Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1

Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, tha...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 69; no. 10; pp. 5941 - 5949
Main Authors Huang, J.J, Han, J.I, Zhang, L.H, Leadbetter, J.R
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.10.2003
Subjects
Online AccessGet full text
ISSN0099-2240
1098-5336
DOI10.1128/AEM.69.10.5941-5949.2003

Cover

Abstract Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42°C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.
AbstractList Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42°C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.
Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AEM .asm.org, visit: AEM       
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42 degrees C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42 degrees C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42 degree C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography- atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma -Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42 degrees C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa , but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42°C. The quorum-sensing bacterium P. aeruginosa , which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other γ- Proteobacteria , of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42 degrees C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains. [PUBLICATION ABSTRACT]
Author Huang, J.J
Zhang, L.H
Han, J.I
Leadbetter, J.R
AuthorAffiliation Departments of Biology, 1 Environmental Science and Engineering, W. M. Keck Laboratories, California Institute of Technology, Pasadena, California 91125, 2 Institute of Molecular and Cell Biology, Singapore 117609, 3 Department of Biological Sciences, The National University of Singapore, Singapore 119260, Republic of Singapore 4
AuthorAffiliation_xml – name: Departments of Biology, 1 Environmental Science and Engineering, W. M. Keck Laboratories, California Institute of Technology, Pasadena, California 91125, 2 Institute of Molecular and Cell Biology, Singapore 117609, 3 Department of Biological Sciences, The National University of Singapore, Singapore 119260, Republic of Singapore 4
Author_xml – sequence: 1
  fullname: Huang, J.J
– sequence: 2
  fullname: Han, J.I
– sequence: 3
  fullname: Zhang, L.H
– sequence: 4
  fullname: Leadbetter, J.R
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15195652$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/14532048$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gL4CFBLcstmM79gGkVVU-pKJWgj1bE6-z6yqxt3bSavn1OOzSll7KZayRn3fGM36PiwMfvC0KRPCMECo_zM--z4Sa5ZQrRsoc1IxiXD0rjghWsuRVJQ6KI4yVKill-LA4TukKY8ywkC-KQ8J4RTGTR8XNYnCd-wWDCx6FFoHZduU69CHZ6LxFHZgh90bXY4hjj5JbeegSakNEqxhuhzVqtghQCq5Dm2THZZZ6WCLwS3R5lycENo4r50MCdDm_IC-L522uY1_tz5Ni8fns5-nX8vziy7fT-XlpBKVDyYShjQRhoZWiIbxpraWVMrhmhEuiAGpZG1CCC05Ya2XdWrqUtm0oa6WsqpPi467uZmx6uzTWDxE6vYmuh7jVAZz-98a7tV6FG00xoWzSv9_rY7gebRp075KxXQfehjHpmtcCV4w9CTJFlOKkfhIkUlWSEprBt4_AqzDGafv5cVxxRQnJ0OuH890N9veDM_BuD0Ay0LURvHHpnuNE5d1N3eSOMzGkFG17j2A9eU5nz2mhpnTy3BSUnjyXpZ8eSY0b_hgqb9R1_1NgP-narda3LloNqddg-wd4ht7soBaChlXMQyx-5F-qssmZUKyufgP-avNQ
CODEN AEMIDF
CitedBy_id crossref_primary_10_1007_s11427_017_9092_3
crossref_primary_10_1099_mic_0_000535
crossref_primary_10_1111_j_1574_6968_2006_00336_x
crossref_primary_10_1021_cr100101c
crossref_primary_10_1111_apm_12675
crossref_primary_10_1139_cjm_2013_0667
crossref_primary_10_1186_s43094_023_00526_9
crossref_primary_10_1039_C4MD00363B
crossref_primary_10_1128_AEM_02190_14
crossref_primary_10_1080_21553769_2013_833141
crossref_primary_10_3390_biology10060496
crossref_primary_10_1007_s00284_010_9668_4
crossref_primary_10_1128_MMBR_00002_06
crossref_primary_10_1007_s11274_011_0836_x
crossref_primary_10_1002_chem_201001562
crossref_primary_10_1016_j_jwpe_2022_102660
crossref_primary_10_1016_j_tim_2004_11_007
crossref_primary_10_1128_AEM_01723_08
crossref_primary_10_1128_JB_01659_07
crossref_primary_10_1016_j_biocontrol_2020_104376
crossref_primary_10_1094_MPMI_2004_17_9_951
crossref_primary_10_1016_j_tim_2006_11_004
crossref_primary_10_1073_pnas_1311263111
crossref_primary_10_1007_s00248_004_0113_8
crossref_primary_10_1139_w04_083
crossref_primary_10_3389_fimmu_2019_02390
crossref_primary_10_47027_duvetfd_1491341
crossref_primary_10_1016_j_jbiotec_2014_09_001
crossref_primary_10_1186_s40168_020_00796_y
crossref_primary_10_1007_s10123_021_00228_3
crossref_primary_10_4161_viru_27850
crossref_primary_10_1128_AEM_71_3_1291_1299_2005
crossref_primary_10_3389_fmicb_2016_01641
crossref_primary_10_1021_cb7000186
crossref_primary_10_1002_ange_201709313
crossref_primary_10_1007_s00203_005_0065_5
crossref_primary_10_1007_s00203_020_02159_5
crossref_primary_10_3390_microorganisms10030631
crossref_primary_10_1007_s00284_012_0217_1
crossref_primary_10_1007_s10534_015_9827_y
crossref_primary_10_1093_femsre_fuv038
crossref_primary_10_1016_j_femsec_2004_10_005
crossref_primary_10_1007_s10658_007_9149_1
crossref_primary_10_1002_cbic_200800521
crossref_primary_10_1021_acschembio_7b00031
crossref_primary_10_1038_s41598_025_92749_4
crossref_primary_10_3390_ijerph16163003
crossref_primary_10_1002_bit_26039
crossref_primary_10_1097_01_ICL_0000146324_28865_E8
crossref_primary_10_1002_anie_201709313
crossref_primary_10_1111_j_1365_2672_2008_04000_x
crossref_primary_10_1128_AEM_00477_10
crossref_primary_10_3390_ijms140917477
crossref_primary_10_1094_MPMI_09_15_0206_R
crossref_primary_10_1186_s12896_024_00937_3
crossref_primary_10_1007_s00253_011_3145_2
crossref_primary_10_1021_cr1000817
crossref_primary_10_1098_rstb_2007_2046
crossref_primary_10_1007_s00216_006_0720_y
crossref_primary_10_1016_j_memsci_2018_03_019
crossref_primary_10_3389_fpls_2022_1063393
crossref_primary_10_1016_j_cbi_2017_12_018
crossref_primary_10_1098_rstb_2007_2048
crossref_primary_10_3390_ijms23179751
crossref_primary_10_3923_ijp_2016_262_271
crossref_primary_10_1016_j_chemosphere_2019_01_064
crossref_primary_10_1089_ees_2010_0054
crossref_primary_10_1098_rstb_2007_2045
crossref_primary_10_1146_annurev_micro_032521_023815
crossref_primary_10_1186_s12934_018_1024_6
crossref_primary_10_3390_molecules29153466
crossref_primary_10_2217_fmb_2022_0155
crossref_primary_10_1002_jms_1479
crossref_primary_10_1016_j_nancom_2011_03_001
crossref_primary_10_1007_s12275_017_7274_x
crossref_primary_10_5897_AJMR2014_7316
crossref_primary_10_1111_j_1462_2920_2007_01270_x
crossref_primary_10_1016_j_ibiod_2015_11_021
crossref_primary_10_2166_wst_2020_601
crossref_primary_10_1016_j_enzmictec_2011_06_001
crossref_primary_10_1007_s11274_010_0562_9
crossref_primary_10_1080_1040841X_2019_1624499
crossref_primary_10_1111_j_1365_2672_2005_02828_x
crossref_primary_10_1128_JB_00043_07
crossref_primary_10_3389_fcimb_2014_00166
crossref_primary_10_1038_srep40126
crossref_primary_10_1016_j_jbiotec_2010_12_016
crossref_primary_10_1007_s00284_011_9979_0
crossref_primary_10_1021_acs_analchem_8b05168
crossref_primary_10_1111_j_1574_6941_2007_00378_x
crossref_primary_10_1007_s13762_017_1392_1
crossref_primary_10_1038_s41598_017_09399_4
crossref_primary_10_1128_mbio_03174_21
crossref_primary_10_1021_ic801531n
crossref_primary_10_1139_w05_066
crossref_primary_10_3390_microorganisms9091988
crossref_primary_10_1002_jobm_202000038
crossref_primary_10_1128_AEM_02738_09
crossref_primary_10_33029_0016_9900_2020_99_4_379_383
crossref_primary_10_1002_cbic_201000191
crossref_primary_10_1155_2013_782847
crossref_primary_10_1271_bbb_130309
crossref_primary_10_1371_journal_pone_0065473
crossref_primary_10_5005_jp_journals_10024_1080
crossref_primary_10_1002_rcm_3991
crossref_primary_10_1111_jam_13891
crossref_primary_10_1128_msystems_00915_24
crossref_primary_10_1016_j_ijmm_2006_02_005
crossref_primary_10_1073_pnas_0509860103
crossref_primary_10_1111_j_1462_2920_2010_02261_x
crossref_primary_10_1128_AEM_70_10_6173_6180_2004
crossref_primary_10_1007_s00203_016_1220_x
crossref_primary_10_1016_j_femsec_2004_07_008
crossref_primary_10_1111_j_1462_2920_2005_00769_x
crossref_primary_10_1128_IAI_74_3_1673_1682_2006
crossref_primary_10_3390_biomedicines11102645
crossref_primary_10_1016_j_chemosphere_2016_05_032
crossref_primary_10_1016_j_tibs_2011_10_001
crossref_primary_10_3184_003685006783238335
crossref_primary_10_47470_0016_9900_2020_99_4_379_383
crossref_primary_10_1517_13543776_15_8_955
crossref_primary_10_1016_j_syapm_2017_03_002
crossref_primary_10_1111_j_1574_6976_2005_00012_x
crossref_primary_10_1128_AEM_71_5_2632_2641_2005
crossref_primary_10_1128_aem_02402_24
crossref_primary_10_1107_S0907444912042369
crossref_primary_10_1111_j_1524_475X_2007_00329_x
crossref_primary_10_1007_s11274_023_03608_1
crossref_primary_10_1111_j_1365_2958_2004_04234_x
crossref_primary_10_1039_C6RA00328A
crossref_primary_10_1371_journal_pone_0138034
crossref_primary_10_1128_AEM_02014_07
crossref_primary_10_1016_j_lwt_2013_12_022
crossref_primary_10_1021_acs_jafc_2c01299
crossref_primary_10_1099_mic_0_043935_0
crossref_primary_10_1016_j_medmal_2006_01_008
crossref_primary_10_1038_nrmicro1600
crossref_primary_10_1007_BF03175344
crossref_primary_10_1371_journal_pone_0163469
crossref_primary_10_1128_JB_01692_08
crossref_primary_10_1007_s12298_021_01034_x
crossref_primary_10_1016_j_resmic_2010_03_002
crossref_primary_10_1039_C5MD00015G
crossref_primary_10_1099_mic_0_28601_0
crossref_primary_10_1111_j_1758_2229_2012_00349_x
crossref_primary_10_1128_AEM_02187_06
crossref_primary_10_1128_MMBR_00046_12
crossref_primary_10_18006_2022_10_2__278_293
crossref_primary_10_3390_md19010016
crossref_primary_10_1039_b804469b
crossref_primary_10_1039_C6AY02652D
crossref_primary_10_1080_08927014_2013_776042
crossref_primary_10_1128_genomeA_00879_14
crossref_primary_10_1038_s41598_017_10997_5
crossref_primary_10_3390_ijms140714607
crossref_primary_10_1002_cbic_201000033
crossref_primary_10_1080_02757540_2015_1120722
crossref_primary_10_1111_mmi_13671
crossref_primary_10_1007_s00253_019_10080_1
crossref_primary_10_1186_s12964_023_01154_9
crossref_primary_10_1128_AEM_72_2_1190_1197_2006
crossref_primary_10_1002_jgm_682
crossref_primary_10_1139_w06_062
crossref_primary_10_3109_1040841X_2010_532479
crossref_primary_10_1007_s13353_015_0309_2
crossref_primary_10_1016_j_jpowsour_2015_03_007
crossref_primary_10_1073_pnas_0911839107
crossref_primary_10_1099_mic_0_000826
crossref_primary_10_1007_s00216_006_0730_9
crossref_primary_10_1016_j_aquaculture_2004_06_031
crossref_primary_10_1128_AEM_01389_08
crossref_primary_10_1371_journal_pone_0174454
crossref_primary_10_1517_13543770903222293
crossref_primary_10_1021_cr100045m
crossref_primary_10_1016_j_heliyon_2023_e16205
crossref_primary_10_1111_1541_4337_12382
crossref_primary_10_1038_s41598_017_11892_9
crossref_primary_10_1016_j_watres_2023_121057
crossref_primary_10_1111_j_1574_6941_2009_00828_x
crossref_primary_10_1038_ismej_2009_30
crossref_primary_10_1021_bi501086s
crossref_primary_10_1146_annurev_micro_032521_025954
crossref_primary_10_1155_2014_162584
crossref_primary_10_1016_j_memsci_2025_123899
crossref_primary_10_1111_j_1541_4337_2011_00150_x
crossref_primary_10_1099_mic_0_26977_0
crossref_primary_10_3389_fmicb_2022_977669
crossref_primary_10_1016_j_mimet_2004_04_016
crossref_primary_10_1007_s10482_013_0082_3
crossref_primary_10_1016_j_femsle_2005_09_029
crossref_primary_10_1021_cr100311q
crossref_primary_10_1371_journal_pone_0167002
crossref_primary_10_1016_j_resmic_2006_11_015
crossref_primary_10_1111_j_1574_6941_2009_00745_x
crossref_primary_10_1007_s13762_018_1930_5
crossref_primary_10_1016_j_biochi_2020_07_017
crossref_primary_10_1371_journal_pone_0082514
crossref_primary_10_1099_mic_0_27961_0
crossref_primary_10_3389_fmicb_2019_00455
crossref_primary_10_1111_j_1751_7915_2010_00197_x
crossref_primary_10_3390_pharmaceutics16091160
crossref_primary_10_2147_IDR_S263196
crossref_primary_10_1039_C5RA25440J
crossref_primary_10_1128_genomeA_00258_14
crossref_primary_10_22207_JPAM_13_3_64
crossref_primary_10_3390_s120404661
crossref_primary_10_1007_s00216_006_0761_2
crossref_primary_10_1007_s00253_014_5518_9
crossref_primary_10_1016_j_ijmm_2006_01_043
crossref_primary_10_1111_j_1758_2229_2010_00188_x
crossref_primary_10_5483_BMBRep_2011_44_1_1
crossref_primary_10_1007_s00203_006_0186_5
crossref_primary_10_1002_pro_4954
crossref_primary_10_1134_S0026261721060072
crossref_primary_10_1080_08927014_2013_796939
crossref_primary_10_1146_annurev_cellbio_21_012704_131001
crossref_primary_10_1094_PHYTO_97_2_0227
crossref_primary_10_1016_j_tree_2009_02_008
crossref_primary_10_1371_journal_pone_0167344
crossref_primary_10_1111_mpp_12180
crossref_primary_10_1007_s00253_013_4891_0
crossref_primary_10_1021_es203933h
crossref_primary_10_1016_j_biotechadv_2012_10_004
crossref_primary_10_1007_s00203_023_03442_x
crossref_primary_10_1016_j_biortech_2018_03_007
crossref_primary_10_1021_cb400345h
crossref_primary_10_1111_j_1462_2920_2005_00886_x
crossref_primary_10_1099_mic_0_030973_0
crossref_primary_10_1128_MRA_00265_21
crossref_primary_10_1271_bbb_110322
crossref_primary_10_1111_j_1462_5822_2006_00817_x
crossref_primary_10_1007_s00216_006_0970_8
crossref_primary_10_3390_antibiotics13100919
crossref_primary_10_1016_j_biortech_2024_132027
crossref_primary_10_4491_eer_2018_380
crossref_primary_10_5423_PPJ_2011_27_3_242
Cites_doi 10.1021/bi970589n
10.1093/oxfordjournals.molbev.a025664
10.1046/j.1365-2958.2003.03351.x
10.1006/abio.1999.4160
10.1016/0003-2697(70)90093-X
10.1016/S0014-5793(99)00625-0
10.1038/35081101
10.1073/pnas.022056699
10.1038/35023079
10.1128/jb.77.6.776-782.1959
10.1099/00221287-148-4-923
10.1128/aem.62.10.3620-3631.1996
10.1128/AEM.68.4.1754-1759.2002
10.1146/annurev.genet.35.102401.090913
10.1099/00207713-47-2-249
10.1093/bioinformatics/18.3.502
10.1099/mic.0.26085-0
10.1073/pnas.95.22.12787
10.1073/pnas.93.18.9505
10.1016/S0076-6879(00)05495-1
10.1073/pnas.96.24.13904
10.1099/00207713-46-1-200
10.1073/pnas.97.7.3526
10.1023/A:1000277008064
10.1016/S0076-6879(01)36576-X
10.3201/eid0404.980405
10.1073/pnas.96.8.4360
10.1128/JB.185.7.2080-2095.2003
10.1099/00207713-50-4-1563
10.1128/JB.181.18.5766-5770.1999
10.1038/35081216
10.1016/S0044-8486(97)00069-0
10.1128/AEM.68.8.3919-3924.2002
10.1126/science.272.5268.1655
10.1128/JB.182.24.6921-6926.2000
10.1074/jbc.275.6.3957
10.1128/AEM.69.2.909-916.2003
10.1046/j.1365-2958.2002.03084.x
10.1146/annurev.micro.55.1.165
10.1016/S0723-2020(96)80021-X
10.1128/JB.185.7.2066-2079.2003
10.1128/AEM.64.9.3507-3511.1998
10.1074/jbc.270.30.17672
10.1016/S0723-2020(00)80043-0
ContentType Journal Article
Copyright 2004 INIST-CNRS
Copyright American Society for Microbiology Oct 2003
Copyright © 2003, American Society for Microbiology 2003
Copyright_xml – notice: 2004 INIST-CNRS
– notice: Copyright American Society for Microbiology Oct 2003
– notice: Copyright © 2003, American Society for Microbiology 2003
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7S9
L.6
7X8
5PM
DOI 10.1128/AEM.69.10.5941-5949.2003
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Engineering Research Database
AGRICOLA
MEDLINE

Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
EISSN 1098-5336
EndPage 5949
ExternalDocumentID PMC201243
704648371
14532048
15195652
10_1128_AEM_69_10_5941_5949_2003
aem_69_10_5941
US201300946947
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: 5T32GM07616
– fundername: NIGMS NIH HHS
  grantid: T32 GM007616
GroupedDBID ---
-~X
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
85S
AAZTW
ABOGM
ABPPZ
ABPTK
ABTAH
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
AENEX
AFFNX
AFMIJ
AFRAH
AGCDD
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F20
F5P
FBQ
GX1
HYE
HZ~
H~9
K-O
KQ8
L7B
MVM
NEJ
O9-
OHT
OK1
P2P
PQQKQ
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UCJ
UHB
VH1
W8F
WH7
WHG
WOQ
X6Y
X7M
XFK
XJT
YV5
ZA5
ZCG
ZGI
ZXP
ZY4
~02
~KM
AAGFI
AAYXX
ADUKH
ADXHL
AGVNZ
CITATION
H13
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c622t-46c2b8a6eaf86b15bfee239c07415819aa787ca9656514fe87fe2d8efb24f8833
ISSN 0099-2240
IngestDate Thu Aug 21 18:25:55 EDT 2025
Fri Sep 05 05:01:30 EDT 2025
Thu Sep 04 20:24:00 EDT 2025
Fri Sep 05 00:44:47 EDT 2025
Mon Jun 30 08:27:23 EDT 2025
Wed Feb 19 02:33:36 EST 2025
Mon Jul 21 09:15:04 EDT 2025
Thu Apr 24 23:01:08 EDT 2025
Tue Jul 01 00:46:16 EDT 2025
Wed May 18 15:27:45 EDT 2016
Wed Dec 27 19:18:48 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Pseudomonadales
Soils
Growth
Bacteria
Pseudomonadaceae
Lactone
Pseudomonas aeruginosa
Acyl
Quorum sensing
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c622t-46c2b8a6eaf86b15bfee239c07415819aa787ca9656514fe87fe2d8efb24f8833
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Corresponding author. Mailing address: Environmental Science & Engineering, W. M. Keck Laboratories, M/C 138-78, California Institute of Technology, Pasadena, CA 91125. Phone: (626) 395-4182. Fax: (626) 395-2940. E-mail: jleadbetter@caltech.edu.
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/102132
PMID 14532048
PQID 205959211
PQPubID 42251
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_201243
crossref_primary_10_1128_AEM_69_10_5941_5949_2003
proquest_miscellaneous_75760344
pubmed_primary_14532048
pascalfrancis_primary_15195652
crossref_citationtrail_10_1128_AEM_69_10_5941_5949_2003
proquest_miscellaneous_49199517
highwire_asm_aem_69_10_5941
fao_agris_US201300946947
proquest_journals_205959211
proquest_miscellaneous_18938212
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-10-01
PublicationDateYYYYMMDD 2003-10-01
PublicationDate_xml – month: 10
  year: 2003
  text: 2003-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Applied and Environmental Microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2003
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
(e_1_3_2_31_2) 1996; 12
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
(e_1_3_2_14_2) 1997; 36
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_35_2
(e_1_3_2_6_2) 1997; 156
References_xml – volume: 36
  start-page: 11077
  year: 1997
  ident: e_1_3_2_14_2
  publication-title: Biochemistry
  doi: 10.1021/bi970589n
– ident: e_1_3_2_40_2
  doi: 10.1093/oxfordjournals.molbev.a025664
– ident: e_1_3_2_24_2
  doi: 10.1046/j.1365-2958.2003.03351.x
– ident: e_1_3_2_5_2
  doi: 10.1006/abio.1999.4160
– ident: e_1_3_2_42_2
  doi: 10.1016/0003-2697(70)90093-X
– ident: e_1_3_2_46_2
  doi: 10.1016/S0014-5793(99)00625-0
– ident: e_1_3_2_8_2
  doi: 10.1038/35081101
– ident: e_1_3_2_47_2
  doi: 10.1073/pnas.022056699
– ident: e_1_3_2_39_2
  doi: 10.1038/35023079
– ident: e_1_3_2_11_2
  doi: 10.1128/jb.77.6.776-782.1959
– ident: e_1_3_2_33_2
  doi: 10.1099/00221287-148-4-923
– ident: e_1_3_2_21_2
  doi: 10.1128/aem.62.10.3620-3631.1996
– ident: e_1_3_2_7_2
  doi: 10.1128/AEM.68.4.1754-1759.2002
– ident: e_1_3_2_12_2
  doi: 10.1146/annurev.genet.35.102401.090913
– ident: e_1_3_2_3_2
  doi: 10.1099/00207713-47-2-249
– ident: e_1_3_2_37_2
  doi: 10.1093/bioinformatics/18.3.502
– ident: e_1_3_2_18_2
  doi: 10.1099/mic.0.26085-0
– ident: e_1_3_2_17_2
  doi: 10.1073/pnas.95.22.12787
– ident: e_1_3_2_36_2
  doi: 10.1073/pnas.93.18.9505
– ident: e_1_3_2_35_2
  doi: 10.1016/S0076-6879(00)05495-1
– ident: e_1_3_2_44_2
  doi: 10.1073/pnas.96.24.13904
– ident: e_1_3_2_4_2
  doi: 10.1099/00207713-46-1-200
– ident: e_1_3_2_9_2
  doi: 10.1073/pnas.97.7.3526
– ident: e_1_3_2_29_2
  doi: 10.1023/A:1000277008064
– ident: e_1_3_2_34_2
  doi: 10.1016/S0076-6879(01)36576-X
– ident: e_1_3_2_41_2
  doi: 10.3201/eid0404.980405
– ident: e_1_3_2_32_2
  doi: 10.1073/pnas.96.8.4360
– ident: e_1_3_2_43_2
  doi: 10.1128/JB.185.7.2080-2095.2003
– ident: e_1_3_2_2_2
  doi: 10.1099/00207713-50-4-1563
– ident: e_1_3_2_13_2
  doi: 10.1128/JB.181.18.5766-5770.1999
– ident: e_1_3_2_20_2
  doi: 10.1038/35081216
– volume: 156
  start-page: 317
  year: 1997
  ident: e_1_3_2_6_2
  publication-title: Aquaculture
  doi: 10.1016/S0044-8486(97)00069-0
– ident: e_1_3_2_23_2
  doi: 10.1128/AEM.68.8.3919-3924.2002
– ident: e_1_3_2_28_2
  doi: 10.1126/science.272.5268.1655
– ident: e_1_3_2_22_2
  doi: 10.1128/JB.182.24.6921-6926.2000
– ident: e_1_3_2_15_2
  doi: 10.1074/jbc.275.6.3957
– ident: e_1_3_2_10_2
  doi: 10.1128/AEM.69.2.909-916.2003
– ident: e_1_3_2_19_2
– ident: e_1_3_2_30_2
  doi: 10.1046/j.1365-2958.2002.03084.x
– ident: e_1_3_2_26_2
  doi: 10.1146/annurev.micro.55.1.165
– ident: e_1_3_2_27_2
  doi: 10.1016/S0723-2020(96)80021-X
– ident: e_1_3_2_38_2
  doi: 10.1128/JB.185.7.2066-2079.2003
– volume: 12
  start-page: 357
  year: 1996
  ident: e_1_3_2_31_2
  publication-title: Comput. Appl. Biosci.
– ident: e_1_3_2_45_2
  doi: 10.1128/AEM.64.9.3507-3511.1998
– ident: e_1_3_2_16_2
  doi: 10.1074/jbc.270.30.17672
– ident: e_1_3_2_25_2
  doi: 10.1016/S0723-2020(00)80043-0
SSID ssj0004068
Score 2.2858107
Snippet Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are...
Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
highwire
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5941
SubjectTerms 4-Butyrolactone
4-Butyrolactone - analogs & derivatives
4-Butyrolactone - metabolism
acyl-homoserine lactone acylase
amide hydrolases
Amidohydrolases
Amidohydrolases - genetics
Amidohydrolases - metabolism
analogs & derivatives
analysis
Bacteria
Bacterial Proteins
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
biodegradation
Biological and medical sciences
Culture Media
DNA, Ribosomal
DNA, Ribosomal - analysis
E coli
Environmental Microbiology and Biodegradation
enzymes
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial
genes
genetics
growth & development
homoserine lactone lactonase
Inactivation
Ionization
isolation & purification
lactones
Mass spectrometry
metabolism
microbial growth
Microbiology
Molecular Sequence Data
nucleotide sequences
Nutrients
Phylogeny
Physical growth
Pseudomonas
Pseudomonas - genetics
Pseudomonas - growth & development
Pseudomonas - isolation & purification
Pseudomonas - metabolism
Pseudomonas aeruginosa
Pseudomonas aeruginosa - growth & development
Pseudomonas aeruginosa - isolation & purification
Pseudomonas aeruginosa - metabolism
quorum sensing
ribosomal RNA
RNA, Ribosomal, 16S
RNA, Ribosomal, 16S - genetics
Sequence Analysis, DNA
Signal Transduction
soil bacteria
soil biology
Soil Microbiology
Soils
Title Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1
URI http://aem.asm.org/content/69/10/5941.abstract
https://www.ncbi.nlm.nih.gov/pubmed/14532048
https://www.proquest.com/docview/205959211
https://www.proquest.com/docview/18938212
https://www.proquest.com/docview/49199517
https://www.proquest.com/docview/75760344
https://pubmed.ncbi.nlm.nih.gov/PMC201243
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2IQQ8IBiXlcHwA29VSuI5jv04oU7V2IVLK-0tslOnq9Q1Y2mRxg_gd3NOru4uYvDiNk5OYuV8sc-xfb5DyAc_NVZLP_WYMAocFMM9FSbcC4xRY8kT6RexVUfHYjDiB6fh6drab2fX0nJhesmvW-NK_kerUAd6xSjZf9Bsc1OogP-gXyhBw1DeS8ejxXRWxVEW6_nJ1cw7y86zvIjp684wlw78_lgi40IXt2ogWTJuLJyA9704Q9tTd_NsitFYdjkG0bkelwEEzXHe1fZyOZnOs1x3v-ydBK49WxuxKOLEzGFIyrSleGqxU81OH7SrUYNyBvZgemMK-7ANnMBEoKYIPCqlv61MVrTb3poOWCkPrQi3Ay5ztdRA87sXvVDxwINCOV0r1jnDdH325hDAMKxhr3_UE6oHFc29CvLXdtirl_qPT-L90eFhPOyfDtfJAxZFxXL_568O67wvZM1mio2vd4Qx-fGu56yYOeupzhwCatx_q3P4BNMyd8ptzs31PbqO0TN8Rp5W3grdK6H3nKzZ-SZ5WOYvvdokj-qw9nyTPHGYLV-Qnw40aZbSa9CkFTRpCU1aQZMCNGkJTWquqKYITepAkwLOqANN2kKTIjRfktF-f_hp4FUpPrxEMLbwuEiYkVpYnUphgtCk1rJdlRSGLhirWsOAkmgFXgdY9qmVUWrZWNrUMJ5inuxXZGMOzd0i1PBkHCobCC18nqRKygDeXhKiTQ5m-G6HRLVG4qTiv8c0LLO48IOZjEGXsVB4iLrEQmGWVpAMGsmLkgPmHjJboPRYT2CojkffGW4Q8BUXikcdsl0jIdb5eaztuXOLDtlZAUf7ROSBEiED8RotcdUX5fDIUIWKBSD-vjkLAwWu_um5zZZ5HIBnIsFQvfsKrpCvIYjuviIKI4EcoR3yukRn2zqOGWa47BCxgtvmAqSxXz0zn54VdPbwbhjfffPXZm2Tx22X8pZsLC6X9h14BAuzU3yufwAE8ghU
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilization+of+acyl-homoserine+lactone+quorum+signals+for+growth+by+a+soil+pseudomonad+and+Pseudomonas+aeruginosa+PAO1&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Huang%2C+J+J&rft.au=Han%2C+Ji&rft.au=Zhang%2C+L+H&rft.au=Leadbetter%2C+J+R&rft.date=2003-10-01&rft.issn=0099-2240&rft.volume=69&rft.issue=10+p.5941-5949&rft.spage=5941&rft.epage=5949&rft_id=info:doi/10.1128%2FAEM.69.10.5941-5949.2003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon