Sensitivity analysis of disease-information coupling propagation dynamics model parameters

The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disea...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 3; p. e0265273
Main Authors Yang, Yang, Liu, Haiyan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 25.03.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disease-information coupling propagation dynamics model and identifying the key parameters of the model will help us better understand its coupling mechanism and make accurate recommendations for controlling the spread of disease. In this paper, Sobol global sensitivity analysis algorithm is adopted to conduct global sensitivity analysis on 6 input parameters (different cross regional jump probabilities, information dissemination rate, information recovery rate, epidemic transmission rate, epidemic recovery rate, and the probability of taking preventive actions) of the disease-information coupling model with the same interaction radius and heterogeneous interaction radius. The results show that: (1) In the coupling model with the same interaction radius, the parameters that have the most obvious influence on the peak density of nodes in state A I and the information dissemination scale of the information are the information dissemination rate β I and the information recovery rate μ I . In the coupling model of heterogeneous interaction radius, the parameters that have the most obvious impact on the peak density of nodes in the A I state of the information layer are: information spread rate β I , disease recovery rate μ E , and the parameter that has a significant impact on the scale of information spread is the information spread rate β I and information recovery rate μ I . (2) Under the same interaction radius and heterogeneous interaction radius, the parameters that have the most obvious influence on peak density of nodes in state S E and the disease transmission scale of the disease layer are the disease transmission rate β E , the disease recovery rate μ E , and the probability of an individual moving across regions p jump .
AbstractList The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disease-information coupling propagation dynamics model and identifying the key parameters of the model will help us better understand its coupling mechanism and make accurate recommendations for controlling the spread of disease. In this paper, Sobol global sensitivity analysis algorithm is adopted to conduct global sensitivity analysis on 6 input parameters (different cross regional jump probabilities, information dissemination rate, information recovery rate, epidemic transmission rate, epidemic recovery rate, and the probability of taking preventive actions) of the disease-information coupling model with the same interaction radius and heterogeneous interaction radius. The results show that: (1) In the coupling model with the same interaction radius, the parameters that have the most obvious influence on the peak density of nodes in state AI and the information dissemination scale of the information are the information dissemination rate βI and the information recovery rate μI. In the coupling model of heterogeneous interaction radius, the parameters that have the most obvious impact on the peak density of nodes in the AI state of the information layer are: information spread rate βI, disease recovery rate μE, and the parameter that has a significant impact on the scale of information spread is the information spread rate βI and information recovery rate μI. (2) Under the same interaction radius and heterogeneous interaction radius, the parameters that have the most obvious influence on peak density of nodes in state SE and the disease transmission scale of the disease layer are the disease transmission rate βE, the disease recovery rate μE, and the probability of an individual moving across regions pjump.
The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disease-information coupling propagation dynamics model and identifying the key parameters of the model will help us better understand its coupling mechanism and make accurate recommendations for controlling the spread of disease. In this paper, Sobol global sensitivity analysis algorithm is adopted to conduct global sensitivity analysis on 6 input parameters (different cross regional jump probabilities, information dissemination rate, information recovery rate, epidemic transmission rate, epidemic recovery rate, and the probability of taking preventive actions) of the disease-information coupling model with the same interaction radius and heterogeneous interaction radius. The results show that: (1) In the coupling model with the same interaction radius, the parameters that have the most obvious influence on the peak density of nodes in state A I and the information dissemination scale of the information are the information dissemination rate β I and the information recovery rate μ I . In the coupling model of heterogeneous interaction radius, the parameters that have the most obvious impact on the peak density of nodes in the A I state of the information layer are: information spread rate β I , disease recovery rate μ E , and the parameter that has a significant impact on the scale of information spread is the information spread rate β I and information recovery rate μ I . (2) Under the same interaction radius and heterogeneous interaction radius, the parameters that have the most obvious influence on peak density of nodes in state S E and the disease transmission scale of the disease layer are the disease transmission rate β E , the disease recovery rate μ E , and the probability of an individual moving across regions p jump .
The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disease-information coupling propagation dynamics model and identifying the key parameters of the model will help us better understand its coupling mechanism and make accurate recommendations for controlling the spread of disease. In this paper, Sobol global sensitivity analysis algorithm is adopted to conduct global sensitivity analysis on 6 input parameters (different cross regional jump probabilities, information dissemination rate, information recovery rate, epidemic transmission rate, epidemic recovery rate, and the probability of taking preventive actions) of the disease-information coupling model with the same interaction radius and heterogeneous interaction radius. The results show that: (1) In the coupling model with the same interaction radius, the parameters that have the most obvious influence on the peak density of nodes in state A.sub.I and the information dissemination scale of the information are the information dissemination rate [beta].sub.I and the information recovery rate [mu].sub.I . In the coupling model of heterogeneous interaction radius, the parameters that have the most obvious impact on the peak density of nodes in the A.sub.I state of the information layer are: information spread rate [beta].sub.I, disease recovery rate [mu].sub.E, and the parameter that has a significant impact on the scale of information spread is the information spread rate [beta].sub.I and information recovery rate [mu].sub.I . (2) Under the same interaction radius and heterogeneous interaction radius, the parameters that have the most obvious influence on peak density of nodes in state S.sub.E and the disease transmission scale of the disease layer are the disease transmission rate [beta].sub.E, the disease recovery rate [mu].sub.E, and the probability of an individual moving across regions p.sub.jump.
The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disease-information coupling propagation dynamics model and identifying the key parameters of the model will help us better understand its coupling mechanism and make accurate recommendations for controlling the spread of disease. In this paper, Sobol global sensitivity analysis algorithm is adopted to conduct global sensitivity analysis on 6 input parameters (different cross regional jump probabilities, information dissemination rate, information recovery rate, epidemic transmission rate, epidemic recovery rate, and the probability of taking preventive actions) of the disease-information coupling model with the same interaction radius and heterogeneous interaction radius. The results show that: (1) In the coupling model with the same interaction radius, the parameters that have the most obvious influence on the peak density of nodes in state AI and the information dissemination scale of the information are the information dissemination rate βI and the information recovery rate μI. In the coupling model of heterogeneous interaction radius, the parameters that have the most obvious impact on the peak density of nodes in the AI state of the information layer are: information spread rate βI, disease recovery rate μE, and the parameter that has a significant impact on the scale of information spread is the information spread rate βI and information recovery rate μI. (2) Under the same interaction radius and heterogeneous interaction radius, the parameters that have the most obvious influence on peak density of nodes in state SE and the disease transmission scale of the disease layer are the disease transmission rate βE, the disease recovery rate μE, and the probability of an individual moving across regions pjump.The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter settings and sensitivity are often overlooked, which leads to enlarged errors in the results. Exploring the influencing factors of the disease-information coupling propagation dynamics model and identifying the key parameters of the model will help us better understand its coupling mechanism and make accurate recommendations for controlling the spread of disease. In this paper, Sobol global sensitivity analysis algorithm is adopted to conduct global sensitivity analysis on 6 input parameters (different cross regional jump probabilities, information dissemination rate, information recovery rate, epidemic transmission rate, epidemic recovery rate, and the probability of taking preventive actions) of the disease-information coupling model with the same interaction radius and heterogeneous interaction radius. The results show that: (1) In the coupling model with the same interaction radius, the parameters that have the most obvious influence on the peak density of nodes in state AI and the information dissemination scale of the information are the information dissemination rate βI and the information recovery rate μI. In the coupling model of heterogeneous interaction radius, the parameters that have the most obvious impact on the peak density of nodes in the AI state of the information layer are: information spread rate βI, disease recovery rate μE, and the parameter that has a significant impact on the scale of information spread is the information spread rate βI and information recovery rate μI. (2) Under the same interaction radius and heterogeneous interaction radius, the parameters that have the most obvious influence on peak density of nodes in state SE and the disease transmission scale of the disease layer are the disease transmission rate βE, the disease recovery rate μE, and the probability of an individual moving across regions pjump.
Audience Academic
Author Liu, Haiyan
Yang, Yang
AuthorAffiliation University of Bradford, UNITED KINGDOM
School of Economics and Management, China University of Geosciences (Beijing), Beijing, China
AuthorAffiliation_xml – name: School of Economics and Management, China University of Geosciences (Beijing), Beijing, China
– name: University of Bradford, UNITED KINGDOM
Author_xml – sequence: 1
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
– sequence: 2
  givenname: Haiyan
  orcidid: 0000-0001-6055-1371
  surname: Liu
  fullname: Liu, Haiyan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35333868$$D View this record in MEDLINE/PubMed
BookMark eNqNk12L1DAUhousuLuj_0C0IIhezNgmadJ6ISyLHwMLC6564U04zUcnS9vUpF2cf28605Hpsoj0ouH0ed_Tc3LOeXTS2lZF0fM0WaWYpe9u7eBaqFddCK8SRDPE8KPoLC0wWlKU4JOj82l07v1tkmQ4p_RJdIozjMMxP4t-3qjWm97cmX4bQ_DbeuNjq2NpvAKvlqbV1jXQG9vGwg5dbdoq7pztoNoH5baFxggfN1aqOu7AQaN65fzT6LGG2qtn03sRff_08dvll-XV9ef15cXVUlCE-mUGuWSYMVwWCUYCZYIC6AxJWhIQCkMOQipBtM6lSmRGQqUkIwwBMIREghfRy71vV1vPp7Z4jijBiLAslLqI1ntCWrjlnTMNuC23YPguYF3FwfVG1IoHQ8kY0rQgmmgsS0lliUEzSEmJJQleH6ZsQ9koKVTbO6hnpvMvrdnwyt7xvMhoSrNg8GYycPbXoHzPG-OFqmtolR12_00ShBIy5np1D324uomqIBQw3lfIK0ZTfkGLHBHKkiJQqweo8EgVbi_MkDYhPhO8nQkC06vffQWD93x98_X_2esfc_b1EbtRUPcbb-thHCY_B18cd_pviw_DG4D3e0A4671TmgvT74YylGZqniZ83JRD0_i4KXzalCAm98QH_3_K_gDkNBmu
CitedBy_id crossref_primary_10_1371_journal_pone_0306269
Cites_doi 10.1016/0041-5553(76)90154-3
10.32604/cmc.2021.014628
10.1016/j.simpat.2013.04.003
10.1016/j.ecolmodel.2008.06.033
10.1016/S0378-4754(00)00270-6
10.1063/1.1680571
10.1080/00949659708811825
10.1016/0041-5553(67)90144-9
10.1109/TAC.2016.2604683
10.1007/s11633-019-1193-8
10.1080/00401706.1999.10485594
10.1016/j.jtbi.2009.10.007
10.1016/j.cpc.2009.09.018
10.1016/j.cpc.2010.03.006
10.1016/j.ress.2013.04.004
10.1016/0167-9473(92)90155-9
ContentType Journal Article
Copyright COPYRIGHT 2022 Public Library of Science
2022 Yang, Liu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Yang, Liu 2022 Yang, Liu
Copyright_xml – notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Yang, Liu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Yang, Liu 2022 Yang, Liu
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0265273
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE

MEDLINE - Academic
CrossRef
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Sensitivity analysis of disease-information coupling propagation dynamics model parameters
EISSN 1932-6203
ExternalDocumentID 2643247553
oai_doaj_org_article_2c0d772f694f4f3dbd6db3af7a14b3d4
PMC8956165
A698246709
35333868
10_1371_journal_pone_0265273
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
Beijing China
GeographicLocations_xml – name: China
– name: Beijing China
GrantInformation_xml – fundername: ;
  grantid: No. 71673256
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c622t-5a8d73773b9032c25c6aaf52d6b4ace3a8acdec4ff8de0d5465245472aa722c03
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Apr 03 16:01:24 EDT 2022
Wed Aug 27 01:29:16 EDT 2025
Thu Aug 21 18:07:19 EDT 2025
Fri Jul 11 03:40:39 EDT 2025
Fri Jul 25 10:32:29 EDT 2025
Tue Jun 17 21:10:06 EDT 2025
Tue Jun 10 20:44:49 EDT 2025
Fri Jun 27 04:00:33 EDT 2025
Fri Jun 27 04:59:02 EDT 2025
Thu May 22 21:22:43 EDT 2025
Wed Feb 19 02:26:27 EST 2025
Thu Apr 24 23:00:49 EDT 2025
Tue Jul 01 03:02:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c622t-5a8d73773b9032c25c6aaf52d6b4ace3a8acdec4ff8de0d5465245472aa722c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-6055-1371
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0265273
PMID 35333868
PQID 2643247553
PQPubID 1436336
PageCount e0265273
ParticipantIDs plos_journals_2643247553
doaj_primary_oai_doaj_org_article_2c0d772f694f4f3dbd6db3af7a14b3d4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8956165
proquest_miscellaneous_2644022044
proquest_journals_2643247553
gale_infotracmisc_A698246709
gale_infotracacademiconefile_A698246709
gale_incontextgauss_ISR_A698246709
gale_incontextgauss_IOV_A698246709
gale_healthsolutions_A698246709
pubmed_primary_35333868
crossref_citationtrail_10_1371_journal_pone_0265273
crossref_primary_10_1371_journal_pone_0265273
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220325
PublicationDateYYYYMMDD 2022-03-25
PublicationDate_xml – month: 3
  year: 2022
  text: 20220325
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Saltelli (pone.0265273.ref008) 1992; 13
M Fonoberova (pone.0265273.ref012) 2013; 118
QC Zhang (pone.0265273.ref027) 2016; 62
QC Zhang (pone.0265273.ref028) 2020; 17
IM Sobol (pone.0265273.ref024) 1967; 7
Y Huang (pone.0265273.ref020) 2016; 10
M Fonoberova (pone.0265273.ref013) 2012; 15
Y Yang (pone.0265273.ref001) 2021; 67
A Saltelli (pone.0265273.ref002) 2008
JW Song (pone.0265273.ref010) 2015; 229
A Saltelli (pone.0265273.ref009) 1999; 41
CC Zhou (pone.0265273.ref011) 2017; 143
J. Savolainen (pone.0265273.ref003) 2013; 36
IM Sobol (pone.0265273.ref025) 1976; 16
IM Sobol (pone.0265273.ref019) 2010; 181
R Beaudouin (pone.0265273.ref018) 2008; 218
A Saltelli (pone.0265273.ref022) 2009; 181
RI Cukier (pone.0265273.ref005) 1973; 59
GM Dancik (pone.0265273.ref017) 2010; 262
GEB Archer (pone.0265273.ref007) 1997; 58
L Perez (pone.0265273.ref014) 2009; 8
Y Luo (pone.0265273.ref026) 2018; 52
pone.0265273.ref015
RL Iman (pone.0265273.ref006) 1988; 8
IM Sobol (pone.0265273.ref023) 2001; 55
JL Segovia-Juarez (pone.0265273.ref016) 2004; 231
GEP Box (pone.0265273.ref021) 2005
QW Ren (pone.0265273.ref004) 2010; 49
References_xml – volume: 231
  issue: 3
  year: 2004
  ident: pone.0265273.ref016
  article-title: Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model
  publication-title: J Theor Biol
– volume: 143
  issue: 12
  year: 2017
  ident: pone.0265273.ref011
  article-title: Global Sensitivity Analysis of Uncertain Input Variables in Structural Models.
  publication-title: J. Eng. Mech.
– volume: 16
  start-page: 236
  year: 1976
  ident: pone.0265273.ref025
  article-title: Uniformly distributed sequences with additional uniformity properties
  publication-title: USSR Computational Mathematics and Mathematical Physics
  doi: 10.1016/0041-5553(76)90154-3
– volume-title: Global Sensitivity Analysis: The Primer
  year: 2008
  ident: pone.0265273.ref002
– volume: 67
  start-page: 3311
  issue: 3
  year: 2021
  ident: pone.0265273.ref001
  article-title: Epidemic spreading–information dissemination coupling mechanism in heterogeneous areas.
  publication-title: CMC
  doi: 10.32604/cmc.2021.014628
– volume: 36
  start-page: 1
  year: 2013
  ident: pone.0265273.ref003
  article-title: Global sensitivity analysis of a feedback-controlled stochastic process model
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2013.04.003
– ident: pone.0265273.ref015
– volume: 218
  start-page: 29
  issue: 1–2
  year: 2008
  ident: pone.0265273.ref018
  article-title: Selecting parameters for calibration via sensitivity analysis: an individual-based model of mosquitofish population dynamics
  publication-title: Ecol Modell
  doi: 10.1016/j.ecolmodel.2008.06.033
– volume: 10
  year: 2016
  ident: pone.0265273.ref020
  article-title: Epidemic spreading in random walkers with heterogeneous interaction radius.
  publication-title: J Stat Mech
– volume: 55
  start-page: 271
  issue: 1
  year: 2001
  ident: pone.0265273.ref023
  article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates.
  publication-title: Math Comput Simul
  doi: 10.1016/S0378-4754(00)00270-6
– volume: 15
  issue: 1
  year: 2012
  ident: pone.0265273.ref013
  article-title: Nonlinear dynamics of crime and violence in urban settings.
  publication-title: J Artif Soc Simul
– volume: 59
  start-page: 3873
  year: 1973
  ident: pone.0265273.ref005
  article-title: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I. Theory
  publication-title: J. Chem. Phys
  doi: 10.1063/1.1680571
– volume: 58
  start-page: 99
  issue: 2
  year: 1997
  ident: pone.0265273.ref007
  article-title: Sensitivity measures, ANOVA-like techniques and the use of bootstrap.
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949659708811825
– volume: 49
  start-page: 127
  issue: 3
  year: 2010
  ident: pone.0265273.ref004
  article-title: Global sensitivity analysis of Xinanjiang model parameters based on extend FAST model
  publication-title: Zhongshan Da Xue Xue Bao Zi Ran Ke Xue Ban
– volume: 7
  start-page: 86
  issue: 4
  year: 1967
  ident: pone.0265273.ref024
  article-title: On the distribution of points in a cube and the approximate evaluation of integrals
  publication-title: USSR Computational Mathematics and Mathematical Physics
  doi: 10.1016/0041-5553(67)90144-9
– volume: 62
  start-page: 2936
  issue: 6
  year: 2016
  ident: pone.0265273.ref027
  article-title: Output feedback stabilization for a class of multi-variable bilinear stochastic systems with stochastic coupling attenuation
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2604683
– volume: 8
  start-page: 71
  issue: 1
  year: 1988
  ident: pone.0265273.ref006
  article-title: An investigation of uncertainty and sensitivity analysis techniques for computer models
  publication-title: Risk Anal. 1988
– volume: 17
  start-page: 83
  issue: 1
  year: 2020
  ident: pone.0265273.ref028
  article-title: Output feedback stabilization for MIMO semi-linear stochastic systems with transient optimisation
  publication-title: International Journal of Automation and Computing
  doi: 10.1007/s11633-019-1193-8
– volume: 41
  start-page: 39
  issue: 1
  year: 1999
  ident: pone.0265273.ref009
  article-title: A quantitative model-independent method for global sensitivity analysis of model output.
  publication-title: Technometrics
  doi: 10.1080/00401706.1999.10485594
– volume: 262
  start-page: 398
  issue: 3
  year: 2010
  ident: pone.0265273.ref017
  article-title: Parameter estimation and sensitivity analysis in an agent-based model of Leishmania major infection
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2009.10.007
– volume: 229
  start-page: 237
  issue: 3
  year: 2015
  ident: pone.0265273.ref010
  article-title: Global sensitivity analysis for model with random inputs characterized by probability-box
  publication-title: Proc Inst Mech Eng O J Risk Reliab
– volume: 181
  start-page: 259
  issue: 2
  year: 2009
  ident: pone.0265273.ref022
  article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2009.09.018
– volume-title: Statistics for Experimenters: Design, Discovery, and Innovation.
  year: 2005
  ident: pone.0265273.ref021
– volume: 181
  start-page: 1212
  issue: 7
  year: 2010
  ident: pone.0265273.ref019
  article-title: A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices
  publication-title: Comput. Phys. Commun
  doi: 10.1016/j.cpc.2010.03.006
– volume: 118
  start-page: 8
  year: 2013
  ident: pone.0265273.ref012
  article-title: Global sensitivity/uncertainty analysis for agent-based models.
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2013.04.004
– volume: 13
  start-page: 73
  issue: 1
  year: 1992
  ident: pone.0265273.ref008
  article-title: Sensitivity analysis for model output: Performance of black box techniques on three international benchmark exercises.
  publication-title: Comput Stat Data Anal
  doi: 10.1016/0167-9473(92)90155-9
– volume: 52
  start-page: 2007
  issue: 10
  year: 2018
  ident: pone.0265273.ref026
  article-title: Global sensitivity analysis of parameters in land subsidence model
  publication-title: J Zhejiang Univ Sci
– volume: 8
  issue: 50
  year: 2009
  ident: pone.0265273.ref014
  article-title: An agent-based approach for modeling dynamics of Contagious disease spread.
  publication-title: Int J Health Geogr
SSID ssj0053866
Score 2.4011323
Snippet The disease-information coupling propagation dynamics model is a widely used model for studying the spread of infectious diseases in society, but the parameter...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0265273
SubjectTerms Algorithms
Care and treatment
Communicable diseases
Communicable Diseases - epidemiology
Computer and Information Sciences
Coupling
Density
Diagnosis
Disease control
Disease transmission
Dynamics
Epidemics
Humans
Infectious diseases
Information Dissemination
Interaction parameters
Mathematical models
Medicine and Health Sciences
Methods
Modelling
Nodes
Parameter identification
Parameter sensitivity
Physical Sciences
Prevention
Probability
Propagation
Quantitative analysis
Random variables
Recovery
Research and Analysis Methods
Risk factors
Sensitivity analysis
Stochastic models
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggWh4NLGAQEnBIm_iZHAuiKkiARCmquFiOHRekkqya3f_PTOyNGlSpHLhF8SRKvpmxx8nMN4S8tEFaxZzNA9MsF5UElwqthCMGJsAdLwN-7_j0WR2fio9n8uxKqy_MCYv0wBG4A-YKDxFgULUIInDfYAckboO2pWi4H5lAYc3bbqbiHAxerFQqlOO6PEh62V_1XbsPuw5kHZstRCNf_zQrL1YX_XBdyPl35uSVpejoLrmTYkh6GJ99h9xqu12yk7x0oK8TlfSbe-THCeanxwYR1Cb-EdoHmv7L5Ik3FbVDXb_B8txzCg8E00w86WPH-oGOLXMoMoX_xgya4T45PXr_7d1xnrop5E4xts6lrbzmWvOmLjhzTDplQVPMq0ZY13JbWedbJ0KofFt4bJLOkO2LWasZaIE_IIsO8NsjtA7Mtto2rvZcaAchliitrzznofRFCBnhW2iNS1Tj2PHiwoz_zzRsOSJSBhVikkIykk9XrSLVxg3yb1FrkywSZY8nwHxMMh9zk_lk5Bnq3MSq08ndzaGqKyaQ3C4jL0YJJMvoMBvn3G6GwXz48v0fhE6-zoReJaHQAxzOpgoIeCck4ZpJLmeS4PJuNryHFrpFZTAQ1UJgrKUEUJZbq71--Pk0jDfFDLuu7TejjMCqawGQPIxGPiHLYU8AHlVlRM_Mfwb9fKT79XPkKq-wcFrJR_9DV4_JbYbFJwXPmVySxfpy0z6BkHDdPB29_w8E2mOI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5pEz-TEyqIpSABEqWo4mI5dryt1CZLs_v_mUm8gaAKuK3iycqZpx8z3xDyzAZpFXM2DUyzVBQSTCrUEn4xUAHueB7wvOPjJ3VwJD4cy-N44NbFtMqNT-wdtW8dnpHvQeCG2K-l5K-WP1LsGoW3q7GFxlVyLYdIgyldxfzdxhODLSsVy-W4zveidHaXbVPvwt4Dsccm4ahH7R9982x51naXLTz_zJ_8LSDNb5IbcSVJ9wfRb5ErdXOLbEVb7eiLCCj98jb5fohZ6kObCGojCgltA423M2lET0UZUdeusUh3QWFC4GyGh37oW9_RvnEORbzwc8yj6e6Qo_nbr28O0thTIXWKsVUqbeE115pXZcaZY9IpC_JiXlXCuprbwjpfOxFC4evMY6t0hphfzFrNmMv4XTJrgH_bhJaB2VrbypWeC-1goSVy6wvPech9FkJC-Ia1xkXAcex7cWb6WzQNG4-BUwYFYqJAEpKOby0HwI1_0L9GqY20CJfdP2gvFiZan4GJe9hGBFWKIAL3FbbR4jZom4uKe5GQxyhzM9SejkZv9lVZMIEQdwl52lMgZEaDOTkLu-468_7zt_8gOvwyIXoeiUIL7HA21kHANyEU14RyZ0IJhu8mw9uooRuudOaXicCbG629fPjJOIx_inl2Td2uexqBtdcCWHJvUPKRsxx2BmBRRUL0RP0nrJ-ONKcnPWJ5geXTSt7_-7QekOsMi0synjK5Q2ari3X9EJZ8q-pRb9c_AaLUWdQ
  priority: 102
  providerName: ProQuest
Title Sensitivity analysis of disease-information coupling propagation dynamics model parameters
URI https://www.ncbi.nlm.nih.gov/pubmed/35333868
https://www.proquest.com/docview/2643247553
https://www.proquest.com/docview/2644022044
https://pubmed.ncbi.nlm.nih.gov/PMC8956165
https://doaj.org/article/2c0d772f694f4f3dbd6db3af7a14b3d4
http://dx.doi.org/10.1371/journal.pone.0265273
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa27oUXxPi1QCkBIQEPqRLbidMHhLapZSBtoI2iipfIseOCVJLStBK88Ldz57gRQUXsxariS5R-d2efY993hDyTJpYJVTIwVNCApzG4lCli-EXBBJhikcHvHecXydmUv5vFsz2yrdnqAKx3Lu2wntR0tRj--P7zNTj8K1u1QUTbm4bLqiyGsKZATrF9cgBzk8CaBue83VcA77a7lxi1BAkNmUum-9dTOpOV5fRvR-7eclHVu8LSv09X_jFdTW6Rmy7O9I8bwzgke0V5mxw6T679F45u-uUd8vkKz7A3RSR86ThK_Mr4bu8mcNyqqEFfVRtM4Z378EIwFDUXdVPVvvZtWR0f2cS_4Smb-i6ZTsYfT88CV3EhUAml6yCWqRZMCJaPQkYVjVUiQZtUJzmXqmAylUoXihuT6iLUWEidIiMYlVJQqkJ2j_RKwO-I-CNDZSFkrkaacaEgDOOR1KlmzEQ6NMYjbAttphwdOVbFWGR2j03AsqRBKkOFZE4hHgnau5YNHcd_5E9Qa60skmnbC9VqnjnfzODFNSwyTDLihhumcyyyxaQRMuI509wjj1HnWZOZ2g4J2XEySilHAjyPPLUSSKhR4omdudzUdfb2_adrCF1ddoSeOyFTARxKuiwJ-E9I1NWR7HckYVhQne4jtNAtKnUGkS8EzyKOAZT-1mp3dz9pu_GheAqvLKqNleGYmc0BkvuNkbfIMlg3gHelHhEd8-9A3-0pv36xfOYpJlcn8YPrgPiQ3KCYgBKygMZ90luvNsUjCAvX-YDsi5mANj2NsJ28GZCDk_HFh8uB_dAysCMBtr_GvwE8PWnu
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALorwaKNQgEHBIu2s7cfaAUHksu_SBRFtUcTGOHS-V2mRpdoX6p_iNzCROIKgCLr1F8SRyZsYznnjmG0IeaxfpmBkdOiZZKJIIlpTLIrhioALc8IHD_x07u_H4QLw_jA6XyI-mFgbTKhubWBlqWxj8R74Bjht8v4wi_nL2LcSuUXi62rTQqNViKzv7DiFb-WLyBuT7hLHR2_3X49B3FQhNzNg8jHRiJZeSp8M-Z4ZFJtYwY2bjVGiTcZ1oYzMjnEts1rfYLJwh6hXTWjJm-hzee4lcFhw8OVamj941lh9sRxz78jwuBxteG9ZnRZ6tQ6yDWGcd91d1CWh9QW92XJTnbXT_zNf8zQGOrpNrfudKN2tVWyZLWX6DLHvbUNJnHsD6-U3yeQ-z4uu2FFR71BNaOOpPg0KP1oo6QU2xwKLgKYUJgXGrb9qzXJ8cmZJWjXoo4pOfYN5OeYscXAi3b5NeDvxbIXTomM6kTs3QciENbOzEQNvEcu4Gtu9cQHjDWmU8wDn22ThW1amdhECn5pRCgSgvkICE7VOzGuDjH_SvUGotLcJzVzeK06nyq13BxC2ELS4eCicctym27eLaST0QKbciIGsoc1XXurZGRm3Gw4QJhNQLyKOKAiE6cswBmupFWarJh0__QbT3sUP01BO5AthhtK-7gG9C6K8O5WqHEgyN6QyvoIY2XCnVryUJTzZae_7ww3YYX4p5fXlWLCoagbXeAlhyp1bylrMcIhFYUUlAZEf9O6zvjuRHXyuE9ATLtePo7t-ntUaujPd3ttX2ZHfrHrnKsLClz0MWrZLe_HSR3Yft5jx9UK1xSr5ctFH5CUA8l3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wmAGgYCHrK3txMkDQmOjWhkMxDY08WIcOy6TtqQsrdD-Nf467hInEDQBL3ur4ovl3pd98d3vCHmsXagjZnTgmGSBiEMwKZeF8IuBCnDDRw6_d7zbjbYPxJvD8HCJ_GhqYTCtsvGJlaO2hcFv5APYuGHvl2HIB86nRXzYGr-cfQuwgxTetDbtNGoV2cnOvkP4Vr6YbIGsnzA2fr2_uR34DgOBiRibB6GOreRS8jQZcmZYaCINq2c2SoU2GdexNjYzwrnYZkOLjcMZImAxrSVjZshh3kvkMkwRo43Fm216CfiRKPKlelyOBl4z1mdFnq1D3IO4Z52tsOoY0O4LvdlxUZ536P0zd_O3zXB8nVzzp1i6UavdMlnK8htk2fuJkj7zYNbPb5LPe5ghX7eooNojoNDCUX8zFHjkVtQPaooFFghPKSwIHF390J7l-uTIlLRq2kMRq_wEc3jKW-TgQrh9m_Ry4N8KoYljOpM6NYnlQho45ImRtrHl3I3s0Lk-4Q1rlfFg59hz41hVN3gSgp6aUwoForxA-iRo35rVYB__oH-FUmtpEaq7elCcTpW3fAULtxDCuCgRTjhuU2zhxbWTeiRSbkWfrKHMVV332joctRElMRMIr9cnjyoKhOvIUfGnelGWavL-038Q7X3sED31RK4AdhjtazDgPyEMWIdytUMJTsd0hldQQxuulOqXecKbjdaeP_ywHcZJMccvz4pFRSOw7lsAS-7USt5ylkNUAhYV94nsqH-H9d2R_OhrhZYeY-l2FN79-7LWyBVwJ-rtZHfnHrnKsMZlyAMWrpLe_HSR3YeT5zx9UJk4JV8u2qf8BJ9Mm30
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+analysis+of+disease-information+coupling+propagation+dynamics+model+parameters&rft.jtitle=PloS+one&rft.au=Yang%2C+Yang&rft.au=Liu%2C+Haiyan&rft.date=2022-03-25&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=3&rft.spage=e0265273&rft_id=info:doi/10.1371%2Fjournal.pone.0265273&rft.externalDBID=IOV&rft.externalDocID=A698246709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon