Role of germinal centers for the induction of broadly-reactive memory B cells

•Viral conserved domains are often concealed from the humoral responses.•Memory B cells counteract with viral mutations by germline-encoded cross-reactivity.•GC reactions fine-tune the specificity of memory B cells toward the conserved domains.•Permissive GC selection allows the fine-tuning of memor...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in immunology Vol. 45; pp. 119 - 125
Main Authors Takahashi, Yoshimasa, Kelsoe, Garnett
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Viral conserved domains are often concealed from the humoral responses.•Memory B cells counteract with viral mutations by germline-encoded cross-reactivity.•GC reactions fine-tune the specificity of memory B cells toward the conserved domains.•Permissive GC selection allows the fine-tuning of memory specificity.•Broadly-reactive B cells may be recruited into the memory pool with an attenuated T-cell help. Virus-specific memory B cells (Bmem) play a crucial role in protecting against variant viruses. The ability to recognize these variant viruses, defined as antibody breadth, is achieved in Bmem populations by two very different pathways, germline-encoded cross-reactivity and affinity-driven, somatic evolution in germinal centers (GCs) for conserved viral epitopes. The latter class of broadly-reactive Bmem cells are not cross-reactive per se, but bind epitopes crucial for viral fitness. Although these conserved epitopes are often weakly immunogenic, the GC reaction is surprisingly permissive for the continued survival/proliferation of B cells that bind with low affinity or react to cryptic epitopes, increasing their chance of memory recruitment. In this review, we discuss the adaptive strategies of B-cell memory to viral antigenic variations.
AbstractList Highlights • Viral conserved domains are often concealed from the humoral responses. • Memory B cells counteract with viral mutations by germline-encoded cross-reactivity. • GC reactions fine-tune the specificity of memory B cells toward the conserved domains. • Permissive GC selection allows the fine-tuning of memory specificity. • Broadly-reactive B cells may be recruited into the memory pool with an attenuated T-cell help.
•Viral conserved domains are often concealed from the humoral responses.•Memory B cells counteract with viral mutations by germline-encoded cross-reactivity.•GC reactions fine-tune the specificity of memory B cells toward the conserved domains.•Permissive GC selection allows the fine-tuning of memory specificity.•Broadly-reactive B cells may be recruited into the memory pool with an attenuated T-cell help. Virus-specific memory B cells (Bmem) play a crucial role in protecting against variant viruses. The ability to recognize these variant viruses, defined as antibody breadth, is achieved in Bmem populations by two very different pathways, germline-encoded cross-reactivity and affinity-driven, somatic evolution in germinal centers (GCs) for conserved viral epitopes. The latter class of broadly-reactive Bmem cells are not cross-reactive per se, but bind epitopes crucial for viral fitness. Although these conserved epitopes are often weakly immunogenic, the GC reaction is surprisingly permissive for the continued survival/proliferation of B cells that bind with low affinity or react to cryptic epitopes, increasing their chance of memory recruitment. In this review, we discuss the adaptive strategies of B-cell memory to viral antigenic variations.
Virus-specific memory B cells (B mem ) play a crucial role in protecting against variant viruses. The ability to recognize these variant viruses, defined as antibody breadth, is achieved in B mem populations by two very different pathways, germline-encoded cross-reactivity and affinity-driven, somatic evolution in germinal centers (GCs) for conserved viral epitopes. The latter class of broadly-reactive B mem cells are not cross-reactive per se , but bind epitopes crucial for viral fitness. Although these conserved epitopes are often weakly immunogenic, the GC reaction is surprisingly permissive for the continued survival/proliferation of B cells that bind with low affinity or react to cryptic epitopes, increasing their chance of memory recruitment. In this review, we discuss the adaptive strategies of B-cell memory to viral antigenic variations.
Virus-specific memory B cells (Bmem) play a crucial role in protecting against variant viruses. The ability to recognize these variant viruses, defined as antibody breadth, is achieved in Bmem populations by two very different pathways, germline-encoded cross-reactivity and affinity-driven, somatic evolution in germinal centers (GCs) for conserved viral epitopes. The latter class of broadly-reactive Bmem cells are not cross-reactive per se, but bind epitopes crucial for viral fitness. Although these conserved epitopes are often weakly immunogenic, the GC reaction is surprisingly permissive for the continued survival/proliferation of B cells that bind with low affinity or react to cryptic epitopes, increasing their chance of memory recruitment. In this review, we discuss the adaptive strategies of B-cell memory to viral antigenic variations.Virus-specific memory B cells (Bmem) play a crucial role in protecting against variant viruses. The ability to recognize these variant viruses, defined as antibody breadth, is achieved in Bmem populations by two very different pathways, germline-encoded cross-reactivity and affinity-driven, somatic evolution in germinal centers (GCs) for conserved viral epitopes. The latter class of broadly-reactive Bmem cells are not cross-reactive per se, but bind epitopes crucial for viral fitness. Although these conserved epitopes are often weakly immunogenic, the GC reaction is surprisingly permissive for the continued survival/proliferation of B cells that bind with low affinity or react to cryptic epitopes, increasing their chance of memory recruitment. In this review, we discuss the adaptive strategies of B-cell memory to viral antigenic variations.
Virus-specific memory B cells (B ) play a crucial role in protecting against variant viruses. The ability to recognize these variant viruses, defined as antibody breadth, is achieved in B populations by two very different pathways, germline-encoded cross-reactivity and affinity-driven, somatic evolution in germinal centers (GCs) for conserved viral epitopes. The latter class of broadly-reactive B cells are not cross-reactive per se, but bind epitopes crucial for viral fitness. Although these conserved epitopes are often weakly immunogenic, the GC reaction is surprisingly permissive for the continued survival/proliferation of B cells that bind with low affinity or react to cryptic epitopes, increasing their chance of memory recruitment. In this review, we discuss the adaptive strategies of B-cell memory to viral antigenic variations.
Author Takahashi, Yoshimasa
Kelsoe, Garnett
AuthorAffiliation 1 Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
2 Department of Immunology and Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
AuthorAffiliation_xml – name: 2 Department of Immunology and Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
– name: 1 Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
Author_xml – sequence: 1
  givenname: Yoshimasa
  surname: Takahashi
  fullname: Takahashi, Yoshimasa
  email: ytakahas@niid.go.jp
  organization: Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
– sequence: 2
  givenname: Garnett
  surname: Kelsoe
  fullname: Kelsoe, Garnett
  email: garnett.kelsoe@duke.edu
  organization: Department of Immunology and Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28355576$$D View this record in MEDLINE/PubMed
BookMark eNqFkltrFTEUhYNU7Gn1B_gi8-jLjLlMJhOEgi3eoCJ4eQ6ZZE-bYyapycyB8-_NcFrRgvUpkKxv7Z299gk6CjEAQs8Jbggm3attY6JrKCaiwazBmD5CG9ILWWMm6BHaYMlpLSThx-gk5y3GmHOGn6Bj2jPOueg26NOX6KGKY3UFaXJB-8pAmCHlaoypmq-hcsEuZnYxrKohRW39vk6gy90OqgmmmPbVecG8z0_R41H7DM9uz1P0_d3bbxcf6svP7z9evLmsTUfpXLe6t1pLBsZ0xPYgWcsNJlZKM5QerbGGDWbEA0jejZ02vbEjG60UrRWcEHaKzg6-N8swgV1bTtqrm-QmnfYqaqf-fgnuWl3FneJtKykVxeDlrUGKPxfIs5pcXr-gA8QlK9L3lGPS9n2Rvviz1u8idzMsAnEQmBRzTjAq42a9TqyUdl4RrNa01FaVtNSalsJMlbQKSe6Rd-YPMa8PDJT57hwklY2DYMC6BGZWtugfos_u0ca74Iz2P2APeRuXVHag_F9lqrD6um7QukBEsIKLthjIfxv8p_gvzzTWkg
CitedBy_id crossref_primary_10_1038_s42003_018_0131_6
crossref_primary_10_1038_s41598_019_47884_0
crossref_primary_10_1084_jem_20191933
crossref_primary_10_1038_s41467_019_11821_6
crossref_primary_10_1093_infdis_jiac119
crossref_primary_10_1002_anbr_202100122
crossref_primary_10_3389_fimmu_2021_662782
crossref_primary_10_1016_j_tvr_2021_200212
crossref_primary_10_1089_vim_2021_0191
crossref_primary_10_3389_fimmu_2021_661678
crossref_primary_10_1016_j_biomaterials_2024_123039
crossref_primary_10_1186_s41232_023_00255_9
crossref_primary_10_3390_biomedinformatics3010004
Cites_doi 10.1093/intimm/dxt030
10.1128/JVI.02378-14
10.1073/pnas.0800003105
10.1016/j.tibs.2014.12.006
10.1084/jem.192.2.271
10.3390/vaccines2010001
10.1073/pnas.1115369109
10.1073/pnas.1118979109
10.1371/journal.pone.0025797
10.1038/nature12053
10.1084/jem.20021457
10.1016/0092-8674(91)90289-B
10.1038/nature13764
10.1084/jem.20092017
10.1016/j.cell.2016.06.039
10.1084/jem.20151724
10.1016/j.immuni.2010.10.008
10.1084/jem.20142284
10.1146/annurev-immunol-032712-095916
10.1038/nm.3521
10.1126/scitranslmed.aad0522
10.1126/science.1111781
10.1038/nature12144
10.1038/ni.2914
10.1016/j.immuni.2015.12.004
10.1146/annurev.biochem.69.1.531
10.1073/pnas.0912914107
10.1038/ni.2741
10.1126/science.aad3439
10.1084/jem.178.4.1293
10.1021/bi00447a018
10.1038/nature01188
10.1126/science.280.5371.1884
10.1016/S0167-5699(00)01687-X
10.1084/jem.20151722
10.1016/j.immuni.2016.02.010
10.1016/j.immuni.2016.01.011
10.1038/ncomms12780
10.1084/jem.20110740
10.1128/JVI.03509-12
10.1038/ni.3460
10.1016/j.cell.2016.02.022
10.1038/nature07930
10.1038/ni.3095
10.1146/annurev-immunol-020711-075032
10.1084/jem.20111696
10.1084/jem.20120127
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.coi.2017.03.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1879-0372
EndPage 125
ExternalDocumentID PMC5449227
28355576
10_1016_j_coi_2017_03_002
S0952791517300274
1_s2_0_S0952791517300274
Genre Journal Article
Review
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: HHSN272201000053C
– fundername: NIAID NIH HHS
  grantid: UM1 AI100645
– fundername: NIAID NIH HHS
  grantid: U19 AI117892
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABEFU
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
CJTIS
CNWQP
COF
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDU
HMG
HMK
HMO
HVGLF
HZ~
IH2
IHE
J1W
J5H
K-O
KOM
L7B
LUGTX
M29
M41
MO0
N9A
O-L
O9-
O9~
OAUVE
OK0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSZ
T5K
TN5
UAP
WUQ
XPP
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c622t-4a8daa93ecc61d8e9345c01d99cb005dcdc3bcf0be956f6ac8cdf3fd974d75113
IEDL.DBID .~1
ISSN 0952-7915
1879-0372
IngestDate Thu Aug 21 13:42:53 EDT 2025
Mon Jul 21 11:24:48 EDT 2025
Mon Jul 21 06:05:24 EDT 2025
Thu Apr 24 23:02:31 EDT 2025
Tue Jul 01 01:36:47 EDT 2025
Fri Feb 23 02:17:04 EST 2024
Tue Feb 25 19:56:21 EST 2025
Tue Aug 26 20:13:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c622t-4a8daa93ecc61d8e9345c01d99cb005dcdc3bcf0be956f6ac8cdf3fd974d75113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5449227
PMID 28355576
PQID 1882501488
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5449227
proquest_miscellaneous_1882501488
pubmed_primary_28355576
crossref_citationtrail_10_1016_j_coi_2017_03_002
crossref_primary_10_1016_j_coi_2017_03_002
elsevier_sciencedirect_doi_10_1016_j_coi_2017_03_002
elsevier_clinicalkeyesjournals_1_s2_0_S0952791517300274
elsevier_clinicalkey_doi_10_1016_j_coi_2017_03_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current opinion in immunology
PublicationTitleAlternate Curr Opin Immunol
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Scheid, Mouquet, Feldhahn, Seaman, Velinzon, Pietzsch, Ott, Anthony, Zebroski, Hurley (bib0055) 2009; 458
Sauter, Bednarski, Wurzburg, Hanson, Whitesides, Skehel, Wiley (bib0140) 1989; 28
Domeier, Chodisetti, Soni, Schell, Elias, Wong, Cooper, Kitamura, Rahman (bib0200) 2016; 213
Purtha, Tedder, Johnson, Bhattacharya, Diamond (bib0015) 2011; 208
Andrews, Huang, Kaur, Popova, Ho, Pauli, Henry Dunand, Taylor, Lim, Huang (bib0105) 2015; 7
Skehel, Wiley (bib0075) 2000; 69
Verkoczy, Diaz, Holl, Ouyang, Bouton-Verville, Alam, Liao, Kelsoe, Haynes (bib0100) 2010; 107
Baumgarth, Herman, Jager, Brown, Herzenberg, Chen (bib0135) 2000; 192
Pappas, Foglierini, Piccoli, Kallewaard, Turrini, Silacci, Fernandez-Rodriguez, Agatic, Giacchetto-Sasselli, Pellicciotta (bib0060) 2014; 516
Keating, Hertz, Wehenkel, Harris, Edwards, McClaren, Brown, Surman, Wilson, Bradley (bib0130) 2013; 14
Boritz, Darko, Swaszek, Wolf, Wells, Wu, Henry, Laboune, Hu, Ambrozak (bib0170) 2016; 166
Berek, Berger, Apel (bib0030) 1991; 67
Ward, Wilson (bib0065) 2015; 40
Liao, Lynch, Zhou, Gao, Alam, Boyd, Fire, Roskin, Schramm, Zhang (bib0160) 2013; 496
Jackson, Jacobs, Arkatkar, Dam, Scharping, Kolhatkar, Hou, Buckner, Rawlings (bib0205) 2016; 213
Moody, Zhang, Walter, Woods, Ginsburg, McClain, Denny, Chen, Munshaw, Marshall (bib0185) 2011; 6
Kaji, Ishige, Hikida, Taka, Hijikata, Kubo, Nagashima, Takahashi, Kurosaki, Okada (bib0045) 2012; 209
Kwong, Doyle, Casper, Cicala, Leavitt, Majeed, Steenbeke, Venturi, Chaiken, Fung (bib0215) 2002; 420
Corti, Lanzavecchia (bib0080) 2013; 31
Jacob, Przylepa, Miller, Kelsoe (bib0035) 1993; 178
Liu, Yang, Wiehe, Nicely, Vandergrift, Rountree, Bonsignori, Alam, Gao, Haynes (bib0090) 2015; 89
Victora, Nussenzweig (bib0025) 2012; 30
Kaji, Furukawa, Ishige, Toyokura, Nomura, Okada, Takahashi, Shimoda, Takemori (bib0110) 2013; 25
Li, Chiu, Wrammert, McCausland, Andrews, Zheng, Lee, Huang, Qu, Edupuganti (bib0010) 2012; 109
Adachi, Onodera, Yamada, Daio, Tsuiji, Inoue, Kobayashi, Kurosaki, Ato, Takahashi (bib0175) 2015; 212
Kelsoe, Verkoczy, Haynes (bib0085) 2014; 2
Wyatt, Sodroski (bib0070) 1998; 280
Bonsignori, Zhou, Sheng, Chen, Gao, Joyce, Ozorowski, Chuang, Schramm, Wiehe (bib0165) 2016; 165
Tas, Mesin, Pasqual, Targ, Jacobsen, Mano, Chen, Weill, Reynaud, Browne (bib0195) 2016; 351
Onodera, Takahashi, Yokoi, Ato, Kodama, Hachimura, Kurosaki, Kobayashi (bib0235) 2012; 109
Haynes, Fleming, St Clair, Katinger, Stiegler, Kunert, Robinson, Scearce, Plonk, Staats (bib0095) 2005; 308
Xiong, Coombs, Martin, Liu, Xiao, McCauley, Locher, Walker, Collins, Kawaoka (bib0145) 2013; 497
Margine, Hai, Albrecht, Obermoser, Harrod, Banchereau, Palucka, Garcia-Sastre, Palese, Treanor (bib0190) 2013; 87
Zuccarino-Catania, Sadanand, Weisel, Tomayko, Meng, Kleinstein, Good-Jacobson, Shlomchik (bib0115) 2014; 15
Gitlin, von Boehmer, Gazumyan, Shulman, Oliveira, Nussenzweig (bib0220) 2016; 44
McHeyzer-Williams, Milpied, Okitsu, McHeyzer-Williams (bib0120) 2015; 16
Tarlinton, Smith (bib0125) 2000; 21
Shinnakasu, Inoue, Kometani, Moriyama, Adachi, Nakayama, Takahashi, Fukuyama, Okada, Kurosaki (bib0210) 2016; 17
Sallusto, Lanzavecchia, Araki, Ahmed (bib0005) 2010; 33
Fu, Zhang, Sheehan, Avnir, Ridenour, Sachnik, Sun, Hossain, Chen, Zhu (bib0020) 2016; 7
Kuraoka, Schmidt, Nojima, Feng, Watanabe, Kitamura, Harrison, Kepler, Kelsoe (bib0155) 2016; 44
Joo, He, Sangster (bib0225) 2008; 105
Taylor, Pape, Jenkins (bib0040) 2012; 209
Harada, Muramatsu, Shibata, Honjo, Kuroda (bib0150) 2003; 197
Kim, Hufford, Sun, Fu, Braciale (bib0180) 2010; 207
Weisel, Zuccarino-Catania, Chikina, Shlomchik (bib0050) 2016; 44
Chen, Hong, Sun, Wang, Shi, Gilbert, Corry, Kheradmand, Wang (bib0230) 2014; 20
Taylor (10.1016/j.coi.2017.03.002_bib0040) 2012; 209
Liao (10.1016/j.coi.2017.03.002_bib0160) 2013; 496
Jackson (10.1016/j.coi.2017.03.002_bib0205) 2016; 213
Verkoczy (10.1016/j.coi.2017.03.002_bib0100) 2010; 107
Kuraoka (10.1016/j.coi.2017.03.002_sbref0155) 2016; 44
Pappas (10.1016/j.coi.2017.03.002_bib0060) 2014; 516
Wyatt (10.1016/j.coi.2017.03.002_bib0070) 1998; 280
Sallusto (10.1016/j.coi.2017.03.002_bib0005) 2010; 33
Scheid (10.1016/j.coi.2017.03.002_bib0055) 2009; 458
Chen (10.1016/j.coi.2017.03.002_bib0230) 2014; 20
Liu (10.1016/j.coi.2017.03.002_bib0090) 2015; 89
Keating (10.1016/j.coi.2017.03.002_sbref0130) 2013; 14
Domeier (10.1016/j.coi.2017.03.002_bib0200) 2016; 213
Corti (10.1016/j.coi.2017.03.002_bib0080) 2013; 31
Andrews (10.1016/j.coi.2017.03.002_sbref0105) 2015; 7
Xiong (10.1016/j.coi.2017.03.002_bib0145) 2013; 497
Berek (10.1016/j.coi.2017.03.002_bib0030) 1991; 67
Harada (10.1016/j.coi.2017.03.002_bib0150) 2003; 197
Tas (10.1016/j.coi.2017.03.002_sbref0195) 2016; 351
Jacob (10.1016/j.coi.2017.03.002_bib0035) 1993; 178
Kim (10.1016/j.coi.2017.03.002_bib0180) 2010; 207
Gitlin (10.1016/j.coi.2017.03.002_bib0220) 2016; 44
McHeyzer-Williams (10.1016/j.coi.2017.03.002_bib0120) 2015; 16
Kelsoe (10.1016/j.coi.2017.03.002_sbref0085) 2014; 2
Purtha (10.1016/j.coi.2017.03.002_bib0015) 2011; 208
Fu (10.1016/j.coi.2017.03.002_bib0020) 2016; 7
Haynes (10.1016/j.coi.2017.03.002_bib0095) 2005; 308
Sauter (10.1016/j.coi.2017.03.002_bib0140) 1989; 28
Kwong (10.1016/j.coi.2017.03.002_bib0215) 2002; 420
Tarlinton (10.1016/j.coi.2017.03.002_bib0125) 2000; 21
Moody (10.1016/j.coi.2017.03.002_bib0185) 2011; 6
Li (10.1016/j.coi.2017.03.002_bib0010) 2012; 109
Joo (10.1016/j.coi.2017.03.002_bib0225) 2008; 105
Ward (10.1016/j.coi.2017.03.002_bib0065) 2015; 40
Baumgarth (10.1016/j.coi.2017.03.002_bib0135) 2000; 192
Shinnakasu (10.1016/j.coi.2017.03.002_sbref0210) 2016; 17
Victora (10.1016/j.coi.2017.03.002_bib0025) 2012; 30
Adachi (10.1016/j.coi.2017.03.002_sbref0175) 2015; 212
Onodera (10.1016/j.coi.2017.03.002_bib0235) 2012; 109
Bonsignori (10.1016/j.coi.2017.03.002_bib0165) 2016; 165
Kaji (10.1016/j.coi.2017.03.002_bib0110) 2013; 25
Margine (10.1016/j.coi.2017.03.002_bib0190) 2013; 87
Zuccarino-Catania (10.1016/j.coi.2017.03.002_bib0115) 2014; 15
Boritz (10.1016/j.coi.2017.03.002_bib0170) 2016; 166
Weisel (10.1016/j.coi.2017.03.002_sbref0050) 2016; 44
Kaji (10.1016/j.coi.2017.03.002_bib0045) 2012; 209
Skehel (10.1016/j.coi.2017.03.002_bib0075) 2000; 69
8376935 - J Exp Med. 1993 Oct 1;178(4):1293-307
24880458 - Nat Immunol. 2014 Jul;15(7):631-7
24932410 - Vaccines (Basel). 2014 Mar;2(1):1-14
22308386 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2485-90
22224772 - Annu Rev Immunol. 2012;30:429-57
21029957 - Immunity. 2010 Oct 29;33(4):451-63
22370719 - J Exp Med. 2012 Mar 12;209(3):597-606
23408625 - J Virol. 2013 Apr;87(8):4728-37
12478295 - Nature. 2002 Dec 12;420(6916):678-82
27069113 - J Exp Med. 2016 May 2;213(5):733-50
9632381 - Science. 1998 Jun 19;280(5371):1884-8
26795247 - Immunity. 2016 Jan 19;44(1):116-30
26631631 - Sci Transl Med. 2015 Dec 2;7(316):316ra192
23552890 - Nature. 2013 Apr 25;496(7446):469-76
25355869 - J Virol. 2015 Jan;89(1):784-98
22162833 - J Exp Med. 2011 Dec 19;208(13):2599-606
10899913 - J Exp Med. 2000 Jul 17;192(2):271-80
10966468 - Annu Rev Biochem. 2000;69:531-69
24141387 - Nat Immunol. 2013 Dec;14(12):1266-76
22615367 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9047-52
12796467 - J Exp Med. 2003 Jun 16;197(12):1779-85
26948373 - Immunity. 2016 Mar 15;44(3):542-52
20513748 - J Exp Med. 2010 Jun 7;207(6):1161-72
27158841 - Nat Immunol. 2016 Jul;17 (7):861-9
24021876 - Int Immunol. 2013 Dec;25(12):683-95
2605190 - Biochemistry. 1989 Oct 17;28(21):8388-96
10953095 - Immunol Today. 2000 Sep;21(9):436-41
26912368 - Science. 2016 Mar 4;351(6277):1048-54
26324444 - J Exp Med. 2015 Sep 21;212(10):1709-23
26949186 - Cell. 2016 Apr 7;165(2):449-63
25296253 - Nature. 2014 Dec 18;516(7531):418-22
19287373 - Nature. 2009 Apr 2;458(7238):636-40
25600289 - Trends Biochem Sci. 2015 Feb;40(2):101-7
22039424 - PLoS One. 2011;6(10):e25797
23027924 - J Exp Med. 2012 Oct 22;209(11):2079-97
23330954 - Annu Rev Immunol. 2013;31:705-42
23615615 - Nature. 2013 May 16;497(7449):392-6
15860590 - Science. 2005 Jun 24;308(5730):1906-8
26944202 - Immunity. 2016 Apr 19;44(4):769-81
27069112 - J Exp Med. 2016 May 2;213(5):715-32
1760840 - Cell. 1991 Dec 20;67(6):1121-9
27453467 - Cell. 2016 Aug 11;166(4):1004-15
27619409 - Nat Commun. 2016 Sep 13;7:12780
18299574 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3485-90
24747745 - Nat Med. 2014 May;20(5):503-10
25642821 - Nat Immunol. 2015 Mar;16(3):296-305
20018688 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):181-6
References_xml – volume: 2
  start-page: 1
  year: 2014
  end-page: 14
  ident: bib0085
  article-title: Immune system regulation in the induction of broadly neutralizing HIV-1 antibodies
  publication-title: Vaccines (Basel)
– volume: 44
  start-page: 116
  year: 2016
  end-page: 130
  ident: bib0050
  article-title: A temporal switch in the germinal center determines differential output of memory B and plasma cells
  publication-title: Immunity
– volume: 21
  start-page: 436
  year: 2000
  end-page: 441
  ident: bib0125
  article-title: Dissecting affinity maturation: a model explaining selection of antibody-forming cells and memory B cells in the germinal centre
  publication-title: Immunol Today
– volume: 109
  start-page: 9047
  year: 2012
  end-page: 9052
  ident: bib0010
  article-title: Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells
  publication-title: Proc Natl Acad Sci U S A
– volume: 197
  start-page: 1779
  year: 2003
  end-page: 1785
  ident: bib0150
  article-title: Unmutated immunoglobulin M can protect mice from death by influenza virus infection
  publication-title: J Exp Med
– volume: 14
  start-page: 1266
  year: 2013
  end-page: 1276
  ident: bib0130
  article-title: The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus
  publication-title: Nat Immunol
– volume: 7
  start-page: 316ra192
  year: 2015
  ident: bib0105
  article-title: Immune history profoundly affects broadly protective B cell responses to influenza
  publication-title: Sci Transl Med
– volume: 308
  start-page: 1906
  year: 2005
  end-page: 1908
  ident: bib0095
  article-title: Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies
  publication-title: Science
– volume: 165
  start-page: 449
  year: 2016
  end-page: 463
  ident: bib0165
  article-title: Maturation pathway from germline to broad HIV-1 neutralizer of a CD4-mimic antibody
  publication-title: Cell
– volume: 30
  start-page: 429
  year: 2012
  end-page: 457
  ident: bib0025
  article-title: Germinal centers
  publication-title: Annu Rev Immunol
– volume: 497
  start-page: 392
  year: 2013
  end-page: 396
  ident: bib0145
  article-title: Receptor binding by a ferret-transmissible H5 avian influenza virus
  publication-title: Nature
– volume: 351
  start-page: 1048
  year: 2016
  end-page: 1054
  ident: bib0195
  article-title: Visualizing antibody affinity maturation in germinal centers
  publication-title: Science
– volume: 16
  start-page: 296
  year: 2015
  end-page: 305
  ident: bib0120
  article-title: Class-switched memory B cells remodel BCRs within secondary germinal centers
  publication-title: Nat Immunol
– volume: 17
  start-page: 861
  year: 2016
  end-page: 869
  ident: bib0210
  article-title: Regulated selection of germinal-center cells into the memory B cell compartment
  publication-title: Nat Immunol
– volume: 420
  start-page: 678
  year: 2002
  end-page: 682
  ident: bib0215
  article-title: HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites
  publication-title: Nature
– volume: 213
  start-page: 715
  year: 2016
  end-page: 732
  ident: bib0200
  article-title: IFN-gamma receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity
  publication-title: J Exp Med
– volume: 208
  start-page: 2599
  year: 2011
  end-page: 2606
  ident: bib0015
  article-title: Memory B cells, but not long-lived plasma cells, possess antigen specificities for viral escape mutants
  publication-title: J Exp Med
– volume: 6
  start-page: e25797
  year: 2011
  ident: bib0185
  article-title: H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination
  publication-title: PLoS One
– volume: 192
  start-page: 271
  year: 2000
  end-page: 280
  ident: bib0135
  article-title: B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection
  publication-title: J Exp Med
– volume: 178
  start-page: 1293
  year: 1993
  end-page: 1307
  ident: bib0035
  article-title: In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells
  publication-title: J Exp Med
– volume: 89
  start-page: 784
  year: 2015
  end-page: 798
  ident: bib0090
  article-title: Polyreactivity and autoreactivity among HIV-1 antibodies
  publication-title: J Virol
– volume: 458
  start-page: 636
  year: 2009
  end-page: 640
  ident: bib0055
  article-title: Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals
  publication-title: Nature
– volume: 496
  start-page: 469
  year: 2013
  end-page: 476
  ident: bib0160
  article-title: Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus
  publication-title: Nature
– volume: 33
  start-page: 451
  year: 2010
  end-page: 463
  ident: bib0005
  article-title: From vaccines to memory and back
  publication-title: Immunity
– volume: 207
  start-page: 1161
  year: 2010
  end-page: 1172
  ident: bib0180
  article-title: Antigen persistence and the control of local T cell memory by migrant respiratory dendritic cells after acute virus infection
  publication-title: J Exp Med
– volume: 15
  start-page: 631
  year: 2014
  end-page: 637
  ident: bib0115
  article-title: CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype
  publication-title: Nat Immunol
– volume: 44
  start-page: 769
  year: 2016
  end-page: 781
  ident: bib0220
  article-title: Independent roles of switching and hypermutation in the development and persistence of B lymphocyte memory
  publication-title: Immunity
– volume: 40
  start-page: 101
  year: 2015
  end-page: 107
  ident: bib0065
  article-title: Insights into the trimeric HIV-1 envelope glycoprotein structure
  publication-title: Trends Biochem Sci
– volume: 69
  start-page: 531
  year: 2000
  end-page: 569
  ident: bib0075
  article-title: Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin
  publication-title: Annu Rev Biochem
– volume: 107
  start-page: 181
  year: 2010
  end-page: 186
  ident: bib0100
  article-title: Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance
  publication-title: Proc Natl Acad Sci U S A
– volume: 25
  start-page: 683
  year: 2013
  end-page: 695
  ident: bib0110
  article-title: Both mutated and unmutated memory B cells accumulate mutations in the course of the secondary response and develop a new antibody repertoire optimally adapted to the secondary stimulus
  publication-title: Int Immunol
– volume: 44
  start-page: 542
  year: 2016
  end-page: 552
  ident: bib0155
  article-title: Complex antigens drive permissive clonal selection in germinal centers
  publication-title: Immunity
– volume: 209
  start-page: 597
  year: 2012
  end-page: 606
  ident: bib0040
  article-title: A germinal center-independent pathway generates unswitched memory B cells early in the primary response
  publication-title: J Exp Med
– volume: 31
  start-page: 705
  year: 2013
  end-page: 742
  ident: bib0080
  article-title: Broadly neutralizing antiviral antibodies
  publication-title: Annu Rev Immunol
– volume: 166
  start-page: 1004
  year: 2016
  end-page: 1015
  ident: bib0170
  article-title: Multiple origins of virus persistence during natural control of HIV infection
  publication-title: Cell
– volume: 67
  start-page: 1121
  year: 1991
  end-page: 1129
  ident: bib0030
  article-title: Maturation of the immune response in germinal centers
  publication-title: Cell
– volume: 87
  start-page: 4728
  year: 2013
  end-page: 4737
  ident: bib0190
  article-title: H3N2 influenza virus infection induces broadly reactive hemagglutinin stalk antibodies in humans and mice
  publication-title: J Virol
– volume: 105
  start-page: 3485
  year: 2008
  end-page: 3490
  ident: bib0225
  article-title: Broad dispersion and lung localization of virus-specific memory B cells induced by influenza pneumonia
  publication-title: Proc Natl Acad Sci U S A
– volume: 28
  start-page: 8388
  year: 1989
  end-page: 8396
  ident: bib0140
  article-title: Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study
  publication-title: Biochemistry
– volume: 109
  start-page: 2485
  year: 2012
  end-page: 2490
  ident: bib0235
  article-title: Memory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfection
  publication-title: Proc Natl Acad Sci U S A
– volume: 516
  start-page: 418
  year: 2014
  end-page: 422
  ident: bib0060
  article-title: Rapid development of broadly influenza neutralizing antibodies through redundant mutations
  publication-title: Nature
– volume: 209
  start-page: 2079
  year: 2012
  end-page: 2097
  ident: bib0045
  article-title: Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory
  publication-title: J Exp Med
– volume: 213
  start-page: 733
  year: 2016
  end-page: 750
  ident: bib0205
  article-title: B cell IFN-gamma receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6
  publication-title: J Exp Med
– volume: 280
  start-page: 1884
  year: 1998
  end-page: 1888
  ident: bib0070
  article-title: The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens
  publication-title: Science
– volume: 212
  start-page: 1709
  year: 2015
  end-page: 1723
  ident: bib0175
  article-title: Distinct germinal center selection at local sites shapes memory B cell response to viral escape
  publication-title: J Exp Med
– volume: 7
  start-page: 12780
  year: 2016
  ident: bib0020
  article-title: A broadly neutralizing anti-influenza antibody reveals ongoing capacity of haemagglutinin-specific memory B cells to evolve
  publication-title: Nat Commun
– volume: 20
  start-page: 503
  year: 2014
  end-page: 510
  ident: bib0230
  article-title: Essential role for autophagy in the maintenance of immunological memory against influenza infection
  publication-title: Nat Med
– volume: 25
  start-page: 683
  year: 2013
  ident: 10.1016/j.coi.2017.03.002_bib0110
  article-title: Both mutated and unmutated memory B cells accumulate mutations in the course of the secondary response and develop a new antibody repertoire optimally adapted to the secondary stimulus
  publication-title: Int Immunol
  doi: 10.1093/intimm/dxt030
– volume: 89
  start-page: 784
  year: 2015
  ident: 10.1016/j.coi.2017.03.002_bib0090
  article-title: Polyreactivity and autoreactivity among HIV-1 antibodies
  publication-title: J Virol
  doi: 10.1128/JVI.02378-14
– volume: 105
  start-page: 3485
  year: 2008
  ident: 10.1016/j.coi.2017.03.002_bib0225
  article-title: Broad dispersion and lung localization of virus-specific memory B cells induced by influenza pneumonia
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0800003105
– volume: 40
  start-page: 101
  year: 2015
  ident: 10.1016/j.coi.2017.03.002_bib0065
  article-title: Insights into the trimeric HIV-1 envelope glycoprotein structure
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2014.12.006
– volume: 192
  start-page: 271
  year: 2000
  ident: 10.1016/j.coi.2017.03.002_bib0135
  article-title: B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection
  publication-title: J Exp Med
  doi: 10.1084/jem.192.2.271
– volume: 2
  start-page: 1
  year: 2014
  ident: 10.1016/j.coi.2017.03.002_sbref0085
  article-title: Immune system regulation in the induction of broadly neutralizing HIV-1 antibodies
  publication-title: Vaccines (Basel)
  doi: 10.3390/vaccines2010001
– volume: 109
  start-page: 2485
  year: 2012
  ident: 10.1016/j.coi.2017.03.002_bib0235
  article-title: Memory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfection
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1115369109
– volume: 109
  start-page: 9047
  year: 2012
  ident: 10.1016/j.coi.2017.03.002_bib0010
  article-title: Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1118979109
– volume: 6
  start-page: e25797
  year: 2011
  ident: 10.1016/j.coi.2017.03.002_bib0185
  article-title: H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025797
– volume: 496
  start-page: 469
  year: 2013
  ident: 10.1016/j.coi.2017.03.002_bib0160
  article-title: Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus
  publication-title: Nature
  doi: 10.1038/nature12053
– volume: 197
  start-page: 1779
  year: 2003
  ident: 10.1016/j.coi.2017.03.002_bib0150
  article-title: Unmutated immunoglobulin M can protect mice from death by influenza virus infection
  publication-title: J Exp Med
  doi: 10.1084/jem.20021457
– volume: 67
  start-page: 1121
  year: 1991
  ident: 10.1016/j.coi.2017.03.002_bib0030
  article-title: Maturation of the immune response in germinal centers
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90289-B
– volume: 516
  start-page: 418
  year: 2014
  ident: 10.1016/j.coi.2017.03.002_bib0060
  article-title: Rapid development of broadly influenza neutralizing antibodies through redundant mutations
  publication-title: Nature
  doi: 10.1038/nature13764
– volume: 207
  start-page: 1161
  year: 2010
  ident: 10.1016/j.coi.2017.03.002_bib0180
  article-title: Antigen persistence and the control of local T cell memory by migrant respiratory dendritic cells after acute virus infection
  publication-title: J Exp Med
  doi: 10.1084/jem.20092017
– volume: 166
  start-page: 1004
  year: 2016
  ident: 10.1016/j.coi.2017.03.002_bib0170
  article-title: Multiple origins of virus persistence during natural control of HIV infection
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.039
– volume: 213
  start-page: 733
  year: 2016
  ident: 10.1016/j.coi.2017.03.002_bib0205
  article-title: B cell IFN-gamma receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6
  publication-title: J Exp Med
  doi: 10.1084/jem.20151724
– volume: 33
  start-page: 451
  year: 2010
  ident: 10.1016/j.coi.2017.03.002_bib0005
  article-title: From vaccines to memory and back
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.10.008
– volume: 212
  start-page: 1709
  year: 2015
  ident: 10.1016/j.coi.2017.03.002_sbref0175
  article-title: Distinct germinal center selection at local sites shapes memory B cell response to viral escape
  publication-title: J Exp Med
  doi: 10.1084/jem.20142284
– volume: 31
  start-page: 705
  year: 2013
  ident: 10.1016/j.coi.2017.03.002_bib0080
  article-title: Broadly neutralizing antiviral antibodies
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-032712-095916
– volume: 20
  start-page: 503
  year: 2014
  ident: 10.1016/j.coi.2017.03.002_bib0230
  article-title: Essential role for autophagy in the maintenance of immunological memory against influenza infection
  publication-title: Nat Med
  doi: 10.1038/nm.3521
– volume: 7
  start-page: 316ra192
  year: 2015
  ident: 10.1016/j.coi.2017.03.002_sbref0105
  article-title: Immune history profoundly affects broadly protective B cell responses to influenza
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aad0522
– volume: 308
  start-page: 1906
  year: 2005
  ident: 10.1016/j.coi.2017.03.002_bib0095
  article-title: Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies
  publication-title: Science
  doi: 10.1126/science.1111781
– volume: 497
  start-page: 392
  year: 2013
  ident: 10.1016/j.coi.2017.03.002_bib0145
  article-title: Receptor binding by a ferret-transmissible H5 avian influenza virus
  publication-title: Nature
  doi: 10.1038/nature12144
– volume: 15
  start-page: 631
  year: 2014
  ident: 10.1016/j.coi.2017.03.002_bib0115
  article-title: CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype
  publication-title: Nat Immunol
  doi: 10.1038/ni.2914
– volume: 44
  start-page: 116
  year: 2016
  ident: 10.1016/j.coi.2017.03.002_sbref0050
  article-title: A temporal switch in the germinal center determines differential output of memory B and plasma cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.12.004
– volume: 69
  start-page: 531
  year: 2000
  ident: 10.1016/j.coi.2017.03.002_bib0075
  article-title: Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.69.1.531
– volume: 107
  start-page: 181
  year: 2010
  ident: 10.1016/j.coi.2017.03.002_bib0100
  article-title: Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0912914107
– volume: 14
  start-page: 1266
  year: 2013
  ident: 10.1016/j.coi.2017.03.002_sbref0130
  article-title: The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus
  publication-title: Nat Immunol
  doi: 10.1038/ni.2741
– volume: 351
  start-page: 1048
  year: 2016
  ident: 10.1016/j.coi.2017.03.002_sbref0195
  article-title: Visualizing antibody affinity maturation in germinal centers
  publication-title: Science
  doi: 10.1126/science.aad3439
– volume: 178
  start-page: 1293
  year: 1993
  ident: 10.1016/j.coi.2017.03.002_bib0035
  article-title: In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells
  publication-title: J Exp Med
  doi: 10.1084/jem.178.4.1293
– volume: 28
  start-page: 8388
  year: 1989
  ident: 10.1016/j.coi.2017.03.002_bib0140
  article-title: Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study
  publication-title: Biochemistry
  doi: 10.1021/bi00447a018
– volume: 420
  start-page: 678
  year: 2002
  ident: 10.1016/j.coi.2017.03.002_bib0215
  article-title: HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites
  publication-title: Nature
  doi: 10.1038/nature01188
– volume: 280
  start-page: 1884
  year: 1998
  ident: 10.1016/j.coi.2017.03.002_bib0070
  article-title: The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens
  publication-title: Science
  doi: 10.1126/science.280.5371.1884
– volume: 21
  start-page: 436
  year: 2000
  ident: 10.1016/j.coi.2017.03.002_bib0125
  article-title: Dissecting affinity maturation: a model explaining selection of antibody-forming cells and memory B cells in the germinal centre
  publication-title: Immunol Today
  doi: 10.1016/S0167-5699(00)01687-X
– volume: 213
  start-page: 715
  year: 2016
  ident: 10.1016/j.coi.2017.03.002_bib0200
  article-title: IFN-gamma receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity
  publication-title: J Exp Med
  doi: 10.1084/jem.20151722
– volume: 44
  start-page: 542
  year: 2016
  ident: 10.1016/j.coi.2017.03.002_sbref0155
  article-title: Complex antigens drive permissive clonal selection in germinal centers
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.02.010
– volume: 44
  start-page: 769
  year: 2016
  ident: 10.1016/j.coi.2017.03.002_bib0220
  article-title: Independent roles of switching and hypermutation in the development and persistence of B lymphocyte memory
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.01.011
– volume: 7
  start-page: 12780
  year: 2016
  ident: 10.1016/j.coi.2017.03.002_bib0020
  article-title: A broadly neutralizing anti-influenza antibody reveals ongoing capacity of haemagglutinin-specific memory B cells to evolve
  publication-title: Nat Commun
  doi: 10.1038/ncomms12780
– volume: 208
  start-page: 2599
  year: 2011
  ident: 10.1016/j.coi.2017.03.002_bib0015
  article-title: Memory B cells, but not long-lived plasma cells, possess antigen specificities for viral escape mutants
  publication-title: J Exp Med
  doi: 10.1084/jem.20110740
– volume: 87
  start-page: 4728
  year: 2013
  ident: 10.1016/j.coi.2017.03.002_bib0190
  article-title: H3N2 influenza virus infection induces broadly reactive hemagglutinin stalk antibodies in humans and mice
  publication-title: J Virol
  doi: 10.1128/JVI.03509-12
– volume: 17
  start-page: 861
  year: 2016
  ident: 10.1016/j.coi.2017.03.002_sbref0210
  article-title: Regulated selection of germinal-center cells into the memory B cell compartment
  publication-title: Nat Immunol
  doi: 10.1038/ni.3460
– volume: 165
  start-page: 449
  year: 2016
  ident: 10.1016/j.coi.2017.03.002_bib0165
  article-title: Maturation pathway from germline to broad HIV-1 neutralizer of a CD4-mimic antibody
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.022
– volume: 458
  start-page: 636
  year: 2009
  ident: 10.1016/j.coi.2017.03.002_bib0055
  article-title: Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals
  publication-title: Nature
  doi: 10.1038/nature07930
– volume: 16
  start-page: 296
  year: 2015
  ident: 10.1016/j.coi.2017.03.002_bib0120
  article-title: Class-switched memory B cells remodel BCRs within secondary germinal centers
  publication-title: Nat Immunol
  doi: 10.1038/ni.3095
– volume: 30
  start-page: 429
  year: 2012
  ident: 10.1016/j.coi.2017.03.002_bib0025
  article-title: Germinal centers
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-020711-075032
– volume: 209
  start-page: 597
  year: 2012
  ident: 10.1016/j.coi.2017.03.002_bib0040
  article-title: A germinal center-independent pathway generates unswitched memory B cells early in the primary response
  publication-title: J Exp Med
  doi: 10.1084/jem.20111696
– volume: 209
  start-page: 2079
  year: 2012
  ident: 10.1016/j.coi.2017.03.002_bib0045
  article-title: Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory
  publication-title: J Exp Med
  doi: 10.1084/jem.20120127
– reference: 27453467 - Cell. 2016 Aug 11;166(4):1004-15
– reference: 12796467 - J Exp Med. 2003 Jun 16;197(12):1779-85
– reference: 19287373 - Nature. 2009 Apr 2;458(7238):636-40
– reference: 20018688 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):181-6
– reference: 20513748 - J Exp Med. 2010 Jun 7;207(6):1161-72
– reference: 23552890 - Nature. 2013 Apr 25;496(7446):469-76
– reference: 27619409 - Nat Commun. 2016 Sep 13;7:12780
– reference: 21029957 - Immunity. 2010 Oct 29;33(4):451-63
– reference: 26631631 - Sci Transl Med. 2015 Dec 2;7(316):316ra192
– reference: 10899913 - J Exp Med. 2000 Jul 17;192(2):271-80
– reference: 9632381 - Science. 1998 Jun 19;280(5371):1884-8
– reference: 26324444 - J Exp Med. 2015 Sep 21;212(10):1709-23
– reference: 25296253 - Nature. 2014 Dec 18;516(7531):418-22
– reference: 2605190 - Biochemistry. 1989 Oct 17;28(21):8388-96
– reference: 24141387 - Nat Immunol. 2013 Dec;14(12):1266-76
– reference: 10953095 - Immunol Today. 2000 Sep;21(9):436-41
– reference: 26944202 - Immunity. 2016 Apr 19;44(4):769-81
– reference: 25600289 - Trends Biochem Sci. 2015 Feb;40(2):101-7
– reference: 25355869 - J Virol. 2015 Jan;89(1):784-98
– reference: 22615367 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9047-52
– reference: 23330954 - Annu Rev Immunol. 2013;31:705-42
– reference: 24747745 - Nat Med. 2014 May;20(5):503-10
– reference: 27158841 - Nat Immunol. 2016 Jul;17 (7):861-9
– reference: 22039424 - PLoS One. 2011;6(10):e25797
– reference: 18299574 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3485-90
– reference: 26795247 - Immunity. 2016 Jan 19;44(1):116-30
– reference: 1760840 - Cell. 1991 Dec 20;67(6):1121-9
– reference: 26948373 - Immunity. 2016 Mar 15;44(3):542-52
– reference: 15860590 - Science. 2005 Jun 24;308(5730):1906-8
– reference: 22308386 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2485-90
– reference: 24021876 - Int Immunol. 2013 Dec;25(12):683-95
– reference: 22370719 - J Exp Med. 2012 Mar 12;209(3):597-606
– reference: 23027924 - J Exp Med. 2012 Oct 22;209(11):2079-97
– reference: 26949186 - Cell. 2016 Apr 7;165(2):449-63
– reference: 27069113 - J Exp Med. 2016 May 2;213(5):733-50
– reference: 10966468 - Annu Rev Biochem. 2000;69:531-69
– reference: 26912368 - Science. 2016 Mar 4;351(6277):1048-54
– reference: 23615615 - Nature. 2013 May 16;497(7449):392-6
– reference: 24932410 - Vaccines (Basel). 2014 Mar;2(1):1-14
– reference: 24880458 - Nat Immunol. 2014 Jul;15(7):631-7
– reference: 27069112 - J Exp Med. 2016 May 2;213(5):715-32
– reference: 8376935 - J Exp Med. 1993 Oct 1;178(4):1293-307
– reference: 12478295 - Nature. 2002 Dec 12;420(6916):678-82
– reference: 22162833 - J Exp Med. 2011 Dec 19;208(13):2599-606
– reference: 23408625 - J Virol. 2013 Apr;87(8):4728-37
– reference: 25642821 - Nat Immunol. 2015 Mar;16(3):296-305
– reference: 22224772 - Annu Rev Immunol. 2012;30:429-57
SSID ssj0005530
Score 2.2831378
SecondaryResourceType review_article
Snippet •Viral conserved domains are often concealed from the humoral responses.•Memory B cells counteract with viral mutations by germline-encoded...
Highlights • Viral conserved domains are often concealed from the humoral responses. • Memory B cells counteract with viral mutations by germline-encoded...
Virus-specific memory B cells (B ) play a crucial role in protecting against variant viruses. The ability to recognize these variant viruses, defined as...
Virus-specific memory B cells (Bmem) play a crucial role in protecting against variant viruses. The ability to recognize these variant viruses, defined as...
Virus-specific memory B cells (B mem ) play a crucial role in protecting against variant viruses. The ability to recognize these variant viruses, defined as...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119
SubjectTerms Allergy and Immunology
Animals
Antigens, Viral - immunology
B-Lymphocytes - immunology
Cell Proliferation
Cell Survival - immunology
Epitopes - immunology
Germinal Center - immunology
Germinal Center - virology
Humans
Immunologic Memory
Viruses - immunology
Title Role of germinal centers for the induction of broadly-reactive memory B cells
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0952791517300274
https://www.clinicalkey.es/playcontent/1-s2.0-S0952791517300274
https://dx.doi.org/10.1016/j.coi.2017.03.002
https://www.ncbi.nlm.nih.gov/pubmed/28355576
https://www.proquest.com/docview/1882501488
https://pubmed.ncbi.nlm.nih.gov/PMC5449227
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAuiJbXQqmMxAkprOPYeRzbimoBbQ9Apd4sxw-6aEmq7vawF347M3Gy6rZQJI5J7MQ7nsc36_FngLc82JpjXEzS3KhEZgFNynmTBJfmyvAa9Zo2OE9P8smp_HSmzrbgaNgLQ2WVve-PPr3z1v2dcS_N8cVsNv6K4EAUFUYsolzH5Ip2sMuCtPz9r2tlHqo7b4QaEzWjGlY2uxov286ouquIPKfib7HpNva8WUJ5LSYdP4ZHPZhkB3G8O7Dlm124H4-XXO3Cg2m_cP4Epl_auWdtYN9j8cuc0SsR-jEErQxBIMPcPBLJUqv6sjVuvkoQUXb-kP2kgtwVO2T0R__iKZwef_h2NEn6kxQSmwuxTKQpnTFVhvOVp670VSaV5amrKktm6KyzWW0Drz2mSyE3trQuZMFhsuEKhGTZM9hu2sa_AKbK1NY-lJnxFeaGVV0ImylvTGGt5N6OgA8y1LanGafTLuZ6qCf7oVHsmsSueaZR7CN4t-5yETk27moshonRw-ZRdHcaI8BdnYo_dfKL3mAXOtULobm-pVQjkOueG3r5rw--GXRGo73S3JjGt1f4IUxpaC23LEfwPOrQ-kcT953CBBCHu6Fd6wbEBb75pJmdd5zgSspKiOLl_w33FTykq1iRtAfby8sr_xrB1rLe76xpH-4dfPw8OfkNd-gp4Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4anWC8IBgwytVIPCFFdZw4l8cxMXVs7QNs0t4sx5dRVJJp7R767zkncQplMCReEztxjs81_vwZ4B33puIYF6M40zJKE48mZZ2OvI0zqXmFek0bnCfTbHyWfjqX51tw0O-FIVhl8P2dT2-9dbgyCtIcXc5moy-YHIi8xIhFlOtYXN2BbWKnkgPY3j86Hk9_Ij1ke-QItSd2RtkvbrYwL9PMCOCVd1Sn4m_h6Wb6-TuK8pewdPgQHoR8ku13Q34EW67ehbvdCZOrXbg3CWvnj2HyuZk71nh20eFf5oweidkfw7yVYR7IsDzvuGSpVXXVaDtfRZhUti6RfSdM7op9YPSvf_EEzg4_nh6Mo3CYQmQyIZZRqgurdZnglGWxLVyZpNLw2JalIUu0xpqkMp5XDismn2lTGOsTb7HesDlmZclTGNRN7Z4Bk0VsKueLRLsSy8OyyoVJpNM6NyblzgyB9zJUJjCN04EXc9VDyr4pFLsisSueKBT7EN6vu1x2NBu3NRb9xKh-_yh6PIVB4LZO-Z86uUWw2YWK1UIorm7o1RDSdc8N1fzXC9_2OqPQZGludO2aa3wRVjW0nFsUQ9jrdGj90UR_J7EGxOFuaNe6AdGBb96pZ19bWnCZpqUQ-fP_G-4b2BmfTk7UydH0-AXcpzsdQOklDJZX1-4V5l7L6nWwrR-TKyyS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+germinal+centers+for+the+induction+of+broadly-reactive+memory+B+cells&rft.jtitle=Current+opinion+in+immunology&rft.au=Takahashi%2C+Yoshimasa&rft.au=Kelsoe%2C+Garnett&rft.date=2017-04-01&rft.issn=0952-7915&rft.volume=45&rft.spage=119&rft.epage=125&rft_id=info:doi/10.1016%2Fj.coi.2017.03.002&rft.externalDBID=ECK1-s2.0-S0952791517300274&rft.externalDocID=1_s2_0_S0952791517300274
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09527915%2Fcov200h.gif