Real-time gastric polyp detection using convolutional neural networks
Computer-aided polyp detection in gastric gastroscopy has been the subject of research over the past few decades. However, despite significant advances, automatic polyp detection in real time is still an unsolved problem. In this paper, we report on a convolutional neural network (CNN) for polyp det...
Saved in:
Published in | PloS one Vol. 14; no. 3; p. e0214133 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
25.03.2019
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computer-aided polyp detection in gastric gastroscopy has been the subject of research over the past few decades. However, despite significant advances, automatic polyp detection in real time is still an unsolved problem. In this paper, we report on a convolutional neural network (CNN) for polyp detection that is constructed based on Single Shot MultiBox Detector (SSD) architecture and which we call SSD for Gastric Polyps (SSD-GPNet). To take full advantages of feature maps' information from the feature pyramid and to acquire higher accuracy, we re-use information that is abandoned by Max-Pooling layers. In other words, we reuse the lost data from the pooling layers and concatenate that data as extra feature maps to contribute to classification and detection. Meanwhile, in the feature pyramid, we concatenate feature maps of the lower layers and feature maps that are deconvolved from upper layers to make explicit relationships between layers and to effectively increase the number of channels. The results show that our enhanced SSD for gastric polyp detection can realize real-time polyp detection with 50 frames per second (FPS) and can improve the mean average precision (mAP) from 88.5% to 90.4%, with only a little loss in time-performance. And the further experiment shows that SSD-GPNet has excellent performance in improving polyp detection recalls over 10% (p = 0.00053), especially in small polyp detection. This can help endoscopic physicians more easily find missed polyps and decrease the gastric polyp miss rate. It may be applicable in daily clinical practice to reduce the burden on physicians. |
---|---|
AbstractList | Computer-aided polyp detection in gastric gastroscopy has been the subject of research over the past few decades. However, despite significant advances, automatic polyp detection in real time is still an unsolved problem. In this paper, we report on a convolutional neural network (CNN) for polyp detection that is constructed based on Single Shot MultiBox Detector (SSD) architecture and which we call SSD for Gastric Polyps (SSD-GPNet). To take full advantages of feature maps' information from the feature pyramid and to acquire higher accuracy, we re-use information that is abandoned by Max-Pooling layers. In other words, we reuse the lost data from the pooling layers and concatenate that data as extra feature maps to contribute to classification and detection. Meanwhile, in the feature pyramid, we concatenate feature maps of the lower layers and feature maps that are deconvolved from upper layers to make explicit relationships between layers and to effectively increase the number of channels. The results show that our enhanced SSD for gastric polyp detection can realize real-time polyp detection with 50 frames per second (FPS) and can improve the mean average precision (mAP) from 88.5% to 90.4%, with only a little loss in time-performance. And the further experiment shows that SSD-GPNet has excellent performance in improving polyp detection recalls over 10% (p = 0.00053), especially in small polyp detection. This can help endoscopic physicians more easily find missed polyps and decrease the gastric polyp miss rate. It may be applicable in daily clinical practice to reduce the burden on physicians.Computer-aided polyp detection in gastric gastroscopy has been the subject of research over the past few decades. However, despite significant advances, automatic polyp detection in real time is still an unsolved problem. In this paper, we report on a convolutional neural network (CNN) for polyp detection that is constructed based on Single Shot MultiBox Detector (SSD) architecture and which we call SSD for Gastric Polyps (SSD-GPNet). To take full advantages of feature maps' information from the feature pyramid and to acquire higher accuracy, we re-use information that is abandoned by Max-Pooling layers. In other words, we reuse the lost data from the pooling layers and concatenate that data as extra feature maps to contribute to classification and detection. Meanwhile, in the feature pyramid, we concatenate feature maps of the lower layers and feature maps that are deconvolved from upper layers to make explicit relationships between layers and to effectively increase the number of channels. The results show that our enhanced SSD for gastric polyp detection can realize real-time polyp detection with 50 frames per second (FPS) and can improve the mean average precision (mAP) from 88.5% to 90.4%, with only a little loss in time-performance. And the further experiment shows that SSD-GPNet has excellent performance in improving polyp detection recalls over 10% (p = 0.00053), especially in small polyp detection. This can help endoscopic physicians more easily find missed polyps and decrease the gastric polyp miss rate. It may be applicable in daily clinical practice to reduce the burden on physicians. Computer-aided polyp detection in gastric gastroscopy has been the subject of research over the past few decades. However, despite significant advances, automatic polyp detection in real time is still an unsolved problem. In this paper, we report on a convolutional neural network (CNN) for polyp detection that is constructed based on Single Shot MultiBox Detector (SSD) architecture and which we call SSD for Gastric Polyps (SSD-GPNet). To take full advantages of feature maps' information from the feature pyramid and to acquire higher accuracy, we re-use information that is abandoned by Max-Pooling layers. In other words, we reuse the lost data from the pooling layers and concatenate that data as extra feature maps to contribute to classification and detection. Meanwhile, in the feature pyramid, we concatenate feature maps of the lower layers and feature maps that are deconvolved from upper layers to make explicit relationships between layers and to effectively increase the number of channels. The results show that our enhanced SSD for gastric polyp detection can realize real-time polyp detection with 50 frames per second (FPS) and can improve the mean average precision (mAP) from 88.5% to 90.4%, with only a little loss in time-performance. And the further experiment shows that SSD-GPNet has excellent performance in improving polyp detection recalls over 10% (p = 0.00053), especially in small polyp detection. This can help endoscopic physicians more easily find missed polyps and decrease the gastric polyp miss rate. It may be applicable in daily clinical practice to reduce the burden on physicians. |
Audience | Academic |
Author | Chen, Fei Liu, Jiquan Wang, Liangjing Zhang, Xu Huang, Zhengxing An, Jiye Duan, Huilong Hu, Weiling Si, Jianmin Yu, Tao |
AuthorAffiliation | Alma Mater Studiorum University of Bologna, ITALY 2 Institute of Gastroenterology, Zhejiang University, Hangzhou, China 3 Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China 4 Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China 1 Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China |
AuthorAffiliation_xml | – name: 1 Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China – name: 2 Institute of Gastroenterology, Zhejiang University, Hangzhou, China – name: 3 Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China – name: Alma Mater Studiorum University of Bologna, ITALY – name: 4 Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China |
Author_xml | – sequence: 1 givenname: Xu surname: Zhang fullname: Zhang, Xu – sequence: 2 givenname: Fei surname: Chen fullname: Chen, Fei – sequence: 3 givenname: Tao orcidid: 0000-0001-9617-7465 surname: Yu fullname: Yu, Tao – sequence: 4 givenname: Jiye surname: An fullname: An, Jiye – sequence: 5 givenname: Zhengxing surname: Huang fullname: Huang, Zhengxing – sequence: 6 givenname: Jiquan orcidid: 0000-0001-5994-6472 surname: Liu fullname: Liu, Jiquan – sequence: 7 givenname: Weiling surname: Hu fullname: Hu, Weiling – sequence: 8 givenname: Liangjing surname: Wang fullname: Wang, Liangjing – sequence: 9 givenname: Huilong surname: Duan fullname: Duan, Huilong – sequence: 10 givenname: Jianmin surname: Si fullname: Si, Jianmin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30908513$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk9tq3DAQhk1JaZJt36C0hkJpL3argyXLvSiEkLYLgUB6uBWyPPZq67U2kpw2b18564R1CKX4Qmb8_fNrxjPHyUFnO0iSlxgtMM3xh7XtXafaxTaGF4jgDFP6JDnCBSVzThA92Hs_TI69XyPEqOD8WXJIUYEEw_QoObsE1c6D2UDaKB-c0enWtjfbtIIAOhjbpb03XZNq213bth8iqk076N3tEX5b98s_T57WqvXwYjxnyY_PZ99Pv87PL74sT0_O55oTEuasQKgqeUloHu0LynBOSgClRQEZqynwgiHMaIXKjMR7ayUYESSrONNcEE5nyetd3m1rvRw74CXBRZ5zwqJ0lix3RGXVWm6d2Sh3I60y8jZgXSOVC0a3IFWhRFYphKNlVtUg8rysEYNM6EIAHdw-jW59uYFKQxdi0ZOk0y-dWcnGXkueUZrRIiZ4NyZw9qoHH-TGeA1tqzqw_e7eQgiCUETfPEAfr26kGhULMF1to68eksoTJhDiuSgG28UjVHwq2Jj4H6E2MT4RvJ8IIhPgT2hU771cfrv8f_bi55R9u8eu4qSFlR-HyE_BV_udvm_x3ZxGINsB2lnvHdT3CEZyWIe7dslhHeS4DlH28YFMm6AG-9gR0_5b_BfQng7J |
CitedBy_id | crossref_primary_10_1007_s00521_021_06496_4 crossref_primary_10_3390_diagnostics12082030 crossref_primary_10_1016_j_ins_2023_120033 crossref_primary_10_1097_SLE_0000000000000881 crossref_primary_10_1109_JBHI_2022_3147686 crossref_primary_10_1002_ima_22850 crossref_primary_10_2174_1573405620666230906092310 crossref_primary_10_1016_j_compmedimag_2022_102072 crossref_primary_10_1097_MCG_0000000000002115 crossref_primary_10_1038_s41598_024_74609_9 crossref_primary_10_1016_j_bspc_2021_103019 crossref_primary_10_3390_diagnostics14212360 crossref_primary_10_5946_ce_2020_054 crossref_primary_10_21597_jist_1501787 crossref_primary_10_3390_app10155040 crossref_primary_10_1007_s11760_023_02835_1 crossref_primary_10_1016_j_media_2021_102052 crossref_primary_10_1109_TASE_2020_2964827 crossref_primary_10_3390_jcm12216721 crossref_primary_10_3390_diagnostics13040733 crossref_primary_10_3390_electronics13122298 crossref_primary_10_3748_wjg_v27_i21_2681 crossref_primary_10_1007_s00464_023_10551_7 crossref_primary_10_1109_ACCESS_2022_3207839 crossref_primary_10_1145_3386295 crossref_primary_10_1155_2019_4393124 crossref_primary_10_3389_fncom_2024_1356447 crossref_primary_10_1016_j_bspc_2024_106942 crossref_primary_10_1007_s42979_024_02932_z crossref_primary_10_1109_ACCESS_2021_3065104 crossref_primary_10_1007_s00521_023_09214_4 crossref_primary_10_35711_aimi_v3_i3_70 crossref_primary_10_1186_s12880_023_01007_4 crossref_primary_10_1016_j_eswa_2023_120834 crossref_primary_10_1093_jcde_qwac029 crossref_primary_10_3390_s22239250 crossref_primary_10_1038_s41598_024_57993_0 crossref_primary_10_1016_j_compbiomed_2022_105255 crossref_primary_10_47820_recima21_v6i3_6280 crossref_primary_10_1016_j_artmed_2021_102178 crossref_primary_10_1007_s00371_021_02375_0 crossref_primary_10_1007_s11517_021_02398_8 crossref_primary_10_62347_BZIZ6358 crossref_primary_10_1038_s41598_024_74123_y crossref_primary_10_3390_cancers16223771 crossref_primary_10_1007_s11042_024_18497_1 crossref_primary_10_20517_ais_2023_36 crossref_primary_10_1109_ACCESS_2023_3296710 crossref_primary_10_1109_JBHI_2024_3488514 crossref_primary_10_3390_s22249761 crossref_primary_10_1109_ACCESS_2023_3310541 crossref_primary_10_3390_bioengineering10070806 crossref_primary_10_1016_j_inffus_2023_102007 crossref_primary_10_1109_ACCESS_2022_3171238 crossref_primary_10_1016_j_jbi_2020_103638 crossref_primary_10_1080_23311916_2022_2142072 crossref_primary_10_1038_s41598_024_81842_9 crossref_primary_10_1109_ACCESS_2019_2921027 crossref_primary_10_3389_fmed_2023_1227168 crossref_primary_10_26599_BDMA_2024_9020027 crossref_primary_10_1016_j_media_2020_101897 crossref_primary_10_2139_ssrn_4180735 crossref_primary_10_1186_s12938_022_00979_8 crossref_primary_10_3390_diagnostics9030099 crossref_primary_10_1007_s11042_023_17138_3 crossref_primary_10_1371_journal_pone_0250632 crossref_primary_10_1007_s10278_024_01123_9 crossref_primary_10_3389_fmed_2022_1018937 crossref_primary_10_37126_aige_v2_i2_25 crossref_primary_10_1007_s11760_024_03701_4 crossref_primary_10_1093_gastro_goab008 crossref_primary_10_1007_s00138_021_01245_y crossref_primary_10_1007_s11042_020_09468_3 crossref_primary_10_1016_j_artmed_2020_101923 crossref_primary_10_1155_2021_6170416 crossref_primary_10_1016_j_bspc_2023_104915 crossref_primary_10_1109_TMI_2024_3411933 crossref_primary_10_1109_JSEN_2020_3036005 crossref_primary_10_3390_diagnostics13243613 crossref_primary_10_2196_27694 crossref_primary_10_3390_app12073306 crossref_primary_10_1007_s11517_024_03203_y crossref_primary_10_1038_s41598_023_33462_y crossref_primary_10_1016_j_imu_2024_101572 crossref_primary_10_1007_s11548_020_02148_5 crossref_primary_10_3390_jimaging9020026 crossref_primary_10_1016_j_jii_2023_100467 crossref_primary_10_1016_j_media_2021_102002 crossref_primary_10_3390_healthcare9010054 |
Cites_doi | 10.1109/TMI.2016.2536809 10.1109/BMEI.2008.246 10.1109/ICAL.2010.5585395 10.1109/ISBI.2015.7163821 10.1109/TMI.2016.2535302 10.1007/BF02295996 10.1145/2647868.2654889 10.1109/TMI.2016.2528162 10.1109/CVPR.2016.91 10.1109/JBHI.2016.2636929 10.5244/C.31.76 10.1109/CVPR.2014.81 10.1109/TMI.2015.2458702 10.1109/JBHI.2016.2635662 10.1109/CBMS.2005.6 10.1371/journal.pone.0185508 10.1007/978-3-540-93860-6_70 10.1016/j.media.2017.07.005 10.1109/ICIP.2017.8296644 10.1016/j.compmedimag.2013.12.009 10.1007/s11263-009-0275-4 10.1109/ICIP.2007.4379193 10.1007/s11263-015-0816-y 10.1117/12.2217148 10.1007/978-3-662-46224-9_63 10.1109/ICCV.2015.169 10.1016/j.media.2007.08.001 10.1038/nrgastro.2009.70 10.1109/TCYB.2016.2591583 10.1016/j.patcog.2012.03.002 10.1007/978-3-319-46448-0_2 10.1111/j.1365-2036.2006.03080.x 10.1109/TMI.2015.2487997 10.1007/s00464-011-2038-x 10.1109/TMI.2017.2664042 10.1007/s10120-004-0289-0 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 Public Library of Science 2019 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Zhang et al 2019 Zhang et al |
Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Zhang et al 2019 Zhang et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0214133 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Engineering Education |
DocumentTitleAlternate | Gastric polyp detection using CNN |
EISSN | 1932-6203 |
ExternalDocumentID | 2197762515 oai_doaj_org_article_a9a84da010154dfe877bf05e48c98e36 PMC6433439 A580067899 30908513 10_1371_journal_pone_0214133 |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: 2017YFC0114106 – fundername: ; grantid: 31771072 – fundername: ; grantid: LGF18H160012 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM PUEGO AAPBV ABPTK |
ID | FETCH-LOGICAL-c622t-5900db6b237085935172beeac89e45f3e6950153d0b42620ca852824d65c68263 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Sep 03 00:14:06 EDT 2023 Wed Aug 27 00:23:06 EDT 2025 Thu Aug 21 13:59:49 EDT 2025 Mon Jul 21 09:32:04 EDT 2025 Fri Jul 25 11:26:37 EDT 2025 Tue Jun 17 21:24:19 EDT 2025 Tue Jun 10 20:45:24 EDT 2025 Fri Jun 27 03:57:12 EDT 2025 Fri Jun 27 04:41:59 EDT 2025 Thu May 22 21:24:24 EDT 2025 Mon Jul 21 05:36:20 EDT 2025 Tue Jul 01 02:53:59 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c622t-5900db6b237085935172beeac89e45f3e6950153d0b42620ca852824d65c68263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0001-5994-6472 0000-0001-9617-7465 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0214133 |
PMID | 30908513 |
PQID | 2197762515 |
PQPubID | 1436336 |
PageCount | e0214133 |
ParticipantIDs | plos_journals_2197762515 doaj_primary_oai_doaj_org_article_a9a84da010154dfe877bf05e48c98e36 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433439 proquest_miscellaneous_2197888200 proquest_journals_2197762515 gale_infotracmisc_A580067899 gale_infotracacademiconefile_A580067899 gale_incontextgauss_ISR_A580067899 gale_incontextgauss_IOV_A580067899 gale_healthsolutions_A580067899 pubmed_primary_30908513 crossref_primary_10_1371_journal_pone_0214133 crossref_citationtrail_10_1371_journal_pone_0214133 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-25 |
PublicationDateYYYYMMDD | 2019-03-25 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2019 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | ref13 ref35 ref12 ref34 J Bernal (ref8) 2012; 45 ref14 N Tajbakhsh (ref6) 2016; 35 AAA Setio (ref20) 2016; 35 ref30 ref11 ref10 ref32 Q McNemar (ref43) 1947; 12 ref39 ref16 ref38 JJ Fu (ref15) 2014; 38 S Christodoulidis (ref31) 2017; 21 J Bernal (ref37) 2017; 36 B Zheng (ref2) 2012; 26 R Zhang (ref19) 2017; 21 J Xu (ref28) 2016; 35 ref24 ref23 J Yu (ref22) 2017; 47 ref26 ref25 AM Desai (ref1) 2004; 7 DT Simmons (ref3) 2006; 24 ref21 O Russakovsky (ref42) 2015; 115 P Sundaram (ref9) 2008; 12 D Shen (ref29) 2017 ref27 T Hirasawa (ref36) 2018 M Everingham (ref41) 2010; 88 N Tajbakhsh (ref5) 2016; 35 X Zhang (ref33) 2017; 12 ref7 N Srivastava (ref17) 2014; 15 ref40 SW Carmack (ref4) 2009; 6 HC Shin (ref18) 2016; 35 |
References_xml | – volume: 35 start-page: 1160 issue: 5 year: 2016 ident: ref20 article-title: Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2016.2536809 – ident: ref12 doi: 10.1109/BMEI.2008.246 – ident: ref13 doi: 10.1109/ICAL.2010.5585395 – ident: ref35 doi: 10.1109/ISBI.2015.7163821 – volume: 35 start-page: 1299 issue: 5 year: 2016 ident: ref5 article-title: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2016.2535302 – ident: ref39 – volume: 12 start-page: 153 issue: 2 year: 1947 ident: ref43 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika doi: 10.1007/BF02295996 – ident: ref40 doi: 10.1145/2647868.2654889 – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: ref18 article-title: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2016.2528162 – ident: ref27 doi: 10.1109/CVPR.2016.91 – ident: ref24 – volume: 21 start-page: 76 issue: 1 year: 2017 ident: ref31 article-title: Multisource Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2016.2636929 – ident: ref38 doi: 10.5244/C.31.76 – ident: ref26 doi: 10.1109/CVPR.2014.81 – volume: 35 start-page: 119 issue: 1 year: 2016 ident: ref28 article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2015.2458702 – volume: 21 start-page: 41 issue: 1 year: 2017 ident: ref19 article-title: Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2016.2635662 – ident: ref10 doi: 10.1109/CBMS.2005.6 – volume: 12 start-page: e0185508 issue: 9 year: 2017 ident: ref33 article-title: Gastric precancerous diseases classification using CNN with a concise model publication-title: PloS One doi: 10.1371/journal.pone.0185508 – ident: ref11 doi: 10.1007/978-3-540-93860-6_70 – issue: 0 year: 2017 ident: ref29 article-title: Annual Review of Biomedical Engineering – ident: ref30 doi: 10.1016/j.media.2017.07.005 – ident: ref34 doi: 10.1109/ICIP.2017.8296644 – volume: 38 start-page: 267 issue: 4 year: 2014 ident: ref15 article-title: Feature extraction and pattern classification of colorectal polyps in colonoscopic imaging publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2013.12.009 – start-page: 1 year: 2018 ident: ref36 article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images publication-title: Gastric Cancer – volume: 88 start-page: 303 issue: 2 year: 2010 ident: ref41 article-title: The pascal visual object classes (voc) challenge publication-title: International journal of computer vision doi: 10.1007/s11263-009-0275-4 – ident: ref7 doi: 10.1109/ICIP.2007.4379193 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: ref42 article-title: Imagenet large scale visual recognition challenge publication-title: International Journal of Computer Vision doi: 10.1007/s11263-015-0816-y – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref17 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research – ident: ref32 doi: 10.1117/12.2217148 – ident: ref14 doi: 10.1007/978-3-662-46224-9_63 – ident: ref25 doi: 10.1109/ICCV.2015.169 – volume: 12 start-page: 99 issue: 2 year: 2008 ident: ref9 article-title: Colon polyp detection using smoothed shape operators: preliminary results publication-title: Medical Image Analysis doi: 10.1016/j.media.2007.08.001 – ident: ref21 – volume: 6 start-page: 331 issue: 6 year: 2009 ident: ref4 article-title: Management of gastric polyps: a pathology-based guide for gastroenterologists publication-title: Nature Reviews Gastroenterology and Hepatology doi: 10.1038/nrgastro.2009.70 – volume: 47 start-page: 4014 issue: 12 year: 2017 ident: ref22 article-title: Deep multimodal distance metric learning using click constraints for image ranking publication-title: IEEE transactions on cybernetics doi: 10.1109/TCYB.2016.2591583 – volume: 45 start-page: 3166 issue: 9 year: 2012 ident: ref8 article-title: Towards automatic polyp detection with a polyp appearance model publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.03.002 – ident: ref23 doi: 10.1007/978-3-319-46448-0_2 – volume: 24 start-page: 965 issue: 6 year: 2006 ident: ref3 article-title: Impact of endoscopist withdrawal speed on polyp yield: implications for optimal colonoscopy withdrawal time publication-title: Alimentary Pharmacology and Therapeutics doi: 10.1111/j.1365-2036.2006.03080.x – volume: 35 start-page: 630 issue: 2 year: 2016 ident: ref6 article-title: Automated polyp detection in colonoscopy videos using shape and context information publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2015.2487997 – volume: 26 start-page: 1352 issue: 5 year: 2012 ident: ref2 article-title: Quantifying mental workloads of surgeons performing natural orifice transluminal endoscopic surgery (NOTES) procedures publication-title: Surgical Endoscopy doi: 10.1007/s00464-011-2038-x – ident: ref16 – volume: 36 start-page: 1231 issue: 6 year: 2017 ident: ref37 article-title: comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2017.2664042 – volume: 7 start-page: 196 issue: 4 year: 2004 ident: ref1 article-title: Improving outcomes in gastric cancer over 20 years publication-title: Gastric Cancer doi: 10.1007/s10120-004-0289-0 |
SSID | ssj0053866 |
Score | 2.579295 |
Snippet | Computer-aided polyp detection in gastric gastroscopy has been the subject of research over the past few decades. However, despite significant advances,... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0214133 |
SubjectTerms | Adenomatous Polyps - diagnostic imaging Analysis Architectural engineering Artificial neural networks Biology and Life Sciences Biomedical engineering Colonoscopy Computer and Information Sciences Detection equipment Education Endoscopy Engineering Feature maps Female Frames per second Gastric cancer Gastroenterology Gastroscopy Hospitals Humans Image Processing, Computer-Assisted International conferences Laboratories Male Medical imaging Medical imaging equipment Medical personnel Medical schools Medicine and Health Sciences Methods Neural networks Neural Networks, Computer Pattern recognition People and Places Physical Sciences Physicians Polyps R&D Real time Research & development Research and Analysis Methods Reuse Stomach cancer Stomach Neoplasms - diagnostic imaging |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQnrggylcDBQJCAg5pk_X3saBWhQNIhaLerDh2tkirJCK7B_49M7Y3alClcuCSleJJtPs843nWjt8Q8kZb2UpkbjVw4YIpIQpVw0WWFpKtYlq6UCD7RZxdsM-X_PJaqy-sCYvywBG4o1rXirkapdA4c61XUtq25J6pRitPg9g25LzdZiquwRDFQqSDclRWR2leDoe-84eoElZROktEQa9_WpUXw7ofb6Kcf1dOXktFp_fJvcQh8-P43ffIHd89IHspSsf8XZKSfv-QnJwDDyywf3y-qrFDR5MP_fr3kDu_CTVYXY6F76sci8-TE8KbUeQyfIQS8fERuTg9-f7xrEiNE4pGLJebAjuBOivsksqgZ8aBpVgPS6zSnvGWeqE5wEldaYMgfVMrDlsv5gRvBOw36GOy6ACqfZIrV3nhLKXeOgZUx1atlKXntrLSWm8zQncomiapimNzi7UJf5VJ2F1EUAxibxL2GSmmp4aoqnGL_QecoMkWNbHDDfAUkzzF3OYpGXmJ02viAdMpss0xVyFna52R18ECdTE6LLxZ1dtxNJ--_vgHo2_nM6O3yajtAY6mTocd4Deh3tbM8mBmCdHdzIb30Rl3qIwGMoyEBAY0FJ7cOejNw6-mYXwpFtN1vt9GGwXxWZYZeRL9eUKWlhpJOCAuZ54-g34-0v28CrLkwG0p0Nun_2OunpG7wEw1Fvst-QFZbH5t_XNgfxv7IgT6HyaEVzU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF1BuMAB0fBRQwGDkICDWzvr_TqhghoKB5AKRb2tvN51ihTZpk4O_Htm1mtTowq4JFJ2HCczOztv7ec3hLxQRlQCkVsBWDjJJeeJLOBFpAaKrcyVsJ4g-4kfn-Yfz9hZuODWBVrlsCb6hdo2JV4jP4DMEpC4UH7ftD8S7BqFd1dDC43r5EYGlQYpXXL5fliJIZc5D4_LUZEdhOjst03t9lErLKN0Uo68av-4Ns_addNdBTz_5E9eKkjLO-R2QJLxYR_6HXLN1XNswhwIG3Ny65LW4JzshCzu4ldBavr1XXJ0Ajgxwf7y8arADh5l3Dbrn21s3cZztOoYifGrGMnpYZLCOVEE0795Cnl3j5wuj76-O05CY4Wk5IvFJsFOodZws6DC650xQDHGwRIslctZRR1XDGACtanxgvVlIRlszXLLWclhP0Lvk1kNTtwlsbSZ49ZQ6ozNAQqZrBIidcxkRhjjTETo4F9dBtVxbH6x1v5WmoDdR-8ujVHRISoRScaj2l514x_2bzF0oy1qZvsPmouVDimoC1XI3BYoqsdyWzkphKlS5nJZKukoj8hTDLzuH0AdM18fMulrulIRee4tUDejRmLOqth2nf7w-dt_GH05mRi9DEZVA-4oi_AwBPwn1OOaWO5NLCH7y8nwLk7TwSud_p0ncOQwda8efjYO45ci2a52zba3kZC_aRqRB_1MHz1LU4UgHTwuJjkwcf10pP5-7mXLAftSgL8P__6zHpGbgEkV0vwWbI_MNhdb9xhw38Y88cn9C5DyVtA priority: 102 providerName: ProQuest |
Title | Real-time gastric polyp detection using convolutional neural networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30908513 https://www.proquest.com/docview/2197762515 https://www.proquest.com/docview/2197888200 https://pubmed.ncbi.nlm.nih.gov/PMC6433439 https://doaj.org/article/a9a84da010154dfe877bf05e48c98e36 http://dx.doi.org/10.1371/journal.pone.0214133 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe27oUXxPhaYJSAkICHVEkcf-QBoW1qGUgMVCjqWxQnTkGqktC0EvvvuXOciKAi4MWV6rOlnu98P9fn3xHyLFaiEIjcUsDCXiQ592QKjfAVBFsZxSI3CbJX_HIRvVuy5QHparZaBTZ7j3ZYT2qxWU9-fL9-DQ7_ylRtEEE3aFJXpZ4gBxicuw7JEcQmgTUN3kf9vQJ4t7m9RNTi8dCn9jHdn2YZBCvD6d_v3KN6XTX7YOnv2ZW_hKvZLXLT4kz3rDWMY3Kgy9vk2Hpy476wdNMv75DpHLCihzXm3VWKVTwyt67W17Wb663J0ypdTI5fuZigbg0VZkYiTPNh0sibu2Qxm36-uPRscQUv42G49bBaaK64CqkwnGcMlKU0bMMy1hErqOYxA6hAc18Z0voslQyOZ1HOWcbhTELvkVEJqjohrswDzXNFqVZ5BHBIBYUQvmYqUEIprRxCOy0mmWUexwIY68Rcpwk4gbRKSVD3idW9Q7x-VN0yb_xF_hwXqJdF3mzzRbVZJdYNkzROZZSnSKzHorzQUghV-ExHMoulptwhj3F5k_YRau_9yRmTJq7HsUOeGgnkzigxOWeV7pomefvhyz8IfZoPhJ5boaICdWSpfRABvwk5uQaSpwNJ2AGyQfcJGmOnlSaBKCQgyAFUhZGdge7vftJ346SYcFfqatfKSPBh33fI_daee81SP0agDhoXA0sfqH7YU377aqjLAf9SgMAP_nNtH5IbAFRjzP0L2SkZbTc7_QjA4FaNyaFYCmjlRYDt7M2YHJ1Prz7Ox-bvlbHx_5-AamGG |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcgAOiC6PLhQaEAg4pE3ixHYOCBXosktLkfpAvZk4cRakVRKaXaH-KX4jM44TGlQBl1420nqSbMbz-LwZf0PI01jxnCNySwALu6FgzBUJfHBPQbIVYcwzUyC7zybH4YeT6GSF_Gz3wmBZZRsTTaDOyhT_I98Cz-LguJB-X1ffXewahW9X2xYajVns6rMfsGSrX03fwfw-C4LxztHbiWu7CrgpC4KFi20yM8VUQLkh-4oghSsN8UfEOoxyqlkcQY6kmacMW3uaiAjWJWHGopQBGKdw3Svkakghk-PO9PH7NvJD7GDMbs-j3N-y1rBZlYXeRG4yn9Je-jNdArpcMKjmZX0R0P2zXvNcAhzfIjctcnW2G1NbJSu6GGLTZ1sgMiQ3znEbDsmqjRq188JSW7-8TXYOAJe62M_emSXYMSR1qnJ-VjmZXpiasMLBQvyZg8Xw1ingnki6aQ6mZL2-Q44vReV3yaAAJa4RR2S-ZpmiVKssBOil_JxzT0fKV1wprUaEtvqVqWU5x2Ybc2le3XFY7TTqkjgr0s7KiLjdWVXD8vEP-Tc4dZ0scnSbL8rTmbQuL5M4EWGWIIlfFGa5Fpyr3It0KNJYaMpGZAMnXjYbXrtII7cjYTBEHI_IEyOBPB0FFgLNkmVdy-mnz_8hdHjQE3puhfIS1JEmdvMFPBPyf_Uk13uSEG3S3vAammmrlVr-9ks4szXdi4cfd8N4USzuK3S5bGQExAvPG5F7jaV3mqVejIsC0Djv-UBP9f2R4ttXQ5MOWJsC3L7_95-1Qa5Njj7uyb3p_u4Dch3wcIwlhkG0TgaL06V-CJhzoR4ZR3fIl8uOLL8A5JmQ3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGkRA8IFYuKwwWEAh4yJrGie08IDR20crQQIOhvZk4dgpSlYSlFdpf49dxjuOEBU3Ay14aqT5JmuNz-dwcf4eQp4niOUfklgIW9iPBmC9S-OCBgmQrooRrWyB7yPaPo7cn8ckK-dnuhcGyyjYm2kCtywz_Ix-DZ3FwXEi_49yVRXzY2XtdffexgxS-aW3baTQmcmDOfsDyrX413YG5fhaGe7uftvd912HAz1gYLnxsmakVUyHllvgrhnSuDMQikZgozqlhSQz5kupAWeb2LBUxrFEizeKMATCncN0r5CqnXKCPie2uvATiCGNuqx7lk7GzjM2qLMwm8pRNKO2lQtsxoMsLg2pe1heB3j9rN88lw71b5KZDsd5WY3arZMUUQ2wA7YpFhuTGOZ7DIVl1EaT2Xjia65e3ye4RYFQfe9t7sxS7h2ReVc7PKk-bha0PKzwsyp95WBjvHATuiQSc9mDL1-s75PhSVH6XDApQ4hrxhJ4YphWlRukIYJia5JwHJlYTxZUyakRoq1-ZOcZzbLwxl_Y1HoeVT6MuibMi3ayMiN-dVTWMH_-Qf4NT18kiX7f9ojydSef-Mk1SEekUCf3iSOdGcK7yIDaRyBJhKBuRDZx42Wx-7aKO3IqFxRNJMiJPrARydhRo_bN0Wddy-v7zfwh9POoJPXdCeQnqyFK3EQOeCbnAepLrPUmIPFlveA3NtNVKLX_7KJzZmu7Fw4-7YbwoFvoVplw2MgJiRxCMyL3G0jvN0iDBBQJonPd8oKf6_kjx7aulTAfcTQF63__7z9og1yCmyHfTw4MH5DpA4wSrDcN4nQwWp0vzEODnQj2yfu6RL5cdWH4BV76U3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+gastric+polyp+detection+using+convolutional+neural+networks&rft.jtitle=PloS+one&rft.au=Zhang%2C+Xu&rft.au=Chen%2C+Fei&rft.au=Yu%2C+Tao&rft.au=An%2C+Jiye&rft.date=2019-03-25&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=3&rft.spage=e0214133&rft_id=info:doi/10.1371%2Fjournal.pone.0214133&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0214133 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |