Sensitivity analysis of disease-information coupling propagation dynamics model parameters
The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disea...
Saved in:
Published in | PloS one Vol. 17; no. 3; p. e0265273 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
25.03.2022
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disease-information coupling propagation dynamics model and identifying the key parameters of the model will help us better understand its coupling mechanism and make accurate recommendations for controlling the spread of disease. In this paper, Sobol global sensitivity analysis algorithm is adopted to conduct global sensitivity analysis on 6 input parameters (different cross regional jump probabilities, information dissemination rate, information recovery rate, epidemic transmission rate, epidemic recovery rate, and the probability of taking preventive actions) of the disease-information coupling model with the same interaction radius and heterogeneous interaction radius. The results show that: (1) In the coupling model with the same interaction radius, the parameters that have the most obvious influence on the peak density of nodes in state
A
I
and the information dissemination scale of the information are the information dissemination rate
β
I
and the information recovery rate
μ
I
. In the coupling model of heterogeneous interaction radius, the parameters that have the most obvious impact on the peak density of nodes in the
A
I
state of the information layer are: information spread rate
β
I
, disease recovery rate
μ
E
, and the parameter that has a significant impact on the scale of information spread is the information spread rate
β
I
and information recovery rate
μ
I
. (2) Under the same interaction radius and heterogeneous interaction radius, the parameters that have the most obvious influence on peak density of nodes in state
S
E
and the disease transmission scale of the disease layer are the disease transmission rate
β
E
, the disease recovery rate
μ
E
, and the probability of an individual moving across regions
p
jump
. |
---|---|
AbstractList | The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disease-information coupling propagation dynamics model and identifying the key parameters of the model will help us better understand its coupling mechanism and make accurate recommendations for controlling the spread of disease. In this paper, Sobol global sensitivity analysis algorithm is adopted to conduct global sensitivity analysis on 6 input parameters (different cross regional jump probabilities, information dissemination rate, information recovery rate, epidemic transmission rate, epidemic recovery rate, and the probability of taking preventive actions) of the disease-information coupling model with the same interaction radius and heterogeneous interaction radius. The results show that: (1) In the coupling model with the same interaction radius, the parameters that have the most obvious influence on the peak density of nodes in state AI and the information dissemination scale of the information are the information dissemination rate βI and the information recovery rate μI. In the coupling model of heterogeneous interaction radius, the parameters that have the most obvious impact on the peak density of nodes in the AI state of the information layer are: information spread rate βI, disease recovery rate μE, and the parameter that has a significant impact on the scale of information spread is the information spread rate βI and information recovery rate μI. (2) Under the same interaction radius and heterogeneous interaction radius, the parameters that have the most obvious influence on peak density of nodes in state SE and the disease transmission scale of the disease layer are the disease transmission rate βE, the disease recovery rate μE, and the probability of an individual moving across regions pjump. The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disease-information coupling propagation dynamics model and identifying the key parameters of the model will help us better understand its coupling mechanism and make accurate recommendations for controlling the spread of disease. In this paper, Sobol global sensitivity analysis algorithm is adopted to conduct global sensitivity analysis on 6 input parameters (different cross regional jump probabilities, information dissemination rate, information recovery rate, epidemic transmission rate, epidemic recovery rate, and the probability of taking preventive actions) of the disease-information coupling model with the same interaction radius and heterogeneous interaction radius. The results show that: (1) In the coupling model with the same interaction radius, the parameters that have the most obvious influence on the peak density of nodes in state A I and the information dissemination scale of the information are the information dissemination rate β I and the information recovery rate μ I . In the coupling model of heterogeneous interaction radius, the parameters that have the most obvious impact on the peak density of nodes in the A I state of the information layer are: information spread rate β I , disease recovery rate μ E , and the parameter that has a significant impact on the scale of information spread is the information spread rate β I and information recovery rate μ I . (2) Under the same interaction radius and heterogeneous interaction radius, the parameters that have the most obvious influence on peak density of nodes in state S E and the disease transmission scale of the disease layer are the disease transmission rate β E , the disease recovery rate μ E , and the probability of an individual moving across regions p jump . The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disease-information coupling propagation dynamics model and identifying the key parameters of the model will help us better understand its coupling mechanism and make accurate recommendations for controlling the spread of disease. In this paper, Sobol global sensitivity analysis algorithm is adopted to conduct global sensitivity analysis on 6 input parameters (different cross regional jump probabilities, information dissemination rate, information recovery rate, epidemic transmission rate, epidemic recovery rate, and the probability of taking preventive actions) of the disease-information coupling model with the same interaction radius and heterogeneous interaction radius. The results show that: (1) In the coupling model with the same interaction radius, the parameters that have the most obvious influence on the peak density of nodes in state A.sub.I and the information dissemination scale of the information are the information dissemination rate [beta].sub.I and the information recovery rate [mu].sub.I . In the coupling model of heterogeneous interaction radius, the parameters that have the most obvious impact on the peak density of nodes in the A.sub.I state of the information layer are: information spread rate [beta].sub.I, disease recovery rate [mu].sub.E, and the parameter that has a significant impact on the scale of information spread is the information spread rate [beta].sub.I and information recovery rate [mu].sub.I . (2) Under the same interaction radius and heterogeneous interaction radius, the parameters that have the most obvious influence on peak density of nodes in state S.sub.E and the disease transmission scale of the disease layer are the disease transmission rate [beta].sub.E, the disease recovery rate [mu].sub.E, and the probability of an individual moving across regions p.sub.jump. The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disease-information coupling propagation dynamics model and identifying the key parameters of the model will help us better understand its coupling mechanism and make accurate recommendations for controlling the spread of disease. In this paper, Sobol global sensitivity analysis algorithm is adopted to conduct global sensitivity analysis on 6 input parameters (different cross regional jump probabilities, information dissemination rate, information recovery rate, epidemic transmission rate, epidemic recovery rate, and the probability of taking preventive actions) of the disease-information coupling model with the same interaction radius and heterogeneous interaction radius. The results show that: (1) In the coupling model with the same interaction radius, the parameters that have the most obvious influence on the peak density of nodes in state AI and the information dissemination scale of the information are the information dissemination rate βI and the information recovery rate μI. In the coupling model of heterogeneous interaction radius, the parameters that have the most obvious impact on the peak density of nodes in the AI state of the information layer are: information spread rate βI, disease recovery rate μE, and the parameter that has a significant impact on the scale of information spread is the information spread rate βI and information recovery rate μI. (2) Under the same interaction radius and heterogeneous interaction radius, the parameters that have the most obvious influence on peak density of nodes in state SE and the disease transmission scale of the disease layer are the disease transmission rate βE, the disease recovery rate μE, and the probability of an individual moving across regions pjump.The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disease-information coupling propagation dynamics model and identifying the key parameters of the model will help us better understand its coupling mechanism and make accurate recommendations for controlling the spread of disease. In this paper, Sobol global sensitivity analysis algorithm is adopted to conduct global sensitivity analysis on 6 input parameters (different cross regional jump probabilities, information dissemination rate, information recovery rate, epidemic transmission rate, epidemic recovery rate, and the probability of taking preventive actions) of the disease-information coupling model with the same interaction radius and heterogeneous interaction radius. The results show that: (1) In the coupling model with the same interaction radius, the parameters that have the most obvious influence on the peak density of nodes in state AI and the information dissemination scale of the information are the information dissemination rate βI and the information recovery rate μI. In the coupling model of heterogeneous interaction radius, the parameters that have the most obvious impact on the peak density of nodes in the AI state of the information layer are: information spread rate βI, disease recovery rate μE, and the parameter that has a significant impact on the scale of information spread is the information spread rate βI and information recovery rate μI. (2) Under the same interaction radius and heterogeneous interaction radius, the parameters that have the most obvious influence on peak density of nodes in state SE and the disease transmission scale of the disease layer are the disease transmission rate βE, the disease recovery rate μE, and the probability of an individual moving across regions pjump. |
Audience | Academic |
Author | Liu, Haiyan Yang, Yang |
AuthorAffiliation | University of Bradford, UNITED KINGDOM School of Economics and Management, China University of Geosciences (Beijing), Beijing, China |
AuthorAffiliation_xml | – name: School of Economics and Management, China University of Geosciences (Beijing), Beijing, China – name: University of Bradford, UNITED KINGDOM |
Author_xml | – sequence: 1 givenname: Yang surname: Yang fullname: Yang, Yang – sequence: 2 givenname: Haiyan orcidid: 0000-0001-6055-1371 surname: Liu fullname: Liu, Haiyan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35333868$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk12L1DAUhousuLuj_0C0IIhezNgmadJ6ISyLHwMLC6564U04zUcnS9vUpF2cf28605Hpsoj0ouH0ed_Tc3LOeXTS2lZF0fM0WaWYpe9u7eBaqFddCK8SRDPE8KPoLC0wWlKU4JOj82l07v1tkmQ4p_RJdIozjMMxP4t-3qjWm97cmX4bQ_DbeuNjq2NpvAKvlqbV1jXQG9vGwg5dbdoq7pztoNoH5baFxggfN1aqOu7AQaN65fzT6LGG2qtn03sRff_08dvll-XV9ef15cXVUlCE-mUGuWSYMVwWCUYCZYIC6AxJWhIQCkMOQipBtM6lSmRGQqUkIwwBMIREghfRy71vV1vPp7Z4jijBiLAslLqI1ntCWrjlnTMNuC23YPguYF3FwfVG1IoHQ8kY0rQgmmgsS0lliUEzSEmJJQleH6ZsQ9koKVTbO6hnpvMvrdnwyt7xvMhoSrNg8GYycPbXoHzPG-OFqmtolR12_00ShBIy5np1D324uomqIBQw3lfIK0ZTfkGLHBHKkiJQqweo8EgVbi_MkDYhPhO8nQkC06vffQWD93x98_X_2esfc_b1EbtRUPcbb-thHCY_B18cd_pviw_DG4D3e0A4671TmgvT74YylGZqniZ83JRD0_i4KXzalCAm98QH_3_K_gDkNBmu |
CitedBy_id | crossref_primary_10_1371_journal_pone_0306269 |
Cites_doi | 10.1016/0041-5553(76)90154-3 10.32604/cmc.2021.014628 10.1016/j.simpat.2013.04.003 10.1016/j.ecolmodel.2008.06.033 10.1016/S0378-4754(00)00270-6 10.1063/1.1680571 10.1080/00949659708811825 10.1016/0041-5553(67)90144-9 10.1109/TAC.2016.2604683 10.1007/s11633-019-1193-8 10.1080/00401706.1999.10485594 10.1016/j.jtbi.2009.10.007 10.1016/j.cpc.2009.09.018 10.1016/j.cpc.2010.03.006 10.1016/j.ress.2013.04.004 10.1016/0167-9473(92)90155-9 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Public Library of Science 2022 Yang, Liu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Yang, Liu 2022 Yang, Liu |
Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Yang, Liu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Yang, Liu 2022 Yang, Liu |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0265273 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Sensitivity analysis of disease-information coupling propagation dynamics model parameters |
EISSN | 1932-6203 |
ExternalDocumentID | 2643247553 oai_doaj_org_article_2c0d772f694f4f3dbd6db3af7a14b3d4 PMC8956165 A698246709 35333868 10_1371_journal_pone_0265273 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China Beijing China |
GeographicLocations_xml | – name: China – name: Beijing China |
GrantInformation_xml | – fundername: ; grantid: No. 71673256 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c622t-5a8d73773b9032c25c6aaf52d6b4ace3a8acdec4ff8de0d5465245472aa722c03 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Apr 03 16:01:24 EDT 2022 Wed Aug 27 01:29:16 EDT 2025 Thu Aug 21 18:07:19 EDT 2025 Fri Jul 11 03:40:39 EDT 2025 Fri Jul 25 10:32:29 EDT 2025 Tue Jun 17 21:10:06 EDT 2025 Tue Jun 10 20:44:49 EDT 2025 Fri Jun 27 04:00:33 EDT 2025 Fri Jun 27 04:59:02 EDT 2025 Thu May 22 21:22:43 EDT 2025 Wed Feb 19 02:26:27 EST 2025 Thu Apr 24 23:00:49 EDT 2025 Tue Jul 01 03:02:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c622t-5a8d73773b9032c25c6aaf52d6b4ace3a8acdec4ff8de0d5465245472aa722c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0001-6055-1371 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0265273 |
PMID | 35333868 |
PQID | 2643247553 |
PQPubID | 1436336 |
PageCount | e0265273 |
ParticipantIDs | plos_journals_2643247553 doaj_primary_oai_doaj_org_article_2c0d772f694f4f3dbd6db3af7a14b3d4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8956165 proquest_miscellaneous_2644022044 proquest_journals_2643247553 gale_infotracmisc_A698246709 gale_infotracacademiconefile_A698246709 gale_incontextgauss_ISR_A698246709 gale_incontextgauss_IOV_A698246709 gale_healthsolutions_A698246709 pubmed_primary_35333868 crossref_citationtrail_10_1371_journal_pone_0265273 crossref_primary_10_1371_journal_pone_0265273 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220325 |
PublicationDateYYYYMMDD | 2022-03-25 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220325 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2022 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | A Saltelli (pone.0265273.ref008) 1992; 13 M Fonoberova (pone.0265273.ref012) 2013; 118 QC Zhang (pone.0265273.ref027) 2016; 62 QC Zhang (pone.0265273.ref028) 2020; 17 IM Sobol (pone.0265273.ref024) 1967; 7 Y Huang (pone.0265273.ref020) 2016; 10 M Fonoberova (pone.0265273.ref013) 2012; 15 Y Yang (pone.0265273.ref001) 2021; 67 A Saltelli (pone.0265273.ref002) 2008 JW Song (pone.0265273.ref010) 2015; 229 A Saltelli (pone.0265273.ref009) 1999; 41 CC Zhou (pone.0265273.ref011) 2017; 143 J. Savolainen (pone.0265273.ref003) 2013; 36 IM Sobol (pone.0265273.ref025) 1976; 16 IM Sobol (pone.0265273.ref019) 2010; 181 R Beaudouin (pone.0265273.ref018) 2008; 218 A Saltelli (pone.0265273.ref022) 2009; 181 RI Cukier (pone.0265273.ref005) 1973; 59 GM Dancik (pone.0265273.ref017) 2010; 262 GEB Archer (pone.0265273.ref007) 1997; 58 L Perez (pone.0265273.ref014) 2009; 8 Y Luo (pone.0265273.ref026) 2018; 52 pone.0265273.ref015 RL Iman (pone.0265273.ref006) 1988; 8 IM Sobol (pone.0265273.ref023) 2001; 55 JL Segovia-Juarez (pone.0265273.ref016) 2004; 231 GEP Box (pone.0265273.ref021) 2005 QW Ren (pone.0265273.ref004) 2010; 49 |
References_xml | – volume: 231 issue: 3 year: 2004 ident: pone.0265273.ref016 article-title: Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model publication-title: J Theor Biol – volume: 143 issue: 12 year: 2017 ident: pone.0265273.ref011 article-title: Global Sensitivity Analysis of Uncertain Input Variables in Structural Models. publication-title: J. Eng. Mech. – volume: 16 start-page: 236 year: 1976 ident: pone.0265273.ref025 article-title: Uniformly distributed sequences with additional uniformity properties publication-title: USSR Computational Mathematics and Mathematical Physics doi: 10.1016/0041-5553(76)90154-3 – volume-title: Global Sensitivity Analysis: The Primer year: 2008 ident: pone.0265273.ref002 – volume: 67 start-page: 3311 issue: 3 year: 2021 ident: pone.0265273.ref001 article-title: Epidemic spreading–information dissemination coupling mechanism in heterogeneous areas. publication-title: CMC doi: 10.32604/cmc.2021.014628 – volume: 36 start-page: 1 year: 2013 ident: pone.0265273.ref003 article-title: Global sensitivity analysis of a feedback-controlled stochastic process model publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2013.04.003 – ident: pone.0265273.ref015 – volume: 218 start-page: 29 issue: 1–2 year: 2008 ident: pone.0265273.ref018 article-title: Selecting parameters for calibration via sensitivity analysis: an individual-based model of mosquitofish population dynamics publication-title: Ecol Modell doi: 10.1016/j.ecolmodel.2008.06.033 – volume: 10 year: 2016 ident: pone.0265273.ref020 article-title: Epidemic spreading in random walkers with heterogeneous interaction radius. publication-title: J Stat Mech – volume: 55 start-page: 271 issue: 1 year: 2001 ident: pone.0265273.ref023 article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. publication-title: Math Comput Simul doi: 10.1016/S0378-4754(00)00270-6 – volume: 15 issue: 1 year: 2012 ident: pone.0265273.ref013 article-title: Nonlinear dynamics of crime and violence in urban settings. publication-title: J Artif Soc Simul – volume: 59 start-page: 3873 year: 1973 ident: pone.0265273.ref005 article-title: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I. Theory publication-title: J. Chem. Phys doi: 10.1063/1.1680571 – volume: 58 start-page: 99 issue: 2 year: 1997 ident: pone.0265273.ref007 article-title: Sensitivity measures, ANOVA-like techniques and the use of bootstrap. publication-title: J Stat Comput Simul doi: 10.1080/00949659708811825 – volume: 49 start-page: 127 issue: 3 year: 2010 ident: pone.0265273.ref004 article-title: Global sensitivity analysis of Xinanjiang model parameters based on extend FAST model publication-title: Zhongshan Da Xue Xue Bao Zi Ran Ke Xue Ban – volume: 7 start-page: 86 issue: 4 year: 1967 ident: pone.0265273.ref024 article-title: On the distribution of points in a cube and the approximate evaluation of integrals publication-title: USSR Computational Mathematics and Mathematical Physics doi: 10.1016/0041-5553(67)90144-9 – volume: 62 start-page: 2936 issue: 6 year: 2016 ident: pone.0265273.ref027 article-title: Output feedback stabilization for a class of multi-variable bilinear stochastic systems with stochastic coupling attenuation publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2604683 – volume: 8 start-page: 71 issue: 1 year: 1988 ident: pone.0265273.ref006 article-title: An investigation of uncertainty and sensitivity analysis techniques for computer models publication-title: Risk Anal. 1988 – volume: 17 start-page: 83 issue: 1 year: 2020 ident: pone.0265273.ref028 article-title: Output feedback stabilization for MIMO semi-linear stochastic systems with transient optimisation publication-title: International Journal of Automation and Computing doi: 10.1007/s11633-019-1193-8 – volume: 41 start-page: 39 issue: 1 year: 1999 ident: pone.0265273.ref009 article-title: A quantitative model-independent method for global sensitivity analysis of model output. publication-title: Technometrics doi: 10.1080/00401706.1999.10485594 – volume: 262 start-page: 398 issue: 3 year: 2010 ident: pone.0265273.ref017 article-title: Parameter estimation and sensitivity analysis in an agent-based model of Leishmania major infection publication-title: J Theor Biol doi: 10.1016/j.jtbi.2009.10.007 – volume: 229 start-page: 237 issue: 3 year: 2015 ident: pone.0265273.ref010 article-title: Global sensitivity analysis for model with random inputs characterized by probability-box publication-title: Proc Inst Mech Eng O J Risk Reliab – volume: 181 start-page: 259 issue: 2 year: 2009 ident: pone.0265273.ref022 article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2009.09.018 – volume-title: Statistics for Experimenters: Design, Discovery, and Innovation. year: 2005 ident: pone.0265273.ref021 – volume: 181 start-page: 1212 issue: 7 year: 2010 ident: pone.0265273.ref019 article-title: A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices publication-title: Comput. Phys. Commun doi: 10.1016/j.cpc.2010.03.006 – volume: 118 start-page: 8 year: 2013 ident: pone.0265273.ref012 article-title: Global sensitivity/uncertainty analysis for agent-based models. publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2013.04.004 – volume: 13 start-page: 73 issue: 1 year: 1992 ident: pone.0265273.ref008 article-title: Sensitivity analysis for model output: Performance of black box techniques on three international benchmark exercises. publication-title: Comput Stat Data Anal doi: 10.1016/0167-9473(92)90155-9 – volume: 52 start-page: 2007 issue: 10 year: 2018 ident: pone.0265273.ref026 article-title: Global sensitivity analysis of parameters in land subsidence model publication-title: J Zhejiang Univ Sci – volume: 8 issue: 50 year: 2009 ident: pone.0265273.ref014 article-title: An agent-based approach for modeling dynamics of Contagious disease spread. publication-title: Int J Health Geogr |
SSID | ssj0053866 |
Score | 2.4011323 |
Snippet | The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0265273 |
SubjectTerms | Algorithms Care and treatment Communicable diseases Communicable Diseases - epidemiology Computer and Information Sciences Coupling Density Diagnosis Disease control Disease transmission Dynamics Epidemics Humans Infectious diseases Information Dissemination Interaction parameters Mathematical models Medicine and Health Sciences Methods Modelling Nodes Parameter identification Parameter sensitivity Physical Sciences Prevention Probability Propagation Quantitative analysis Random variables Recovery Research and Analysis Methods Risk factors Sensitivity analysis Stochastic models |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggWh4NLGAQEnBIm_iZHAuiKkiARCmquFiOHRekkqya3f_PTOyNGlSpHLhF8SRKvpmxx8nMN4S8tEFaxZzNA9MsF5UElwqthCMGJsAdLwN-7_j0WR2fio9n8uxKqy_MCYv0wBG4A-YKDxFgULUIInDfYAckboO2pWi4H5lAYc3bbqbiHAxerFQqlOO6PEh62V_1XbsPuw5kHZstRCNf_zQrL1YX_XBdyPl35uSVpejoLrmTYkh6GJ99h9xqu12yk7x0oK8TlfSbe-THCeanxwYR1Cb-EdoHmv7L5Ik3FbVDXb_B8txzCg8E00w86WPH-oGOLXMoMoX_xgya4T45PXr_7d1xnrop5E4xts6lrbzmWvOmLjhzTDplQVPMq0ZY13JbWedbJ0KofFt4bJLOkO2LWasZaIE_IIsO8NsjtA7Mtto2rvZcaAchliitrzznofRFCBnhW2iNS1Tj2PHiwoz_zzRsOSJSBhVikkIykk9XrSLVxg3yb1FrkywSZY8nwHxMMh9zk_lk5Bnq3MSq08ndzaGqKyaQ3C4jL0YJJMvoMBvn3G6GwXz48v0fhE6-zoReJaHQAxzOpgoIeCck4ZpJLmeS4PJuNryHFrpFZTAQ1UJgrKUEUJZbq71--Pk0jDfFDLuu7TejjMCqawGQPIxGPiHLYU8AHlVlRM_Mfwb9fKT79XPkKq-wcFrJR_9DV4_JbYbFJwXPmVySxfpy0z6BkHDdPB29_w8E2mOI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5pEz-TEyqIpSABEqWo4mI5dryt1CZLs_v_mUm8gaAKuK3iycqZpx8z3xDyzAZpFXM2DUyzVBQSTCrUEn4xUAHueB7wvOPjJ3VwJD4cy-N44NbFtMqNT-wdtW8dnpHvQeCG2K-l5K-WP1LsGoW3q7GFxlVyLYdIgyldxfzdxhODLSsVy-W4zveidHaXbVPvwt4Dsccm4ahH7R9982x51naXLTz_zJ_8LSDNb5IbcSVJ9wfRb5ErdXOLbEVb7eiLCCj98jb5fohZ6kObCGojCgltA423M2lET0UZUdeusUh3QWFC4GyGh37oW9_RvnEORbzwc8yj6e6Qo_nbr28O0thTIXWKsVUqbeE115pXZcaZY9IpC_JiXlXCuprbwjpfOxFC4evMY6t0hphfzFrNmMv4XTJrgH_bhJaB2VrbypWeC-1goSVy6wvPech9FkJC-Ia1xkXAcex7cWb6WzQNG4-BUwYFYqJAEpKOby0HwI1_0L9GqY20CJfdP2gvFiZan4GJe9hGBFWKIAL3FbbR4jZom4uKe5GQxyhzM9SejkZv9lVZMIEQdwl52lMgZEaDOTkLu-468_7zt_8gOvwyIXoeiUIL7HA21kHANyEU14RyZ0IJhu8mw9uooRuudOaXicCbG629fPjJOIx_inl2Td2uexqBtdcCWHJvUPKRsxx2BmBRRUL0RP0nrJ-ONKcnPWJ5geXTSt7_-7QekOsMi0synjK5Q2ari3X9EJZ8q-pRb9c_AaLUWdQ priority: 102 providerName: ProQuest |
Title | Sensitivity analysis of disease-information coupling propagation dynamics model parameters |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35333868 https://www.proquest.com/docview/2643247553 https://www.proquest.com/docview/2644022044 https://pubmed.ncbi.nlm.nih.gov/PMC8956165 https://doaj.org/article/2c0d772f694f4f3dbd6db3af7a14b3d4 http://dx.doi.org/10.1371/journal.pone.0265273 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa27oUXxPi1QCkBIQEPqRLbidMHhLapZSBtoI2iipfIseOCVJLStBK88Ldz57gRQUXsxariS5R-d2efY993hDyTJpYJVTIwVNCApzG4lCli-EXBBJhikcHvHecXydmUv5vFsz2yrdnqAKx3Lu2wntR0tRj--P7zNTj8K1u1QUTbm4bLqiyGsKZATrF9cgBzk8CaBue83VcA77a7lxi1BAkNmUum-9dTOpOV5fRvR-7eclHVu8LSv09X_jFdTW6Rmy7O9I8bwzgke0V5mxw6T679F45u-uUd8vkKz7A3RSR86ThK_Mr4bu8mcNyqqEFfVRtM4Z378EIwFDUXdVPVvvZtWR0f2cS_4Smb-i6ZTsYfT88CV3EhUAml6yCWqRZMCJaPQkYVjVUiQZtUJzmXqmAylUoXihuT6iLUWEidIiMYlVJQqkJ2j_RKwO-I-CNDZSFkrkaacaEgDOOR1KlmzEQ6NMYjbAttphwdOVbFWGR2j03AsqRBKkOFZE4hHgnau5YNHcd_5E9Qa60skmnbC9VqnjnfzODFNSwyTDLihhumcyyyxaQRMuI509wjj1HnWZOZ2g4J2XEySilHAjyPPLUSSKhR4omdudzUdfb2_adrCF1ddoSeOyFTARxKuiwJ-E9I1NWR7HckYVhQne4jtNAtKnUGkS8EzyKOAZT-1mp3dz9pu_GheAqvLKqNleGYmc0BkvuNkbfIMlg3gHelHhEd8-9A3-0pv36xfOYpJlcn8YPrgPiQ3KCYgBKygMZ90luvNsUjCAvX-YDsi5mANj2NsJ28GZCDk_HFh8uB_dAysCMBtr_GvwE8PWnu |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALorwaKNQgEHBIu2s7cfaAUHksu_SBRFtUcTGOHS-V2mRpdoX6p_iNzCROIKgCLr1F8SRyZsYznnjmG0IeaxfpmBkdOiZZKJIIlpTLIrhioALc8IHD_x07u_H4QLw_jA6XyI-mFgbTKhubWBlqWxj8R74Bjht8v4wi_nL2LcSuUXi62rTQqNViKzv7DiFb-WLyBuT7hLHR2_3X49B3FQhNzNg8jHRiJZeSp8M-Z4ZFJtYwY2bjVGiTcZ1oYzMjnEts1rfYLJwh6hXTWjJm-hzee4lcFhw8OVamj941lh9sRxz78jwuBxteG9ZnRZ6tQ6yDWGcd91d1CWh9QW92XJTnbXT_zNf8zQGOrpNrfudKN2tVWyZLWX6DLHvbUNJnHsD6-U3yeQ-z4uu2FFR71BNaOOpPg0KP1oo6QU2xwKLgKYUJgXGrb9qzXJ8cmZJWjXoo4pOfYN5OeYscXAi3b5NeDvxbIXTomM6kTs3QciENbOzEQNvEcu4Gtu9cQHjDWmU8wDn22ThW1amdhECn5pRCgSgvkICE7VOzGuDjH_SvUGotLcJzVzeK06nyq13BxC2ELS4eCicctym27eLaST0QKbciIGsoc1XXurZGRm3Gw4QJhNQLyKOKAiE6cswBmupFWarJh0__QbT3sUP01BO5AthhtK-7gG9C6K8O5WqHEgyN6QyvoIY2XCnVryUJTzZae_7ww3YYX4p5fXlWLCoagbXeAlhyp1bylrMcIhFYUUlAZEf9O6zvjuRHXyuE9ATLtePo7t-ntUaujPd3ttX2ZHfrHrnKsLClz0MWrZLe_HSR3Yft5jx9UK1xSr5ctFH5CUA8l3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wmAGgYCHrK3txMkDQmOjWhkMxDY08WIcOy6TtqQsrdD-Nf467hInEDQBL3ur4ovl3pd98d3vCHmsXagjZnTgmGSBiEMwKZeF8IuBCnDDRw6_d7zbjbYPxJvD8HCJ_GhqYTCtsvGJlaO2hcFv5APYuGHvl2HIB86nRXzYGr-cfQuwgxTetDbtNGoV2cnOvkP4Vr6YbIGsnzA2fr2_uR34DgOBiRibB6GOreRS8jQZcmZYaCINq2c2SoU2GdexNjYzwrnYZkOLjcMZImAxrSVjZshh3kvkMkwRo43Fm216CfiRKPKlelyOBl4z1mdFnq1D3IO4Z52tsOoY0O4LvdlxUZ536P0zd_O3zXB8nVzzp1i6UavdMlnK8htk2fuJkj7zYNbPb5LPe5ghX7eooNojoNDCUX8zFHjkVtQPaooFFghPKSwIHF390J7l-uTIlLRq2kMRq_wEc3jKW-TgQrh9m_Ry4N8KoYljOpM6NYnlQho45ImRtrHl3I3s0Lk-4Q1rlfFg59hz41hVN3gSgp6aUwoForxA-iRo35rVYB__oH-FUmtpEaq7elCcTpW3fAULtxDCuCgRTjhuU2zhxbWTeiRSbkWfrKHMVV332joctRElMRMIr9cnjyoKhOvIUfGnelGWavL-038Q7X3sED31RK4AdhjtazDgPyEMWIdytUMJTsd0hldQQxuulOqXecKbjdaeP_ywHcZJMccvz4pFRSOw7lsAS-7USt5ylkNUAhYV94nsqH-H9d2R_OhrhZYeY-l2FN79-7LWyBVwJ-rtZHfnHrnKsMZlyAMWrpLe_HSR3YeT5zx9UJk4JV8u2qf8BJ9Mm30 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+analysis+of+disease-information+coupling+propagation+dynamics+model+parameters&rft.jtitle=PloS+one&rft.au=Yang%2C+Yang&rft.au=Liu%2C+Haiyan&rft.date=2022-03-25&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=3&rft.spage=e0265273&rft_id=info:doi/10.1371%2Fjournal.pone.0265273&rft.externalDBID=IOV&rft.externalDocID=A698246709 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |