Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, tha...
Saved in:
Published in | Applied and Environmental Microbiology Vol. 69; no. 10; pp. 5941 - 5949 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.10.2003
|
Subjects | |
Online Access | Get full text |
ISSN | 0099-2240 1098-5336 |
DOI | 10.1128/AEM.69.10.5941-5949.2003 |
Cover
Abstract | Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42°C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains. |
---|---|
AbstractList | Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42°C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains. Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology. For an alternate route to AEM .asm.org, visit: AEM Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42 degrees C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42 degrees C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains. Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42 degree C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography- atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma -Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains. Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42 degrees C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains. Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa , but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42°C. The quorum-sensing bacterium P. aeruginosa , which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other γ- Proteobacteria , of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains. Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42 degrees C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains. [PUBLICATION ABSTRACT] |
Author | Huang, J.J Zhang, L.H Han, J.I Leadbetter, J.R |
AuthorAffiliation | Departments of Biology, 1 Environmental Science and Engineering, W. M. Keck Laboratories, California Institute of Technology, Pasadena, California 91125, 2 Institute of Molecular and Cell Biology, Singapore 117609, 3 Department of Biological Sciences, The National University of Singapore, Singapore 119260, Republic of Singapore 4 |
AuthorAffiliation_xml | – name: Departments of Biology, 1 Environmental Science and Engineering, W. M. Keck Laboratories, California Institute of Technology, Pasadena, California 91125, 2 Institute of Molecular and Cell Biology, Singapore 117609, 3 Department of Biological Sciences, The National University of Singapore, Singapore 119260, Republic of Singapore 4 |
Author_xml | – sequence: 1 fullname: Huang, J.J – sequence: 2 fullname: Han, J.I – sequence: 3 fullname: Zhang, L.H – sequence: 4 fullname: Leadbetter, J.R |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15195652$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/14532048$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhiNURD_gL4CFBLcstmM79gGkVVU-pKJWgj1bE6-z6yqxt3bSavn1OOzSll7KZayRn3fGM36PiwMfvC0KRPCMECo_zM--z4Sa5ZQrRsoc1IxiXD0rjghWsuRVJQ6KI4yVKill-LA4TukKY8ywkC-KQ8J4RTGTR8XNYnCd-wWDCx6FFoHZduU69CHZ6LxFHZgh90bXY4hjj5JbeegSakNEqxhuhzVqtghQCq5Dm2THZZZ6WCLwS3R5lycENo4r50MCdDm_IC-L522uY1_tz5Ni8fns5-nX8vziy7fT-XlpBKVDyYShjQRhoZWiIbxpraWVMrhmhEuiAGpZG1CCC05Ya2XdWrqUtm0oa6WsqpPi467uZmx6uzTWDxE6vYmuh7jVAZz-98a7tV6FG00xoWzSv9_rY7gebRp075KxXQfehjHpmtcCV4w9CTJFlOKkfhIkUlWSEprBt4_AqzDGafv5cVxxRQnJ0OuH890N9veDM_BuD0Ay0LURvHHpnuNE5d1N3eSOMzGkFG17j2A9eU5nz2mhpnTy3BSUnjyXpZ8eSY0b_hgqb9R1_1NgP-narda3LloNqddg-wd4ht7soBaChlXMQyx-5F-qssmZUKyufgP-avNQ |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_1007_s11427_017_9092_3 crossref_primary_10_1099_mic_0_000535 crossref_primary_10_1111_j_1574_6968_2006_00336_x crossref_primary_10_1021_cr100101c crossref_primary_10_1111_apm_12675 crossref_primary_10_1139_cjm_2013_0667 crossref_primary_10_1186_s43094_023_00526_9 crossref_primary_10_1039_C4MD00363B crossref_primary_10_1128_AEM_02190_14 crossref_primary_10_1080_21553769_2013_833141 crossref_primary_10_3390_biology10060496 crossref_primary_10_1007_s00284_010_9668_4 crossref_primary_10_1128_MMBR_00002_06 crossref_primary_10_1007_s11274_011_0836_x crossref_primary_10_1002_chem_201001562 crossref_primary_10_1016_j_jwpe_2022_102660 crossref_primary_10_1016_j_tim_2004_11_007 crossref_primary_10_1128_AEM_01723_08 crossref_primary_10_1128_JB_01659_07 crossref_primary_10_1016_j_biocontrol_2020_104376 crossref_primary_10_1094_MPMI_2004_17_9_951 crossref_primary_10_1016_j_tim_2006_11_004 crossref_primary_10_1073_pnas_1311263111 crossref_primary_10_1007_s00248_004_0113_8 crossref_primary_10_1139_w04_083 crossref_primary_10_3389_fimmu_2019_02390 crossref_primary_10_47027_duvetfd_1491341 crossref_primary_10_1016_j_jbiotec_2014_09_001 crossref_primary_10_1186_s40168_020_00796_y crossref_primary_10_1007_s10123_021_00228_3 crossref_primary_10_4161_viru_27850 crossref_primary_10_1128_AEM_71_3_1291_1299_2005 crossref_primary_10_3389_fmicb_2016_01641 crossref_primary_10_1021_cb7000186 crossref_primary_10_1002_ange_201709313 crossref_primary_10_1007_s00203_005_0065_5 crossref_primary_10_1007_s00203_020_02159_5 crossref_primary_10_3390_microorganisms10030631 crossref_primary_10_1007_s00284_012_0217_1 crossref_primary_10_1007_s10534_015_9827_y crossref_primary_10_1093_femsre_fuv038 crossref_primary_10_1016_j_femsec_2004_10_005 crossref_primary_10_1007_s10658_007_9149_1 crossref_primary_10_1002_cbic_200800521 crossref_primary_10_1021_acschembio_7b00031 crossref_primary_10_1038_s41598_025_92749_4 crossref_primary_10_3390_ijerph16163003 crossref_primary_10_1002_bit_26039 crossref_primary_10_1097_01_ICL_0000146324_28865_E8 crossref_primary_10_1002_anie_201709313 crossref_primary_10_1111_j_1365_2672_2008_04000_x crossref_primary_10_1128_AEM_00477_10 crossref_primary_10_3390_ijms140917477 crossref_primary_10_1094_MPMI_09_15_0206_R crossref_primary_10_1186_s12896_024_00937_3 crossref_primary_10_1007_s00253_011_3145_2 crossref_primary_10_1021_cr1000817 crossref_primary_10_1098_rstb_2007_2046 crossref_primary_10_1007_s00216_006_0720_y crossref_primary_10_1016_j_memsci_2018_03_019 crossref_primary_10_3389_fpls_2022_1063393 crossref_primary_10_1016_j_cbi_2017_12_018 crossref_primary_10_1098_rstb_2007_2048 crossref_primary_10_3390_ijms23179751 crossref_primary_10_3923_ijp_2016_262_271 crossref_primary_10_1016_j_chemosphere_2019_01_064 crossref_primary_10_1089_ees_2010_0054 crossref_primary_10_1098_rstb_2007_2045 crossref_primary_10_1146_annurev_micro_032521_023815 crossref_primary_10_1186_s12934_018_1024_6 crossref_primary_10_3390_molecules29153466 crossref_primary_10_2217_fmb_2022_0155 crossref_primary_10_1002_jms_1479 crossref_primary_10_1016_j_nancom_2011_03_001 crossref_primary_10_1007_s12275_017_7274_x crossref_primary_10_5897_AJMR2014_7316 crossref_primary_10_1111_j_1462_2920_2007_01270_x crossref_primary_10_1016_j_ibiod_2015_11_021 crossref_primary_10_2166_wst_2020_601 crossref_primary_10_1016_j_enzmictec_2011_06_001 crossref_primary_10_1007_s11274_010_0562_9 crossref_primary_10_1080_1040841X_2019_1624499 crossref_primary_10_1111_j_1365_2672_2005_02828_x crossref_primary_10_1128_JB_00043_07 crossref_primary_10_3389_fcimb_2014_00166 crossref_primary_10_1038_srep40126 crossref_primary_10_1016_j_jbiotec_2010_12_016 crossref_primary_10_1007_s00284_011_9979_0 crossref_primary_10_1021_acs_analchem_8b05168 crossref_primary_10_1111_j_1574_6941_2007_00378_x crossref_primary_10_1007_s13762_017_1392_1 crossref_primary_10_1038_s41598_017_09399_4 crossref_primary_10_1128_mbio_03174_21 crossref_primary_10_1021_ic801531n crossref_primary_10_1139_w05_066 crossref_primary_10_3390_microorganisms9091988 crossref_primary_10_1002_jobm_202000038 crossref_primary_10_1128_AEM_02738_09 crossref_primary_10_33029_0016_9900_2020_99_4_379_383 crossref_primary_10_1002_cbic_201000191 crossref_primary_10_1155_2013_782847 crossref_primary_10_1271_bbb_130309 crossref_primary_10_1371_journal_pone_0065473 crossref_primary_10_5005_jp_journals_10024_1080 crossref_primary_10_1002_rcm_3991 crossref_primary_10_1111_jam_13891 crossref_primary_10_1128_msystems_00915_24 crossref_primary_10_1016_j_ijmm_2006_02_005 crossref_primary_10_1073_pnas_0509860103 crossref_primary_10_1111_j_1462_2920_2010_02261_x crossref_primary_10_1128_AEM_70_10_6173_6180_2004 crossref_primary_10_1007_s00203_016_1220_x crossref_primary_10_1016_j_femsec_2004_07_008 crossref_primary_10_1111_j_1462_2920_2005_00769_x crossref_primary_10_1128_IAI_74_3_1673_1682_2006 crossref_primary_10_3390_biomedicines11102645 crossref_primary_10_1016_j_chemosphere_2016_05_032 crossref_primary_10_1016_j_tibs_2011_10_001 crossref_primary_10_3184_003685006783238335 crossref_primary_10_47470_0016_9900_2020_99_4_379_383 crossref_primary_10_1517_13543776_15_8_955 crossref_primary_10_1016_j_syapm_2017_03_002 crossref_primary_10_1111_j_1574_6976_2005_00012_x crossref_primary_10_1128_AEM_71_5_2632_2641_2005 crossref_primary_10_1128_aem_02402_24 crossref_primary_10_1107_S0907444912042369 crossref_primary_10_1111_j_1524_475X_2007_00329_x crossref_primary_10_1007_s11274_023_03608_1 crossref_primary_10_1111_j_1365_2958_2004_04234_x crossref_primary_10_1039_C6RA00328A crossref_primary_10_1371_journal_pone_0138034 crossref_primary_10_1128_AEM_02014_07 crossref_primary_10_1016_j_lwt_2013_12_022 crossref_primary_10_1021_acs_jafc_2c01299 crossref_primary_10_1099_mic_0_043935_0 crossref_primary_10_1016_j_medmal_2006_01_008 crossref_primary_10_1038_nrmicro1600 crossref_primary_10_1007_BF03175344 crossref_primary_10_1371_journal_pone_0163469 crossref_primary_10_1128_JB_01692_08 crossref_primary_10_1007_s12298_021_01034_x crossref_primary_10_1016_j_resmic_2010_03_002 crossref_primary_10_1039_C5MD00015G crossref_primary_10_1099_mic_0_28601_0 crossref_primary_10_1111_j_1758_2229_2012_00349_x crossref_primary_10_1128_AEM_02187_06 crossref_primary_10_1128_MMBR_00046_12 crossref_primary_10_18006_2022_10_2__278_293 crossref_primary_10_3390_md19010016 crossref_primary_10_1039_b804469b crossref_primary_10_1039_C6AY02652D crossref_primary_10_1080_08927014_2013_776042 crossref_primary_10_1128_genomeA_00879_14 crossref_primary_10_1038_s41598_017_10997_5 crossref_primary_10_3390_ijms140714607 crossref_primary_10_1002_cbic_201000033 crossref_primary_10_1080_02757540_2015_1120722 crossref_primary_10_1111_mmi_13671 crossref_primary_10_1007_s00253_019_10080_1 crossref_primary_10_1186_s12964_023_01154_9 crossref_primary_10_1128_AEM_72_2_1190_1197_2006 crossref_primary_10_1002_jgm_682 crossref_primary_10_1139_w06_062 crossref_primary_10_3109_1040841X_2010_532479 crossref_primary_10_1007_s13353_015_0309_2 crossref_primary_10_1016_j_jpowsour_2015_03_007 crossref_primary_10_1073_pnas_0911839107 crossref_primary_10_1099_mic_0_000826 crossref_primary_10_1007_s00216_006_0730_9 crossref_primary_10_1016_j_aquaculture_2004_06_031 crossref_primary_10_1128_AEM_01389_08 crossref_primary_10_1371_journal_pone_0174454 crossref_primary_10_1517_13543770903222293 crossref_primary_10_1021_cr100045m crossref_primary_10_1016_j_heliyon_2023_e16205 crossref_primary_10_1111_1541_4337_12382 crossref_primary_10_1038_s41598_017_11892_9 crossref_primary_10_1016_j_watres_2023_121057 crossref_primary_10_1111_j_1574_6941_2009_00828_x crossref_primary_10_1038_ismej_2009_30 crossref_primary_10_1021_bi501086s crossref_primary_10_1146_annurev_micro_032521_025954 crossref_primary_10_1155_2014_162584 crossref_primary_10_1016_j_memsci_2025_123899 crossref_primary_10_1111_j_1541_4337_2011_00150_x crossref_primary_10_1099_mic_0_26977_0 crossref_primary_10_3389_fmicb_2022_977669 crossref_primary_10_1016_j_mimet_2004_04_016 crossref_primary_10_1007_s10482_013_0082_3 crossref_primary_10_1016_j_femsle_2005_09_029 crossref_primary_10_1021_cr100311q crossref_primary_10_1371_journal_pone_0167002 crossref_primary_10_1016_j_resmic_2006_11_015 crossref_primary_10_1111_j_1574_6941_2009_00745_x crossref_primary_10_1007_s13762_018_1930_5 crossref_primary_10_1016_j_biochi_2020_07_017 crossref_primary_10_1371_journal_pone_0082514 crossref_primary_10_1099_mic_0_27961_0 crossref_primary_10_3389_fmicb_2019_00455 crossref_primary_10_1111_j_1751_7915_2010_00197_x crossref_primary_10_3390_pharmaceutics16091160 crossref_primary_10_2147_IDR_S263196 crossref_primary_10_1039_C5RA25440J crossref_primary_10_1128_genomeA_00258_14 crossref_primary_10_22207_JPAM_13_3_64 crossref_primary_10_3390_s120404661 crossref_primary_10_1007_s00216_006_0761_2 crossref_primary_10_1007_s00253_014_5518_9 crossref_primary_10_1016_j_ijmm_2006_01_043 crossref_primary_10_1111_j_1758_2229_2010_00188_x crossref_primary_10_5483_BMBRep_2011_44_1_1 crossref_primary_10_1007_s00203_006_0186_5 crossref_primary_10_1002_pro_4954 crossref_primary_10_1134_S0026261721060072 crossref_primary_10_1080_08927014_2013_796939 crossref_primary_10_1146_annurev_cellbio_21_012704_131001 crossref_primary_10_1094_PHYTO_97_2_0227 crossref_primary_10_1016_j_tree_2009_02_008 crossref_primary_10_1371_journal_pone_0167344 crossref_primary_10_1111_mpp_12180 crossref_primary_10_1007_s00253_013_4891_0 crossref_primary_10_1021_es203933h crossref_primary_10_1016_j_biotechadv_2012_10_004 crossref_primary_10_1007_s00203_023_03442_x crossref_primary_10_1016_j_biortech_2018_03_007 crossref_primary_10_1021_cb400345h crossref_primary_10_1111_j_1462_2920_2005_00886_x crossref_primary_10_1099_mic_0_030973_0 crossref_primary_10_1128_MRA_00265_21 crossref_primary_10_1271_bbb_110322 crossref_primary_10_1111_j_1462_5822_2006_00817_x crossref_primary_10_1007_s00216_006_0970_8 crossref_primary_10_3390_antibiotics13100919 crossref_primary_10_1016_j_biortech_2024_132027 crossref_primary_10_4491_eer_2018_380 crossref_primary_10_5423_PPJ_2011_27_3_242 |
Cites_doi | 10.1021/bi970589n 10.1093/oxfordjournals.molbev.a025664 10.1046/j.1365-2958.2003.03351.x 10.1006/abio.1999.4160 10.1016/0003-2697(70)90093-X 10.1016/S0014-5793(99)00625-0 10.1038/35081101 10.1073/pnas.022056699 10.1038/35023079 10.1128/jb.77.6.776-782.1959 10.1099/00221287-148-4-923 10.1128/aem.62.10.3620-3631.1996 10.1128/AEM.68.4.1754-1759.2002 10.1146/annurev.genet.35.102401.090913 10.1099/00207713-47-2-249 10.1093/bioinformatics/18.3.502 10.1099/mic.0.26085-0 10.1073/pnas.95.22.12787 10.1073/pnas.93.18.9505 10.1016/S0076-6879(00)05495-1 10.1073/pnas.96.24.13904 10.1099/00207713-46-1-200 10.1073/pnas.97.7.3526 10.1023/A:1000277008064 10.1016/S0076-6879(01)36576-X 10.3201/eid0404.980405 10.1073/pnas.96.8.4360 10.1128/JB.185.7.2080-2095.2003 10.1099/00207713-50-4-1563 10.1128/JB.181.18.5766-5770.1999 10.1038/35081216 10.1016/S0044-8486(97)00069-0 10.1128/AEM.68.8.3919-3924.2002 10.1126/science.272.5268.1655 10.1128/JB.182.24.6921-6926.2000 10.1074/jbc.275.6.3957 10.1128/AEM.69.2.909-916.2003 10.1046/j.1365-2958.2002.03084.x 10.1146/annurev.micro.55.1.165 10.1016/S0723-2020(96)80021-X 10.1128/JB.185.7.2066-2079.2003 10.1128/AEM.64.9.3507-3511.1998 10.1074/jbc.270.30.17672 10.1016/S0723-2020(00)80043-0 |
ContentType | Journal Article |
Copyright | 2004 INIST-CNRS Copyright American Society for Microbiology Oct 2003 Copyright © 2003, American Society for Microbiology 2003 |
Copyright_xml | – notice: 2004 INIST-CNRS – notice: Copyright American Society for Microbiology Oct 2003 – notice: Copyright © 2003, American Society for Microbiology 2003 |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7S9 L.6 7X8 5PM |
DOI | 10.1128/AEM.69.10.5941-5949.2003 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database AGRICOLA MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
EISSN | 1098-5336 |
EndPage | 5949 |
ExternalDocumentID | PMC201243 704648371 14532048 15195652 10_1128_AEM_69_10_5941_5949_2003 aem_69_10_5941 US201300946947 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: 5T32GM07616 – fundername: NIGMS NIH HHS grantid: T32 GM007616 |
GroupedDBID | --- -~X .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 85S AAZTW ABOGM ABPPZ ABPTK ABTAH ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV AENEX AFFNX AFMIJ AFRAH AGCDD AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CS3 D0L DIK E.- E3Z EBS EJD F20 F5P FBQ GX1 HYE HZ~ H~9 K-O KQ8 L7B MVM NEJ O9- OHT OK1 P2P PQQKQ RHF RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UCJ UHB VH1 W8F WH7 WHG WOQ X6Y X7M XFK XJT YV5 ZA5 ZCG ZGI ZXP ZY4 ~02 ~KM AAGFI AAYXX ADUKH ADXHL AGVNZ CITATION H13 IQODW CGR CUY CVF ECM EIF NPM PKN Z5M 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c622t-46c2b8a6eaf86b15bfee239c07415819aa787ca9656514fe87fe2d8efb24f8833 |
ISSN | 0099-2240 |
IngestDate | Thu Aug 21 18:25:55 EDT 2025 Fri Sep 05 05:01:30 EDT 2025 Thu Sep 04 20:24:00 EDT 2025 Fri Sep 05 00:44:47 EDT 2025 Mon Jun 30 08:27:23 EDT 2025 Wed Feb 19 02:33:36 EST 2025 Mon Jul 21 09:15:04 EDT 2025 Thu Apr 24 23:01:08 EDT 2025 Tue Jul 01 00:46:16 EDT 2025 Wed May 18 15:27:45 EDT 2016 Wed Dec 27 19:18:48 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Pseudomonadales Soils Growth Bacteria Pseudomonadaceae Lactone Pseudomonas aeruginosa Acyl Quorum sensing |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c622t-46c2b8a6eaf86b15bfee239c07415819aa787ca9656514fe87fe2d8efb24f8833 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Corresponding author. Mailing address: Environmental Science & Engineering, W. M. Keck Laboratories, M/C 138-78, California Institute of Technology, Pasadena, CA 91125. Phone: (626) 395-4182. Fax: (626) 395-2940. E-mail: jleadbetter@caltech.edu. |
OpenAccessLink | http://scholarbank.nus.edu.sg/handle/10635/102132 |
PMID | 14532048 |
PQID | 205959211 |
PQPubID | 42251 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_201243 crossref_primary_10_1128_AEM_69_10_5941_5949_2003 proquest_miscellaneous_75760344 pubmed_primary_14532048 pascalfrancis_primary_15195652 crossref_citationtrail_10_1128_AEM_69_10_5941_5949_2003 proquest_miscellaneous_49199517 highwire_asm_aem_69_10_5941 fao_agris_US201300946947 proquest_journals_205959211 proquest_miscellaneous_18938212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-10-01 |
PublicationDateYYYYMMDD | 2003-10-01 |
PublicationDate_xml | – month: 10 year: 2003 text: 2003-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Applied and Environmental Microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2003 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 (e_1_3_2_31_2) 1996; 12 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 (e_1_3_2_14_2) 1997; 36 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_35_2 (e_1_3_2_6_2) 1997; 156 |
References_xml | – volume: 36 start-page: 11077 year: 1997 ident: e_1_3_2_14_2 publication-title: Biochemistry doi: 10.1021/bi970589n – ident: e_1_3_2_40_2 doi: 10.1093/oxfordjournals.molbev.a025664 – ident: e_1_3_2_24_2 doi: 10.1046/j.1365-2958.2003.03351.x – ident: e_1_3_2_5_2 doi: 10.1006/abio.1999.4160 – ident: e_1_3_2_42_2 doi: 10.1016/0003-2697(70)90093-X – ident: e_1_3_2_46_2 doi: 10.1016/S0014-5793(99)00625-0 – ident: e_1_3_2_8_2 doi: 10.1038/35081101 – ident: e_1_3_2_47_2 doi: 10.1073/pnas.022056699 – ident: e_1_3_2_39_2 doi: 10.1038/35023079 – ident: e_1_3_2_11_2 doi: 10.1128/jb.77.6.776-782.1959 – ident: e_1_3_2_33_2 doi: 10.1099/00221287-148-4-923 – ident: e_1_3_2_21_2 doi: 10.1128/aem.62.10.3620-3631.1996 – ident: e_1_3_2_7_2 doi: 10.1128/AEM.68.4.1754-1759.2002 – ident: e_1_3_2_12_2 doi: 10.1146/annurev.genet.35.102401.090913 – ident: e_1_3_2_3_2 doi: 10.1099/00207713-47-2-249 – ident: e_1_3_2_37_2 doi: 10.1093/bioinformatics/18.3.502 – ident: e_1_3_2_18_2 doi: 10.1099/mic.0.26085-0 – ident: e_1_3_2_17_2 doi: 10.1073/pnas.95.22.12787 – ident: e_1_3_2_36_2 doi: 10.1073/pnas.93.18.9505 – ident: e_1_3_2_35_2 doi: 10.1016/S0076-6879(00)05495-1 – ident: e_1_3_2_44_2 doi: 10.1073/pnas.96.24.13904 – ident: e_1_3_2_4_2 doi: 10.1099/00207713-46-1-200 – ident: e_1_3_2_9_2 doi: 10.1073/pnas.97.7.3526 – ident: e_1_3_2_29_2 doi: 10.1023/A:1000277008064 – ident: e_1_3_2_34_2 doi: 10.1016/S0076-6879(01)36576-X – ident: e_1_3_2_41_2 doi: 10.3201/eid0404.980405 – ident: e_1_3_2_32_2 doi: 10.1073/pnas.96.8.4360 – ident: e_1_3_2_43_2 doi: 10.1128/JB.185.7.2080-2095.2003 – ident: e_1_3_2_2_2 doi: 10.1099/00207713-50-4-1563 – ident: e_1_3_2_13_2 doi: 10.1128/JB.181.18.5766-5770.1999 – ident: e_1_3_2_20_2 doi: 10.1038/35081216 – volume: 156 start-page: 317 year: 1997 ident: e_1_3_2_6_2 publication-title: Aquaculture doi: 10.1016/S0044-8486(97)00069-0 – ident: e_1_3_2_23_2 doi: 10.1128/AEM.68.8.3919-3924.2002 – ident: e_1_3_2_28_2 doi: 10.1126/science.272.5268.1655 – ident: e_1_3_2_22_2 doi: 10.1128/JB.182.24.6921-6926.2000 – ident: e_1_3_2_15_2 doi: 10.1074/jbc.275.6.3957 – ident: e_1_3_2_10_2 doi: 10.1128/AEM.69.2.909-916.2003 – ident: e_1_3_2_19_2 – ident: e_1_3_2_30_2 doi: 10.1046/j.1365-2958.2002.03084.x – ident: e_1_3_2_26_2 doi: 10.1146/annurev.micro.55.1.165 – ident: e_1_3_2_27_2 doi: 10.1016/S0723-2020(96)80021-X – ident: e_1_3_2_38_2 doi: 10.1128/JB.185.7.2066-2079.2003 – volume: 12 start-page: 357 year: 1996 ident: e_1_3_2_31_2 publication-title: Comput. Appl. Biosci. – ident: e_1_3_2_45_2 doi: 10.1128/AEM.64.9.3507-3511.1998 – ident: e_1_3_2_16_2 doi: 10.1074/jbc.270.30.17672 – ident: e_1_3_2_25_2 doi: 10.1016/S0723-2020(00)80043-0 |
SSID | ssj0004068 |
Score | 2.2858107 |
Snippet | Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are... Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit... Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5941 |
SubjectTerms | 4-Butyrolactone 4-Butyrolactone - analogs & derivatives 4-Butyrolactone - metabolism acyl-homoserine lactone acylase amide hydrolases Amidohydrolases Amidohydrolases - genetics Amidohydrolases - metabolism analogs & derivatives analysis Bacteria Bacterial Proteins Bacterial Proteins - genetics Bacterial Proteins - metabolism biodegradation Biological and medical sciences Culture Media DNA, Ribosomal DNA, Ribosomal - analysis E coli Environmental Microbiology and Biodegradation enzymes Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial genes genetics growth & development homoserine lactone lactonase Inactivation Ionization isolation & purification lactones Mass spectrometry metabolism microbial growth Microbiology Molecular Sequence Data nucleotide sequences Nutrients Phylogeny Physical growth Pseudomonas Pseudomonas - genetics Pseudomonas - growth & development Pseudomonas - isolation & purification Pseudomonas - metabolism Pseudomonas aeruginosa Pseudomonas aeruginosa - growth & development Pseudomonas aeruginosa - isolation & purification Pseudomonas aeruginosa - metabolism quorum sensing ribosomal RNA RNA, Ribosomal, 16S RNA, Ribosomal, 16S - genetics Sequence Analysis, DNA Signal Transduction soil bacteria soil biology Soil Microbiology Soils |
Title | Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1 |
URI | http://aem.asm.org/content/69/10/5941.abstract https://www.ncbi.nlm.nih.gov/pubmed/14532048 https://www.proquest.com/docview/205959211 https://www.proquest.com/docview/18938212 https://www.proquest.com/docview/49199517 https://www.proquest.com/docview/75760344 https://pubmed.ncbi.nlm.nih.gov/PMC201243 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2IQQ8IBiXlcHwA29VSuI5jv04oU7V2IVLK-0tslOnq9Q1Y2mRxg_gd3NOru4uYvDiNk5OYuV8sc-xfb5DyAc_NVZLP_WYMAocFMM9FSbcC4xRY8kT6RexVUfHYjDiB6fh6drab2fX0nJhesmvW-NK_kerUAd6xSjZf9Bsc1OogP-gXyhBw1DeS8ejxXRWxVEW6_nJ1cw7y86zvIjp684wlw78_lgi40IXt2ogWTJuLJyA9704Q9tTd_NsitFYdjkG0bkelwEEzXHe1fZyOZnOs1x3v-ydBK49WxuxKOLEzGFIyrSleGqxU81OH7SrUYNyBvZgemMK-7ANnMBEoKYIPCqlv61MVrTb3poOWCkPrQi3Ay5ztdRA87sXvVDxwINCOV0r1jnDdH325hDAMKxhr3_UE6oHFc29CvLXdtirl_qPT-L90eFhPOyfDtfJAxZFxXL_568O67wvZM1mio2vd4Qx-fGu56yYOeupzhwCatx_q3P4BNMyd8ptzs31PbqO0TN8Rp5W3grdK6H3nKzZ-SZ5WOYvvdokj-qw9nyTPHGYLV-Qnw40aZbSa9CkFTRpCU1aQZMCNGkJTWquqKYITepAkwLOqANN2kKTIjRfktF-f_hp4FUpPrxEMLbwuEiYkVpYnUphgtCk1rJdlRSGLhirWsOAkmgFXgdY9qmVUWrZWNrUMJ5inuxXZGMOzd0i1PBkHCobCC18nqRKygDeXhKiTQ5m-G6HRLVG4qTiv8c0LLO48IOZjEGXsVB4iLrEQmGWVpAMGsmLkgPmHjJboPRYT2CojkffGW4Q8BUXikcdsl0jIdb5eaztuXOLDtlZAUf7ROSBEiED8RotcdUX5fDIUIWKBSD-vjkLAwWu_um5zZZ5HIBnIsFQvfsKrpCvIYjuviIKI4EcoR3yukRn2zqOGWa47BCxgtvmAqSxXz0zn54VdPbwbhjfffPXZm2Tx22X8pZsLC6X9h14BAuzU3yufwAE8ghU |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilization+of+acyl-homoserine+lactone+quorum+signals+for+growth+by+a+soil+pseudomonad+and+Pseudomonas+aeruginosa+PAO1&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Huang%2C+J+J&rft.au=Han%2C+Ji&rft.au=Zhang%2C+L+H&rft.au=Leadbetter%2C+J+R&rft.date=2003-10-01&rft.issn=0099-2240&rft.volume=69&rft.issue=10+p.5941-5949&rft.spage=5941&rft.epage=5949&rft_id=info:doi/10.1128%2FAEM.69.10.5941-5949.2003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |