Validation of the Korean Genome Epidemiology Study Risk Score to Predict Incident Hypertension in a Large Nationwide Korean Cohort
Background:This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide sample, and compare its discrimination and calibration with the Framingham and blood pressure (BP)-only models.Methods and Results:Thi...
Saved in:
Published in | Circulation Journal Vol. 80; no. 7; pp. 1578 - 1582 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japanese Circulation Society
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1346-9843 1347-4820 1347-4820 |
DOI | 10.1253/circj.CJ-15-1334 |
Cover
Abstract | Background:This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide sample, and compare its discrimination and calibration with the Framingham and blood pressure (BP)-only models.Methods and Results:This study analyzed 69,918 subjects without HT at baseline from the National Sample Cohort in the National Health Insurance Service database. We compared the Framingham, KoGES, and BP-only models for discrimination using area under the receiver-operating characteristic curves (AROC), calibration using goodness-of-fit tests, and reclassification ability using the continuous net reclassification improvement (NRI) and integrated discrimination improvement. Of 69,918 subjects, 18.6% developed HT during the follow-up. AROC was significantly higher for the KoGES (0.733) than for the Framingham (0.729) or BP-only (0.707) model. Recalibrated Framingham model underestimated HT incidence in all deciles (P<0.001). BP-only model overestimated risk in the lower deciles (P<0.001). KoGES model accurately predicted risk in all except the highest decile (χ2=14.85, P=0.062). The KoGES model led to a significant improvement in risk reclassification compared with the Framingham and BP-only models (NRI, 0.354; 95% confidence interval [CI], 0.343–0.365 and 0.542; 95% CI, 0.523–0.561, respectively).Conclusions:In this validation study, the KoGES model demonstrated better discrimination, calibration, and reclassification ability than either the Framingham or BP-only model. The KoGES model may help identify Korean individuals at high risk for HT. (Circ J 2016; 80: 1578–1582) |
---|---|
AbstractList | This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide sample, and compare its discrimination and calibration with the Framingham and blood pressure (BP)-only models.
This study analyzed 69,918 subjects without HT at baseline from the National Sample Cohort in the National Health Insurance Service database. We compared the Framingham, KoGES, and BP-only models for discrimination using area under the receiver-operating characteristic curves (AROC), calibration using goodness-of-fit tests, and reclassification ability using the continuous net reclassification improvement (NRI) and integrated discrimination improvement. Of 69,918 subjects, 18.6% developed HT during the follow-up. AROC was significantly higher for the KoGES (0.733) than for the Framingham (0.729) or BP-only (0.707) model. Recalibrated Framingham model underestimated HT incidence in all deciles (P<0.001). BP-only model overestimated risk in the lower deciles (P<0.001). KoGES model accurately predicted risk in all except the highest decile (χ(2)=14.85, P=0.062). The KoGES model led to a significant improvement in risk reclassification compared with the Framingham and BP-only models (NRI, 0.354; 95% confidence interval [CI], 0.343-0.365 and 0.542; 95% CI, 0.523-0.561, respectively).
In this validation study, the KoGES model demonstrated better discrimination, calibration, and reclassification ability than either the Framingham or BP-only model. The KoGES model may help identify Korean individuals at high risk for HT. (Circ J 2016; 80: 1578-1582). This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide sample, and compare its discrimination and calibration with the Framingham and blood pressure (BP)-only models.BACKGROUNDThis study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide sample, and compare its discrimination and calibration with the Framingham and blood pressure (BP)-only models.This study analyzed 69,918 subjects without HT at baseline from the National Sample Cohort in the National Health Insurance Service database. We compared the Framingham, KoGES, and BP-only models for discrimination using area under the receiver-operating characteristic curves (AROC), calibration using goodness-of-fit tests, and reclassification ability using the continuous net reclassification improvement (NRI) and integrated discrimination improvement. Of 69,918 subjects, 18.6% developed HT during the follow-up. AROC was significantly higher for the KoGES (0.733) than for the Framingham (0.729) or BP-only (0.707) model. Recalibrated Framingham model underestimated HT incidence in all deciles (P<0.001). BP-only model overestimated risk in the lower deciles (P<0.001). KoGES model accurately predicted risk in all except the highest decile (χ(2)=14.85, P=0.062). The KoGES model led to a significant improvement in risk reclassification compared with the Framingham and BP-only models (NRI, 0.354; 95% confidence interval [CI], 0.343-0.365 and 0.542; 95% CI, 0.523-0.561, respectively).METHODS AND RESULTSThis study analyzed 69,918 subjects without HT at baseline from the National Sample Cohort in the National Health Insurance Service database. We compared the Framingham, KoGES, and BP-only models for discrimination using area under the receiver-operating characteristic curves (AROC), calibration using goodness-of-fit tests, and reclassification ability using the continuous net reclassification improvement (NRI) and integrated discrimination improvement. Of 69,918 subjects, 18.6% developed HT during the follow-up. AROC was significantly higher for the KoGES (0.733) than for the Framingham (0.729) or BP-only (0.707) model. Recalibrated Framingham model underestimated HT incidence in all deciles (P<0.001). BP-only model overestimated risk in the lower deciles (P<0.001). KoGES model accurately predicted risk in all except the highest decile (χ(2)=14.85, P=0.062). The KoGES model led to a significant improvement in risk reclassification compared with the Framingham and BP-only models (NRI, 0.354; 95% confidence interval [CI], 0.343-0.365 and 0.542; 95% CI, 0.523-0.561, respectively).In this validation study, the KoGES model demonstrated better discrimination, calibration, and reclassification ability than either the Framingham or BP-only model. The KoGES model may help identify Korean individuals at high risk for HT. (Circ J 2016; 80: 1578-1582).CONCLUSIONSIn this validation study, the KoGES model demonstrated better discrimination, calibration, and reclassification ability than either the Framingham or BP-only model. The KoGES model may help identify Korean individuals at high risk for HT. (Circ J 2016; 80: 1578-1582). Background:This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide sample, and compare its discrimination and calibration with the Framingham and blood pressure (BP)-only models.Methods and Results:This study analyzed 69,918 subjects without HT at baseline from the National Sample Cohort in the National Health Insurance Service database. We compared the Framingham, KoGES, and BP-only models for discrimination using area under the receiver-operating characteristic curves (AROC), calibration using goodness-of-fit tests, and reclassification ability using the continuous net reclassification improvement (NRI) and integrated discrimination improvement. Of 69,918 subjects, 18.6% developed HT during the follow-up. AROC was significantly higher for the KoGES (0.733) than for the Framingham (0.729) or BP-only (0.707) model. Recalibrated Framingham model underestimated HT incidence in all deciles (P<0.001). BP-only model overestimated risk in the lower deciles (P<0.001). KoGES model accurately predicted risk in all except the highest decile (χ2=14.85, P=0.062). The KoGES model led to a significant improvement in risk reclassification compared with the Framingham and BP-only models (NRI, 0.354; 95% confidence interval [CI], 0.343–0.365 and 0.542; 95% CI, 0.523–0.561, respectively).Conclusions:In this validation study, the KoGES model demonstrated better discrimination, calibration, and reclassification ability than either the Framingham or BP-only model. The KoGES model may help identify Korean individuals at high risk for HT. (Circ J 2016; 80: 1578–1582) |
Author | Lee, Joung-Won Park, Hyun-Young Lim, Nam-Kyoo |
Author_xml | – sequence: 1 fullname: Lim, Nam-Kyoo organization: Division of Cardiovascular and Rare Disease, Korea National Institute of Health – sequence: 1 fullname: Lee, Joung-Won organization: Division of Cardiovascular and Rare Disease, Korea National Institute of Health – sequence: 1 fullname: Park, Hyun-Young organization: Division of Cardiovascular and Rare Disease, Korea National Institute of Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27238835$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTuP1DAURi20iH1AT4Vc0mTXryROiaJ9jwCxQGs59s2Mh8QebI_QtPxyMi9WoqCxXZzzXfl-5-jEBw8IvaXkkrKSXxkXzfKyfShoWVDOxQt0RrmoCyEZOdm9q6KRgp-i85SWhLCGlM0rdMpqxqXk5Rn6_V0Pzursgsehx3kB-DFE0B7fgg8j4OuVszC6MIT5Bj_ltd3gLy79wE9mwnAO-HME60zG995MpM_4brOCmMGnbabzWOOZjnPAH3dTfk3QcUQbFiHm1-hlr4cEbw73Bfp2c_21vStmn27v2w-zwlSM5aKvq1qAlJb0nbGE8drYWlYd4z3VxJS8oUzoXtQdLwWTUneil2A7bWRJy4bwC_R-n7uK4ecaUlajSwaGQXsI66SoJESQaWV8Qt8d0HU3glWr6EYdN-q4twmo9oCJIaUIvTIu7_6Xo3aDokRtC1K7glT7oGiptgVNIvlHPGb_R7nZK8uU9Rz-CjpmZwY4CJKoens8i8_AQkcFnv8BMhyu0w |
CitedBy_id | crossref_primary_10_1038_s41371_021_00645_x crossref_primary_10_1371_journal_pone_0294148 crossref_primary_10_1371_journal_pone_0187240 crossref_primary_10_1038_s41598_024_56170_7 crossref_primary_10_2188_jea_JE20160149 |
Cites_doi | 10.1093/oxfordjournals.aje.a116732 10.1161/01.CIR.94.9.2159 10.1001/jama.286.2.180 10.1056/NEJMsb025007 10.1016/j.jacc.2007.03.037 10.1097/MNH.0b013e328337f921 10.1017/S1368980008002802 10.1161/HYPERTENSIONAHA.109.132373 10.1371/journal.pone.0067370 10.7326/0003-4819-148-2-200801150-00005 10.1046/j.1467-789X.2002.00065.x 10.1111/jch.12080 10.2307/2531595 10.1253/circj.CJ-15-0150 10.1161/01.HYP.35.2.544 10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>3.0.CO;2-O 10.1253/circj.CJ-15-1159 10.2337/dc06-0057 10.1007/BF02032901 10.1093/eurpub/ckv128 10.1161/HYPERTENSIONAHA.109.149609 10.1001/archinte.1997.00440270105009 10.1038/jhh.2010.63 10.1038/hr.2014.159 10.1253/circj.CJ-13-0702 10.1056/NEJM199902253400806 10.1253/circj.CJ-16-0081 10.1016/S0140-6736(02)11911-8 10.2105/AJPH.78.12.1546 10.1056/NEJMoa060838 10.1016/S0140-6736(12)61766-8 10.1253/circj.CJ-08-0191 |
ContentType | Journal Article |
Copyright | 2016 THE JAPANESE CIRCULATION SOCIETY |
Copyright_xml | – notice: 2016 THE JAPANESE CIRCULATION SOCIETY |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1253/circj.CJ-15-1334 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1347-4820 |
EndPage | 1582 |
ExternalDocumentID | 27238835 10_1253_circj_CJ_15_1334 article_circj_80_7_80_CJ_15_1334_article_char_en |
Genre | Validation Studies Journal Article |
GroupedDBID | --- .55 29B 2WC 53G 5GY 5RE 6J9 ACGFO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GX1 JSF JSH KQ8 OK1 OVT P2P RJT RNS RZJ TR2 W2D X7M XSB ZXP .GJ 3O- AAYXX CITATION TKC CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c622t-f7674e88d0fbcd0237cd786b23f1a0c539124af47b354288ab4f8edbac8515903 |
ISSN | 1346-9843 1347-4820 |
IngestDate | Fri Jul 11 06:36:25 EDT 2025 Mon Jul 21 05:58:14 EDT 2025 Tue Jul 01 02:01:17 EDT 2025 Thu Apr 24 23:09:45 EDT 2025 Wed Sep 03 06:15:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c622t-f7674e88d0fbcd0237cd786b23f1a0c539124af47b354288ab4f8edbac8515903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/circj/80/7/80_CJ-15-1334/_article/-char/en |
PMID | 27238835 |
PQID | 1800403463 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1800403463 pubmed_primary_27238835 crossref_citationtrail_10_1253_circj_CJ_15_1334 crossref_primary_10_1253_circj_CJ_15_1334 jstage_primary_article_circj_80_7_80_CJ_15_1334_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Circulation Journal |
PublicationTitleAlternate | Circ J |
PublicationYear | 2016 |
Publisher | The Japanese Circulation Society |
Publisher_xml | – name: The Japanese Circulation Society |
References | 23. Burchard EG, Ziv E, Coyle N, Gomez SL, Tang H, Karter AJ, et al. The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med 2003; 348: 1170–1175. 10. Parikh NI, Pencina MJ, Wang TJ, Benjamin EJ, Lanier KJ, Levy D, et al. A risk score for predicting near-term incidence of hypertension: The Framingham Heart Study. Ann Intern Med 2008; 148: 102–110. 4. Kario K, Ogawa H, Okumura K, Okura T, Saito S, Ueno T, et al. SYMPLICITY HTN-Japan: First randomized controlled trial of catheter-based renal denervation in Asian patients. Circ J 2015; 79: 1222–1229. 5. World health Organization. A global brief on hypertension: Silent killer, global public health crisis. Geneva: WHO, 2013. 2. Chen J. Epidemiology of hypertension and chronic kidney disease in China. Curr Opin Nephrol Hypertens 2010; 19: 278–282. 1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2224–2260. 32. Schulman KA, Berlin JA, Harless W, Kerner JF, Sistrunk S, Gersh BJ, et al. The effect of race and sex on physicians’ recommendations for cardiac catheterization. N Engl J Med 1999; 340: 618–626. 28. Ohira T, Iso H. Cardiovascular disease epidemiology in Asia: An overview. Circ J 2013; 77: 1646–1652. 33. Mitchell BD, Kammerer CM, Blangero J, Mahaney MC, Rainwater DL, Dyke B, et al. Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans: The San Antonio Family Heart Study. Circulation 1996; 94: 2159–2170. 17. Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS, et al. The Framingham predictive instrument in chronic kidney disease. J Am Coll Cardiol 2007; 50: 217–224. 18. Yatsuya H, Iso H, Li Y, Yamagishi K, Kokubo Y, Saito I, et al. Development of a risk equation for the incidence of coronary artery disease and ischemic stroke for middle-aged Japanese: Japan Public Health Center-Based Prospective Study. Circ J 2016; 80: 1386–1395. 27. Teramoto T, Ohashi Y, Nakaya N, Yokoyama S, Mizuno K, Nakamura H, et al. Practical risk prediction tools for coronary heart disease in mild to moderate hypercholesterolemia in Japan: originated from the MEGA study data. Circ J 2008; 72: 1569–1575. 30. Wen CP, David Cheng TY, Tsai SP, Chan HT, Hsu HL, Hsu CC, et al. Are Asians at greater mortality risks for being overweight than Caucasians?: Redefining obesity for Asians. Public Health Nutr 2009; 12: 497–506. 14. Otsuka T, Kachi Y, Takada H, Kato K, Kodani E, Ibuki C, et al. Development of a risk prediction model for incident hypertension in a working-age Japanese male population. Hypertens Res 2015; 38: 419–425. 13. Lim NK, Son KH, Lee KS, Park HY, Cho MC. Predicting the risk of incident hypertension in a Korean middle-aged population: Korean genome and epidemiology study. J Clin Hypertens (Greenwich) 2013; 15: 344–349. 9. Spencer RM, Heidecker B, Ganz P. Behavioral cardiovascular risk factors: Effect of physical activity and cardiorespiratory fitness on cardiovascular outcomes. Circ J 2015; 80: 34–43. 3. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–1913. 20. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988; 44: 837–845. 7. He J, Whelton PK, Appel LJ, Charleston J, Klag MJ. Long-term effects of weight loss and dietary sodium reduction on incidence of hypertension. Hypertension 2000; 35: 544–549. 29. Shai I, Jiang R, Manson JE, Stampfer MJ, Willett WC, Colditz GA, et al. Ethnicity, obesity, and risk of type 2 diabetes in women: A 20-year follow-up study. Diabetes Care 2006; 29: 1585–1590. 22. Muntner P, Woodward M, Mann DM, Shimbo D, Michos ED, Blumenthal RS, et al. Comparison of the Framingham Heart Study hypertension model with blood pressure alone in the prediction of risk of hypertension: The Multi-Ethnic Study of Atherosclerosis. Hypertension 2010; 55: 1339–1345. 31. Deurenberg P, Deurenberg-Yap M, Guricci S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes Rev 2002; 3: 141–146. 8. The Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure: The Trials of Hypertension Prevention, phase II. Arch Intern Med 1997; 157: 657–667. 11. Kivimaki M, Batty GD, Singh-Manoux A, Ferrie JE, Tabak AG, Jokela M, et al. Validating the Framingham Hypertension Risk Score: Results from the Whitehall II study. Hypertension 2009; 54: 496–501. 15. Echouffo-Tcheugui JB, Batty GD, Kivimaki M, Kengne AP. Risk models to predict hypertension: A systematic review. PLoS One 2013; 8: e67370, doi:10.1371/journal.pone.0067370. 24. Takayama T, Hirai S, Oka S, Ishihara T, Kumazaki S, Mishima H, et al. Bilateral giant bullae with rapidly increasing fluid in the right bulla following operation: Report of a case. Surg Today 1994; 24: 272–275. 26. Sprafka JM, Folsom AR, Burke GL, Edlavitch SA. Prevalence of cardiovascular disease risk factors in blacks and whites: The Minnesota Heart Survey. Am J Public Health 1988; 78: 1546–1549. 16. D’Agostino RB Sr, Grundy S, Sullivan LM, Wilson P; CHD Risk Prediction Group. Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA 2001; 286: 180–187. 19. Khang YH, Bahk J, Yi N, Yun SC. Age- and cause-specific contributions to income difference in life expectancy at birth: Findings from nationally representative data on one million South Koreans. Eur J Public Health 2016; 26: 242–248. 21. Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med 1997; 16: 965–980. 25. Cowie CC, Harris MI, Silverman RE, Johnson EW, Rust KF. Effect of multiple risk factors on differences between blacks and whites in the prevalence of non-insulin-dependent diabetes mellitus in the United States. Am J Epidemiol 1993; 137: 719–732. 12. Chien KL, Hsu HC, Su TC, Chang WT, Sung FC, Chen MF, et al. Prediction models for the risk of new-onset hypertension in ethnic Chinese in Taiwan. J Hum Hypertens 2011; 25: 294–303. 6. Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med 2006; 354: 1685–1697. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 23. Burchard EG, Ziv E, Coyle N, Gomez SL, Tang H, Karter AJ, et al. The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med 2003; 348: 1170–1175. – reference: 2. Chen J. Epidemiology of hypertension and chronic kidney disease in China. Curr Opin Nephrol Hypertens 2010; 19: 278–282. – reference: 1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2224–2260. – reference: 5. World health Organization. A global brief on hypertension: Silent killer, global public health crisis. Geneva: WHO, 2013. – reference: 14. Otsuka T, Kachi Y, Takada H, Kato K, Kodani E, Ibuki C, et al. Development of a risk prediction model for incident hypertension in a working-age Japanese male population. Hypertens Res 2015; 38: 419–425. – reference: 8. The Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure: The Trials of Hypertension Prevention, phase II. Arch Intern Med 1997; 157: 657–667. – reference: 17. Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS, et al. The Framingham predictive instrument in chronic kidney disease. J Am Coll Cardiol 2007; 50: 217–224. – reference: 29. Shai I, Jiang R, Manson JE, Stampfer MJ, Willett WC, Colditz GA, et al. Ethnicity, obesity, and risk of type 2 diabetes in women: A 20-year follow-up study. Diabetes Care 2006; 29: 1585–1590. – reference: 33. Mitchell BD, Kammerer CM, Blangero J, Mahaney MC, Rainwater DL, Dyke B, et al. Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans: The San Antonio Family Heart Study. Circulation 1996; 94: 2159–2170. – reference: 31. Deurenberg P, Deurenberg-Yap M, Guricci S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes Rev 2002; 3: 141–146. – reference: 32. Schulman KA, Berlin JA, Harless W, Kerner JF, Sistrunk S, Gersh BJ, et al. The effect of race and sex on physicians’ recommendations for cardiac catheterization. N Engl J Med 1999; 340: 618–626. – reference: 11. Kivimaki M, Batty GD, Singh-Manoux A, Ferrie JE, Tabak AG, Jokela M, et al. Validating the Framingham Hypertension Risk Score: Results from the Whitehall II study. Hypertension 2009; 54: 496–501. – reference: 21. Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med 1997; 16: 965–980. – reference: 12. Chien KL, Hsu HC, Su TC, Chang WT, Sung FC, Chen MF, et al. Prediction models for the risk of new-onset hypertension in ethnic Chinese in Taiwan. J Hum Hypertens 2011; 25: 294–303. – reference: 28. Ohira T, Iso H. Cardiovascular disease epidemiology in Asia: An overview. Circ J 2013; 77: 1646–1652. – reference: 16. D’Agostino RB Sr, Grundy S, Sullivan LM, Wilson P; CHD Risk Prediction Group. Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA 2001; 286: 180–187. – reference: 25. Cowie CC, Harris MI, Silverman RE, Johnson EW, Rust KF. Effect of multiple risk factors on differences between blacks and whites in the prevalence of non-insulin-dependent diabetes mellitus in the United States. Am J Epidemiol 1993; 137: 719–732. – reference: 4. Kario K, Ogawa H, Okumura K, Okura T, Saito S, Ueno T, et al. SYMPLICITY HTN-Japan: First randomized controlled trial of catheter-based renal denervation in Asian patients. Circ J 2015; 79: 1222–1229. – reference: 22. Muntner P, Woodward M, Mann DM, Shimbo D, Michos ED, Blumenthal RS, et al. Comparison of the Framingham Heart Study hypertension model with blood pressure alone in the prediction of risk of hypertension: The Multi-Ethnic Study of Atherosclerosis. Hypertension 2010; 55: 1339–1345. – reference: 9. Spencer RM, Heidecker B, Ganz P. Behavioral cardiovascular risk factors: Effect of physical activity and cardiorespiratory fitness on cardiovascular outcomes. Circ J 2015; 80: 34–43. – reference: 3. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–1913. – reference: 30. Wen CP, David Cheng TY, Tsai SP, Chan HT, Hsu HL, Hsu CC, et al. Are Asians at greater mortality risks for being overweight than Caucasians?: Redefining obesity for Asians. Public Health Nutr 2009; 12: 497–506. – reference: 24. Takayama T, Hirai S, Oka S, Ishihara T, Kumazaki S, Mishima H, et al. Bilateral giant bullae with rapidly increasing fluid in the right bulla following operation: Report of a case. Surg Today 1994; 24: 272–275. – reference: 27. Teramoto T, Ohashi Y, Nakaya N, Yokoyama S, Mizuno K, Nakamura H, et al. Practical risk prediction tools for coronary heart disease in mild to moderate hypercholesterolemia in Japan: originated from the MEGA study data. Circ J 2008; 72: 1569–1575. – reference: 13. Lim NK, Son KH, Lee KS, Park HY, Cho MC. Predicting the risk of incident hypertension in a Korean middle-aged population: Korean genome and epidemiology study. J Clin Hypertens (Greenwich) 2013; 15: 344–349. – reference: 15. Echouffo-Tcheugui JB, Batty GD, Kivimaki M, Kengne AP. Risk models to predict hypertension: A systematic review. PLoS One 2013; 8: e67370, doi:10.1371/journal.pone.0067370. – reference: 18. Yatsuya H, Iso H, Li Y, Yamagishi K, Kokubo Y, Saito I, et al. Development of a risk equation for the incidence of coronary artery disease and ischemic stroke for middle-aged Japanese: Japan Public Health Center-Based Prospective Study. Circ J 2016; 80: 1386–1395. – reference: 10. Parikh NI, Pencina MJ, Wang TJ, Benjamin EJ, Lanier KJ, Levy D, et al. A risk score for predicting near-term incidence of hypertension: The Framingham Heart Study. Ann Intern Med 2008; 148: 102–110. – reference: 6. Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med 2006; 354: 1685–1697. – reference: 19. Khang YH, Bahk J, Yi N, Yun SC. Age- and cause-specific contributions to income difference in life expectancy at birth: Findings from nationally representative data on one million South Koreans. Eur J Public Health 2016; 26: 242–248. – reference: 20. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988; 44: 837–845. – reference: 7. He J, Whelton PK, Appel LJ, Charleston J, Klag MJ. Long-term effects of weight loss and dietary sodium reduction on incidence of hypertension. Hypertension 2000; 35: 544–549. – reference: 26. Sprafka JM, Folsom AR, Burke GL, Edlavitch SA. Prevalence of cardiovascular disease risk factors in blacks and whites: The Minnesota Heart Survey. Am J Public Health 1988; 78: 1546–1549. – ident: 25 doi: 10.1093/oxfordjournals.aje.a116732 – ident: 33 doi: 10.1161/01.CIR.94.9.2159 – ident: 16 doi: 10.1001/jama.286.2.180 – ident: 23 doi: 10.1056/NEJMsb025007 – ident: 17 doi: 10.1016/j.jacc.2007.03.037 – ident: 2 doi: 10.1097/MNH.0b013e328337f921 – ident: 30 doi: 10.1017/S1368980008002802 – ident: 11 doi: 10.1161/HYPERTENSIONAHA.109.132373 – ident: 15 doi: 10.1371/journal.pone.0067370 – ident: 10 doi: 10.7326/0003-4819-148-2-200801150-00005 – ident: 31 doi: 10.1046/j.1467-789X.2002.00065.x – ident: 13 doi: 10.1111/jch.12080 – ident: 20 doi: 10.2307/2531595 – ident: 4 doi: 10.1253/circj.CJ-15-0150 – ident: 7 doi: 10.1161/01.HYP.35.2.544 – ident: 21 doi: 10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>3.0.CO;2-O – ident: 9 doi: 10.1253/circj.CJ-15-1159 – ident: 29 doi: 10.2337/dc06-0057 – ident: 24 doi: 10.1007/BF02032901 – ident: 5 – ident: 19 doi: 10.1093/eurpub/ckv128 – ident: 22 doi: 10.1161/HYPERTENSIONAHA.109.149609 – ident: 8 doi: 10.1001/archinte.1997.00440270105009 – ident: 12 doi: 10.1038/jhh.2010.63 – ident: 14 doi: 10.1038/hr.2014.159 – ident: 28 doi: 10.1253/circj.CJ-13-0702 – ident: 32 doi: 10.1056/NEJM199902253400806 – ident: 18 doi: 10.1253/circj.CJ-16-0081 – ident: 3 doi: 10.1016/S0140-6736(02)11911-8 – ident: 26 doi: 10.2105/AJPH.78.12.1546 – ident: 6 doi: 10.1056/NEJMoa060838 – ident: 1 doi: 10.1016/S0140-6736(12)61766-8 – ident: 27 doi: 10.1253/circj.CJ-08-0191 |
SSID | ssj0029059 |
Score | 2.148965 |
Snippet | Background:This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large... This study aimed to validate the Korean Genome Epidemiology Study (KoGES) risk score to predict the 4-year risk of hypertension (HT) in a large nationwide... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1578 |
SubjectTerms | Adult Blood Pressure - genetics Cohort Studies Databases, Genetic Female Follow-Up Studies Framingham risk score Genome, Human Humans Hypertension Hypertension - epidemiology Hypertension - genetics KoGES Male Middle Aged Models, Genetic Republic of Korea - epidemiology Risk Factors Risk score Validation |
Title | Validation of the Korean Genome Epidemiology Study Risk Score to Predict Incident Hypertension in a Large Nationwide Korean Cohort |
URI | https://www.jstage.jst.go.jp/article/circj/80/7/80_CJ-15-1334/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/27238835 https://www.proquest.com/docview/1800403463 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Circulation Journal, 2016/06/24, Vol.80(7), pp.1578-1582 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKQIgXxHWUm4zEC6q85R73CaGqW9V1ZRIt9C1KHIdtYgkKqVB55F_wbznHdi4bGxq8RFVkx0nP5-Nz7M_-CHntcwHjpsR9W3bMvCx1WZIJ6HgxT9PUtVNLyb0dzoPJ0puu_FWv96vDWlpXyY74cem-kv-xKtwDu-Iu2X-wbPNQuAG_wb5wBQvD9Vo2_ghBdNrEfBhCHhQlTq3vy7w4k4NxK_-6UYxBCLiRSv4Bz67EqPOoxHWaCr0EiotWgwmkpaUitWsKZDyYIVV8oI_P_g6F6iZGxXFxfmJ_dFIKIwbWHEhx1SkV-K5TGKdR_3LQrWhYpA1PSIs9z-MzdrApiov0IXRV7FPLJDgyzO_JZp0z5ci6sxp6u6Vxwa4XMo87erVGXnLP-G2tAGXwGXacsO1rVaA_RgdHSXwI-KjTndGU2T6DDN1rR8J69X_-PtpbzmbRYrxa3CA3nTC0kS26v2rYQ87QUjp8zYuZFXBoYffi889FPLdOIej_LK_OZ1Rcs7hH7pqEhL7T6LpPejJ_QG4fGsrFQ_KzBRktMgqGoxoBVIOMdkFGFcgogowqkNGqoAZktAYZ7YKMnuQ0pgpktAVZ3YQG2SOy3BsvRhNmhDuYCBynYhmeECU5T60sEdjbQ5GGPEgcN7NjS_juEKLKOPPCxPUh_eVx4mVcpkksOIbXlvuYbOVFLp8QKhweeEMnCWwhvSEMQKjZ7Kfck_5QZHbaJ7v1nxsJc6o9iqt8iTC7BXNEyhzRaBrZfoTm6JM3TY2v-kSXv5R9q-3VlDR93ZTkVhTipa3RFjiOS_BRffKqNnQEjhtX46BrFetvEXwKDKCuF7h9sq0R0LTioBQg5EZPr1H7GbmDHUhPCz4nW1W5li8gUK6SlwqyvwE-vsUy |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+the+Korean+Genome+Epidemiology+Study+Risk+Score+to+Predict+Incident+Hypertension+in+a+Large+Nationwide+Korean+Cohort&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Lim%2C+Nam-Kyoo&rft.au=Lee%2C+Joung-Won&rft.au=Park%2C+Hyun-Young&rft.date=2016&rft.issn=1347-4820&rft.eissn=1347-4820&rft.volume=80&rft.issue=7&rft.spage=1578&rft_id=info:doi/10.1253%2Fcircj.CJ-15-1334&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon |