Real-time gastric polyp detection using convolutional neural networks

Computer-aided polyp detection in gastric gastroscopy has been the subject of research over the past few decades. However, despite significant advances, automatic polyp detection in real time is still an unsolved problem. In this paper, we report on a convolutional neural network (CNN) for polyp det...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 3; p. e0214133
Main Authors Zhang, Xu, Chen, Fei, Yu, Tao, An, Jiye, Huang, Zhengxing, Liu, Jiquan, Hu, Weiling, Wang, Liangjing, Duan, Huilong, Si, Jianmin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 25.03.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computer-aided polyp detection in gastric gastroscopy has been the subject of research over the past few decades. However, despite significant advances, automatic polyp detection in real time is still an unsolved problem. In this paper, we report on a convolutional neural network (CNN) for polyp detection that is constructed based on Single Shot MultiBox Detector (SSD) architecture and which we call SSD for Gastric Polyps (SSD-GPNet). To take full advantages of feature maps' information from the feature pyramid and to acquire higher accuracy, we re-use information that is abandoned by Max-Pooling layers. In other words, we reuse the lost data from the pooling layers and concatenate that data as extra feature maps to contribute to classification and detection. Meanwhile, in the feature pyramid, we concatenate feature maps of the lower layers and feature maps that are deconvolved from upper layers to make explicit relationships between layers and to effectively increase the number of channels. The results show that our enhanced SSD for gastric polyp detection can realize real-time polyp detection with 50 frames per second (FPS) and can improve the mean average precision (mAP) from 88.5% to 90.4%, with only a little loss in time-performance. And the further experiment shows that SSD-GPNet has excellent performance in improving polyp detection recalls over 10% (p = 0.00053), especially in small polyp detection. This can help endoscopic physicians more easily find missed polyps and decrease the gastric polyp miss rate. It may be applicable in daily clinical practice to reduce the burden on physicians.
AbstractList Computer-aided polyp detection in gastric gastroscopy has been the subject of research over the past few decades. However, despite significant advances, automatic polyp detection in real time is still an unsolved problem. In this paper, we report on a convolutional neural network (CNN) for polyp detection that is constructed based on Single Shot MultiBox Detector (SSD) architecture and which we call SSD for Gastric Polyps (SSD-GPNet). To take full advantages of feature maps' information from the feature pyramid and to acquire higher accuracy, we re-use information that is abandoned by Max-Pooling layers. In other words, we reuse the lost data from the pooling layers and concatenate that data as extra feature maps to contribute to classification and detection. Meanwhile, in the feature pyramid, we concatenate feature maps of the lower layers and feature maps that are deconvolved from upper layers to make explicit relationships between layers and to effectively increase the number of channels. The results show that our enhanced SSD for gastric polyp detection can realize real-time polyp detection with 50 frames per second (FPS) and can improve the mean average precision (mAP) from 88.5% to 90.4%, with only a little loss in time-performance. And the further experiment shows that SSD-GPNet has excellent performance in improving polyp detection recalls over 10% (p = 0.00053), especially in small polyp detection. This can help endoscopic physicians more easily find missed polyps and decrease the gastric polyp miss rate. It may be applicable in daily clinical practice to reduce the burden on physicians.Computer-aided polyp detection in gastric gastroscopy has been the subject of research over the past few decades. However, despite significant advances, automatic polyp detection in real time is still an unsolved problem. In this paper, we report on a convolutional neural network (CNN) for polyp detection that is constructed based on Single Shot MultiBox Detector (SSD) architecture and which we call SSD for Gastric Polyps (SSD-GPNet). To take full advantages of feature maps' information from the feature pyramid and to acquire higher accuracy, we re-use information that is abandoned by Max-Pooling layers. In other words, we reuse the lost data from the pooling layers and concatenate that data as extra feature maps to contribute to classification and detection. Meanwhile, in the feature pyramid, we concatenate feature maps of the lower layers and feature maps that are deconvolved from upper layers to make explicit relationships between layers and to effectively increase the number of channels. The results show that our enhanced SSD for gastric polyp detection can realize real-time polyp detection with 50 frames per second (FPS) and can improve the mean average precision (mAP) from 88.5% to 90.4%, with only a little loss in time-performance. And the further experiment shows that SSD-GPNet has excellent performance in improving polyp detection recalls over 10% (p = 0.00053), especially in small polyp detection. This can help endoscopic physicians more easily find missed polyps and decrease the gastric polyp miss rate. It may be applicable in daily clinical practice to reduce the burden on physicians.
Computer-aided polyp detection in gastric gastroscopy has been the subject of research over the past few decades. However, despite significant advances, automatic polyp detection in real time is still an unsolved problem. In this paper, we report on a convolutional neural network (CNN) for polyp detection that is constructed based on Single Shot MultiBox Detector (SSD) architecture and which we call SSD for Gastric Polyps (SSD-GPNet). To take full advantages of feature maps' information from the feature pyramid and to acquire higher accuracy, we re-use information that is abandoned by Max-Pooling layers. In other words, we reuse the lost data from the pooling layers and concatenate that data as extra feature maps to contribute to classification and detection. Meanwhile, in the feature pyramid, we concatenate feature maps of the lower layers and feature maps that are deconvolved from upper layers to make explicit relationships between layers and to effectively increase the number of channels. The results show that our enhanced SSD for gastric polyp detection can realize real-time polyp detection with 50 frames per second (FPS) and can improve the mean average precision (mAP) from 88.5% to 90.4%, with only a little loss in time-performance. And the further experiment shows that SSD-GPNet has excellent performance in improving polyp detection recalls over 10% (p = 0.00053), especially in small polyp detection. This can help endoscopic physicians more easily find missed polyps and decrease the gastric polyp miss rate. It may be applicable in daily clinical practice to reduce the burden on physicians.
Audience Academic
Author Chen, Fei
Liu, Jiquan
Wang, Liangjing
Zhang, Xu
Huang, Zhengxing
An, Jiye
Duan, Huilong
Hu, Weiling
Si, Jianmin
Yu, Tao
AuthorAffiliation Alma Mater Studiorum University of Bologna, ITALY
2 Institute of Gastroenterology, Zhejiang University, Hangzhou, China
3 Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
4 Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
1 Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
AuthorAffiliation_xml – name: 1 Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
– name: 2 Institute of Gastroenterology, Zhejiang University, Hangzhou, China
– name: 3 Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
– name: Alma Mater Studiorum University of Bologna, ITALY
– name: 4 Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
Author_xml – sequence: 1
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
– sequence: 2
  givenname: Fei
  surname: Chen
  fullname: Chen, Fei
– sequence: 3
  givenname: Tao
  orcidid: 0000-0001-9617-7465
  surname: Yu
  fullname: Yu, Tao
– sequence: 4
  givenname: Jiye
  surname: An
  fullname: An, Jiye
– sequence: 5
  givenname: Zhengxing
  surname: Huang
  fullname: Huang, Zhengxing
– sequence: 6
  givenname: Jiquan
  orcidid: 0000-0001-5994-6472
  surname: Liu
  fullname: Liu, Jiquan
– sequence: 7
  givenname: Weiling
  surname: Hu
  fullname: Hu, Weiling
– sequence: 8
  givenname: Liangjing
  surname: Wang
  fullname: Wang, Liangjing
– sequence: 9
  givenname: Huilong
  surname: Duan
  fullname: Duan, Huilong
– sequence: 10
  givenname: Jianmin
  surname: Si
  fullname: Si, Jianmin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30908513$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaZJt36C0hkJpL3argyXLvSiEkLYLgUB6uBWyPPZq67U2kpw2b18564R1CKX4Qmb8_fNrxjPHyUFnO0iSlxgtMM3xh7XtXafaxTaGF4jgDFP6JDnCBSVzThA92Hs_TI69XyPEqOD8WXJIUYEEw_QoObsE1c6D2UDaKB-c0enWtjfbtIIAOhjbpb03XZNq213bth8iqk076N3tEX5b98s_T57WqvXwYjxnyY_PZ99Pv87PL74sT0_O55oTEuasQKgqeUloHu0LynBOSgClRQEZqynwgiHMaIXKjMR7ayUYESSrONNcEE5nyetd3m1rvRw74CXBRZ5zwqJ0lix3RGXVWm6d2Sh3I60y8jZgXSOVC0a3IFWhRFYphKNlVtUg8rysEYNM6EIAHdw-jW59uYFKQxdi0ZOk0y-dWcnGXkueUZrRIiZ4NyZw9qoHH-TGeA1tqzqw_e7eQgiCUETfPEAfr26kGhULMF1to68eksoTJhDiuSgG28UjVHwq2Jj4H6E2MT4RvJ8IIhPgT2hU771cfrv8f_bi55R9u8eu4qSFlR-HyE_BV_udvm_x3ZxGINsB2lnvHdT3CEZyWIe7dslhHeS4DlH28YFMm6AG-9gR0_5b_BfQng7J
CitedBy_id crossref_primary_10_1007_s00521_021_06496_4
crossref_primary_10_3390_diagnostics12082030
crossref_primary_10_1016_j_ins_2023_120033
crossref_primary_10_1097_SLE_0000000000000881
crossref_primary_10_1109_JBHI_2022_3147686
crossref_primary_10_1002_ima_22850
crossref_primary_10_2174_1573405620666230906092310
crossref_primary_10_1016_j_compmedimag_2022_102072
crossref_primary_10_1097_MCG_0000000000002115
crossref_primary_10_1038_s41598_024_74609_9
crossref_primary_10_1016_j_bspc_2021_103019
crossref_primary_10_3390_diagnostics14212360
crossref_primary_10_5946_ce_2020_054
crossref_primary_10_21597_jist_1501787
crossref_primary_10_3390_app10155040
crossref_primary_10_1007_s11760_023_02835_1
crossref_primary_10_1016_j_media_2021_102052
crossref_primary_10_1109_TASE_2020_2964827
crossref_primary_10_3390_jcm12216721
crossref_primary_10_3390_diagnostics13040733
crossref_primary_10_3390_electronics13122298
crossref_primary_10_3748_wjg_v27_i21_2681
crossref_primary_10_1007_s00464_023_10551_7
crossref_primary_10_1109_ACCESS_2022_3207839
crossref_primary_10_1145_3386295
crossref_primary_10_1155_2019_4393124
crossref_primary_10_3389_fncom_2024_1356447
crossref_primary_10_1016_j_bspc_2024_106942
crossref_primary_10_1007_s42979_024_02932_z
crossref_primary_10_1109_ACCESS_2021_3065104
crossref_primary_10_1007_s00521_023_09214_4
crossref_primary_10_35711_aimi_v3_i3_70
crossref_primary_10_1186_s12880_023_01007_4
crossref_primary_10_1016_j_eswa_2023_120834
crossref_primary_10_1093_jcde_qwac029
crossref_primary_10_3390_s22239250
crossref_primary_10_1038_s41598_024_57993_0
crossref_primary_10_1016_j_compbiomed_2022_105255
crossref_primary_10_47820_recima21_v6i3_6280
crossref_primary_10_1016_j_artmed_2021_102178
crossref_primary_10_1007_s00371_021_02375_0
crossref_primary_10_1007_s11517_021_02398_8
crossref_primary_10_62347_BZIZ6358
crossref_primary_10_1038_s41598_024_74123_y
crossref_primary_10_3390_cancers16223771
crossref_primary_10_1007_s11042_024_18497_1
crossref_primary_10_20517_ais_2023_36
crossref_primary_10_1109_ACCESS_2023_3296710
crossref_primary_10_1109_JBHI_2024_3488514
crossref_primary_10_3390_s22249761
crossref_primary_10_1109_ACCESS_2023_3310541
crossref_primary_10_3390_bioengineering10070806
crossref_primary_10_1016_j_inffus_2023_102007
crossref_primary_10_1109_ACCESS_2022_3171238
crossref_primary_10_1016_j_jbi_2020_103638
crossref_primary_10_1080_23311916_2022_2142072
crossref_primary_10_1038_s41598_024_81842_9
crossref_primary_10_1109_ACCESS_2019_2921027
crossref_primary_10_3389_fmed_2023_1227168
crossref_primary_10_26599_BDMA_2024_9020027
crossref_primary_10_1016_j_media_2020_101897
crossref_primary_10_2139_ssrn_4180735
crossref_primary_10_1186_s12938_022_00979_8
crossref_primary_10_3390_diagnostics9030099
crossref_primary_10_1007_s11042_023_17138_3
crossref_primary_10_1371_journal_pone_0250632
crossref_primary_10_1007_s10278_024_01123_9
crossref_primary_10_3389_fmed_2022_1018937
crossref_primary_10_37126_aige_v2_i2_25
crossref_primary_10_1007_s11760_024_03701_4
crossref_primary_10_1093_gastro_goab008
crossref_primary_10_1007_s00138_021_01245_y
crossref_primary_10_1007_s11042_020_09468_3
crossref_primary_10_1016_j_artmed_2020_101923
crossref_primary_10_1155_2021_6170416
crossref_primary_10_1016_j_bspc_2023_104915
crossref_primary_10_1109_TMI_2024_3411933
crossref_primary_10_1109_JSEN_2020_3036005
crossref_primary_10_3390_diagnostics13243613
crossref_primary_10_2196_27694
crossref_primary_10_3390_app12073306
crossref_primary_10_1007_s11517_024_03203_y
crossref_primary_10_1038_s41598_023_33462_y
crossref_primary_10_1016_j_imu_2024_101572
crossref_primary_10_1007_s11548_020_02148_5
crossref_primary_10_3390_jimaging9020026
crossref_primary_10_1016_j_jii_2023_100467
crossref_primary_10_1016_j_media_2021_102002
crossref_primary_10_3390_healthcare9010054
Cites_doi 10.1109/TMI.2016.2536809
10.1109/BMEI.2008.246
10.1109/ICAL.2010.5585395
10.1109/ISBI.2015.7163821
10.1109/TMI.2016.2535302
10.1007/BF02295996
10.1145/2647868.2654889
10.1109/TMI.2016.2528162
10.1109/CVPR.2016.91
10.1109/JBHI.2016.2636929
10.5244/C.31.76
10.1109/CVPR.2014.81
10.1109/TMI.2015.2458702
10.1109/JBHI.2016.2635662
10.1109/CBMS.2005.6
10.1371/journal.pone.0185508
10.1007/978-3-540-93860-6_70
10.1016/j.media.2017.07.005
10.1109/ICIP.2017.8296644
10.1016/j.compmedimag.2013.12.009
10.1007/s11263-009-0275-4
10.1109/ICIP.2007.4379193
10.1007/s11263-015-0816-y
10.1117/12.2217148
10.1007/978-3-662-46224-9_63
10.1109/ICCV.2015.169
10.1016/j.media.2007.08.001
10.1038/nrgastro.2009.70
10.1109/TCYB.2016.2591583
10.1016/j.patcog.2012.03.002
10.1007/978-3-319-46448-0_2
10.1111/j.1365-2036.2006.03080.x
10.1109/TMI.2015.2487997
10.1007/s00464-011-2038-x
10.1109/TMI.2017.2664042
10.1007/s10120-004-0289-0
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Zhang et al 2019 Zhang et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Zhang et al 2019 Zhang et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0214133
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Agricultural Science Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
Education
DocumentTitleAlternate Gastric polyp detection using CNN
EISSN 1932-6203
ExternalDocumentID 2197762515
oai_doaj_org_article_a9a84da010154dfe877bf05e48c98e36
PMC6433439
A580067899
30908513
10_1371_journal_pone_0214133
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: 2017YFC0114106
– fundername: ;
  grantid: 31771072
– fundername: ;
  grantid: LGF18H160012
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
ID FETCH-LOGICAL-c622t-5900db6b237085935172beeac89e45f3e6950153d0b42620ca852824d65c68263
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Sep 03 00:14:06 EDT 2023
Wed Aug 27 00:23:06 EDT 2025
Thu Aug 21 13:59:49 EDT 2025
Mon Jul 21 09:32:04 EDT 2025
Fri Jul 25 11:26:37 EDT 2025
Tue Jun 17 21:24:19 EDT 2025
Tue Jun 10 20:45:24 EDT 2025
Fri Jun 27 03:57:12 EDT 2025
Fri Jun 27 04:41:59 EDT 2025
Thu May 22 21:24:24 EDT 2025
Mon Jul 21 05:36:20 EDT 2025
Tue Jul 01 02:53:59 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c622t-5900db6b237085935172beeac89e45f3e6950153d0b42620ca852824d65c68263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-5994-6472
0000-0001-9617-7465
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0214133
PMID 30908513
PQID 2197762515
PQPubID 1436336
PageCount e0214133
ParticipantIDs plos_journals_2197762515
doaj_primary_oai_doaj_org_article_a9a84da010154dfe877bf05e48c98e36
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433439
proquest_miscellaneous_2197888200
proquest_journals_2197762515
gale_infotracmisc_A580067899
gale_infotracacademiconefile_A580067899
gale_incontextgauss_ISR_A580067899
gale_incontextgauss_IOV_A580067899
gale_healthsolutions_A580067899
pubmed_primary_30908513
crossref_primary_10_1371_journal_pone_0214133
crossref_citationtrail_10_1371_journal_pone_0214133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-25
PublicationDateYYYYMMDD 2019-03-25
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References ref13
ref35
ref12
ref34
J Bernal (ref8) 2012; 45
ref14
N Tajbakhsh (ref6) 2016; 35
AAA Setio (ref20) 2016; 35
ref30
ref11
ref10
ref32
Q McNemar (ref43) 1947; 12
ref39
ref16
ref38
JJ Fu (ref15) 2014; 38
S Christodoulidis (ref31) 2017; 21
J Bernal (ref37) 2017; 36
B Zheng (ref2) 2012; 26
R Zhang (ref19) 2017; 21
J Xu (ref28) 2016; 35
ref24
ref23
J Yu (ref22) 2017; 47
ref26
ref25
AM Desai (ref1) 2004; 7
DT Simmons (ref3) 2006; 24
ref21
O Russakovsky (ref42) 2015; 115
P Sundaram (ref9) 2008; 12
D Shen (ref29) 2017
ref27
T Hirasawa (ref36) 2018
M Everingham (ref41) 2010; 88
N Tajbakhsh (ref5) 2016; 35
X Zhang (ref33) 2017; 12
ref7
N Srivastava (ref17) 2014; 15
ref40
SW Carmack (ref4) 2009; 6
HC Shin (ref18) 2016; 35
References_xml – volume: 35
  start-page: 1160
  issue: 5
  year: 2016
  ident: ref20
  article-title: Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2536809
– ident: ref12
  doi: 10.1109/BMEI.2008.246
– ident: ref13
  doi: 10.1109/ICAL.2010.5585395
– ident: ref35
  doi: 10.1109/ISBI.2015.7163821
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: ref5
  article-title: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2535302
– ident: ref39
– volume: 12
  start-page: 153
  issue: 2
  year: 1947
  ident: ref43
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
– ident: ref40
  doi: 10.1145/2647868.2654889
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: ref18
  article-title: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: ref27
  doi: 10.1109/CVPR.2016.91
– ident: ref24
– volume: 21
  start-page: 76
  issue: 1
  year: 2017
  ident: ref31
  article-title: Multisource Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2016.2636929
– ident: ref38
  doi: 10.5244/C.31.76
– ident: ref26
  doi: 10.1109/CVPR.2014.81
– volume: 35
  start-page: 119
  issue: 1
  year: 2016
  ident: ref28
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2015.2458702
– volume: 21
  start-page: 41
  issue: 1
  year: 2017
  ident: ref19
  article-title: Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2016.2635662
– ident: ref10
  doi: 10.1109/CBMS.2005.6
– volume: 12
  start-page: e0185508
  issue: 9
  year: 2017
  ident: ref33
  article-title: Gastric precancerous diseases classification using CNN with a concise model
  publication-title: PloS One
  doi: 10.1371/journal.pone.0185508
– ident: ref11
  doi: 10.1007/978-3-540-93860-6_70
– issue: 0
  year: 2017
  ident: ref29
  article-title: Annual Review of Biomedical Engineering
– ident: ref30
  doi: 10.1016/j.media.2017.07.005
– ident: ref34
  doi: 10.1109/ICIP.2017.8296644
– volume: 38
  start-page: 267
  issue: 4
  year: 2014
  ident: ref15
  article-title: Feature extraction and pattern classification of colorectal polyps in colonoscopic imaging
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2013.12.009
– start-page: 1
  year: 2018
  ident: ref36
  article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images
  publication-title: Gastric Cancer
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: ref41
  article-title: The pascal visual object classes (voc) challenge
  publication-title: International journal of computer vision
  doi: 10.1007/s11263-009-0275-4
– ident: ref7
  doi: 10.1109/ICIP.2007.4379193
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: ref42
  article-title: Imagenet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-015-0816-y
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref17
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– ident: ref32
  doi: 10.1117/12.2217148
– ident: ref14
  doi: 10.1007/978-3-662-46224-9_63
– ident: ref25
  doi: 10.1109/ICCV.2015.169
– volume: 12
  start-page: 99
  issue: 2
  year: 2008
  ident: ref9
  article-title: Colon polyp detection using smoothed shape operators: preliminary results
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2007.08.001
– ident: ref21
– volume: 6
  start-page: 331
  issue: 6
  year: 2009
  ident: ref4
  article-title: Management of gastric polyps: a pathology-based guide for gastroenterologists
  publication-title: Nature Reviews Gastroenterology and Hepatology
  doi: 10.1038/nrgastro.2009.70
– volume: 47
  start-page: 4014
  issue: 12
  year: 2017
  ident: ref22
  article-title: Deep multimodal distance metric learning using click constraints for image ranking
  publication-title: IEEE transactions on cybernetics
  doi: 10.1109/TCYB.2016.2591583
– volume: 45
  start-page: 3166
  issue: 9
  year: 2012
  ident: ref8
  article-title: Towards automatic polyp detection with a polyp appearance model
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.03.002
– ident: ref23
  doi: 10.1007/978-3-319-46448-0_2
– volume: 24
  start-page: 965
  issue: 6
  year: 2006
  ident: ref3
  article-title: Impact of endoscopist withdrawal speed on polyp yield: implications for optimal colonoscopy withdrawal time
  publication-title: Alimentary Pharmacology and Therapeutics
  doi: 10.1111/j.1365-2036.2006.03080.x
– volume: 35
  start-page: 630
  issue: 2
  year: 2016
  ident: ref6
  article-title: Automated polyp detection in colonoscopy videos using shape and context information
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2015.2487997
– volume: 26
  start-page: 1352
  issue: 5
  year: 2012
  ident: ref2
  article-title: Quantifying mental workloads of surgeons performing natural orifice transluminal endoscopic surgery (NOTES) procedures
  publication-title: Surgical Endoscopy
  doi: 10.1007/s00464-011-2038-x
– ident: ref16
– volume: 36
  start-page: 1231
  issue: 6
  year: 2017
  ident: ref37
  article-title: comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2017.2664042
– volume: 7
  start-page: 196
  issue: 4
  year: 2004
  ident: ref1
  article-title: Improving outcomes in gastric cancer over 20 years
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-004-0289-0
SSID ssj0053866
Score 2.579295
Snippet Computer-aided polyp detection in gastric gastroscopy has been the subject of research over the past few decades. However, despite significant advances,...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0214133
SubjectTerms Adenomatous Polyps - diagnostic imaging
Analysis
Architectural engineering
Artificial neural networks
Biology and Life Sciences
Biomedical engineering
Colonoscopy
Computer and Information Sciences
Detection equipment
Education
Endoscopy
Engineering
Feature maps
Female
Frames per second
Gastric cancer
Gastroenterology
Gastroscopy
Hospitals
Humans
Image Processing, Computer-Assisted
International conferences
Laboratories
Male
Medical imaging
Medical imaging equipment
Medical personnel
Medical schools
Medicine and Health Sciences
Methods
Neural networks
Neural Networks, Computer
Pattern recognition
People and Places
Physical Sciences
Physicians
Polyps
R&D
Real time
Research & development
Research and Analysis Methods
Reuse
Stomach cancer
Stomach Neoplasms - diagnostic imaging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQnrggylcDBQJCAg5pk_X3saBWhQNIhaLerDh2tkirJCK7B_49M7Y3alClcuCSleJJtPs843nWjt8Q8kZb2UpkbjVw4YIpIQpVw0WWFpKtYlq6UCD7RZxdsM-X_PJaqy-sCYvywBG4o1rXirkapdA4c61XUtq25J6pRitPg9g25LzdZiquwRDFQqSDclRWR2leDoe-84eoElZROktEQa9_WpUXw7ofb6Kcf1dOXktFp_fJvcQh8-P43ffIHd89IHspSsf8XZKSfv-QnJwDDyywf3y-qrFDR5MP_fr3kDu_CTVYXY6F76sci8-TE8KbUeQyfIQS8fERuTg9-f7xrEiNE4pGLJebAjuBOivsksqgZ8aBpVgPS6zSnvGWeqE5wEldaYMgfVMrDlsv5gRvBOw36GOy6ACqfZIrV3nhLKXeOgZUx1atlKXntrLSWm8zQncomiapimNzi7UJf5VJ2F1EUAxibxL2GSmmp4aoqnGL_QecoMkWNbHDDfAUkzzF3OYpGXmJ02viAdMpss0xVyFna52R18ECdTE6LLxZ1dtxNJ--_vgHo2_nM6O3yajtAY6mTocd4Deh3tbM8mBmCdHdzIb30Rl3qIwGMoyEBAY0FJ7cOejNw6-mYXwpFtN1vt9GGwXxWZYZeRL9eUKWlhpJOCAuZ54-g34-0v28CrLkwG0p0Nun_2OunpG7wEw1Fvst-QFZbH5t_XNgfxv7IgT6HyaEVzU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF1BuMAB0fBRQwGDkICDWzvr_TqhghoKB5AKRb2tvN51ihTZpk4O_Htm1mtTowq4JFJ2HCczOztv7ec3hLxQRlQCkVsBWDjJJeeJLOBFpAaKrcyVsJ4g-4kfn-Yfz9hZuODWBVrlsCb6hdo2JV4jP4DMEpC4UH7ftD8S7BqFd1dDC43r5EYGlQYpXXL5fliJIZc5D4_LUZEdhOjst03t9lErLKN0Uo68av-4Ns_addNdBTz_5E9eKkjLO-R2QJLxYR_6HXLN1XNswhwIG3Ny65LW4JzshCzu4ldBavr1XXJ0Ajgxwf7y8arADh5l3Dbrn21s3cZztOoYifGrGMnpYZLCOVEE0795Cnl3j5wuj76-O05CY4Wk5IvFJsFOodZws6DC650xQDHGwRIslctZRR1XDGACtanxgvVlIRlszXLLWclhP0Lvk1kNTtwlsbSZ49ZQ6ozNAQqZrBIidcxkRhjjTETo4F9dBtVxbH6x1v5WmoDdR-8ujVHRISoRScaj2l514x_2bzF0oy1qZvsPmouVDimoC1XI3BYoqsdyWzkphKlS5nJZKukoj8hTDLzuH0AdM18fMulrulIRee4tUDejRmLOqth2nf7w-dt_GH05mRi9DEZVA-4oi_AwBPwn1OOaWO5NLCH7y8nwLk7TwSud_p0ncOQwda8efjYO45ci2a52zba3kZC_aRqRB_1MHz1LU4UgHTwuJjkwcf10pP5-7mXLAftSgL8P__6zHpGbgEkV0vwWbI_MNhdb9xhw38Y88cn9C5DyVtA
  priority: 102
  providerName: ProQuest
Title Real-time gastric polyp detection using convolutional neural networks
URI https://www.ncbi.nlm.nih.gov/pubmed/30908513
https://www.proquest.com/docview/2197762515
https://www.proquest.com/docview/2197888200
https://pubmed.ncbi.nlm.nih.gov/PMC6433439
https://doaj.org/article/a9a84da010154dfe877bf05e48c98e36
http://dx.doi.org/10.1371/journal.pone.0214133
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe27oUXxPhaYJSAkICHVEkcf-QBoW1qGUgMVCjqWxQnTkGqktC0EvvvuXOciKAi4MWV6rOlnu98P9fn3xHyLFaiEIjcUsDCXiQ592QKjfAVBFsZxSI3CbJX_HIRvVuy5QHparZaBTZ7j3ZYT2qxWU9-fL9-DQ7_ylRtEEE3aFJXpZ4gBxicuw7JEcQmgTUN3kf9vQJ4t7m9RNTi8dCn9jHdn2YZBCvD6d_v3KN6XTX7YOnv2ZW_hKvZLXLT4kz3rDWMY3Kgy9vk2Hpy476wdNMv75DpHLCihzXm3VWKVTwyt67W17Wb663J0ypdTI5fuZigbg0VZkYiTPNh0sibu2Qxm36-uPRscQUv42G49bBaaK64CqkwnGcMlKU0bMMy1hErqOYxA6hAc18Z0voslQyOZ1HOWcbhTELvkVEJqjohrswDzXNFqVZ5BHBIBYUQvmYqUEIprRxCOy0mmWUexwIY68Rcpwk4gbRKSVD3idW9Q7x-VN0yb_xF_hwXqJdF3mzzRbVZJdYNkzROZZSnSKzHorzQUghV-ExHMoulptwhj3F5k_YRau_9yRmTJq7HsUOeGgnkzigxOWeV7pomefvhyz8IfZoPhJ5boaICdWSpfRABvwk5uQaSpwNJ2AGyQfcJGmOnlSaBKCQgyAFUhZGdge7vftJ346SYcFfqatfKSPBh33fI_daee81SP0agDhoXA0sfqH7YU377aqjLAf9SgMAP_nNtH5IbAFRjzP0L2SkZbTc7_QjA4FaNyaFYCmjlRYDt7M2YHJ1Prz7Ox-bvlbHx_5-AamGG
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcgAOiC6PLhQaEAg4pE3ixHYOCBXosktLkfpAvZk4cRakVRKaXaH-KX4jM44TGlQBl1420nqSbMbz-LwZf0PI01jxnCNySwALu6FgzBUJfHBPQbIVYcwzUyC7zybH4YeT6GSF_Gz3wmBZZRsTTaDOyhT_I98Cz-LguJB-X1ffXewahW9X2xYajVns6rMfsGSrX03fwfw-C4LxztHbiWu7CrgpC4KFi20yM8VUQLkh-4oghSsN8UfEOoxyqlkcQY6kmacMW3uaiAjWJWHGopQBGKdw3Svkakghk-PO9PH7NvJD7GDMbs-j3N-y1rBZlYXeRG4yn9Je-jNdArpcMKjmZX0R0P2zXvNcAhzfIjctcnW2G1NbJSu6GGLTZ1sgMiQ3znEbDsmqjRq188JSW7-8TXYOAJe62M_emSXYMSR1qnJ-VjmZXpiasMLBQvyZg8Xw1ingnki6aQ6mZL2-Q44vReV3yaAAJa4RR2S-ZpmiVKssBOil_JxzT0fKV1wprUaEtvqVqWU5x2Ybc2le3XFY7TTqkjgr0s7KiLjdWVXD8vEP-Tc4dZ0scnSbL8rTmbQuL5M4EWGWIIlfFGa5Fpyr3It0KNJYaMpGZAMnXjYbXrtII7cjYTBEHI_IEyOBPB0FFgLNkmVdy-mnz_8hdHjQE3puhfIS1JEmdvMFPBPyf_Uk13uSEG3S3vAammmrlVr-9ks4szXdi4cfd8N4USzuK3S5bGQExAvPG5F7jaV3mqVejIsC0Djv-UBP9f2R4ttXQ5MOWJsC3L7_95-1Qa5Njj7uyb3p_u4Dch3wcIwlhkG0TgaL06V-CJhzoR4ZR3fIl8uOLL8A5JmQ3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGkRA8IFYuKwwWEAh4yJrGie08IDR20crQQIOhvZk4dgpSlYSlFdpf49dxjuOEBU3Ay14aqT5JmuNz-dwcf4eQp4niOUfklgIW9iPBmC9S-OCBgmQrooRrWyB7yPaPo7cn8ckK-dnuhcGyyjYm2kCtywz_Ix-DZ3FwXEi_49yVRXzY2XtdffexgxS-aW3baTQmcmDOfsDyrX413YG5fhaGe7uftvd912HAz1gYLnxsmakVUyHllvgrhnSuDMQikZgozqlhSQz5kupAWeb2LBUxrFEizeKMATCncN0r5CqnXKCPie2uvATiCGNuqx7lk7GzjM2qLMwm8pRNKO2lQtsxoMsLg2pe1heB3j9rN88lw71b5KZDsd5WY3arZMUUQ2wA7YpFhuTGOZ7DIVl1EaT2Xjia65e3ye4RYFQfe9t7sxS7h2ReVc7PKk-bha0PKzwsyp95WBjvHATuiQSc9mDL1-s75PhSVH6XDApQ4hrxhJ4YphWlRukIYJia5JwHJlYTxZUyakRoq1-ZOcZzbLwxl_Y1HoeVT6MuibMi3ayMiN-dVTWMH_-Qf4NT18kiX7f9ojydSef-Mk1SEekUCf3iSOdGcK7yIDaRyBJhKBuRDZx42Wx-7aKO3IqFxRNJMiJPrARydhRo_bN0Wddy-v7zfwh9POoJPXdCeQnqyFK3EQOeCbnAepLrPUmIPFlveA3NtNVKLX_7KJzZmu7Fw4-7YbwoFvoVplw2MgJiRxCMyL3G0jvN0iDBBQJonPd8oKf6_kjx7aulTAfcTQF63__7z9og1yCmyHfTw4MH5DpA4wSrDcN4nQwWp0vzEODnQj2yfu6RL5cdWH4BV76U3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+gastric+polyp+detection+using+convolutional+neural+networks&rft.jtitle=PloS+one&rft.au=Zhang%2C+Xu&rft.au=Chen%2C+Fei&rft.au=Yu%2C+Tao&rft.au=An%2C+Jiye&rft.date=2019-03-25&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=3&rft.spage=e0214133&rft_id=info:doi/10.1371%2Fjournal.pone.0214133&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0214133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon