIl4Uh1gVIsREZTu3Yv3q6OcLyGEiBFOkXhW7RPCERcUH1S_Tl0f9TIGk5zyYKY6dWF___g5D2bQ1oB5CKq3YN51Q7Bgonu3Ur2LAbgAFirrwasEzrsY-yU4HbL2Fkyt9xmcpdjF3mYwXaYYnAafnQl2DWYuW5U3LSY5R-0K3YAzr64HCxaDDzapxnnXr19UT1vlsz3avYfVtw_vv04_jU6-fJxPJycjPcaEj1rSUMQo1mMGKWpqjlhLxrwmhtYQj5XSQjdaKWFggxtjbN0w3SKBdCsMZpocVvMt10R1Ka-S61Ray6icvPmI6UKq1LuymVQWN43lgmvb0toUZqMQNDUWba1NzQrr3ZZ1NTSdNdqGPin_APowE9xSXsSV5DXmY0QL4M0OkGK5SO5l57IuB1XBxiFLzCCinHMGi_T1I-llHFIop5LFDRwSijj7p4ohjhHBRBTVq_tz3w1865MioFuBTjHnZFupXX9jhLKG8xJBuXGk3DhS3jmylB0_Krsl_7Vg1-e783b9H7WczBbnGDNO_gDfufeP
CitedBy_id crossref_primary_10_1016_j_ymthe_2023_07_026
crossref_primary_10_1186_s12872_025_04543_9
crossref_primary_10_3389_fimmu_2024_1402817
crossref_primary_10_1007_s11064_024_04151_7
crossref_primary_10_1152_ajpcell_00074_2022
crossref_primary_10_1186_s40779_023_00499_z
crossref_primary_10_1007_s00059_023_05219_w
crossref_primary_10_1186_s13578_024_01242_4
crossref_primary_10_1016_j_bcp_2023_115977
crossref_primary_10_3389_fmed_2024_1512916
crossref_primary_10_1146_annurev_immunol_090122_045843
crossref_primary_10_14336_AD_2022_0417
crossref_primary_10_1038_s41419_023_06247_4
crossref_primary_10_1536_ihj_23_006
crossref_primary_10_1186_s12964_023_01393_w
crossref_primary_10_1002_path_6302
crossref_primary_10_1016_j_bcp_2024_116093
crossref_primary_10_1021_acsami_1c17420
crossref_primary_10_14336_AD_2023_0117
crossref_primary_10_1016_j_yexcr_2021_112934
crossref_primary_10_2147_JIR_S423232
crossref_primary_10_3389_fcvm_2022_965726
crossref_primary_10_1002_iid3_1189
crossref_primary_10_1093_jmcb_mjab066
crossref_primary_10_1016_j_ecoenv_2022_114266
crossref_primary_10_1002_advs_202305442
crossref_primary_10_1111_jch_14971
crossref_primary_10_3389_fcvm_2023_1088015
crossref_primary_10_1186_s12964_024_01554_5
crossref_primary_10_3390_cells12131679
crossref_primary_10_1016_j_intimp_2024_113510
crossref_primary_10_3390_ijms24010137
crossref_primary_10_3389_fcvm_2022_881181
crossref_primary_10_1042_CS20230399
crossref_primary_10_1038_s44324_024_00038_x
crossref_primary_10_1007_s12035_024_03933_y
crossref_primary_10_3389_fcell_2024_1287447
crossref_primary_10_3389_fimmu_2022_860977
crossref_primary_10_3389_fimmu_2023_1229636
crossref_primary_10_3390_ijms24098209
crossref_primary_10_1038_s12276_022_00729_9
crossref_primary_10_1002_adfm_202206300
crossref_primary_10_2147_JIR_S430885
crossref_primary_10_3389_fcell_2022_800393
crossref_primary_10_1016_j_intimp_2023_110412
crossref_primary_10_3390_cells13080712
crossref_primary_10_1093_eurheartj_ehae379
crossref_primary_10_1080_0886022X_2024_2367708
crossref_primary_10_3389_fimmu_2022_1040233
crossref_primary_10_1161_JAHA_123_034066
crossref_primary_10_3389_fimmu_2023_1287130
crossref_primary_10_1007_s12272_023_01452_3
crossref_primary_10_3390_cells11244060
crossref_primary_10_4196_kjpp_24_352
crossref_primary_10_1007_s12013_024_01481_9
Cites_doi 10.1093/cvr/cvs115
10.1161/01.CIR.0000087480.94275.97
10.1182/blood-2016-10-744060
10.1161/01.RES.0000258450.44413.96
10.1161/CIRCULATIONAHA.113.002271
10.1038/s41586-018-0287-8
10.1038/s41569-019-0169-2
10.1053/j.ajkd.2005.09.029
10.1161/01.CIR.92.3.657
10.1084/jem.20190459
10.1126/science.aaf6659
10.1016/j.cellsig.2008.10.011
10.1111/joim.12406
10.1016/S0140-6736(13)60687-X
10.1084/jem.20180139
10.1161/CIRCULATIONAHA.119.041460
10.1161/hh0302.104462
10.1161/CIRCULATIONAHA.115.016457
10.1016/S0022-5320(61)80002-6
10.1126/science.aaw1299
10.3390/toxins10060218
10.1038/ni.2001
10.1161/CIRCRESAHA.115.306361
10.1161/CIRCRESAHA.117.311082
10.1681/ASN.2014060543
10.1016/j.immuni.2007.06.009
10.1161/RES.0000000000000169
10.1016/j.bbabio.2015.05.021
10.1002/art.23035
10.1126/science.1219855
10.1161/CIRCULATIONAHA.108.789172
10.1007/s11883-012-0240-5
10.1172/JCI119892
10.1038/nm1459
10.1056/NEJMoa1312625
10.1016/j.cell.2015.12.008
10.5483/BMBRep.2014.47.1.285
10.1161/01.ATV.10.2.316
10.1038/nrneph.2010.143
10.1016/j.cmet.2010.06.008
10.1007/s11883-017-0678-6
10.1161/01.ATV.0000261709.34878.20
10.1093/eurheartj/ehx786
10.1097/01.ASN.0000088024.72216.2E
10.1161/01.CIR.94.8.2013
10.1016/S0008-6363(98)00318-6
10.1038/cddis.2017.470
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley‐VCH GmbH
2021 The Authors. Advanced Science published by Wiley‐VCH GmbH.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202002738
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
Publicly Available Content Database
MEDLINE - Academic

PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ae2bbe787cef49da8dba10d928f9cd95
PMC7927614
33717842
10_1002_advs_202002738
ADVS2257
Genre article
Journal Article
GrantInformation_xml – fundername: Frontier specific projects of Xinqiao Hospital
  funderid: 2018YQYLY004
– fundername: Personal training Program for Clinical Medicine Research of Army Medical University
  funderid: 2018XLC1007
– fundername: National Key R&D Program of China
  funderid: 2017YFA0106600; 2018YFC1312700
– fundername: Young Elite Scientist Sponsorship Program by CAST
  funderid: 2018QNRC001
– fundername: Natural Science Foundation of China
  funderid: 81700379; 82030023; 81725019; 81874256
– fundername: Frontier specific projects of Xinqiao Hospital
  grantid: 2018YQYLY004
– fundername: National Key R&D Program of China
  grantid: 2017YFA0106600; 2018YFC1312700
– fundername: Young Elite Scientist Sponsorship Program by CAST
  grantid: 2018QNRC001
– fundername: ;
  grantid: 81700379; 82030023; 81725019; 81874256
– fundername: Personal training Program for Clinical Medicine Research of Army Medical University
  grantid: 2018XLC1007
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
ITC
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c6237-f3b41542c65041b9715f36793d49026aac8cbcaa8d0b2bdde9b5cf181cf8d25c3
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:28:10 EDT 2025
Thu Aug 21 13:35:47 EDT 2025
Fri Jul 11 13:41:01 EDT 2025
Fri Jul 25 04:22:33 EDT 2025
Fri Jul 25 06:10:04 EDT 2025
Mon Jul 21 06:01:56 EDT 2025
Tue Jul 01 03:59:26 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Wed Jan 22 16:31:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords atherosclerosis
chronic kidney disease
vascular smooth muscle cell
plaque vulnerability
cyclic GMP‐AMP synthase‐stimulator of interferon genes pathway
Language English
License Attribution
2021 The Authors. Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6237-f3b41542c65041b9715f36793d49026aac8cbcaa8d0b2bdde9b5cf181cf8d25c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9743-8786
0000-0001-9750-3285
0000-0002-1760-6469
0000-0002-1791-3258
0000-0002-1537-0325
0000-0002-8481-4305
OpenAccessLink https://www.proquest.com/docview/2517213238?pq-origsite=%requestingapplication%
PMID 33717842
PQID 2517213238
PQPubID 4365299
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_ae2bbe787cef49da8dba10d928f9cd95
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7927614
proquest_miscellaneous_2501477750
proquest_journals_2737034175
proquest_journals_2517213238
pubmed_primary_33717842
crossref_citationtrail_10_1002_advs_202002738
crossref_primary_10_1002_advs_202002738
wiley_primary_10_1002_advs_202002738_ADVS2257
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2010; 12
2015; 163
2015; 36
2017; 8
1990; 10
1995; 92
2009; 21
2006; 12
2020; 141
2007; 100
2013; 128
1996; 94
2003; 14
2019; 16
2014; 47
2013; 382
1999; 41
2014; 371
2011; 12
2012; 14
2007; 56
2019; 364
2012; 95
2015; 26
2018; 39
2003; 108
1961; 5
2018; 215
2015; 1847
2018; 559
2016; 118
2015; 278
2006; 47
2015; 132
2016; 354
2008; 118
2020; 217
2017; 19
2017; 120
2002; 90
2017; 121
2018; 10
1998; 102
2012; 337
2010; 6
2017; 129
2007; 27
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Libby P. (e_1_2_8_5_1) 2015; 36
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 121
  year: 2017
  publication-title: Circ. Res.
– volume: 10
  start-page: 316
  year: 1990
  publication-title: Arteriosclerosis
– volume: 108
  start-page: 1664
  year: 2003
  publication-title: Circulation
– volume: 132
  start-page: 1909
  year: 2015
  publication-title: Circulation
– volume: 364
  start-page: 636
  year: 2019
  publication-title: Science
– volume: 41
  start-page: 480
  year: 1999
  publication-title: Cardiovasc. Res.
– volume: 12
  start-page: 1075
  year: 2006
  publication-title: Nat. Med.
– volume: 382
  start-page: 260
  year: 2013
  publication-title: Lancet
– volume: 94
  start-page: 2013
  year: 1996
  publication-title: Circulation
– volume: 128
  start-page: 702
  year: 2013
  publication-title: Circulation
– volume: 100
  start-page: 460
  year: 2007
  publication-title: Circ. Res.
– volume: 47
  start-page: 42
  year: 2006
  publication-title: Am. J. Kidney Dis.
– volume: 217
  year: 2020
  publication-title: J. Exp. Med.
– volume: 118
  start-page: 1276
  year: 2008
  publication-title: Circulation
– volume: 129
  start-page: 2667
  year: 2017
  publication-title: Blood
– volume: 8
  year: 2017
  publication-title: Cell Death Dis.
– volume: 14
  start-page: 254
  year: 2012
  publication-title: Curr. Atheroscler. Rep.
– volume: 19
  start-page: 42
  year: 2017
  publication-title: Curr. Atheroscler. Rep.
– volume: 27
  start-page: 705
  year: 2007
  publication-title: Arterioscler., Thromb., Vasc. Biol.
– volume: 21
  start-page: 378
  year: 2009
  publication-title: Cell. Signalling
– volume: 163
  start-page: 1808
  year: 2015
  publication-title: Cell
– volume: 1847
  start-page: 1387
  year: 2015
  publication-title: Biochim. Biophys. Acta.
– volume: 10
  start-page: 218
  year: 2018
  publication-title: Toxins
– volume: 56
  start-page: 3759
  year: 2007
  publication-title: Arthritis Rheumatol.
– volume: 354
  start-page: 472
  year: 2016
  publication-title: Science
– volume: 5
  start-page: 1
  year: 1961
  publication-title: J. Ultrastruct. Res.
– volume: 47
  start-page: 1
  year: 2014
  publication-title: BMB. Rep.
– volume: 26
  start-page: 2434
  year: 2015
  publication-title: J. Am. Soc. Nephrol.
– volume: 215
  start-page: 1287
  year: 2018
  publication-title: J. Exp. Med.
– volume: 337
  start-page: 1062
  year: 2012
  publication-title: Science
– volume: 6
  start-page: 723
  year: 2010
  publication-title: Nat. Rev. Nephrol.
– volume: 39
  start-page: 2070
  year: 2018
  publication-title: Eur. Heart J.
– volume: 559
  start-page: 269
  year: 2018
  publication-title: Nature
– volume: 14
  start-page: 2466
  year: 2003
  publication-title: J. Am. Soc. Nephrol.
– volume: 141
  start-page: 42
  year: 2020
  publication-title: Circulation
– volume: 92
  start-page: 657
  year: 1995
  publication-title: Circulation
– volume: 27
  start-page: 228
  year: 2007
  publication-title: Immunity
– volume: 102
  start-page: 910
  year: 1998
  publication-title: J. Clin. Invest.
– volume: 118
  start-page: 692
  year: 2016
  publication-title: Circ. Res.
– volume: 120
  start-page: 1812
  year: 2017
  publication-title: Circ. Res.
– volume: 278
  start-page: 483
  year: 2015
  publication-title: J. Intern. Med.
– volume: 36
  start-page: 2984
  year: 2015
  publication-title: Eur. Heart J.
– volume: 12
  start-page: 142
  year: 2010
  publication-title: Cell Metab.
– volume: 371
  start-page: 507
  year: 2014
  publication-title: N. Engl. J. Med.
– volume: 90
  start-page: 270
  year: 2002
  publication-title: Circ. Res.
– volume: 95
  start-page: 156
  year: 2012
  publication-title: Cardiovasc. Res.
– volume: 12
  start-page: 204
  year: 2011
  publication-title: Nat. Immunol.
– volume: 16
  start-page: 389
  year: 2019
  publication-title: Nat. Rev. Cardiol.
– volume: 36
  start-page: 2984
  year: 2015
  ident: e_1_2_8_5_1
  publication-title: Eur. Heart J.
– ident: e_1_2_8_18_1
  doi: 10.1093/cvr/cvs115
– ident: e_1_2_8_7_1
  doi: 10.1161/01.CIR.0000087480.94275.97
– ident: e_1_2_8_4_1
  doi: 10.1182/blood-2016-10-744060
– ident: e_1_2_8_23_1
  doi: 10.1161/01.RES.0000258450.44413.96
– ident: e_1_2_8_37_1
  doi: 10.1161/CIRCULATIONAHA.113.002271
– ident: e_1_2_8_25_1
  doi: 10.1038/s41586-018-0287-8
– ident: e_1_2_8_14_1
  doi: 10.1038/s41569-019-0169-2
– ident: e_1_2_8_33_1
  doi: 10.1053/j.ajkd.2005.09.029
– ident: e_1_2_8_9_1
  doi: 10.1161/01.CIR.92.3.657
– ident: e_1_2_8_36_1
  doi: 10.1084/jem.20190459
– ident: e_1_2_8_48_1
  doi: 10.1126/science.aaf6659
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cellsig.2008.10.011
– ident: e_1_2_8_15_1
  doi: 10.1111/joim.12406
– ident: e_1_2_8_1_1
  doi: 10.1016/S0140-6736(13)60687-X
– ident: e_1_2_8_22_1
  doi: 10.1084/jem.20180139
– ident: e_1_2_8_29_1
  doi: 10.1161/CIRCULATIONAHA.119.041460
– ident: e_1_2_8_47_1
  doi: 10.1161/hh0302.104462
– ident: e_1_2_8_11_1
  doi: 10.1161/CIRCULATIONAHA.115.016457
– ident: e_1_2_8_17_1
  doi: 10.1016/S0022-5320(61)80002-6
– ident: e_1_2_8_16_1
  doi: 10.1126/science.aaw1299
– ident: e_1_2_8_40_1
  doi: 10.3390/toxins10060218
– ident: e_1_2_8_43_1
  doi: 10.1038/ni.2001
– ident: e_1_2_8_6_1
  doi: 10.1161/CIRCRESAHA.115.306361
– ident: e_1_2_8_42_1
  doi: 10.1161/CIRCRESAHA.117.311082
– ident: e_1_2_8_39_1
  doi: 10.1681/ASN.2014060543
– ident: e_1_2_8_20_1
  doi: 10.1016/j.immuni.2007.06.009
– ident: e_1_2_8_45_1
  doi: 10.1161/RES.0000000000000169
– ident: e_1_2_8_24_1
  doi: 10.1016/j.bbabio.2015.05.021
– ident: e_1_2_8_31_1
  doi: 10.1002/art.23035
– ident: e_1_2_8_41_1
  doi: 10.1126/science.1219855
– ident: e_1_2_8_27_1
  doi: 10.1161/CIRCULATIONAHA.108.789172
– ident: e_1_2_8_35_1
  doi: 10.1007/s11883-012-0240-5
– ident: e_1_2_8_46_1
  doi: 10.1172/JCI119892
– ident: e_1_2_8_13_1
  doi: 10.1038/nm1459
– ident: e_1_2_8_32_1
  doi: 10.1056/NEJMoa1312625
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cell.2015.12.008
– ident: e_1_2_8_26_1
  doi: 10.5483/BMBRep.2014.47.1.285
– ident: e_1_2_8_44_1
  doi: 10.1161/01.ATV.10.2.316
– ident: e_1_2_8_2_1
  doi: 10.1038/nrneph.2010.143
– ident: e_1_2_8_34_1
  doi: 10.1016/j.cmet.2010.06.008
– ident: e_1_2_8_38_1
  doi: 10.1007/s11883-017-0678-6
– ident: e_1_2_8_8_1
  doi: 10.1161/01.ATV.0000261709.34878.20
– ident: e_1_2_8_30_1
  doi: 10.1093/eurheartj/ehx786
– ident: e_1_2_8_3_1
  doi: 10.1097/01.ASN.0000088024.72216.2E
– ident: e_1_2_8_10_1
  doi: 10.1161/01.CIR.94.8.2013
– ident: e_1_2_8_12_1
  doi: 10.1016/S0008-6363(98)00318-6
– ident: e_1_2_8_28_1
  doi: 10.1038/cddis.2017.470
SSID ssj0001537418
Score 2.470452
Snippet Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that...
Abstract Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2002738
SubjectTerms Apoptosis
atherosclerosis
chronic kidney disease
cyclic GMP‐AMP synthase‐stimulator of interferon genes pathway
Heart attacks
Hemorrhage
Inflammation
Investigations
Kidney diseases
Pathogenesis
plaque vulnerability
Senescence
Smooth muscle
Student's t-test
Survival analysis
vascular smooth muscle cell
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbhMxFLVQV2wQ5Tm0IFdCAhajZuyZeLwsfagFBVUqrbob-SkipQ4iDVJ3fAJbfo8v4djzUCKKumEbW7ke34fPHd85l5DXNZIKVwiT26rw8W2Vy3GOy7xGauArXSlv4nvIyafx8Xn54bK6XGn1FWvCWnrgduN2lWNaO5iVcb6UVtVWq2JkJau9NFYm9lKceSvJVPt9MI-0LD1L44jtKvs9snOzlsBl7RRKZP23Icy_CyVXAWw6gY4ekgcddKR77ZI3yT0XHpHNzjkX9G3HIP3uMfk1gZ8irgUbzYseqCtEjd8_fsY-HcZZehICICY9id-GOLpn-hZndBroRVeaSs-u5tAinSwXkEb33Wy2oKepeA_COk5d-nFqg7uhB-01D0T06oaU05nCg9KL5SyuKxXh3jwh50eHn_eP864HQ24AjETuucYRXzIDJFcWWoqi8nwMp7alRPqmlKmNNgpqGWmmESulrowHbDC-tqwy_CnZCPPgnhNqOS-lG7nSICmtpFNFvLMdK-cBO532Gcl7nTSmIyiPfTJmTUutzJqow2bQYUbeDPO_ttQc_5z5Pqp4mBUptdMPMLSmM7TmLkPLyHZvIE3n5xBRxRSasyjjtmHBEVFLQLSM7AzDcOB4K6OCmy_jXyBLFQLILSPPWnMbFso5su26ZBkRa4a49iTrI2H6JZGEC8kEoBc2NZnsHTvUAASdIbSLF_9jq7bIfRZLf1Kp3jbZuP62dC-B3a71q-SmfwAi4UeL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLggyjO0ICMhAYeoGz_W8bG0VC1o0UqlVW-Rn7DS1lt1u0i98RO48vf4Jczk1UYUIa6xlYkzD39jjz8T8qqEpCIUyuVeFhFXq0IO87jOS0gNorTSRIfrkJNP4_0j8eFEnlw7xd_wQ_QLbugZdbxGBzd2uXVFGmr8N6TbZg0jy21yB8_XYlEfE9OrVRbJkZ4Fb5iD7DrnpRAdc-OIbQ1fMZiZagL_m1Dnn8WT10FtPSvt3Sf3WjhJtxv9r5NbIT0g663DLumbllX67UPycwK-C7EueTQ5umtOIZL8-v4D7-5wwdODlAB20gM8LxLotuuuPaOzRI_bclV6eLoAzdLJagnS6E6Yz5d0Whf0gbCWZ5d-nPkULulus_UDIjoTACnTuYGB0uPVHL-rLsy9fESO9t5_3tnP23sZcgdgSeWRW5j2BXOA7kRhtSpk5GNwdC80pHTGuNJZZ0zpR5ZZiJ_aShcBSrhYeiYdf0zW0iKFp4R6zoUOoyAcJKpSB1PgPu7YhAhQNNiYkbzTSeVa0nK8O2NeNXTLrEIdVr0OM_K673_W0HX8tec7VHHfC2m26weL8y9V67WVCczaADHNhSi0hxFZU4y8ZmXUzmuZkc3OQKrW90GExLSaM5RxU7PiEGUFwLaMvOybwalxp8aksFjhKyBzVQrQXEaeNObWfyjnkIGXgmVEDQxxMJJhS5p9rYnDlWYK4Bj81Npk__GHKgBGhxDu1bP_7L9B7jKs_Kkr9TbJ2sX5KjwH6HZhX9Te-RvQFUFy
  priority: 102
  providerName: Wiley-Blackwell
Title Mitochondrial Damage‐Induced Innate Immune Activation in Vascular Smooth Muscle Cells Promotes Chronic Kidney Disease‐Associated Plaque Vulnerability
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202002738
https://www.ncbi.nlm.nih.gov/pubmed/33717842
https://www.proquest.com/docview/2517213238
https://www.proquest.com/docview/2737034175
https://www.proquest.com/docview/2501477750
https://pubmed.ncbi.nlm.nih.gov/PMC7927614
https://doaj.org/article/ae2bbe787cef49da8dba10d928f9cd95
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB7R5MIFUZ6GEi0SEnCwGu_asfeE0qZVC6SKCK16s_ZZIrl2aRqk3vgJXPl7_BJm7bUhosA1u8p6PY_9Znb8DcCLDIMKE6Uq1ElkXbbKhHiO8zDD0MAmMhFWuTzk9Gh0cBy_PU1OfcJt6csqW59YO2pdKZcj33bUWhRDJ5a9ufgcuq5R7nbVt9DYgD664CzrQX9n72j24VeWJWGOnqVlaxzSbaG_OJZu2hC5rJ1GNWn_TUjzz4LJ34FsfRLt34U7HkKScSPzTbhlynuw6Y10SV55JunX9-H7FO0V_VupnZqRiThH7_Hj6zfXr0MZTQ7LEqEmOXTfiBgyVm2rM7IoyYkvUSXz8wqlSaarJa5Gdk1RLMmsLuLDxTy3Lnm30KW5JpPmugeXaMWOq8wKgRslJ6vCPVddjHv9AI739z7uHoS-F0OoECCloWUSj_qYKkR0cSR5GiWWjdC4dcwxjBNCZUoqITI9lFSiz-QyURbhg7KZpoliD6FXVqV5DEQzFnMzNLHC4DThRkTu7nYkjEX4aaQNIGxlkitPVO76ZRR5Q7FMcyfDvJNhAC-7-RcNRcdfZ-44EXezHLV2_UN1eZZ7S82FoVIa9GPK2Jhr3JEU0VBzmlmuNE8C2GoVJPf2jkt02nnzcMrQs8YI1QJ43g2jIbvbGVGaauX-AqPVNEUEF8CjRt26B2UMo-4spgGka4q4tpP1kXLxqSYLTzlNEYLhS61V9j9vKEcwNEcXnz759y6fwm3qinvqYrwt6F1drswzRGdXcgAbNJ4NoD-eTN_PB94gB3Wu4yfupkGp
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHkaCiwSCDhYjXft2HtAqG1aJaSJIvpQb2afECm1S9OAcuMncOVP8KP4Jcz6BREFTr16V17vzuw3M7vjbwCeJhhUmCBWvo4C606rjI92nPsJhgY2kpGwyp1DDked3mH45jg6XoHv9b8wLq2yxsQCqHWu3Bn5hqPWohg6seT16UffVY1yt6t1CY1SLQZm8RlDttmrfhfl-4zS3Z2D7Z5fVRXwFZr62LdMotEKqULfJAwkj4PIsg6qqQ45BiRCqERJJUSi25JK3P1cRsqiIVQ20TRSDN97BVZD1mnTFqxu7YzGb3-d6kTM0cHU7JBtuiH0J8cKTkvimCXrVxQJuMiz_TNB83fHubB8uzfgeuWyks1Sx9ZgxWQ3Ya0ChRl5UTFXv7wF34aID4inmXZqTbriBNHqx5evrj6IMpr0swxdW9J3_6QYsqnq0mpkkpGjKiWW7J_kqD1kOJ_haGTbTKczMi6SBnGwisuXDCY6MwvSLa-XcIhazXCU8VTgRMnRfOq-q0j-XdyGw0uR0h1oZXlm7gHRjIXctE2oMBiOuBGBuyvuCGPR3TXSeuDXMklVRYzu6nNM05LSmaZOhmkjQw-eN_1PS0qQv_bcciJuejkq7-JBfvY-rZAhFYZKaRA3lbEh1zgjKYK25jSxXGkeebBeK0ha4QsO0eyGi5tjhkgeomvowZOmGYHD3QaJzORz9wqMjuMYPUYP7pbq1nwoYxjlJyH1IF5SxKWZLLdkkw8FOXnMaYwuHy5qobL_WaEUna99NCnx_X_P8jFc7R0M99K9_mjwAK5Rl1hUJAKuQ-v8bG4eomd4Lh9V25HAu8tGgJ-0EHt4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVEJcEOXXUGCRQMDBSry2Y-8BobZp1BASRZRWvZn9hUipXZoGlBuPwJVX4XF4EmbttSGiwKlX78rr3Zn9ZmZ3_A3A4xSDCh0k0ldxYOxplfbRjjM_xdDAxCLmRtpzyNG4u3cQvTqKj9bge_0vjE2rrDGxBGpVSHtG3rbUWhRDpzBtG5cWMen1X5589G0FKXvTWpfTqFRkqJefMXybvxj0UNZPKO3vvt3Z812FAV-i2U98Ewo0YBGV6KdEgWBJEJuwiyqrIobBCecylUJynqqOoAKRgIlYGjSK0qSKxjLE916C9cRGRS1Y394dT978OuGJQ0sNUzNFdmibq0-WIZxWJDIrlrAsGHCel_tnsubvTnRpBfvX4KpzX8lWpW8bsKbz67DhAGJOnjkW6-c34NsIsQKxNVdWxUmPHyNy_fjy1dYKkVqRQZ6jm0sG9v8UTbZkXWaNTHNy6NJjyf5xgZpERos5jkZ29Gw2J5MygRAHc7y-ZDhVuV6SXnXVhEPUKoejTGYcJ0oOFzP7XWUi8PImHFyIlG5BKy9yfQeICsOI6Y6OJAbGMdM8sPfGXa4Nur5aGA_8WiaZdCTptlbHLKvonWlmZZg1MvTgadP_pKIH-WvPbSvippel9S4fFKfvM4cSGddUCI0YKrWJmMIZCR50FKOpYVKx2IPNWkEyhzU4RLMzzm9OQkT1CN1EDx41zQgi9maI57pY2FdgpJwk6D16cLtSt-ZDwxAj_jSiHiQrirgyk9WWfPqhJCpPGE3Q_cNFLVX2PyuUoSO2j-YlufvvWT6Ey7jzs9eD8fAeXKE2x6jMCdyE1tnpQt9HJ_FMPHC7kcC7iwaAnzFMf60
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+Damage-Induced+Innate+Immune+Activation+in+Vascular+Smooth+Muscle+Cells+Promotes+Chronic+Kidney+Disease-Associated+Plaque+Vulnerability&rft.jtitle=Advanced+science&rft.au=Bi%2C+Xianjin&rft.au=Du%2C+Changhong&rft.au=Wang%2C+Xinmiao&rft.au=Wang%2C+Xue-Yue&rft.date=2021-03-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=8&rft.issue=5&rft.spage=2002738&rft_id=info:doi/10.1002%2Fadvs.202002738&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon