Dynamic stability of human walking in visually and mechanically destabilizing environments

Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of d...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 44; no. 4; pp. 644 - 649
Main Authors McAndrew, Patricia M., Wilken, Jason M., Dingwell, Jonathan B.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 24.02.2011
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior–posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior–posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects' anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponenets decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves, which indicated that subjects' movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general.
AbstractList Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior-posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior-posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects’ anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponenets decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves which indicated that subjects’ movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general.
Abstract Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior–posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior–posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects' anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponenets decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves, which indicated that subjects' movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general.
Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior-posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior-posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects' anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponents decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves, which indicated that subjects' movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general.Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior-posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior-posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects' anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponents decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves, which indicated that subjects' movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general.
Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior-posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior-posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects' anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponents decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves, which indicated that subjects' movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general.
Author Wilken, Jason M.
Dingwell, Jonathan B.
McAndrew, Patricia M.
AuthorAffiliation 1 Department of Biomedical Engineering, University of Texas, Austin, TX 78712
2 Center for the Intrepid, Department of Orthopedics and Rehabilitation, Brooke Army Medical Center, Ft. Sam Houston, TX, 78234
3 Department of Kinesiology & Health Education, University of Texas, Austin, TX 78712
AuthorAffiliation_xml – name: 3 Department of Kinesiology & Health Education, University of Texas, Austin, TX 78712
– name: 1 Department of Biomedical Engineering, University of Texas, Austin, TX 78712
– name: 2 Center for the Intrepid, Department of Orthopedics and Rehabilitation, Brooke Army Medical Center, Ft. Sam Houston, TX, 78234
Author_xml – sequence: 1
  givenname: Patricia M.
  surname: McAndrew
  fullname: McAndrew, Patricia M.
  organization: Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA
– sequence: 2
  givenname: Jason M.
  surname: Wilken
  fullname: Wilken, Jason M.
  organization: Center for the Intrepid, Department of Orthopedics and Rehabilitation, Brooke Army Medical Center, Ft. Sam Houston, TX, 78234, USA
– sequence: 3
  givenname: Jonathan B.
  surname: Dingwell
  fullname: Dingwell, Jonathan B.
  email: jdingwell@mail.utexas.edu
  organization: Department of Kinesiology and Health Education, University of Texas, Austin, TX 78712, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23928115$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21094944$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAUhi00xLrBX5giIcRVi4-duLGEJtDGlzSJC-CGG8txnPV0ib3ZSVH363HWlkFvylWkk-d9z4ffE3LkvLOEnAGdAQXxZjlbVug7axYzRscizCidPyETKOd8ynhJj8iEUgZTySQ9JicxLmki8rl8Ro4ZUJnLPJ-Qn5drpzs0Wex1hS3268w32WLotMt-6fYG3XWGLlthHHTbrjPt6mzsqh2ah0Jtt8r7EbVuhcG7zro-PidPG91G-2L7PSU_Pn74fvF5evX105eL91dTIxjrp6IBrQ3osjHCzpmUwhpRyFTOaQ0cKAWW12AazkFUIEqoWVVBQWtpuSkrfkrON763Q9XZ2qTeQbfqNmCnw1p5jerfPw4X6tqvFKc5K2iZDF5vDYK_G9I-qsNobNtqZ_0QVSnynKcp5GGy4IzlBRs9X-6RSz8El-6ggPICWFp0nqizv0f_M_PufRLwagvomO7dBO0MxkeOS1YCFIl7u-FM8DEG2yiDve7Rjxtjm3qqMTZqqXaxUWNsFIBKoUhysSffdTgofLcR2vTAK7RBRYPWGVtjsKZXtcfDFud7FqbFh3Td2LWNj2dTkSmqvo2hHjOdgkEFhwMG_zPBb3AFCtk
CitedBy_id crossref_primary_10_1016_j_clinbiomech_2022_105574
crossref_primary_10_3389_fspor_2023_1304141
crossref_primary_10_1016_j_medengphy_2011_07_024
crossref_primary_10_1152_jn_00079_2018
crossref_primary_10_1109_TIM_2018_2866316
crossref_primary_10_1123_jab_2017_0352
crossref_primary_10_1016_j_jbiomech_2019_06_010
crossref_primary_10_1016_j_gaitpost_2011_11_010
crossref_primary_10_3390_s25051489
crossref_primary_10_1016_j_humov_2013_07_001
crossref_primary_10_2522_ptj_20150566
crossref_primary_10_1016_j_gaitpost_2021_11_030
crossref_primary_10_1080_10255842_2020_1867852
crossref_primary_10_3389_fresc_2024_1345505
crossref_primary_10_1177_15500594221123690
crossref_primary_10_3389_fnagi_2018_00387
crossref_primary_10_1038_s41598_023_33662_6
crossref_primary_10_1371_journal_pone_0313034
crossref_primary_10_1016_j_gaitpost_2019_01_007
crossref_primary_10_1016_j_humov_2013_07_019
crossref_primary_10_1016_j_jbiomech_2012_05_039
crossref_primary_10_3389_fnagi_2024_1384242
crossref_primary_10_1016_j_jbiomech_2012_12_017
crossref_primary_10_1016_j_jbiomech_2020_109947
crossref_primary_10_1016_j_medengphy_2013_03_018
crossref_primary_10_3389_fnhum_2022_896221
crossref_primary_10_1371_journal_pone_0119596
crossref_primary_10_1016_j_jbiomech_2024_112385
crossref_primary_10_7717_peerj_7417
crossref_primary_10_1016_S1888_7546_12_70009_6
crossref_primary_10_3389_fnagi_2014_00104
crossref_primary_10_1109_RITA_2020_3033219
crossref_primary_10_1016_j_jbiomech_2017_09_009
crossref_primary_10_1016_j_jbiomech_2011_06_031
crossref_primary_10_1088_2516_1091_ac91b6
crossref_primary_10_3389_fnhum_2017_00170
crossref_primary_10_1016_j_jbiomech_2016_03_019
crossref_primary_10_1016_j_gaitpost_2012_06_015
crossref_primary_10_1016_j_gaitpost_2014_05_014
crossref_primary_10_1016_j_compenvurbsys_2019_02_003
crossref_primary_10_1371_journal_pcbi_1010035
crossref_primary_10_1016_j_heliyon_2024_e34707
crossref_primary_10_1016_j_jbiomech_2025_112495
crossref_primary_10_1016_j_gaitpost_2012_03_005
crossref_primary_10_1016_j_jbiomech_2012_05_024
crossref_primary_10_1016_j_jbiomech_2015_09_046
crossref_primary_10_1371_journal_pone_0142083
crossref_primary_10_1007_s10055_023_00851_7
crossref_primary_10_1007_s00221_020_05722_0
crossref_primary_10_1371_journal_pone_0080878
crossref_primary_10_1007_s00221_014_4177_5
crossref_primary_10_1016_j_gaitpost_2023_12_018
crossref_primary_10_1177_0031512518783456
crossref_primary_10_1038_s41598_018_36230_5
crossref_primary_10_3389_fphys_2017_00516
crossref_primary_10_1016_j_jbiomech_2014_10_006
crossref_primary_10_1109_TNSRE_2015_2500100
crossref_primary_10_1016_j_gaitpost_2012_08_014
crossref_primary_10_3389_fbioe_2021_645581
crossref_primary_10_1016_j_jbiomech_2011_12_027
crossref_primary_10_1016_j_medengphy_2019_07_018
crossref_primary_10_3390_s22145416
crossref_primary_10_1016_j_gaitpost_2017_05_002
crossref_primary_10_1109_TNSRE_2020_2970207
crossref_primary_10_1016_j_jbiomech_2011_03_003
crossref_primary_10_1371_journal_pcbi_1006850
crossref_primary_10_1007_s00391_017_1279_2
crossref_primary_10_1016_j_gaitpost_2013_01_024
crossref_primary_10_1016_j_gaitpost_2016_12_018
crossref_primary_10_1016_j_gaitpost_2024_01_024
crossref_primary_10_1016_j_jbiomech_2012_10_032
crossref_primary_10_1016_j_jbiomech_2015_09_026
crossref_primary_10_1016_j_clinbiomech_2022_105774
crossref_primary_10_1016_j_gaitpost_2020_07_014
crossref_primary_10_1002_lio2_252
crossref_primary_10_1016_j_jbiomech_2012_05_006
crossref_primary_10_1016_j_jbiomech_2014_02_033
crossref_primary_10_1088_1741_2552_ac883b
crossref_primary_10_1080_00222895_2015_1134433
crossref_primary_10_1016_j_jbiomech_2019_109315
crossref_primary_10_3389_fspor_2020_00038
crossref_primary_10_1016_j_jbiomech_2016_07_016
crossref_primary_10_1016_j_jbiomech_2014_09_020
crossref_primary_10_1063_1_4837095
crossref_primary_10_1016_j_gaitpost_2017_12_016
crossref_primary_10_1016_j_apmr_2013_07_020
crossref_primary_10_1016_j_humov_2023_103158
crossref_primary_10_1016_j_gaitpost_2012_02_020
crossref_primary_10_1016_j_gaitpost_2021_07_001
crossref_primary_10_1016_j_clinbiomech_2018_09_011
crossref_primary_10_1016_j_humov_2015_01_012
crossref_primary_10_1080_17461391_2014_995233
crossref_primary_10_1016_j_gaitpost_2015_02_008
crossref_primary_10_1038_s41598_018_21018_4
crossref_primary_10_1152_jn_00043_2024
crossref_primary_10_1007_s11044_015_9459_6
crossref_primary_10_1109_TNSRE_2023_3290320
crossref_primary_10_3389_fneur_2020_00873
crossref_primary_10_1016_j_gaitpost_2024_05_028
crossref_primary_10_1109_TBME_2013_2295381
crossref_primary_10_1098_rsos_160369
crossref_primary_10_1016_j_clinbiomech_2013_10_010
crossref_primary_10_1016_j_jbiomech_2013_10_011
crossref_primary_10_1016_j_clinbiomech_2019_09_009
crossref_primary_10_1098_rsif_2011_0416
crossref_primary_10_1682_JRRD_2013_11_0244
crossref_primary_10_1098_rsos_200622
crossref_primary_10_1016_j_displa_2018_01_001
crossref_primary_10_1371_journal_pone_0082842
crossref_primary_10_1155_2017_4820428
crossref_primary_10_1016_j_jbiomech_2020_109714
crossref_primary_10_1016_j_humov_2018_11_007
crossref_primary_10_1038_s42256_019_0029_0
crossref_primary_10_1123_jab_2013_0142
crossref_primary_10_1016_j_exger_2023_112117
crossref_primary_10_3390_s24227284
crossref_primary_10_3389_fnhum_2018_00251
crossref_primary_10_1016_j_jbiomech_2021_110314
crossref_primary_10_1016_j_gaitpost_2018_08_010
crossref_primary_10_1016_j_gaitpost_2020_09_031
crossref_primary_10_1038_s41598_020_72408_6
crossref_primary_10_1016_j_jbiomech_2014_06_041
crossref_primary_10_1016_j_jbiomech_2013_12_011
crossref_primary_10_1098_rsos_190889
crossref_primary_10_1016_j_autcon_2020_103471
crossref_primary_10_1016_j_jbiomech_2016_10_004
crossref_primary_10_1371_journal_pone_0302021
crossref_primary_10_1371_journal_pone_0124879
crossref_primary_10_1098_rspb_2024_2040
crossref_primary_10_1589_jpts_36_330
crossref_primary_10_1098_rsif_2012_0999
crossref_primary_10_1186_s12984_021_00807_5
crossref_primary_10_1016_j_humov_2015_10_005
Cites_doi 10.1115/1.2796024
10.1177/02783649922066655
10.1016/j.clinbiomech.2009.12.003
10.1109/TBME.2007.901031
10.1115/1.2895701
10.1016/j.jelekin.2007.06.008
10.1016/j.jbiomech.2009.03.015
10.1016/j.jbiomech.2004.12.014
10.1016/j.jbiomech.2008.08.002
10.1016/j.jbiomech.2006.08.006
10.1016/j.gaitpost.2006.03.003
10.1063/1.1324008
10.1115/1.2800760
10.1016/j.gaitpost.2006.09.075
10.1016/0167-2789(93)90009-P
10.1016/j.gaitpost.2005.11.004
10.1109/TRO.2007.904908
10.1016/j.jneumeth.2008.12.015
10.1016/j.jbiomech.2010.02.003
10.1186/1743-0003-5-12
10.1186/1743-0003-4-22
10.1016/S0021-9290(00)00101-9
10.1152/jn.00131.2009
10.1115/1.2746383
10.1089/cpb.2006.9.388
10.1016/j.jbiomech.2003.06.002
ContentType Journal Article
Copyright 2010 Elsevier Ltd
Elsevier Ltd
2015 INIST-CNRS
Copyright © 2010 Elsevier Ltd. All rights reserved.
2010 Published by Elsevier Ltd. 2010
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 Elsevier Ltd. All rights reserved.
– notice: 2010 Published by Elsevier Ltd. 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1016/j.jbiomech.2010.11.007
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Research Library Prep


MEDLINE - Academic
MEDLINE
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 649
ExternalDocumentID PMC3042508
2745360671
21094944
23928115
10_1016_j_jbiomech_2010_11_007
S0021929010006317
1_s2_0_S0021929010006317
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: 1-R21-EB007638
– fundername: NICHD NIH HHS
  grantid: R01 HD059844
– fundername: NICHD NIH HHS
  grantid: 1-R01-HD059844
– fundername: NIBIB NIH HHS
  grantid: R21 EB007638
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
HZ~
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ABMZM
AFCTW
AFFDN
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
H~9
I-F
ML~
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c622t-6f1aac1a8fc6e72996ec6596f140d13100124d1cf3316b1681d2bb150d9e3c8b3
IEDL.DBID 7X7
ISSN 0021-9290
1873-2380
IngestDate Thu Aug 21 18:33:04 EDT 2025
Mon Jul 21 10:38:53 EDT 2025
Mon Jul 21 11:20:33 EDT 2025
Wed Aug 13 06:45:39 EDT 2025
Mon Jul 21 06:04:14 EDT 2025
Mon Jul 21 09:15:38 EDT 2025
Thu Apr 24 23:09:26 EDT 2025
Tue Jul 01 01:13:56 EDT 2025
Fri Feb 23 02:34:50 EST 2024
Sun Feb 23 10:20:47 EST 2025
Tue Aug 26 16:33:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Walking
Optic flow
Walking surface
Perturbation
Dynamic stability
Virtual reality
Biomechanics
Human
Locomotion
Oscillation
Augmented reality
Biomedical engineering
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2010 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c622t-6f1aac1a8fc6e72996ec6596f140d13100124d1cf3316b1681d2bb150d9e3c8b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Feature-1
PMID 21094944
PQID 1035122997
PQPubID 1226346
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3042508
proquest_miscellaneous_864430129
proquest_miscellaneous_853224528
proquest_journals_1035122997
pubmed_primary_21094944
pascalfrancis_primary_23928115
crossref_citationtrail_10_1016_j_jbiomech_2010_11_007
crossref_primary_10_1016_j_jbiomech_2010_11_007
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2010_11_007
elsevier_clinicalkeyesjournals_1_s2_0_S0021929010006317
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2010_11_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-24
PublicationDateYYYYMMDD 2011-02-24
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-24
  day: 24
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
– name: Elsevier Limited
References Su, Dingwell (bib27) 2007; 129
Lamontagne, Fung, McFadyen, Faubert (bib21) 2007; 4
Kuo (bib20) 1999; 18
Donelan, Shipman, Kram, Kuo (bib9) 2004; 37
Dean, Alexander, Kuo (bib3) 2007; 54
Dingwell, Kang, Marin (bib6) 2007; 40
Gates, Dingwell (bib12) 2009; 42
McAndrew, Dingwell, Wilken (bib22) 2010; 43
Bauby, Kuo (bib1) 2000; 33
O'Connor, Kuo (bib25) 2009; 102
Hobbelen, Wisse (bib14) 2007; 23
Hurmuzlu, Basdogan, Stoianovici (bib17) 1996; 118
Dingwell, Kang (bib5) 2007; 129
Nyberg, Lundin-Olsson, Sondell, Backman, Holmlund, Eriksson, Stenvall, Rosendahl, Maxhall, Bucht (bib24) 2006; 9
Hurmuzlu, Basdogan (bib16) 1994; 116
Hollman, Brey, Bang, Kaufman (bib15) 2007; 26
Nayfeh, Balachandran (bib23) 1995
Fraser (bib11) 1986
Granata, Lockhart (bib13) 2008; 18
Kang, Dingwell (bib18) 2006; 24
Kang, Dingwell (bib19) 2008; 41
Yakhdani, Bafghi, Meijer, Bruijn, van den Dikkenberg, Stibbe, van Royan, van Dieen (bib28) 2010; 25
Bruijn, van Dieen, Meijer, Beek (bib2) 2009; 178
Dingwell, Cusumano (bib4) 2000; 10
England, Granata (bib10) 2007; 25
Rosenstein, Collins, DeLuca (bib26) 1993; 65
Dingwell, Marin (bib7) 2006; 39
Dingwell, Robb, Troy, Grabiner (bib8) 2008; 5
Dingwell (10.1016/j.jbiomech.2010.11.007_bib4) 2000; 10
Lamontagne (10.1016/j.jbiomech.2010.11.007_bib21) 2007; 4
Bruijn (10.1016/j.jbiomech.2010.11.007_bib2) 2009; 178
Dean (10.1016/j.jbiomech.2010.11.007_bib3) 2007; 54
Granata (10.1016/j.jbiomech.2010.11.007_bib13) 2008; 18
Su (10.1016/j.jbiomech.2010.11.007_bib27) 2007; 129
Kuo (10.1016/j.jbiomech.2010.11.007_bib20) 1999; 18
Nyberg (10.1016/j.jbiomech.2010.11.007_bib24) 2006; 9
McAndrew (10.1016/j.jbiomech.2010.11.007_bib22) 2010; 43
Nayfeh (10.1016/j.jbiomech.2010.11.007_bib23) 1995
Gates (10.1016/j.jbiomech.2010.11.007_bib12) 2009; 42
Fraser (10.1016/j.jbiomech.2010.11.007_bib11) 1986
Yakhdani (10.1016/j.jbiomech.2010.11.007_bib28) 2010; 25
Bauby (10.1016/j.jbiomech.2010.11.007_bib1) 2000; 33
Hurmuzlu (10.1016/j.jbiomech.2010.11.007_bib17) 1996; 118
Hollman (10.1016/j.jbiomech.2010.11.007_bib15) 2007; 26
Hurmuzlu (10.1016/j.jbiomech.2010.11.007_bib16) 1994; 116
Dingwell (10.1016/j.jbiomech.2010.11.007_bib8) 2008; 5
Kang (10.1016/j.jbiomech.2010.11.007_bib18) 2006; 24
Kang (10.1016/j.jbiomech.2010.11.007_bib19) 2008; 41
Donelan (10.1016/j.jbiomech.2010.11.007_bib9) 2004; 37
England (10.1016/j.jbiomech.2010.11.007_bib10) 2007; 25
Rosenstein (10.1016/j.jbiomech.2010.11.007_bib26) 1993; 65
O'Connor (10.1016/j.jbiomech.2010.11.007_bib25) 2009; 102
Dingwell (10.1016/j.jbiomech.2010.11.007_bib5) 2007; 129
Hobbelen (10.1016/j.jbiomech.2010.11.007_bib14) 2007; 23
Dingwell (10.1016/j.jbiomech.2010.11.007_bib6) 2007; 40
Dingwell (10.1016/j.jbiomech.2010.11.007_bib7) 2006; 39
References_xml – volume: 23
  start-page: 1213
  year: 2007
  end-page: 1224
  ident: bib14
  article-title: A disturbance rejection measure for limit cycle walkers: the Gait Sensitivity Norm
  publication-title: IEEE Trans Robotics
– volume: 116
  start-page: 30
  year: 1994
  end-page: 36
  ident: bib16
  article-title: On the measurement of dynamic stability of human locomotion
  publication-title: Journal of Biomechanical Engineering
– year: 1995
  ident: bib23
  article-title: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
– volume: 26
  start-page: 289
  year: 2007
  end-page: 294
  ident: bib15
  article-title: Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces
  publication-title: Gait and Posture
– volume: 25
  start-page: 230
  year: 2010
  end-page: 236
  ident: bib28
  article-title: Stability and variability of knee kinematics during gait in knee osteoarthristis before and after replacement surgery
  publication-title: Clinical Biomechanics (Bristol, Avon)
– volume: 5
  start-page: 12
  year: 2008
  ident: bib8
  article-title: Effects of an attention demanding task on dynamic stability during treadmill walking
  publication-title: Journal of Neuroengineering and Rehabilitation
– volume: 18
  start-page: 172
  year: 2008
  end-page: 178
  ident: bib13
  article-title: Dynamic stability differences in fall-prone and healthy adults
  publication-title: Journal of Electromyography and Kinesiology
– volume: 40
  start-page: 1723
  year: 2007
  end-page: 1730
  ident: bib6
  article-title: The effects of sensory loss and walking speed on the orbital dynamic stability of human walking
  publication-title: Journal of Biomechanics
– volume: 33
  start-page: 1433
  year: 2000
  end-page: 1440
  ident: bib1
  article-title: Active control of lateral balance in human walking
  publication-title: Journal of Biomechanics
– volume: 42
  start-page: 1345
  year: 2009
  end-page: 1349
  ident: bib12
  article-title: Comparison of different state space definitions for local dynamic stability analyses
  publication-title: Journal of Biomechanics
– volume: 178
  start-page: 327
  year: 2009
  end-page: 333
  ident: bib2
  article-title: Statistical precision and sensitivity of measures of dynamic gait stability
  publication-title: Journal of Neuroscience Methods
– volume: 25
  start-page: 172
  year: 2007
  end-page: 178
  ident: bib10
  article-title: The influence of gait speed on local dynamic stability of walking
  publication-title: Gait and Posture
– volume: 54
  start-page: 1919
  year: 2007
  end-page: 1926
  ident: bib3
  article-title: The effect of lateral stabilization on walking in young and old adults
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 9
  start-page: 388
  year: 2006
  end-page: 395
  ident: bib24
  article-title: Using a virtual reality system to study balance and walking in a virtual outdoor environment: a pilot study
  publication-title: Cyberpsychology and Behavior
– volume: 65
  start-page: 117
  year: 1993
  end-page: 134
  ident: bib26
  article-title: A practical method for calculating largest Lyapunov exponents from small data sets
  publication-title: Physica D: Nonlinear Phenomena
– volume: 39
  start-page: 444
  year: 2006
  end-page: 452
  ident: bib7
  article-title: Kinematic variability and local dynamic stability of upper body motions when walking at different speeds
  publication-title: Journal of Biomechanics
– volume: 118
  start-page: 405
  year: 1996
  end-page: 411
  ident: bib17
  article-title: Kinematics and dynamic stability of the locomotion of post-polio patients
  publication-title: Journal of Biomechanical Engineering
– volume: 102
  start-page: 1411
  year: 2009
  end-page: 1419
  ident: bib25
  article-title: Direction-dependent control of balance during walking and standing
  publication-title: Journal of Neurophysiology
– volume: 129
  start-page: 802
  year: 2007
  end-page: 810
  ident: bib27
  article-title: Dynamic stability of passive dynamic walking on an irregular surface
  publication-title: Journal of Biomechanical Engineering
– volume: 41
  start-page: 2899
  year: 2008
  end-page: 2905
  ident: bib19
  article-title: Effects of walking speed, strength and range of motion on gait stability in healthy older adults
  publication-title: Journal of Biomechanics
– volume: 4
  start-page: 22
  year: 2007
  ident: bib21
  article-title: Modulation of walking speed by changing optic flow in persons with stroke
  publication-title: Journal of Neuroengineering and Rehabilitation
– volume: 129
  start-page: 586
  year: 2007
  end-page: 593
  ident: bib5
  article-title: Differences between local and orbital dynamic stability during human walking
  publication-title: Journal of Biomechanical Engineering
– volume: 37
  start-page: 827
  year: 2004
  end-page: 835
  ident: bib9
  article-title: Mechanical and metabolic requirements for active lateral stabilization in human walking
  publication-title: Journal of Biomechanics
– volume: 43
  start-page: 1470
  year: 2010
  end-page: 1475
  ident: bib22
  article-title: Walking variability during continuous pseudo-random oscillations of the support surface and visual field
  publication-title: Journal of Biomechanics
– volume: 24
  start-page: 386
  year: 2006
  end-page: 390
  ident: bib18
  article-title: Intra-session reliability of local dynamic stability of walking
  publication-title: Gait and Posture
– year: 1986
  ident: bib11
  article-title: Using mutual information to estimate metric entropy.
  publication-title: Dimensions and Entropies in Chaotic Systems
– volume: 10
  start-page: 848
  year: 2000
  end-page: 863
  ident: bib4
  article-title: Nonlinear time series analysis of normal and pathological human walking
  publication-title: Chaos
– volume: 18
  start-page: 917
  year: 1999
  end-page: 930
  ident: bib20
  article-title: Stabilization of lateral motion in passive dynamic walking
  publication-title: International Journal of Robotics Research
– volume: 118
  start-page: 405
  issue: 3
  year: 1996
  ident: 10.1016/j.jbiomech.2010.11.007_bib17
  article-title: Kinematics and dynamic stability of the locomotion of post-polio patients
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2796024
– volume: 18
  start-page: 917
  issue: 9
  year: 1999
  ident: 10.1016/j.jbiomech.2010.11.007_bib20
  article-title: Stabilization of lateral motion in passive dynamic walking
  publication-title: International Journal of Robotics Research
  doi: 10.1177/02783649922066655
– volume: 25
  start-page: 230
  year: 2010
  ident: 10.1016/j.jbiomech.2010.11.007_bib28
  article-title: Stability and variability of knee kinematics during gait in knee osteoarthristis before and after replacement surgery
  publication-title: Clinical Biomechanics (Bristol, Avon)
  doi: 10.1016/j.clinbiomech.2009.12.003
– volume: 54
  start-page: 1919
  issue: 11
  year: 2007
  ident: 10.1016/j.jbiomech.2010.11.007_bib3
  article-title: The effect of lateral stabilization on walking in young and old adults
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2007.901031
– volume: 116
  start-page: 30
  issue: 1
  year: 1994
  ident: 10.1016/j.jbiomech.2010.11.007_bib16
  article-title: On the measurement of dynamic stability of human locomotion
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2895701
– volume: 18
  start-page: 172
  year: 2008
  ident: 10.1016/j.jbiomech.2010.11.007_bib13
  article-title: Dynamic stability differences in fall-prone and healthy adults
  publication-title: Journal of Electromyography and Kinesiology
  doi: 10.1016/j.jelekin.2007.06.008
– volume: 42
  start-page: 1345
  issue: 9
  year: 2009
  ident: 10.1016/j.jbiomech.2010.11.007_bib12
  article-title: Comparison of different state space definitions for local dynamic stability analyses
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2009.03.015
– volume: 39
  start-page: 444
  issue: 3
  year: 2006
  ident: 10.1016/j.jbiomech.2010.11.007_bib7
  article-title: Kinematic variability and local dynamic stability of upper body motions when walking at different speeds
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2004.12.014
– volume: 41
  start-page: 2899
  year: 2008
  ident: 10.1016/j.jbiomech.2010.11.007_bib19
  article-title: Effects of walking speed, strength and range of motion on gait stability in healthy older adults
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2008.08.002
– volume: 40
  start-page: 1723
  issue: 8
  year: 2007
  ident: 10.1016/j.jbiomech.2010.11.007_bib6
  article-title: The effects of sensory loss and walking speed on the orbital dynamic stability of human walking
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2006.08.006
– volume: 25
  start-page: 172
  issue: 2
  year: 2007
  ident: 10.1016/j.jbiomech.2010.11.007_bib10
  article-title: The influence of gait speed on local dynamic stability of walking
  publication-title: Gait and Posture
  doi: 10.1016/j.gaitpost.2006.03.003
– volume: 10
  start-page: 848
  issue: 4
  year: 2000
  ident: 10.1016/j.jbiomech.2010.11.007_bib4
  article-title: Nonlinear time series analysis of normal and pathological human walking
  publication-title: Chaos
  doi: 10.1063/1.1324008
– volume: 129
  start-page: 802
  year: 2007
  ident: 10.1016/j.jbiomech.2010.11.007_bib27
  article-title: Dynamic stability of passive dynamic walking on an irregular surface
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2800760
– volume: 26
  start-page: 289
  issue: 2
  year: 2007
  ident: 10.1016/j.jbiomech.2010.11.007_bib15
  article-title: Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces
  publication-title: Gait and Posture
  doi: 10.1016/j.gaitpost.2006.09.075
– volume: 65
  start-page: 117
  year: 1993
  ident: 10.1016/j.jbiomech.2010.11.007_bib26
  article-title: A practical method for calculating largest Lyapunov exponents from small data sets
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(93)90009-P
– volume: 24
  start-page: 386
  year: 2006
  ident: 10.1016/j.jbiomech.2010.11.007_bib18
  article-title: Intra-session reliability of local dynamic stability of walking
  publication-title: Gait and Posture
  doi: 10.1016/j.gaitpost.2005.11.004
– volume: 23
  start-page: 1213
  issue: 6
  year: 2007
  ident: 10.1016/j.jbiomech.2010.11.007_bib14
  article-title: A disturbance rejection measure for limit cycle walkers: the Gait Sensitivity Norm
  publication-title: IEEE Trans Robotics
  doi: 10.1109/TRO.2007.904908
– volume: 178
  start-page: 327
  year: 2009
  ident: 10.1016/j.jbiomech.2010.11.007_bib2
  article-title: Statistical precision and sensitivity of measures of dynamic gait stability
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2008.12.015
– volume: 43
  start-page: 1470
  year: 2010
  ident: 10.1016/j.jbiomech.2010.11.007_bib22
  article-title: Walking variability during continuous pseudo-random oscillations of the support surface and visual field
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2010.02.003
– year: 1986
  ident: 10.1016/j.jbiomech.2010.11.007_bib11
  article-title: Using mutual information to estimate metric entropy.
– volume: 5
  start-page: 12
  year: 2008
  ident: 10.1016/j.jbiomech.2010.11.007_bib8
  article-title: Effects of an attention demanding task on dynamic stability during treadmill walking
  publication-title: Journal of Neuroengineering and Rehabilitation
  doi: 10.1186/1743-0003-5-12
– volume: 4
  start-page: 22
  year: 2007
  ident: 10.1016/j.jbiomech.2010.11.007_bib21
  article-title: Modulation of walking speed by changing optic flow in persons with stroke
  publication-title: Journal of Neuroengineering and Rehabilitation
  doi: 10.1186/1743-0003-4-22
– volume: 33
  start-page: 1433
  year: 2000
  ident: 10.1016/j.jbiomech.2010.11.007_bib1
  article-title: Active control of lateral balance in human walking
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(00)00101-9
– year: 1995
  ident: 10.1016/j.jbiomech.2010.11.007_bib23
– volume: 102
  start-page: 1411
  year: 2009
  ident: 10.1016/j.jbiomech.2010.11.007_bib25
  article-title: Direction-dependent control of balance during walking and standing
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00131.2009
– volume: 129
  start-page: 586
  year: 2007
  ident: 10.1016/j.jbiomech.2010.11.007_bib5
  article-title: Differences between local and orbital dynamic stability during human walking
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2746383
– volume: 9
  start-page: 388
  issue: 4
  year: 2006
  ident: 10.1016/j.jbiomech.2010.11.007_bib24
  article-title: Using a virtual reality system to study balance and walking in a virtual outdoor environment: a pilot study
  publication-title: Cyberpsychology and Behavior
  doi: 10.1089/cpb.2006.9.388
– volume: 37
  start-page: 827
  issue: 6
  year: 2004
  ident: 10.1016/j.jbiomech.2010.11.007_bib9
  article-title: Mechanical and metabolic requirements for active lateral stabilization in human walking
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2003.06.002
SSID ssj0007479
Score 2.4044237
Snippet Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased...
Abstract Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 644
SubjectTerms Biological and medical sciences
Biomechanics. Biorheology
Computer Simulation
Cues
Divergence
Dynamic stability
Environment
Exponents
Feedback, Sensory - physiology
Female
Fundamental and applied biological sciences. Psychology
Gait - physiology
Human
Humans
Instability
Male
Models, Biological
Movements
Multipliers
Optic flow
Perturbation
Physical Medicine and Rehabilitation
Proprioception - physiology
Tissues, organs and organisms biophysics
Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports
Virtual reality
Visual
Visual Perception - physiology
Walking
Walking - physiology
Walking surface
Young Adult
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLemHRAIIej4CIzJB8Qta-04jn2cBtOENE5MmrhYjmOLVCWtlhbUHfa38-w4acu34Or4KfF7L88_vy8j9EowUYKYq5QaYVJWFTyVrixTIyYOdiNCbXBlX7zn55fs3VV-tYdO-1oYn1YZbX9n04O1jiPjyM3xoq59jS_8bT4MGPZZ4ivKGSu8lh_fbtI8AC7HNA-S-tlbVcLT42mocQ9BiWA9fCPtX21Q9xe6Bba57r6LnwHS7_Mqtzaqs4foQUSY-KRbxCO0Z5sROjhp4HT9eY1f45DzGZzpI3Rvqx3hCN25iIH2A_TxTXdTPQbwGNJn13jucLjQD3_VM-9fx3WDv9TtSs9ma6ybCvsl6lBmCQOVjZQ3fup2Od1jdHn29sPpeRqvYUgNp3SZcke0NkQLZ7gFLC65NTyXMMwmFfEBAsAIFTEuywgvCQcETMsSgGYlbWZEmT1B-828sc8Qpq5yVgoL7NeA0zJRcuAWnM-ly1lR5AnKe94rE3uU-6syZqpPRpuqXmbKywwOMApklqDxQLfounT8kaLoRav6GlSwmgo2kn-jtG38-VtFVEvVRP2goAmSA-WOjv_VW4929G9YJgWAKwDWJ-iwV0i1-RIfJ6YgMqDHw2MwID4qpBs7X7UK8Br14XfxmykAmjPvsUzQ007DN68nE8kkY8CVHd0fJvj25btPmvpTaGPuHWlwPHj-H1x5ge52Pn6aUnaI9pfXK_sSQOKyPApW4BtN6Wba
  priority: 102
  providerName: Elsevier
Title Dynamic stability of human walking in visually and mechanically destabilizing environments
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929010006317
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929010006317
https://dx.doi.org/10.1016/j.jbiomech.2010.11.007
https://www.ncbi.nlm.nih.gov/pubmed/21094944
https://www.proquest.com/docview/1035122997
https://www.proquest.com/docview/853224528
https://www.proquest.com/docview/864430129
https://pubmed.ncbi.nlm.nih.gov/PMC3042508
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xTUIghKDjIzAqPyDeMmoncZwnVGBTAa1CiEkVL1bi2KJVSQtpQeWBv52z42QtgoF4ipT4lMR3Pv98nwCPRSwKZHMZMiVUGJcpDzNTFKESA4O7EWXambLPxnx0Hr-eJBNvcKt9WGWrE52iLhfK2shxdUe4N6HyTJ8tP4e2a5T1rvoWGntwYEuXWalOJ92By9aG9yEeNEQYMNjKEJ4dz1x-u3NIOM1hi2j_aXO6scxrnDLT9Lr4HRj9NaZya5M6vQU3Pbokw0YcbsMVXfXgcFjhyfrThjwhLt7TGdJ7cH2rFGEPrp55J_shfHjZdKknCBxd6OyGLAxxzfzIt3xubetkWpGv03qdz-cbklclsb-YuxRLvFFqT_ndDt1OpbsD56cn71-MQt-CIVScsVXIDc1zRXNhFNeIwzOuFU8yvB0PSmqdA4gPSqpMFFFeUI7olxUFgswy05ESRXQX9qtFpe8DYaY0OhMapz9HjBaJguNs4dk8M0mcpkkASTv3Uvn65LZNxly2gWgz2fJMWp7h4UUizwJ42tEtmwodf6VIW9bKNv8UNabETeT_KHXtF34tqayZHEjrA6dW5KgDgRQps47SY5sGs_zTW_s78tf9JkNwKxDSB3DUCqS8-JJuwQRAuseoPKxHKK_0Yl1LxGrMut7FJUMQMEfWWhnAvUbCL15PB1mcxTHOyo7sdwNs6fLdJ9X0oythbo1oeDR4cPmHP4RrjQmfhSw-gv3Vl7V-hBhwVfRh7_gH7bvl3oeD4as3ozFen5-M3777CcpRYJ8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIcEQQtDBCIzhB-DNI3a-HxCaGFPH1j1tUsWLcRxHtOrSQlqm8EfxN3J2PtYiGAhpr4mdD9_57nd3vjuAF7Efp0jmjHIVK-pnUUiTPE2pit0ctRHj2rqyBydh_8z_MAyGa_CjzYUxxypbmWgFdTZVxkeOu9tD3YTCM3o7-0JN1ygTXW1baNRscaSrCzTZyjeH-0jfl5wfvD9916dNVwGqQs7nNMyZlIrJOFehRmiZhFqFQYKXfTdjxt-NKi9jKvc8FqYsREDH0xRxU5ZoT8Wph8-9ATdR8brG2IuGnYFnatE3R0oYRdjhLmUkj3fHNp_eBkCspDJFu_-kDO_OZIkkyuveGr8Dv7-e4VxSigf34V6DZslezX4PYE0XPdjcK9CSP6_IK2LPl1rHfQ_uLJU-7MGtQRPU34SP-1Uhz0eKIFC1R3UrMs2JbR5ILuTE-PLJqCDfRuVCTiYVkUVGzC9Km9KJFzLdzPxuhi6n7j2Es2shziNYL6aFfgyE51muk1jj8kvEhF6chrhaiRsleeBHUeBA0K69UE09dNOWYyLag29j0dJMGJqhsSSQZg687ubN6oogf50RtaQVbb4rSmiBSuv_ZuqyETSlYKLkwhUm5s4MyzELOhnOTLqZDZaqMdI_vXVnhf-63-QIpmM0IRzYbhlSXH5Jt0EdIN1tFFYmAiULPV2UArEhN6H--IohCNA94x11YKvm8MvXMzfxE9_HVVnh_W6AKZW-eqcYfbYl043TDk2RJ1d_-HO43T8dHIvjw5Ojp7BRhw845f42rM-_LvQzxJ_zdMduegKfrlvK_ATSqZiE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB6VVKpACEHKsVCKH4C3pWvv_YBQIY1aSqMKUanixXi9tkiUbgKbUIWfxq9j7D2aICgIqa-7nj0845lvDnsAniZBkiGbc5fJRLpBHkduqrPMlYmn0RpRpmwo-2gQ7Z8Eb0_D0zX40eyFMWWVjU60ijqfSBMjx9Xto21C5Rnv6Los4rjXfzX94poOUibT2rTTqETkUC3O0X0rXx70kNfPGOvvfXiz79YdBlwZMTZzI02FkFQkWkYKYWYaKRmFKV4OvJya2Deav5xK7fs0ymiE4I5lGWKoPFW-TDIfn3sN1mPjFXVg_fXe4Ph9awcQqNcFJtRFEOIt7U8evRjZ3fU2HWL1ljnC-0-m8eZUlMgwXXXa-B0U_rWic8lE9m_DrRrbkt1KGO_Amiq6sLlboF9_tiDPia02tWH8LtxYOgixCxtHdYp_Ez72FoU4G0qCsNUW7i7IRBPbSpCci7GJ7JNhQb4Ny7kYjxdEFDkxvyjsBk-8kKua8rsZuryR7y6cXAl77kGnmBTqARCmc63SROH0C0SIfpJFOFupF6c6DOI4dCBs5p7L-nR006RjzJsyuBFveMYNz9B14sgzB3Zauml1PshfKeKGtbzZ_Yr6mqMJ-z9KVdZqp-SUl4x73GTgqRE5aiEoRcq0payRVYWY_umt2yvy1_4mQ2idoEPhwFYjkPziS9rl6gBpb6PqMvkoUajJvOSIFJlJ_CeXDEG47ptYqQP3Kwm_eD310iANApyVFdlvB5iD01fvFMPP9gB1E8JDx-Th5R_-BDZQw_B3B4PDR3C9yiUwlwVb0Jl9navHCEZn2Xa96gl8umpF8xPnG54f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+stability+of+human+walking+in+visually+and+mechanically+destabilizing+environments&rft.jtitle=Journal+of+biomechanics&rft.au=MCANDREW%2C+Patricia+M&rft.au=WILKEN%2C+Jason+M&rft.au=DINGWELL%2C+Jonathan+B&rft.date=2011-02-24&rft.pub=Elsevier&rft.issn=0021-9290&rft.volume=44&rft.issue=4&rft.spage=644&rft.epage=649&rft_id=info:doi/10.1016%2Fj.jbiomech.2010.11.007&rft.externalDBID=n%2Fa&rft.externalDocID=23928115
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929011X00039%2Fcov150h.gif