Dynamic stability of human walking in visually and mechanically destabilizing environments
Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of d...
Saved in:
Published in | Journal of biomechanics Vol. 44; no. 4; pp. 644 - 649 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
24.02.2011
Elsevier Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior–posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior–posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects' anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponenets decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves, which indicated that subjects' movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general. |
---|---|
AbstractList | Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior-posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior-posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects’ anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponenets decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves which indicated that subjects’ movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general. Abstract Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior–posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior–posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects' anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponenets decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves, which indicated that subjects' movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general. Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior-posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior-posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects' anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponents decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves, which indicated that subjects' movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general.Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior-posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior-posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects' anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponents decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves, which indicated that subjects' movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general. Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior-posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior-posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects' anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponents decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves, which indicated that subjects' movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general. |
Author | Wilken, Jason M. Dingwell, Jonathan B. McAndrew, Patricia M. |
AuthorAffiliation | 1 Department of Biomedical Engineering, University of Texas, Austin, TX 78712 2 Center for the Intrepid, Department of Orthopedics and Rehabilitation, Brooke Army Medical Center, Ft. Sam Houston, TX, 78234 3 Department of Kinesiology & Health Education, University of Texas, Austin, TX 78712 |
AuthorAffiliation_xml | – name: 3 Department of Kinesiology & Health Education, University of Texas, Austin, TX 78712 – name: 1 Department of Biomedical Engineering, University of Texas, Austin, TX 78712 – name: 2 Center for the Intrepid, Department of Orthopedics and Rehabilitation, Brooke Army Medical Center, Ft. Sam Houston, TX, 78234 |
Author_xml | – sequence: 1 givenname: Patricia M. surname: McAndrew fullname: McAndrew, Patricia M. organization: Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA – sequence: 2 givenname: Jason M. surname: Wilken fullname: Wilken, Jason M. organization: Center for the Intrepid, Department of Orthopedics and Rehabilitation, Brooke Army Medical Center, Ft. Sam Houston, TX, 78234, USA – sequence: 3 givenname: Jonathan B. surname: Dingwell fullname: Dingwell, Jonathan B. email: jdingwell@mail.utexas.edu organization: Department of Kinesiology and Health Education, University of Texas, Austin, TX 78712, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23928115$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21094944$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1v0zAUhi00xLrBX5giIcRVi4-duLGEJtDGlzSJC-CGG8txnPV0ib3ZSVH363HWlkFvylWkk-d9z4ffE3LkvLOEnAGdAQXxZjlbVug7axYzRscizCidPyETKOd8ynhJj8iEUgZTySQ9JicxLmki8rl8Ro4ZUJnLPJ-Qn5drpzs0Wex1hS3268w32WLotMt-6fYG3XWGLlthHHTbrjPt6mzsqh2ah0Jtt8r7EbVuhcG7zro-PidPG91G-2L7PSU_Pn74fvF5evX105eL91dTIxjrp6IBrQ3osjHCzpmUwhpRyFTOaQ0cKAWW12AazkFUIEqoWVVBQWtpuSkrfkrON763Q9XZ2qTeQbfqNmCnw1p5jerfPw4X6tqvFKc5K2iZDF5vDYK_G9I-qsNobNtqZ_0QVSnynKcp5GGy4IzlBRs9X-6RSz8El-6ggPICWFp0nqizv0f_M_PufRLwagvomO7dBO0MxkeOS1YCFIl7u-FM8DEG2yiDve7Rjxtjm3qqMTZqqXaxUWNsFIBKoUhysSffdTgofLcR2vTAK7RBRYPWGVtjsKZXtcfDFud7FqbFh3Td2LWNj2dTkSmqvo2hHjOdgkEFhwMG_zPBb3AFCtk |
CitedBy_id | crossref_primary_10_1016_j_clinbiomech_2022_105574 crossref_primary_10_3389_fspor_2023_1304141 crossref_primary_10_1016_j_medengphy_2011_07_024 crossref_primary_10_1152_jn_00079_2018 crossref_primary_10_1109_TIM_2018_2866316 crossref_primary_10_1123_jab_2017_0352 crossref_primary_10_1016_j_jbiomech_2019_06_010 crossref_primary_10_1016_j_gaitpost_2011_11_010 crossref_primary_10_3390_s25051489 crossref_primary_10_1016_j_humov_2013_07_001 crossref_primary_10_2522_ptj_20150566 crossref_primary_10_1016_j_gaitpost_2021_11_030 crossref_primary_10_1080_10255842_2020_1867852 crossref_primary_10_3389_fresc_2024_1345505 crossref_primary_10_1177_15500594221123690 crossref_primary_10_3389_fnagi_2018_00387 crossref_primary_10_1038_s41598_023_33662_6 crossref_primary_10_1371_journal_pone_0313034 crossref_primary_10_1016_j_gaitpost_2019_01_007 crossref_primary_10_1016_j_humov_2013_07_019 crossref_primary_10_1016_j_jbiomech_2012_05_039 crossref_primary_10_3389_fnagi_2024_1384242 crossref_primary_10_1016_j_jbiomech_2012_12_017 crossref_primary_10_1016_j_jbiomech_2020_109947 crossref_primary_10_1016_j_medengphy_2013_03_018 crossref_primary_10_3389_fnhum_2022_896221 crossref_primary_10_1371_journal_pone_0119596 crossref_primary_10_1016_j_jbiomech_2024_112385 crossref_primary_10_7717_peerj_7417 crossref_primary_10_1016_S1888_7546_12_70009_6 crossref_primary_10_3389_fnagi_2014_00104 crossref_primary_10_1109_RITA_2020_3033219 crossref_primary_10_1016_j_jbiomech_2017_09_009 crossref_primary_10_1016_j_jbiomech_2011_06_031 crossref_primary_10_1088_2516_1091_ac91b6 crossref_primary_10_3389_fnhum_2017_00170 crossref_primary_10_1016_j_jbiomech_2016_03_019 crossref_primary_10_1016_j_gaitpost_2012_06_015 crossref_primary_10_1016_j_gaitpost_2014_05_014 crossref_primary_10_1016_j_compenvurbsys_2019_02_003 crossref_primary_10_1371_journal_pcbi_1010035 crossref_primary_10_1016_j_heliyon_2024_e34707 crossref_primary_10_1016_j_jbiomech_2025_112495 crossref_primary_10_1016_j_gaitpost_2012_03_005 crossref_primary_10_1016_j_jbiomech_2012_05_024 crossref_primary_10_1016_j_jbiomech_2015_09_046 crossref_primary_10_1371_journal_pone_0142083 crossref_primary_10_1007_s10055_023_00851_7 crossref_primary_10_1007_s00221_020_05722_0 crossref_primary_10_1371_journal_pone_0080878 crossref_primary_10_1007_s00221_014_4177_5 crossref_primary_10_1016_j_gaitpost_2023_12_018 crossref_primary_10_1177_0031512518783456 crossref_primary_10_1038_s41598_018_36230_5 crossref_primary_10_3389_fphys_2017_00516 crossref_primary_10_1016_j_jbiomech_2014_10_006 crossref_primary_10_1109_TNSRE_2015_2500100 crossref_primary_10_1016_j_gaitpost_2012_08_014 crossref_primary_10_3389_fbioe_2021_645581 crossref_primary_10_1016_j_jbiomech_2011_12_027 crossref_primary_10_1016_j_medengphy_2019_07_018 crossref_primary_10_3390_s22145416 crossref_primary_10_1016_j_gaitpost_2017_05_002 crossref_primary_10_1109_TNSRE_2020_2970207 crossref_primary_10_1016_j_jbiomech_2011_03_003 crossref_primary_10_1371_journal_pcbi_1006850 crossref_primary_10_1007_s00391_017_1279_2 crossref_primary_10_1016_j_gaitpost_2013_01_024 crossref_primary_10_1016_j_gaitpost_2016_12_018 crossref_primary_10_1016_j_gaitpost_2024_01_024 crossref_primary_10_1016_j_jbiomech_2012_10_032 crossref_primary_10_1016_j_jbiomech_2015_09_026 crossref_primary_10_1016_j_clinbiomech_2022_105774 crossref_primary_10_1016_j_gaitpost_2020_07_014 crossref_primary_10_1002_lio2_252 crossref_primary_10_1016_j_jbiomech_2012_05_006 crossref_primary_10_1016_j_jbiomech_2014_02_033 crossref_primary_10_1088_1741_2552_ac883b crossref_primary_10_1080_00222895_2015_1134433 crossref_primary_10_1016_j_jbiomech_2019_109315 crossref_primary_10_3389_fspor_2020_00038 crossref_primary_10_1016_j_jbiomech_2016_07_016 crossref_primary_10_1016_j_jbiomech_2014_09_020 crossref_primary_10_1063_1_4837095 crossref_primary_10_1016_j_gaitpost_2017_12_016 crossref_primary_10_1016_j_apmr_2013_07_020 crossref_primary_10_1016_j_humov_2023_103158 crossref_primary_10_1016_j_gaitpost_2012_02_020 crossref_primary_10_1016_j_gaitpost_2021_07_001 crossref_primary_10_1016_j_clinbiomech_2018_09_011 crossref_primary_10_1016_j_humov_2015_01_012 crossref_primary_10_1080_17461391_2014_995233 crossref_primary_10_1016_j_gaitpost_2015_02_008 crossref_primary_10_1038_s41598_018_21018_4 crossref_primary_10_1152_jn_00043_2024 crossref_primary_10_1007_s11044_015_9459_6 crossref_primary_10_1109_TNSRE_2023_3290320 crossref_primary_10_3389_fneur_2020_00873 crossref_primary_10_1016_j_gaitpost_2024_05_028 crossref_primary_10_1109_TBME_2013_2295381 crossref_primary_10_1098_rsos_160369 crossref_primary_10_1016_j_clinbiomech_2013_10_010 crossref_primary_10_1016_j_jbiomech_2013_10_011 crossref_primary_10_1016_j_clinbiomech_2019_09_009 crossref_primary_10_1098_rsif_2011_0416 crossref_primary_10_1682_JRRD_2013_11_0244 crossref_primary_10_1098_rsos_200622 crossref_primary_10_1016_j_displa_2018_01_001 crossref_primary_10_1371_journal_pone_0082842 crossref_primary_10_1155_2017_4820428 crossref_primary_10_1016_j_jbiomech_2020_109714 crossref_primary_10_1016_j_humov_2018_11_007 crossref_primary_10_1038_s42256_019_0029_0 crossref_primary_10_1123_jab_2013_0142 crossref_primary_10_1016_j_exger_2023_112117 crossref_primary_10_3390_s24227284 crossref_primary_10_3389_fnhum_2018_00251 crossref_primary_10_1016_j_jbiomech_2021_110314 crossref_primary_10_1016_j_gaitpost_2018_08_010 crossref_primary_10_1016_j_gaitpost_2020_09_031 crossref_primary_10_1038_s41598_020_72408_6 crossref_primary_10_1016_j_jbiomech_2014_06_041 crossref_primary_10_1016_j_jbiomech_2013_12_011 crossref_primary_10_1098_rsos_190889 crossref_primary_10_1016_j_autcon_2020_103471 crossref_primary_10_1016_j_jbiomech_2016_10_004 crossref_primary_10_1371_journal_pone_0302021 crossref_primary_10_1371_journal_pone_0124879 crossref_primary_10_1098_rspb_2024_2040 crossref_primary_10_1589_jpts_36_330 crossref_primary_10_1098_rsif_2012_0999 crossref_primary_10_1186_s12984_021_00807_5 crossref_primary_10_1016_j_humov_2015_10_005 |
Cites_doi | 10.1115/1.2796024 10.1177/02783649922066655 10.1016/j.clinbiomech.2009.12.003 10.1109/TBME.2007.901031 10.1115/1.2895701 10.1016/j.jelekin.2007.06.008 10.1016/j.jbiomech.2009.03.015 10.1016/j.jbiomech.2004.12.014 10.1016/j.jbiomech.2008.08.002 10.1016/j.jbiomech.2006.08.006 10.1016/j.gaitpost.2006.03.003 10.1063/1.1324008 10.1115/1.2800760 10.1016/j.gaitpost.2006.09.075 10.1016/0167-2789(93)90009-P 10.1016/j.gaitpost.2005.11.004 10.1109/TRO.2007.904908 10.1016/j.jneumeth.2008.12.015 10.1016/j.jbiomech.2010.02.003 10.1186/1743-0003-5-12 10.1186/1743-0003-4-22 10.1016/S0021-9290(00)00101-9 10.1152/jn.00131.2009 10.1115/1.2746383 10.1089/cpb.2006.9.388 10.1016/j.jbiomech.2003.06.002 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd Elsevier Ltd 2015 INIST-CNRS Copyright © 2010 Elsevier Ltd. All rights reserved. 2010 Published by Elsevier Ltd. 2010 |
Copyright_xml | – notice: 2010 Elsevier Ltd – notice: Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2010 Elsevier Ltd. All rights reserved. – notice: 2010 Published by Elsevier Ltd. 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1016/j.jbiomech.2010.11.007 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 649 |
ExternalDocumentID | PMC3042508 2745360671 21094944 23928115 10_1016_j_jbiomech_2010_11_007 S0021929010006317 1_s2_0_S0021929010006317 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: 1-R21-EB007638 – fundername: NICHD NIH HHS grantid: R01 HD059844 – fundername: NICHD NIH HHS grantid: 1-R01-HD059844 – fundername: NIBIB NIH HHS grantid: R21 EB007638 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK HZ~ IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABMZM AFCTW AFFDN AFJKZ AFKWA AGHFR AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF H~9 I-F ML~ MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c622t-6f1aac1a8fc6e72996ec6596f140d13100124d1cf3316b1681d2bb150d9e3c8b3 |
IEDL.DBID | 7X7 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Thu Aug 21 18:33:04 EDT 2025 Mon Jul 21 10:38:53 EDT 2025 Mon Jul 21 11:20:33 EDT 2025 Wed Aug 13 06:45:39 EDT 2025 Mon Jul 21 06:04:14 EDT 2025 Mon Jul 21 09:15:38 EDT 2025 Thu Apr 24 23:09:26 EDT 2025 Tue Jul 01 01:13:56 EDT 2025 Fri Feb 23 02:34:50 EST 2024 Sun Feb 23 10:20:47 EST 2025 Tue Aug 26 16:33:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Walking Optic flow Walking surface Perturbation Dynamic stability Virtual reality Biomechanics Human Locomotion Oscillation Augmented reality Biomedical engineering |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2010 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c622t-6f1aac1a8fc6e72996ec6596f140d13100124d1cf3316b1681d2bb150d9e3c8b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Undefined-1 ObjectType-Feature-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Feature-1 |
PMID | 21094944 |
PQID | 1035122997 |
PQPubID | 1226346 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3042508 proquest_miscellaneous_864430129 proquest_miscellaneous_853224528 proquest_journals_1035122997 pubmed_primary_21094944 pascalfrancis_primary_23928115 crossref_citationtrail_10_1016_j_jbiomech_2010_11_007 crossref_primary_10_1016_j_jbiomech_2010_11_007 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2010_11_007 elsevier_clinicalkeyesjournals_1_s2_0_S0021929010006317 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2010_11_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-24 |
PublicationDateYYYYMMDD | 2011-02-24 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: United States |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier – name: Elsevier Limited |
References | Su, Dingwell (bib27) 2007; 129 Lamontagne, Fung, McFadyen, Faubert (bib21) 2007; 4 Kuo (bib20) 1999; 18 Donelan, Shipman, Kram, Kuo (bib9) 2004; 37 Dean, Alexander, Kuo (bib3) 2007; 54 Dingwell, Kang, Marin (bib6) 2007; 40 Gates, Dingwell (bib12) 2009; 42 McAndrew, Dingwell, Wilken (bib22) 2010; 43 Bauby, Kuo (bib1) 2000; 33 O'Connor, Kuo (bib25) 2009; 102 Hobbelen, Wisse (bib14) 2007; 23 Hurmuzlu, Basdogan, Stoianovici (bib17) 1996; 118 Dingwell, Kang (bib5) 2007; 129 Nyberg, Lundin-Olsson, Sondell, Backman, Holmlund, Eriksson, Stenvall, Rosendahl, Maxhall, Bucht (bib24) 2006; 9 Hurmuzlu, Basdogan (bib16) 1994; 116 Hollman, Brey, Bang, Kaufman (bib15) 2007; 26 Nayfeh, Balachandran (bib23) 1995 Fraser (bib11) 1986 Granata, Lockhart (bib13) 2008; 18 Kang, Dingwell (bib18) 2006; 24 Kang, Dingwell (bib19) 2008; 41 Yakhdani, Bafghi, Meijer, Bruijn, van den Dikkenberg, Stibbe, van Royan, van Dieen (bib28) 2010; 25 Bruijn, van Dieen, Meijer, Beek (bib2) 2009; 178 Dingwell, Cusumano (bib4) 2000; 10 England, Granata (bib10) 2007; 25 Rosenstein, Collins, DeLuca (bib26) 1993; 65 Dingwell, Marin (bib7) 2006; 39 Dingwell, Robb, Troy, Grabiner (bib8) 2008; 5 Dingwell (10.1016/j.jbiomech.2010.11.007_bib4) 2000; 10 Lamontagne (10.1016/j.jbiomech.2010.11.007_bib21) 2007; 4 Bruijn (10.1016/j.jbiomech.2010.11.007_bib2) 2009; 178 Dean (10.1016/j.jbiomech.2010.11.007_bib3) 2007; 54 Granata (10.1016/j.jbiomech.2010.11.007_bib13) 2008; 18 Su (10.1016/j.jbiomech.2010.11.007_bib27) 2007; 129 Kuo (10.1016/j.jbiomech.2010.11.007_bib20) 1999; 18 Nyberg (10.1016/j.jbiomech.2010.11.007_bib24) 2006; 9 McAndrew (10.1016/j.jbiomech.2010.11.007_bib22) 2010; 43 Nayfeh (10.1016/j.jbiomech.2010.11.007_bib23) 1995 Gates (10.1016/j.jbiomech.2010.11.007_bib12) 2009; 42 Fraser (10.1016/j.jbiomech.2010.11.007_bib11) 1986 Yakhdani (10.1016/j.jbiomech.2010.11.007_bib28) 2010; 25 Bauby (10.1016/j.jbiomech.2010.11.007_bib1) 2000; 33 Hurmuzlu (10.1016/j.jbiomech.2010.11.007_bib17) 1996; 118 Hollman (10.1016/j.jbiomech.2010.11.007_bib15) 2007; 26 Hurmuzlu (10.1016/j.jbiomech.2010.11.007_bib16) 1994; 116 Dingwell (10.1016/j.jbiomech.2010.11.007_bib8) 2008; 5 Kang (10.1016/j.jbiomech.2010.11.007_bib18) 2006; 24 Kang (10.1016/j.jbiomech.2010.11.007_bib19) 2008; 41 Donelan (10.1016/j.jbiomech.2010.11.007_bib9) 2004; 37 England (10.1016/j.jbiomech.2010.11.007_bib10) 2007; 25 Rosenstein (10.1016/j.jbiomech.2010.11.007_bib26) 1993; 65 O'Connor (10.1016/j.jbiomech.2010.11.007_bib25) 2009; 102 Dingwell (10.1016/j.jbiomech.2010.11.007_bib5) 2007; 129 Hobbelen (10.1016/j.jbiomech.2010.11.007_bib14) 2007; 23 Dingwell (10.1016/j.jbiomech.2010.11.007_bib6) 2007; 40 Dingwell (10.1016/j.jbiomech.2010.11.007_bib7) 2006; 39 |
References_xml | – volume: 23 start-page: 1213 year: 2007 end-page: 1224 ident: bib14 article-title: A disturbance rejection measure for limit cycle walkers: the Gait Sensitivity Norm publication-title: IEEE Trans Robotics – volume: 116 start-page: 30 year: 1994 end-page: 36 ident: bib16 article-title: On the measurement of dynamic stability of human locomotion publication-title: Journal of Biomechanical Engineering – year: 1995 ident: bib23 article-title: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods – volume: 26 start-page: 289 year: 2007 end-page: 294 ident: bib15 article-title: Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces publication-title: Gait and Posture – volume: 25 start-page: 230 year: 2010 end-page: 236 ident: bib28 article-title: Stability and variability of knee kinematics during gait in knee osteoarthristis before and after replacement surgery publication-title: Clinical Biomechanics (Bristol, Avon) – volume: 5 start-page: 12 year: 2008 ident: bib8 article-title: Effects of an attention demanding task on dynamic stability during treadmill walking publication-title: Journal of Neuroengineering and Rehabilitation – volume: 18 start-page: 172 year: 2008 end-page: 178 ident: bib13 article-title: Dynamic stability differences in fall-prone and healthy adults publication-title: Journal of Electromyography and Kinesiology – volume: 40 start-page: 1723 year: 2007 end-page: 1730 ident: bib6 article-title: The effects of sensory loss and walking speed on the orbital dynamic stability of human walking publication-title: Journal of Biomechanics – volume: 33 start-page: 1433 year: 2000 end-page: 1440 ident: bib1 article-title: Active control of lateral balance in human walking publication-title: Journal of Biomechanics – volume: 42 start-page: 1345 year: 2009 end-page: 1349 ident: bib12 article-title: Comparison of different state space definitions for local dynamic stability analyses publication-title: Journal of Biomechanics – volume: 178 start-page: 327 year: 2009 end-page: 333 ident: bib2 article-title: Statistical precision and sensitivity of measures of dynamic gait stability publication-title: Journal of Neuroscience Methods – volume: 25 start-page: 172 year: 2007 end-page: 178 ident: bib10 article-title: The influence of gait speed on local dynamic stability of walking publication-title: Gait and Posture – volume: 54 start-page: 1919 year: 2007 end-page: 1926 ident: bib3 article-title: The effect of lateral stabilization on walking in young and old adults publication-title: IEEE Transactions on Biomedical Engineering – volume: 9 start-page: 388 year: 2006 end-page: 395 ident: bib24 article-title: Using a virtual reality system to study balance and walking in a virtual outdoor environment: a pilot study publication-title: Cyberpsychology and Behavior – volume: 65 start-page: 117 year: 1993 end-page: 134 ident: bib26 article-title: A practical method for calculating largest Lyapunov exponents from small data sets publication-title: Physica D: Nonlinear Phenomena – volume: 39 start-page: 444 year: 2006 end-page: 452 ident: bib7 article-title: Kinematic variability and local dynamic stability of upper body motions when walking at different speeds publication-title: Journal of Biomechanics – volume: 118 start-page: 405 year: 1996 end-page: 411 ident: bib17 article-title: Kinematics and dynamic stability of the locomotion of post-polio patients publication-title: Journal of Biomechanical Engineering – volume: 102 start-page: 1411 year: 2009 end-page: 1419 ident: bib25 article-title: Direction-dependent control of balance during walking and standing publication-title: Journal of Neurophysiology – volume: 129 start-page: 802 year: 2007 end-page: 810 ident: bib27 article-title: Dynamic stability of passive dynamic walking on an irregular surface publication-title: Journal of Biomechanical Engineering – volume: 41 start-page: 2899 year: 2008 end-page: 2905 ident: bib19 article-title: Effects of walking speed, strength and range of motion on gait stability in healthy older adults publication-title: Journal of Biomechanics – volume: 4 start-page: 22 year: 2007 ident: bib21 article-title: Modulation of walking speed by changing optic flow in persons with stroke publication-title: Journal of Neuroengineering and Rehabilitation – volume: 129 start-page: 586 year: 2007 end-page: 593 ident: bib5 article-title: Differences between local and orbital dynamic stability during human walking publication-title: Journal of Biomechanical Engineering – volume: 37 start-page: 827 year: 2004 end-page: 835 ident: bib9 article-title: Mechanical and metabolic requirements for active lateral stabilization in human walking publication-title: Journal of Biomechanics – volume: 43 start-page: 1470 year: 2010 end-page: 1475 ident: bib22 article-title: Walking variability during continuous pseudo-random oscillations of the support surface and visual field publication-title: Journal of Biomechanics – volume: 24 start-page: 386 year: 2006 end-page: 390 ident: bib18 article-title: Intra-session reliability of local dynamic stability of walking publication-title: Gait and Posture – year: 1986 ident: bib11 article-title: Using mutual information to estimate metric entropy. publication-title: Dimensions and Entropies in Chaotic Systems – volume: 10 start-page: 848 year: 2000 end-page: 863 ident: bib4 article-title: Nonlinear time series analysis of normal and pathological human walking publication-title: Chaos – volume: 18 start-page: 917 year: 1999 end-page: 930 ident: bib20 article-title: Stabilization of lateral motion in passive dynamic walking publication-title: International Journal of Robotics Research – volume: 118 start-page: 405 issue: 3 year: 1996 ident: 10.1016/j.jbiomech.2010.11.007_bib17 article-title: Kinematics and dynamic stability of the locomotion of post-polio patients publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2796024 – volume: 18 start-page: 917 issue: 9 year: 1999 ident: 10.1016/j.jbiomech.2010.11.007_bib20 article-title: Stabilization of lateral motion in passive dynamic walking publication-title: International Journal of Robotics Research doi: 10.1177/02783649922066655 – volume: 25 start-page: 230 year: 2010 ident: 10.1016/j.jbiomech.2010.11.007_bib28 article-title: Stability and variability of knee kinematics during gait in knee osteoarthristis before and after replacement surgery publication-title: Clinical Biomechanics (Bristol, Avon) doi: 10.1016/j.clinbiomech.2009.12.003 – volume: 54 start-page: 1919 issue: 11 year: 2007 ident: 10.1016/j.jbiomech.2010.11.007_bib3 article-title: The effect of lateral stabilization on walking in young and old adults publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2007.901031 – volume: 116 start-page: 30 issue: 1 year: 1994 ident: 10.1016/j.jbiomech.2010.11.007_bib16 article-title: On the measurement of dynamic stability of human locomotion publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2895701 – volume: 18 start-page: 172 year: 2008 ident: 10.1016/j.jbiomech.2010.11.007_bib13 article-title: Dynamic stability differences in fall-prone and healthy adults publication-title: Journal of Electromyography and Kinesiology doi: 10.1016/j.jelekin.2007.06.008 – volume: 42 start-page: 1345 issue: 9 year: 2009 ident: 10.1016/j.jbiomech.2010.11.007_bib12 article-title: Comparison of different state space definitions for local dynamic stability analyses publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2009.03.015 – volume: 39 start-page: 444 issue: 3 year: 2006 ident: 10.1016/j.jbiomech.2010.11.007_bib7 article-title: Kinematic variability and local dynamic stability of upper body motions when walking at different speeds publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2004.12.014 – volume: 41 start-page: 2899 year: 2008 ident: 10.1016/j.jbiomech.2010.11.007_bib19 article-title: Effects of walking speed, strength and range of motion on gait stability in healthy older adults publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2008.08.002 – volume: 40 start-page: 1723 issue: 8 year: 2007 ident: 10.1016/j.jbiomech.2010.11.007_bib6 article-title: The effects of sensory loss and walking speed on the orbital dynamic stability of human walking publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2006.08.006 – volume: 25 start-page: 172 issue: 2 year: 2007 ident: 10.1016/j.jbiomech.2010.11.007_bib10 article-title: The influence of gait speed on local dynamic stability of walking publication-title: Gait and Posture doi: 10.1016/j.gaitpost.2006.03.003 – volume: 10 start-page: 848 issue: 4 year: 2000 ident: 10.1016/j.jbiomech.2010.11.007_bib4 article-title: Nonlinear time series analysis of normal and pathological human walking publication-title: Chaos doi: 10.1063/1.1324008 – volume: 129 start-page: 802 year: 2007 ident: 10.1016/j.jbiomech.2010.11.007_bib27 article-title: Dynamic stability of passive dynamic walking on an irregular surface publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2800760 – volume: 26 start-page: 289 issue: 2 year: 2007 ident: 10.1016/j.jbiomech.2010.11.007_bib15 article-title: Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces publication-title: Gait and Posture doi: 10.1016/j.gaitpost.2006.09.075 – volume: 65 start-page: 117 year: 1993 ident: 10.1016/j.jbiomech.2010.11.007_bib26 article-title: A practical method for calculating largest Lyapunov exponents from small data sets publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/0167-2789(93)90009-P – volume: 24 start-page: 386 year: 2006 ident: 10.1016/j.jbiomech.2010.11.007_bib18 article-title: Intra-session reliability of local dynamic stability of walking publication-title: Gait and Posture doi: 10.1016/j.gaitpost.2005.11.004 – volume: 23 start-page: 1213 issue: 6 year: 2007 ident: 10.1016/j.jbiomech.2010.11.007_bib14 article-title: A disturbance rejection measure for limit cycle walkers: the Gait Sensitivity Norm publication-title: IEEE Trans Robotics doi: 10.1109/TRO.2007.904908 – volume: 178 start-page: 327 year: 2009 ident: 10.1016/j.jbiomech.2010.11.007_bib2 article-title: Statistical precision and sensitivity of measures of dynamic gait stability publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2008.12.015 – volume: 43 start-page: 1470 year: 2010 ident: 10.1016/j.jbiomech.2010.11.007_bib22 article-title: Walking variability during continuous pseudo-random oscillations of the support surface and visual field publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2010.02.003 – year: 1986 ident: 10.1016/j.jbiomech.2010.11.007_bib11 article-title: Using mutual information to estimate metric entropy. – volume: 5 start-page: 12 year: 2008 ident: 10.1016/j.jbiomech.2010.11.007_bib8 article-title: Effects of an attention demanding task on dynamic stability during treadmill walking publication-title: Journal of Neuroengineering and Rehabilitation doi: 10.1186/1743-0003-5-12 – volume: 4 start-page: 22 year: 2007 ident: 10.1016/j.jbiomech.2010.11.007_bib21 article-title: Modulation of walking speed by changing optic flow in persons with stroke publication-title: Journal of Neuroengineering and Rehabilitation doi: 10.1186/1743-0003-4-22 – volume: 33 start-page: 1433 year: 2000 ident: 10.1016/j.jbiomech.2010.11.007_bib1 article-title: Active control of lateral balance in human walking publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(00)00101-9 – year: 1995 ident: 10.1016/j.jbiomech.2010.11.007_bib23 – volume: 102 start-page: 1411 year: 2009 ident: 10.1016/j.jbiomech.2010.11.007_bib25 article-title: Direction-dependent control of balance during walking and standing publication-title: Journal of Neurophysiology doi: 10.1152/jn.00131.2009 – volume: 129 start-page: 586 year: 2007 ident: 10.1016/j.jbiomech.2010.11.007_bib5 article-title: Differences between local and orbital dynamic stability during human walking publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2746383 – volume: 9 start-page: 388 issue: 4 year: 2006 ident: 10.1016/j.jbiomech.2010.11.007_bib24 article-title: Using a virtual reality system to study balance and walking in a virtual outdoor environment: a pilot study publication-title: Cyberpsychology and Behavior doi: 10.1089/cpb.2006.9.388 – volume: 37 start-page: 827 issue: 6 year: 2004 ident: 10.1016/j.jbiomech.2010.11.007_bib9 article-title: Mechanical and metabolic requirements for active lateral stabilization in human walking publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2003.06.002 |
SSID | ssj0007479 |
Score | 2.4044237 |
Snippet | Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased... Abstract Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 644 |
SubjectTerms | Biological and medical sciences Biomechanics. Biorheology Computer Simulation Cues Divergence Dynamic stability Environment Exponents Feedback, Sensory - physiology Female Fundamental and applied biological sciences. Psychology Gait - physiology Human Humans Instability Male Models, Biological Movements Multipliers Optic flow Perturbation Physical Medicine and Rehabilitation Proprioception - physiology Tissues, organs and organisms biophysics Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports Virtual reality Visual Visual Perception - physiology Walking Walking - physiology Walking surface Young Adult |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLemHRAIIej4CIzJB8Qta-04jn2cBtOENE5MmrhYjmOLVCWtlhbUHfa38-w4acu34Or4KfF7L88_vy8j9EowUYKYq5QaYVJWFTyVrixTIyYOdiNCbXBlX7zn55fs3VV-tYdO-1oYn1YZbX9n04O1jiPjyM3xoq59jS_8bT4MGPZZ4ivKGSu8lh_fbtI8AC7HNA-S-tlbVcLT42mocQ9BiWA9fCPtX21Q9xe6Bba57r6LnwHS7_Mqtzaqs4foQUSY-KRbxCO0Z5sROjhp4HT9eY1f45DzGZzpI3Rvqx3hCN25iIH2A_TxTXdTPQbwGNJn13jucLjQD3_VM-9fx3WDv9TtSs9ma6ybCvsl6lBmCQOVjZQ3fup2Od1jdHn29sPpeRqvYUgNp3SZcke0NkQLZ7gFLC65NTyXMMwmFfEBAsAIFTEuywgvCQcETMsSgGYlbWZEmT1B-828sc8Qpq5yVgoL7NeA0zJRcuAWnM-ly1lR5AnKe94rE3uU-6syZqpPRpuqXmbKywwOMApklqDxQLfounT8kaLoRav6GlSwmgo2kn-jtG38-VtFVEvVRP2goAmSA-WOjv_VW4929G9YJgWAKwDWJ-iwV0i1-RIfJ6YgMqDHw2MwID4qpBs7X7UK8Br14XfxmykAmjPvsUzQ007DN68nE8kkY8CVHd0fJvj25btPmvpTaGPuHWlwPHj-H1x5ge52Pn6aUnaI9pfXK_sSQOKyPApW4BtN6Wba priority: 102 providerName: Elsevier |
Title | Dynamic stability of human walking in visually and mechanically destabilizing environments |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929010006317 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929010006317 https://dx.doi.org/10.1016/j.jbiomech.2010.11.007 https://www.ncbi.nlm.nih.gov/pubmed/21094944 https://www.proquest.com/docview/1035122997 https://www.proquest.com/docview/853224528 https://www.proquest.com/docview/864430129 https://pubmed.ncbi.nlm.nih.gov/PMC3042508 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xTUIghKDjIzAqPyDeMmoncZwnVGBTAa1CiEkVL1bi2KJVSQtpQeWBv52z42QtgoF4ipT4lMR3Pv98nwCPRSwKZHMZMiVUGJcpDzNTFKESA4O7EWXambLPxnx0Hr-eJBNvcKt9WGWrE52iLhfK2shxdUe4N6HyTJ8tP4e2a5T1rvoWGntwYEuXWalOJ92By9aG9yEeNEQYMNjKEJ4dz1x-u3NIOM1hi2j_aXO6scxrnDLT9Lr4HRj9NaZya5M6vQU3Pbokw0YcbsMVXfXgcFjhyfrThjwhLt7TGdJ7cH2rFGEPrp55J_shfHjZdKknCBxd6OyGLAxxzfzIt3xubetkWpGv03qdz-cbklclsb-YuxRLvFFqT_ndDt1OpbsD56cn71-MQt-CIVScsVXIDc1zRXNhFNeIwzOuFU8yvB0PSmqdA4gPSqpMFFFeUI7olxUFgswy05ESRXQX9qtFpe8DYaY0OhMapz9HjBaJguNs4dk8M0mcpkkASTv3Uvn65LZNxly2gWgz2fJMWp7h4UUizwJ42tEtmwodf6VIW9bKNv8UNabETeT_KHXtF34tqayZHEjrA6dW5KgDgRQps47SY5sGs_zTW_s78tf9JkNwKxDSB3DUCqS8-JJuwQRAuseoPKxHKK_0Yl1LxGrMut7FJUMQMEfWWhnAvUbCL15PB1mcxTHOyo7sdwNs6fLdJ9X0oythbo1oeDR4cPmHP4RrjQmfhSw-gv3Vl7V-hBhwVfRh7_gH7bvl3oeD4as3ozFen5-M3777CcpRYJ8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIcEQQtDBCIzhB-DNI3a-HxCaGFPH1j1tUsWLcRxHtOrSQlqm8EfxN3J2PtYiGAhpr4mdD9_57nd3vjuAF7Efp0jmjHIVK-pnUUiTPE2pit0ctRHj2rqyBydh_8z_MAyGa_CjzYUxxypbmWgFdTZVxkeOu9tD3YTCM3o7-0JN1ygTXW1baNRscaSrCzTZyjeH-0jfl5wfvD9916dNVwGqQs7nNMyZlIrJOFehRmiZhFqFQYKXfTdjxt-NKi9jKvc8FqYsREDH0xRxU5ZoT8Wph8-9ATdR8brG2IuGnYFnatE3R0oYRdjhLmUkj3fHNp_eBkCspDJFu_-kDO_OZIkkyuveGr8Dv7-e4VxSigf34V6DZslezX4PYE0XPdjcK9CSP6_IK2LPl1rHfQ_uLJU-7MGtQRPU34SP-1Uhz0eKIFC1R3UrMs2JbR5ILuTE-PLJqCDfRuVCTiYVkUVGzC9Km9KJFzLdzPxuhi6n7j2Es2shziNYL6aFfgyE51muk1jj8kvEhF6chrhaiRsleeBHUeBA0K69UE09dNOWYyLag29j0dJMGJqhsSSQZg687ubN6oogf50RtaQVbb4rSmiBSuv_ZuqyETSlYKLkwhUm5s4MyzELOhnOTLqZDZaqMdI_vXVnhf-63-QIpmM0IRzYbhlSXH5Jt0EdIN1tFFYmAiULPV2UArEhN6H--IohCNA94x11YKvm8MvXMzfxE9_HVVnh_W6AKZW-eqcYfbYl043TDk2RJ1d_-HO43T8dHIvjw5Ojp7BRhw845f42rM-_LvQzxJ_zdMduegKfrlvK_ATSqZiE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB6VVKpACEHKsVCKH4C3pWvv_YBQIY1aSqMKUanixXi9tkiUbgKbUIWfxq9j7D2aICgIqa-7nj0845lvDnsAniZBkiGbc5fJRLpBHkduqrPMlYmn0RpRpmwo-2gQ7Z8Eb0_D0zX40eyFMWWVjU60ijqfSBMjx9Xto21C5Rnv6Los4rjXfzX94poOUibT2rTTqETkUC3O0X0rXx70kNfPGOvvfXiz79YdBlwZMTZzI02FkFQkWkYKYWYaKRmFKV4OvJya2Deav5xK7fs0ymiE4I5lGWKoPFW-TDIfn3sN1mPjFXVg_fXe4Ph9awcQqNcFJtRFEOIt7U8evRjZ3fU2HWL1ljnC-0-m8eZUlMgwXXXa-B0U_rWic8lE9m_DrRrbkt1KGO_Amiq6sLlboF9_tiDPia02tWH8LtxYOgixCxtHdYp_Ez72FoU4G0qCsNUW7i7IRBPbSpCci7GJ7JNhQb4Ny7kYjxdEFDkxvyjsBk-8kKua8rsZuryR7y6cXAl77kGnmBTqARCmc63SROH0C0SIfpJFOFupF6c6DOI4dCBs5p7L-nR006RjzJsyuBFveMYNz9B14sgzB3Zauml1PshfKeKGtbzZ_Yr6mqMJ-z9KVdZqp-SUl4x73GTgqRE5aiEoRcq0payRVYWY_umt2yvy1_4mQ2idoEPhwFYjkPziS9rl6gBpb6PqMvkoUajJvOSIFJlJ_CeXDEG47ptYqQP3Kwm_eD310iANApyVFdlvB5iD01fvFMPP9gB1E8JDx-Th5R_-BDZQw_B3B4PDR3C9yiUwlwVb0Jl9navHCEZn2Xa96gl8umpF8xPnG54f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+stability+of+human+walking+in+visually+and+mechanically+destabilizing+environments&rft.jtitle=Journal+of+biomechanics&rft.au=MCANDREW%2C+Patricia+M&rft.au=WILKEN%2C+Jason+M&rft.au=DINGWELL%2C+Jonathan+B&rft.date=2011-02-24&rft.pub=Elsevier&rft.issn=0021-9290&rft.volume=44&rft.issue=4&rft.spage=644&rft.epage=649&rft_id=info:doi/10.1016%2Fj.jbiomech.2010.11.007&rft.externalDBID=n%2Fa&rft.externalDocID=23928115 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929011X00039%2Fcov150h.gif |