Validation of the Korean Genome Epidemiology Study Risk Score to Predict Incident Hypertension in a Large Nationwide Korean Cohort

Background:This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide sample, and compare its discrimination and calibration with the Framingham and blood pressure (BP)-only models.Methods and Results:Thi...

Full description

Saved in:
Bibliographic Details
Published inCirculation Journal Vol. 80; no. 7; pp. 1578 - 1582
Main Authors Lim, Nam-Kyoo, Lee, Joung-Won, Park, Hyun-Young
Format Journal Article
LanguageEnglish
Published Japan The Japanese Circulation Society 2016
Subjects
Online AccessGet full text
ISSN1346-9843
1347-4820
1347-4820
DOI10.1253/circj.CJ-15-1334

Cover

Abstract Background:This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide sample, and compare its discrimination and calibration with the Framingham and blood pressure (BP)-only models.Methods and Results:This study analyzed 69,918 subjects without HT at baseline from the National Sample Cohort in the National Health Insurance Service database. We compared the Framingham, KoGES, and BP-only models for discrimination using area under the receiver-operating characteristic curves (AROC), calibration using goodness-of-fit tests, and reclassification ability using the continuous net reclassification improvement (NRI) and integrated discrimination improvement. Of 69,918 subjects, 18.6% developed HT during the follow-up. AROC was significantly higher for the KoGES (0.733) than for the Framingham (0.729) or BP-only (0.707) model. Recalibrated Framingham model underestimated HT incidence in all deciles (P<0.001). BP-only model overestimated risk in the lower deciles (P<0.001). KoGES model accurately predicted risk in all except the highest decile (χ2=14.85, P=0.062). The KoGES model led to a significant improvement in risk reclassification compared with the Framingham and BP-only models (NRI, 0.354; 95% confidence interval [CI], 0.343–0.365 and 0.542; 95% CI, 0.523–0.561, respectively).Conclusions:In this validation study, the KoGES model demonstrated better discrimination, calibration, and reclassification ability than either the Framingham or BP-only model. The KoGES model may help identify Korean individuals at high risk for HT. (Circ J 2016; 80: 1578–1582)
AbstractList This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide sample, and compare its discrimination and calibration with the Framingham and blood pressure (BP)-only models. This study analyzed 69,918 subjects without HT at baseline from the National Sample Cohort in the National Health Insurance Service database. We compared the Framingham, KoGES, and BP-only models for discrimination using area under the receiver-operating characteristic curves (AROC), calibration using goodness-of-fit tests, and reclassification ability using the continuous net reclassification improvement (NRI) and integrated discrimination improvement. Of 69,918 subjects, 18.6% developed HT during the follow-up. AROC was significantly higher for the KoGES (0.733) than for the Framingham (0.729) or BP-only (0.707) model. Recalibrated Framingham model underestimated HT incidence in all deciles (P<0.001). BP-only model overestimated risk in the lower deciles (P<0.001). KoGES model accurately predicted risk in all except the highest decile (χ(2)=14.85, P=0.062). The KoGES model led to a significant improvement in risk reclassification compared with the Framingham and BP-only models (NRI, 0.354; 95% confidence interval [CI], 0.343-0.365 and 0.542; 95% CI, 0.523-0.561, respectively). In this validation study, the KoGES model demonstrated better discrimination, calibration, and reclassification ability than either the Framingham or BP-only model. The KoGES model may help identify Korean individuals at high risk for HT. (Circ J 2016; 80: 1578-1582).
This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide sample, and compare its discrimination and calibration with the Framingham and blood pressure (BP)-only models.BACKGROUNDThis study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide sample, and compare its discrimination and calibration with the Framingham and blood pressure (BP)-only models.This study analyzed 69,918 subjects without HT at baseline from the National Sample Cohort in the National Health Insurance Service database. We compared the Framingham, KoGES, and BP-only models for discrimination using area under the receiver-operating characteristic curves (AROC), calibration using goodness-of-fit tests, and reclassification ability using the continuous net reclassification improvement (NRI) and integrated discrimination improvement. Of 69,918 subjects, 18.6% developed HT during the follow-up. AROC was significantly higher for the KoGES (0.733) than for the Framingham (0.729) or BP-only (0.707) model. Recalibrated Framingham model underestimated HT incidence in all deciles (P<0.001). BP-only model overestimated risk in the lower deciles (P<0.001). KoGES model accurately predicted risk in all except the highest decile (χ(2)=14.85, P=0.062). The KoGES model led to a significant improvement in risk reclassification compared with the Framingham and BP-only models (NRI, 0.354; 95% confidence interval [CI], 0.343-0.365 and 0.542; 95% CI, 0.523-0.561, respectively).METHODS AND RESULTSThis study analyzed 69,918 subjects without HT at baseline from the National Sample Cohort in the National Health Insurance Service database. We compared the Framingham, KoGES, and BP-only models for discrimination using area under the receiver-operating characteristic curves (AROC), calibration using goodness-of-fit tests, and reclassification ability using the continuous net reclassification improvement (NRI) and integrated discrimination improvement. Of 69,918 subjects, 18.6% developed HT during the follow-up. AROC was significantly higher for the KoGES (0.733) than for the Framingham (0.729) or BP-only (0.707) model. Recalibrated Framingham model underestimated HT incidence in all deciles (P<0.001). BP-only model overestimated risk in the lower deciles (P<0.001). KoGES model accurately predicted risk in all except the highest decile (χ(2)=14.85, P=0.062). The KoGES model led to a significant improvement in risk reclassification compared with the Framingham and BP-only models (NRI, 0.354; 95% confidence interval [CI], 0.343-0.365 and 0.542; 95% CI, 0.523-0.561, respectively).In this validation study, the KoGES model demonstrated better discrimination, calibration, and reclassification ability than either the Framingham or BP-only model. The KoGES model may help identify Korean individuals at high risk for HT. (Circ J 2016; 80: 1578-1582).CONCLUSIONSIn this validation study, the KoGES model demonstrated better discrimination, calibration, and reclassification ability than either the Framingham or BP-only model. The KoGES model may help identify Korean individuals at high risk for HT. (Circ J 2016; 80: 1578-1582).
Background:This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide sample, and compare its discrimination and calibration with the Framingham and blood pressure (BP)-only models.Methods and Results:This study analyzed 69,918 subjects without HT at baseline from the National Sample Cohort in the National Health Insurance Service database. We compared the Framingham, KoGES, and BP-only models for discrimination using area under the receiver-operating characteristic curves (AROC), calibration using goodness-of-fit tests, and reclassification ability using the continuous net reclassification improvement (NRI) and integrated discrimination improvement. Of 69,918 subjects, 18.6% developed HT during the follow-up. AROC was significantly higher for the KoGES (0.733) than for the Framingham (0.729) or BP-only (0.707) model. Recalibrated Framingham model underestimated HT incidence in all deciles (P<0.001). BP-only model overestimated risk in the lower deciles (P<0.001). KoGES model accurately predicted risk in all except the highest decile (χ2=14.85, P=0.062). The KoGES model led to a significant improvement in risk reclassification compared with the Framingham and BP-only models (NRI, 0.354; 95% confidence interval [CI], 0.343–0.365 and 0.542; 95% CI, 0.523–0.561, respectively).Conclusions:In this validation study, the KoGES model demonstrated better discrimination, calibration, and reclassification ability than either the Framingham or BP-only model. The KoGES model may help identify Korean individuals at high risk for HT. (Circ J 2016; 80: 1578–1582)
Author Lee, Joung-Won
Park, Hyun-Young
Lim, Nam-Kyoo
Author_xml – sequence: 1
  fullname: Lim, Nam-Kyoo
  organization: Division of Cardiovascular and Rare Disease, Korea National Institute of Health
– sequence: 1
  fullname: Lee, Joung-Won
  organization: Division of Cardiovascular and Rare Disease, Korea National Institute of Health
– sequence: 1
  fullname: Park, Hyun-Young
  organization: Division of Cardiovascular and Rare Disease, Korea National Institute of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27238835$$D View this record in MEDLINE/PubMed
BookMark eNp9kTuP1DAURi20iH1AT4Vc0mTXryROiaJ9jwCxQGs59s2Mh8QebI_QtPxyMi9WoqCxXZzzXfl-5-jEBw8IvaXkkrKSXxkXzfKyfShoWVDOxQt0RrmoCyEZOdm9q6KRgp-i85SWhLCGlM0rdMpqxqXk5Rn6_V0Pzursgsehx3kB-DFE0B7fgg8j4OuVszC6MIT5Bj_ltd3gLy79wE9mwnAO-HME60zG995MpM_4brOCmMGnbabzWOOZjnPAH3dTfk3QcUQbFiHm1-hlr4cEbw73Bfp2c_21vStmn27v2w-zwlSM5aKvq1qAlJb0nbGE8drYWlYd4z3VxJS8oUzoXtQdLwWTUneil2A7bWRJy4bwC_R-n7uK4ecaUlajSwaGQXsI66SoJESQaWV8Qt8d0HU3glWr6EYdN-q4twmo9oCJIaUIvTIu7_6Xo3aDokRtC1K7glT7oGiptgVNIvlHPGb_R7nZK8uU9Rz-CjpmZwY4CJKoens8i8_AQkcFnv8BMhyu0w
CitedBy_id crossref_primary_10_1038_s41371_021_00645_x
crossref_primary_10_1371_journal_pone_0294148
crossref_primary_10_1371_journal_pone_0187240
crossref_primary_10_1038_s41598_024_56170_7
crossref_primary_10_2188_jea_JE20160149
Cites_doi 10.1093/oxfordjournals.aje.a116732
10.1161/01.CIR.94.9.2159
10.1001/jama.286.2.180
10.1056/NEJMsb025007
10.1016/j.jacc.2007.03.037
10.1097/MNH.0b013e328337f921
10.1017/S1368980008002802
10.1161/HYPERTENSIONAHA.109.132373
10.1371/journal.pone.0067370
10.7326/0003-4819-148-2-200801150-00005
10.1046/j.1467-789X.2002.00065.x
10.1111/jch.12080
10.2307/2531595
10.1253/circj.CJ-15-0150
10.1161/01.HYP.35.2.544
10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>3.0.CO;2-O
10.1253/circj.CJ-15-1159
10.2337/dc06-0057
10.1007/BF02032901
10.1093/eurpub/ckv128
10.1161/HYPERTENSIONAHA.109.149609
10.1001/archinte.1997.00440270105009
10.1038/jhh.2010.63
10.1038/hr.2014.159
10.1253/circj.CJ-13-0702
10.1056/NEJM199902253400806
10.1253/circj.CJ-16-0081
10.1016/S0140-6736(02)11911-8
10.2105/AJPH.78.12.1546
10.1056/NEJMoa060838
10.1016/S0140-6736(12)61766-8
10.1253/circj.CJ-08-0191
ContentType Journal Article
Copyright 2016 THE JAPANESE CIRCULATION SOCIETY
Copyright_xml – notice: 2016 THE JAPANESE CIRCULATION SOCIETY
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1253/circj.CJ-15-1334
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1347-4820
EndPage 1582
ExternalDocumentID 27238835
10_1253_circj_CJ_15_1334
article_circj_80_7_80_CJ_15_1334_article_char_en
Genre Validation Studies
Journal Article
GroupedDBID ---
.55
29B
2WC
53G
5GY
5RE
6J9
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
JSF
JSH
KQ8
OK1
OVT
P2P
RJT
RNS
RZJ
TR2
W2D
X7M
XSB
ZXP
.GJ
3O-
AAYXX
CITATION
TKC
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c622t-f7674e88d0fbcd0237cd786b23f1a0c539124af47b354288ab4f8edbac8515903
ISSN 1346-9843
1347-4820
IngestDate Fri Jul 11 06:36:25 EDT 2025
Mon Jul 21 05:58:14 EDT 2025
Tue Jul 01 02:01:17 EDT 2025
Thu Apr 24 23:09:45 EDT 2025
Wed Sep 03 06:15:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c622t-f7674e88d0fbcd0237cd786b23f1a0c539124af47b354288ab4f8edbac8515903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.jstage.jst.go.jp/article/circj/80/7/80_CJ-15-1334/_article/-char/en
PMID 27238835
PQID 1800403463
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1800403463
pubmed_primary_27238835
crossref_citationtrail_10_1253_circj_CJ_15_1334
crossref_primary_10_1253_circj_CJ_15_1334
jstage_primary_article_circj_80_7_80_CJ_15_1334_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Circulation Journal
PublicationTitleAlternate Circ J
PublicationYear 2016
Publisher The Japanese Circulation Society
Publisher_xml – name: The Japanese Circulation Society
References 23. Burchard EG, Ziv E, Coyle N, Gomez SL, Tang H, Karter AJ, et al. The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med 2003; 348: 1170–1175.
10. Parikh NI, Pencina MJ, Wang TJ, Benjamin EJ, Lanier KJ, Levy D, et al. A risk score for predicting near-term incidence of hypertension: The Framingham Heart Study. Ann Intern Med 2008; 148: 102–110.
4. Kario K, Ogawa H, Okumura K, Okura T, Saito S, Ueno T, et al. SYMPLICITY HTN-Japan: First randomized controlled trial of catheter-based renal denervation in Asian patients. Circ J 2015; 79: 1222–1229.
5. World health Organization. A global brief on hypertension: Silent killer, global public health crisis. Geneva: WHO, 2013.
2. Chen J. Epidemiology of hypertension and chronic kidney disease in China. Curr Opin Nephrol Hypertens 2010; 19: 278–282.
1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2224–2260.
32. Schulman KA, Berlin JA, Harless W, Kerner JF, Sistrunk S, Gersh BJ, et al. The effect of race and sex on physicians’ recommendations for cardiac catheterization. N Engl J Med 1999; 340: 618–626.
28. Ohira T, Iso H. Cardiovascular disease epidemiology in Asia: An overview. Circ J 2013; 77: 1646–1652.
33. Mitchell BD, Kammerer CM, Blangero J, Mahaney MC, Rainwater DL, Dyke B, et al. Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans: The San Antonio Family Heart Study. Circulation 1996; 94: 2159–2170.
17. Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS, et al. The Framingham predictive instrument in chronic kidney disease. J Am Coll Cardiol 2007; 50: 217–224.
18. Yatsuya H, Iso H, Li Y, Yamagishi K, Kokubo Y, Saito I, et al. Development of a risk equation for the incidence of coronary artery disease and ischemic stroke for middle-aged Japanese: Japan Public Health Center-Based Prospective Study. Circ J 2016; 80: 1386–1395.
27. Teramoto T, Ohashi Y, Nakaya N, Yokoyama S, Mizuno K, Nakamura H, et al. Practical risk prediction tools for coronary heart disease in mild to moderate hypercholesterolemia in Japan: originated from the MEGA study data. Circ J 2008; 72: 1569–1575.
30. Wen CP, David Cheng TY, Tsai SP, Chan HT, Hsu HL, Hsu CC, et al. Are Asians at greater mortality risks for being overweight than Caucasians?: Redefining obesity for Asians. Public Health Nutr 2009; 12: 497–506.
14. Otsuka T, Kachi Y, Takada H, Kato K, Kodani E, Ibuki C, et al. Development of a risk prediction model for incident hypertension in a working-age Japanese male population. Hypertens Res 2015; 38: 419–425.
13. Lim NK, Son KH, Lee KS, Park HY, Cho MC. Predicting the risk of incident hypertension in a Korean middle-aged population: Korean genome and epidemiology study. J Clin Hypertens (Greenwich) 2013; 15: 344–349.
9. Spencer RM, Heidecker B, Ganz P. Behavioral cardiovascular risk factors: Effect of physical activity and cardiorespiratory fitness on cardiovascular outcomes. Circ J 2015; 80: 34–43.
3. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–1913.
20. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988; 44: 837–845.
7. He J, Whelton PK, Appel LJ, Charleston J, Klag MJ. Long-term effects of weight loss and dietary sodium reduction on incidence of hypertension. Hypertension 2000; 35: 544–549.
29. Shai I, Jiang R, Manson JE, Stampfer MJ, Willett WC, Colditz GA, et al. Ethnicity, obesity, and risk of type 2 diabetes in women: A 20-year follow-up study. Diabetes Care 2006; 29: 1585–1590.
22. Muntner P, Woodward M, Mann DM, Shimbo D, Michos ED, Blumenthal RS, et al. Comparison of the Framingham Heart Study hypertension model with blood pressure alone in the prediction of risk of hypertension: The Multi-Ethnic Study of Atherosclerosis. Hypertension 2010; 55: 1339–1345.
31. Deurenberg P, Deurenberg-Yap M, Guricci S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes Rev 2002; 3: 141–146.
8. The Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure: The Trials of Hypertension Prevention, phase II. Arch Intern Med 1997; 157: 657–667.
11. Kivimaki M, Batty GD, Singh-Manoux A, Ferrie JE, Tabak AG, Jokela M, et al. Validating the Framingham Hypertension Risk Score: Results from the Whitehall II study. Hypertension 2009; 54: 496–501.
15. Echouffo-Tcheugui JB, Batty GD, Kivimaki M, Kengne AP. Risk models to predict hypertension: A systematic review. PLoS One 2013; 8: e67370, doi:10.1371/journal.pone.0067370.
24. Takayama T, Hirai S, Oka S, Ishihara T, Kumazaki S, Mishima H, et al. Bilateral giant bullae with rapidly increasing fluid in the right bulla following operation: Report of a case. Surg Today 1994; 24: 272–275.
26. Sprafka JM, Folsom AR, Burke GL, Edlavitch SA. Prevalence of cardiovascular disease risk factors in blacks and whites: The Minnesota Heart Survey. Am J Public Health 1988; 78: 1546–1549.
16. D’Agostino RB Sr, Grundy S, Sullivan LM, Wilson P; CHD Risk Prediction Group. Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA 2001; 286: 180–187.
19. Khang YH, Bahk J, Yi N, Yun SC. Age- and cause-specific contributions to income difference in life expectancy at birth: Findings from nationally representative data on one million South Koreans. Eur J Public Health 2016; 26: 242–248.
21. Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med 1997; 16: 965–980.
25. Cowie CC, Harris MI, Silverman RE, Johnson EW, Rust KF. Effect of multiple risk factors on differences between blacks and whites in the prevalence of non-insulin-dependent diabetes mellitus in the United States. Am J Epidemiol 1993; 137: 719–732.
12. Chien KL, Hsu HC, Su TC, Chang WT, Sung FC, Chen MF, et al. Prediction models for the risk of new-onset hypertension in ethnic Chinese in Taiwan. J Hum Hypertens 2011; 25: 294–303.
6. Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med 2006; 354: 1685–1697.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 23. Burchard EG, Ziv E, Coyle N, Gomez SL, Tang H, Karter AJ, et al. The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med 2003; 348: 1170–1175.
– reference: 2. Chen J. Epidemiology of hypertension and chronic kidney disease in China. Curr Opin Nephrol Hypertens 2010; 19: 278–282.
– reference: 1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2224–2260.
– reference: 5. World health Organization. A global brief on hypertension: Silent killer, global public health crisis. Geneva: WHO, 2013.
– reference: 14. Otsuka T, Kachi Y, Takada H, Kato K, Kodani E, Ibuki C, et al. Development of a risk prediction model for incident hypertension in a working-age Japanese male population. Hypertens Res 2015; 38: 419–425.
– reference: 8. The Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure: The Trials of Hypertension Prevention, phase II. Arch Intern Med 1997; 157: 657–667.
– reference: 17. Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS, et al. The Framingham predictive instrument in chronic kidney disease. J Am Coll Cardiol 2007; 50: 217–224.
– reference: 29. Shai I, Jiang R, Manson JE, Stampfer MJ, Willett WC, Colditz GA, et al. Ethnicity, obesity, and risk of type 2 diabetes in women: A 20-year follow-up study. Diabetes Care 2006; 29: 1585–1590.
– reference: 33. Mitchell BD, Kammerer CM, Blangero J, Mahaney MC, Rainwater DL, Dyke B, et al. Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans: The San Antonio Family Heart Study. Circulation 1996; 94: 2159–2170.
– reference: 31. Deurenberg P, Deurenberg-Yap M, Guricci S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes Rev 2002; 3: 141–146.
– reference: 32. Schulman KA, Berlin JA, Harless W, Kerner JF, Sistrunk S, Gersh BJ, et al. The effect of race and sex on physicians’ recommendations for cardiac catheterization. N Engl J Med 1999; 340: 618–626.
– reference: 11. Kivimaki M, Batty GD, Singh-Manoux A, Ferrie JE, Tabak AG, Jokela M, et al. Validating the Framingham Hypertension Risk Score: Results from the Whitehall II study. Hypertension 2009; 54: 496–501.
– reference: 21. Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med 1997; 16: 965–980.
– reference: 12. Chien KL, Hsu HC, Su TC, Chang WT, Sung FC, Chen MF, et al. Prediction models for the risk of new-onset hypertension in ethnic Chinese in Taiwan. J Hum Hypertens 2011; 25: 294–303.
– reference: 28. Ohira T, Iso H. Cardiovascular disease epidemiology in Asia: An overview. Circ J 2013; 77: 1646–1652.
– reference: 16. D’Agostino RB Sr, Grundy S, Sullivan LM, Wilson P; CHD Risk Prediction Group. Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA 2001; 286: 180–187.
– reference: 25. Cowie CC, Harris MI, Silverman RE, Johnson EW, Rust KF. Effect of multiple risk factors on differences between blacks and whites in the prevalence of non-insulin-dependent diabetes mellitus in the United States. Am J Epidemiol 1993; 137: 719–732.
– reference: 4. Kario K, Ogawa H, Okumura K, Okura T, Saito S, Ueno T, et al. SYMPLICITY HTN-Japan: First randomized controlled trial of catheter-based renal denervation in Asian patients. Circ J 2015; 79: 1222–1229.
– reference: 22. Muntner P, Woodward M, Mann DM, Shimbo D, Michos ED, Blumenthal RS, et al. Comparison of the Framingham Heart Study hypertension model with blood pressure alone in the prediction of risk of hypertension: The Multi-Ethnic Study of Atherosclerosis. Hypertension 2010; 55: 1339–1345.
– reference: 9. Spencer RM, Heidecker B, Ganz P. Behavioral cardiovascular risk factors: Effect of physical activity and cardiorespiratory fitness on cardiovascular outcomes. Circ J 2015; 80: 34–43.
– reference: 3. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–1913.
– reference: 30. Wen CP, David Cheng TY, Tsai SP, Chan HT, Hsu HL, Hsu CC, et al. Are Asians at greater mortality risks for being overweight than Caucasians?: Redefining obesity for Asians. Public Health Nutr 2009; 12: 497–506.
– reference: 24. Takayama T, Hirai S, Oka S, Ishihara T, Kumazaki S, Mishima H, et al. Bilateral giant bullae with rapidly increasing fluid in the right bulla following operation: Report of a case. Surg Today 1994; 24: 272–275.
– reference: 27. Teramoto T, Ohashi Y, Nakaya N, Yokoyama S, Mizuno K, Nakamura H, et al. Practical risk prediction tools for coronary heart disease in mild to moderate hypercholesterolemia in Japan: originated from the MEGA study data. Circ J 2008; 72: 1569–1575.
– reference: 13. Lim NK, Son KH, Lee KS, Park HY, Cho MC. Predicting the risk of incident hypertension in a Korean middle-aged population: Korean genome and epidemiology study. J Clin Hypertens (Greenwich) 2013; 15: 344–349.
– reference: 15. Echouffo-Tcheugui JB, Batty GD, Kivimaki M, Kengne AP. Risk models to predict hypertension: A systematic review. PLoS One 2013; 8: e67370, doi:10.1371/journal.pone.0067370.
– reference: 18. Yatsuya H, Iso H, Li Y, Yamagishi K, Kokubo Y, Saito I, et al. Development of a risk equation for the incidence of coronary artery disease and ischemic stroke for middle-aged Japanese: Japan Public Health Center-Based Prospective Study. Circ J 2016; 80: 1386–1395.
– reference: 10. Parikh NI, Pencina MJ, Wang TJ, Benjamin EJ, Lanier KJ, Levy D, et al. A risk score for predicting near-term incidence of hypertension: The Framingham Heart Study. Ann Intern Med 2008; 148: 102–110.
– reference: 6. Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med 2006; 354: 1685–1697.
– reference: 19. Khang YH, Bahk J, Yi N, Yun SC. Age- and cause-specific contributions to income difference in life expectancy at birth: Findings from nationally representative data on one million South Koreans. Eur J Public Health 2016; 26: 242–248.
– reference: 20. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988; 44: 837–845.
– reference: 7. He J, Whelton PK, Appel LJ, Charleston J, Klag MJ. Long-term effects of weight loss and dietary sodium reduction on incidence of hypertension. Hypertension 2000; 35: 544–549.
– reference: 26. Sprafka JM, Folsom AR, Burke GL, Edlavitch SA. Prevalence of cardiovascular disease risk factors in blacks and whites: The Minnesota Heart Survey. Am J Public Health 1988; 78: 1546–1549.
– ident: 25
  doi: 10.1093/oxfordjournals.aje.a116732
– ident: 33
  doi: 10.1161/01.CIR.94.9.2159
– ident: 16
  doi: 10.1001/jama.286.2.180
– ident: 23
  doi: 10.1056/NEJMsb025007
– ident: 17
  doi: 10.1016/j.jacc.2007.03.037
– ident: 2
  doi: 10.1097/MNH.0b013e328337f921
– ident: 30
  doi: 10.1017/S1368980008002802
– ident: 11
  doi: 10.1161/HYPERTENSIONAHA.109.132373
– ident: 15
  doi: 10.1371/journal.pone.0067370
– ident: 10
  doi: 10.7326/0003-4819-148-2-200801150-00005
– ident: 31
  doi: 10.1046/j.1467-789X.2002.00065.x
– ident: 13
  doi: 10.1111/jch.12080
– ident: 20
  doi: 10.2307/2531595
– ident: 4
  doi: 10.1253/circj.CJ-15-0150
– ident: 7
  doi: 10.1161/01.HYP.35.2.544
– ident: 21
  doi: 10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>3.0.CO;2-O
– ident: 9
  doi: 10.1253/circj.CJ-15-1159
– ident: 29
  doi: 10.2337/dc06-0057
– ident: 24
  doi: 10.1007/BF02032901
– ident: 5
– ident: 19
  doi: 10.1093/eurpub/ckv128
– ident: 22
  doi: 10.1161/HYPERTENSIONAHA.109.149609
– ident: 8
  doi: 10.1001/archinte.1997.00440270105009
– ident: 12
  doi: 10.1038/jhh.2010.63
– ident: 14
  doi: 10.1038/hr.2014.159
– ident: 28
  doi: 10.1253/circj.CJ-13-0702
– ident: 32
  doi: 10.1056/NEJM199902253400806
– ident: 18
  doi: 10.1253/circj.CJ-16-0081
– ident: 3
  doi: 10.1016/S0140-6736(02)11911-8
– ident: 26
  doi: 10.2105/AJPH.78.12.1546
– ident: 6
  doi: 10.1056/NEJMoa060838
– ident: 1
  doi: 10.1016/S0140-6736(12)61766-8
– ident: 27
  doi: 10.1253/circj.CJ-08-0191
SSID ssj0029059
Score 2.148965
Snippet Background:This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large...
This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1578
SubjectTerms Adult
Blood Pressure - genetics
Cohort Studies
Databases, Genetic
Female
Follow-Up Studies
Framingham risk score
Genome, Human
Humans
Hypertension
Hypertension - epidemiology
Hypertension - genetics
KoGES
Male
Middle Aged
Models, Genetic
Republic of Korea - epidemiology
Risk Factors
Risk score
Validation
Title Validation of the Korean Genome Epidemiology Study Risk Score to Predict Incident Hypertension in a Large Nationwide Korean Cohort
URI https://www.jstage.jst.go.jp/article/circj/80/7/80_CJ-15-1334/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/27238835
https://www.proquest.com/docview/1800403463
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Circulation Journal, 2016/06/24, Vol.80(7), pp.1578-1582
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKQIgXxHWUm4zEC6q85R73CaGqW9V1ZRIt9C1KHIdtYgkKqVB55F_wbznHdi4bGxq8RFVkx0nP5-Nz7M_-CHntcwHjpsR9W3bMvCx1WZIJ6HgxT9PUtVNLyb0dzoPJ0puu_FWv96vDWlpXyY74cem-kv-xKtwDu-Iu2X-wbPNQuAG_wb5wBQvD9Vo2_ghBdNrEfBhCHhQlTq3vy7w4k4NxK_-6UYxBCLiRSv4Bz67EqPOoxHWaCr0EiotWgwmkpaUitWsKZDyYIVV8oI_P_g6F6iZGxXFxfmJ_dFIKIwbWHEhx1SkV-K5TGKdR_3LQrWhYpA1PSIs9z-MzdrApiov0IXRV7FPLJDgyzO_JZp0z5ci6sxp6u6Vxwa4XMo87erVGXnLP-G2tAGXwGXacsO1rVaA_RgdHSXwI-KjTndGU2T6DDN1rR8J69X_-PtpbzmbRYrxa3CA3nTC0kS26v2rYQ87QUjp8zYuZFXBoYffi889FPLdOIej_LK_OZ1Rcs7hH7pqEhL7T6LpPejJ_QG4fGsrFQ_KzBRktMgqGoxoBVIOMdkFGFcgogowqkNGqoAZktAYZ7YKMnuQ0pgpktAVZ3YQG2SOy3BsvRhNmhDuYCBynYhmeECU5T60sEdjbQ5GGPEgcN7NjS_juEKLKOPPCxPUh_eVx4mVcpkksOIbXlvuYbOVFLp8QKhweeEMnCWwhvSEMQKjZ7Kfck_5QZHbaJ7v1nxsJc6o9iqt8iTC7BXNEyhzRaBrZfoTm6JM3TY2v-kSXv5R9q-3VlDR93ZTkVhTipa3RFjiOS_BRffKqNnQEjhtX46BrFetvEXwKDKCuF7h9sq0R0LTioBQg5EZPr1H7GbmDHUhPCz4nW1W5li8gUK6SlwqyvwE-vsUy
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+the+Korean+Genome+Epidemiology+Study+Risk+Score+to+Predict+Incident+Hypertension+in+a+Large+Nationwide+Korean+Cohort&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Lim%2C+Nam-Kyoo&rft.au=Lee%2C+Joung-Won&rft.au=Park%2C+Hyun-Young&rft.date=2016&rft.issn=1347-4820&rft.eissn=1347-4820&rft.volume=80&rft.issue=7&rft.spage=1578&rft_id=info:doi/10.1253%2Fcircj.CJ-15-1334&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon