Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy

Summary Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia‐associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances mel...

Full description

Saved in:
Bibliographic Details
Published inPigment cell and melanoma research Vol. 28; no. 4; pp. 390 - 406
Main Authors Wellbrock, Claudia, Arozarena, Imanol
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.07.2015
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia‐associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP‐kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling.
AbstractList Summary Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP-kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling.
Summary Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia‐associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP‐kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling.
Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP-kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling.
Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia‐associated transcription factor ( MITF ) is essential for the existence of melanocytes. MITF 's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF / MEK / ERK / MAP ‐kinase ( MAPK ) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF 's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling.
Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP-kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling.Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP-kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling.
Author Wellbrock, Claudia
Arozarena, Imanol
AuthorAffiliation 1 Manchester Cancer Research Centre Wellcome Trust Centre for Cell Matrix Research Faculty of Life Sciences The University of Manchester Manchester UK
AuthorAffiliation_xml – name: 1 Manchester Cancer Research Centre Wellcome Trust Centre for Cell Matrix Research Faculty of Life Sciences The University of Manchester Manchester UK
Author_xml – sequence: 1
  givenname: Claudia
  surname: Wellbrock
  fullname: Wellbrock, Claudia
  email: Claudia.Wellbrock@manchester.ac.uk
  organization: Manchester Cancer Research Centre, Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
– sequence: 2
  givenname: Imanol
  surname: Arozarena
  fullname: Arozarena, Imanol
  organization: Manchester Cancer Research Centre, Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25818589$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1v0zAYhSM0xD7ghh-AInEzIWX4I3acG6SpogOphQnG4M5ynDert8QOtrvRf4-7rhVMCN_Y0vuco_P6HGZ71lnIspcYneB03o568CeY0Ao9yQ5wxViBS_Fjb_eu8H52GMI1Qhyxmj7L9gkTWDBRH2R2brR34yIuVD8YVagQnDYqQptHr2zQ3ozROJt3Skfnc2PzAXpl3aDyFm6hd-MANubKtvn89Ly4MVYFyEcVF3dqlUflr-DebAFejavn2dNO9QFePNxH2bfp-4vJh2L2-ezj5HRWaE4IKjgq2440mHdtU3YCGlZ3DEGtW6pEwzmmAIIQ0jAKXSkoJpySLm3NNONtSehR9m7jOy6bAVqdInrVy9GbQfmVdMrIvyfWLOSVu5UlrwlGKBkcPxh493MJIcrBBA19Wh3cMkjMRU2RYIQm9PUj9NotvU3rramqLusarRO9-jPRLsq2igSgDZD6CMFDJ7WJav33KaDpJUZy3bZcty3v206SN48kW9d_wngD35keVv8h5flk_mWrKTYaEyL82mmUv5G8ohWT3z-dya-X5cVUTC_ljP4GohzMVA
CitedBy_id crossref_primary_10_1111_pcmr_12422
crossref_primary_10_1016_j_celrep_2021_109136
crossref_primary_10_3389_fcell_2016_00033
crossref_primary_10_3390_app14114548
crossref_primary_10_3390_genes13112122
crossref_primary_10_1016_j_jid_2018_06_179
crossref_primary_10_1177_1934578X231156704
crossref_primary_10_4103_ijmpo_ijmpo_204_18
crossref_primary_10_3390_dermatopathology8040051
crossref_primary_10_1002_cncr_30593
crossref_primary_10_2217_epi_2017_0034
crossref_primary_10_1016_j_jid_2021_03_013
crossref_primary_10_1038_labinvest_2016_140
crossref_primary_10_1074_jbc_RA118_003616
crossref_primary_10_1111_pcmr_12710
crossref_primary_10_3390_ijms22115761
crossref_primary_10_1126_scisignal_aac6479
crossref_primary_10_3390_ijms23116001
crossref_primary_10_1007_s00210_019_01668_5
crossref_primary_10_1002_path_5213
crossref_primary_10_1038_s41568_019_0154_4
crossref_primary_10_3389_fnmol_2019_00111
crossref_primary_10_1016_j_semcancer_2017_10_006
crossref_primary_10_1080_02656736_2021_1874062
crossref_primary_10_1016_j_celrep_2019_05_069
crossref_primary_10_1038_s41388_018_0661_x
crossref_primary_10_3390_ijms22041895
crossref_primary_10_1007_s00210_024_03366_3
crossref_primary_10_1016_j_ccell_2016_02_003
crossref_primary_10_3390_biom11071021
crossref_primary_10_1016_j_jid_2016_11_026
crossref_primary_10_1038_onc_2017_135
crossref_primary_10_1016_j_cjprs_2022_09_015
crossref_primary_10_1111_pcmr_70008
crossref_primary_10_15252_msb_20177858
crossref_primary_10_18632_oncotarget_9423
crossref_primary_10_3390_cancers12071719
crossref_primary_10_1016_j_heliyon_2024_e28616
crossref_primary_10_1111_pcmr_12729
crossref_primary_10_1016_j_omto_2020_06_001
crossref_primary_10_1111_1750_3841_13380
crossref_primary_10_1038_s41571_019_0204_6
crossref_primary_10_1111_pcmr_12725
crossref_primary_10_1158_2326_6066_CIR_17_0051
crossref_primary_10_1038_s41467_021_22772_2
crossref_primary_10_18632_oncotarget_16514
crossref_primary_10_1016_j_bbagen_2020_129736
crossref_primary_10_1158_1535_7163_MCT_19_0028
crossref_primary_10_1016_j_tiv_2016_11_005
crossref_primary_10_1155_2019_1697913
crossref_primary_10_3389_fonc_2019_01506
crossref_primary_10_1111_pcmr_13092
crossref_primary_10_2492_inflammregen_35_244
crossref_primary_10_1038_s41388_020_1267_7
crossref_primary_10_1038_s41565_024_01690_6
crossref_primary_10_1038_s41388_020_01504_8
crossref_primary_10_3390_ijms21144852
crossref_primary_10_1111_pcmr_12611
crossref_primary_10_1371_journal_pone_0243565
crossref_primary_10_7554_eLife_78942
crossref_primary_10_1080_09168451_2018_1459176
crossref_primary_10_3390_ijms18050969
crossref_primary_10_3390_ijms21218274
crossref_primary_10_1186_s12943_018_0773_5
crossref_primary_10_1371_journal_pone_0158275
crossref_primary_10_1111_pcmr_12736
crossref_primary_10_1111_exd_12943
crossref_primary_10_3390_molecules30051124
crossref_primary_10_1021_acs_molpharmaceut_9b00512
crossref_primary_10_1134_S1022795424701424
crossref_primary_10_1038_s41598_017_07864_8
crossref_primary_10_3136_fstr_23_669
crossref_primary_10_3390_cancers13020166
crossref_primary_10_3390_cimb43030101
crossref_primary_10_1002_jcp_28844
crossref_primary_10_1038_s42003_022_03049_w
crossref_primary_10_1073_pnas_1705206114
crossref_primary_10_1111_febs_14040
crossref_primary_10_3390_molecules26196040
crossref_primary_10_1007_s10555_017_9659_z
crossref_primary_10_1042_BSR20210427
crossref_primary_10_1073_pnas_2100670119
crossref_primary_10_3389_fimmu_2017_01617
crossref_primary_10_1111_pcmr_12741
crossref_primary_10_1016_j_bbcan_2015_10_002
crossref_primary_10_1242_dmm_049229
crossref_primary_10_1186_s13072_019_0297_2
crossref_primary_10_1634_theoncologist_2019_0656
crossref_primary_10_1007_s11523_020_00695_0
crossref_primary_10_1016_j_cell_2018_06_025
crossref_primary_10_3889_oamjms_2023_11222
crossref_primary_10_1158_1078_0432_CCR_16_1192
crossref_primary_10_1111_jocd_15335
crossref_primary_10_1016_j_ejca_2017_06_033
crossref_primary_10_1038_labinvest_2017_9
crossref_primary_10_1038_s41580_020_0255_7
crossref_primary_10_1016_j_pharmthera_2017_05_010
crossref_primary_10_1038_s41419_020_2662_2
crossref_primary_10_15252_emmm_201505971
crossref_primary_10_1038_s41586_022_04774_2
crossref_primary_10_1111_pcmr_12873
crossref_primary_10_1038_s41598_024_72031_9
crossref_primary_10_1016_j_urology_2020_11_025
crossref_primary_10_1371_journal_pone_0177830
crossref_primary_10_1038_s41419_024_06580_2
crossref_primary_10_1186_s12935_024_03371_9
crossref_primary_10_1016_j_taap_2017_10_008
crossref_primary_10_1038_s41598_017_11366_y
crossref_primary_10_18632_oncotarget_7030
crossref_primary_10_3390_ijms22094387
crossref_primary_10_1007_s13530_019_0405_5
crossref_primary_10_1158_1078_0432_CCR_16_0954
crossref_primary_10_3389_fcell_2023_1297910
crossref_primary_10_3390_md19110612
crossref_primary_10_1038_s41598_018_29826_4
crossref_primary_10_1016_j_jid_2017_09_056
crossref_primary_10_1038_s41419_018_1096_6
crossref_primary_10_3892_mmr_2019_9958
crossref_primary_10_3389_fimmu_2021_629519
crossref_primary_10_3389_fmars_2024_1441589
crossref_primary_10_1021_acs_chemrestox_3c00283
crossref_primary_10_1111_pcmr_13210
crossref_primary_10_1016_j_cbi_2018_02_033
crossref_primary_10_1038_nature24037
crossref_primary_10_1158_1078_0432_CCR_19_1359
crossref_primary_10_3390_cells11071157
crossref_primary_10_4062_biomolther_2024_065
crossref_primary_10_1038_s41467_021_22181_5
crossref_primary_10_15252_emmm_201607156
crossref_primary_10_1016_j_semcancer_2019_07_016
crossref_primary_10_1038_ncomms13418
crossref_primary_10_1016_j_hoc_2020_09_005
crossref_primary_10_3390_ijms22147453
crossref_primary_10_1016_j_ctrv_2020_102060
crossref_primary_10_1016_j_bbamcr_2016_03_001
crossref_primary_10_1016_j_ebiom_2017_01_013
crossref_primary_10_1016_j_survophthal_2018_12_002
crossref_primary_10_3390_cancers10060155
crossref_primary_10_1002_mc_22472
crossref_primary_10_1016_j_jid_2020_12_039
crossref_primary_10_1016_j_phymed_2019_152877
crossref_primary_10_1158_1541_7786_MCR_17_0320
crossref_primary_10_1016_j_phrs_2015_04_006
crossref_primary_10_1101_gad_324657_119
crossref_primary_10_1111_pcmr_12812
crossref_primary_10_3389_fonc_2018_00173
crossref_primary_10_1038_s41388_018_0209_0
crossref_primary_10_1016_j_jid_2019_12_007
crossref_primary_10_18632_oncotarget_7175
crossref_primary_10_3390_plants9121672
crossref_primary_10_1038_s41467_024_54324_9
crossref_primary_10_3390_cancers12113147
crossref_primary_10_3390_app14177450
crossref_primary_10_1038_s41588_020_00749_z
crossref_primary_10_1038_s41598_021_97791_6
crossref_primary_10_1016_j_celrep_2022_111601
crossref_primary_10_1038_onc_2017_81
crossref_primary_10_1007_s10068_017_0171_6
crossref_primary_10_1016_j_jprot_2022_104671
crossref_primary_10_3390_cancers15123147
crossref_primary_10_52711_0974_360X_2022_00472
crossref_primary_10_1007_s10238_016_0445_y
Cites_doi 10.1016/j.ccr.2004.10.014
10.1128/MCB.14.12.8058
10.1073/pnas.1424576112
10.1016/j.stem.2009.12.010
10.1016/S1535-6108(02)00045-4
10.1111/j.1755-148X.2009.00653.x
10.1074/jbc.M309036200
10.1038/nature03269
10.1083/jcb.134.3.747
10.1158/1078-0432.CCR-06-2682
10.1111/pcmr.12274
10.1101/gad.450107
10.1038/jid.2008.30
10.1534/genetics.109.103945
10.1158/0008-5472.CAN-08-2149
10.1073/pnas.0808263106
10.1096/fj.07-9080com
10.1371/journal.pone.0002734
10.1074/jbc.M510590200
10.1242/jcs.013912
10.1111/j.1755-148X.2010.00757.x
10.1128/MCB.18.2.694
10.1034/j.1600-0749.2000.130404.x
10.1128/MCB.12.8.3653
10.1016/j.ccr.2013.02.003
10.1016/S0092-8674(02)00762-6
10.1242/dev.124.12.2377
10.1034/j.1600-0749.2000.130203.x
10.1038/nature03664
10.1158/0008-5472.CAN-07-2491
10.1111/j.1755-148X.2011.00931.x
10.1158/0008-5472.CAN-09-2913
10.1111/j.1755-148X.2011.00893.x
10.1074/jbc.M003816200
10.1128/MCB.24.7.2915-2922.2004
10.1093/hmg/ddt285
10.1074/jbc.273.49.33042
10.1534/genetics.107.081893
10.1038/nrm1498
10.1073/pnas.1205575110
10.1097/00000478-200101000-00005
10.1093/emboj/19.12.2900
10.1038/nature13121
10.1074/jbc.M611563200
10.1038/sj.onc.1201298
10.1101/gad.14.3.301
10.1083/jcb.200410115
10.1038/onc.2010.612
10.1074/jbc.M112.358341
10.1111/j.1755-148X.2008.00514.x
10.1074/jbc.M513094200
10.1074/jbc.M512052200
10.1038/nature12688
10.1083/jcb.142.3.827
10.1016/j.celrep.2014.06.045
10.1242/dev.064014
10.1016/j.ccr.2010.10.029
10.1074/jbc.M411757200
10.1073/pnas.1106351108
10.1101/gad.198192.112
10.1038/jid.2013.272
10.1158/2159-8290.CD-13-0617
10.1101/gad.406406
10.1111/j.1755-148X.2011.00862.x
10.1016/0092-8674(93)90429-T
10.1074/jbc.C000445200
10.1093/hmg/4.11.2131
10.1038/jid.2013.115
10.1074/jbc.C000113200
10.1016/0092-8674(95)90401-8
10.1158/1541-7786.MCR-06-0077
10.1083/jcb.200505059
10.1016/j.yexcr.2005.04.019
10.1038/ncomms1421
10.1074/jbc.M111696200
10.1158/0008-5472.CAN-03-3433
10.1016/j.molcel.2008.11.002
10.1158/2159-8290.CD-13-0424
10.1126/scisignal.2000475
10.1158/1541-7786.MCR-11-0387
10.1016/j.ajpath.2010.12.003
10.1371/journal.pone.0013779
10.1038/onc.2011.33
10.1172/JCI65780
10.1038/nature10539
10.1038/jid.2015.61
10.1042/BST20140020
10.1016/j.cub.2005.01.031
10.1158/0008-5472.CAN-09-0781
10.1371/journal.pone.0011574
10.1093/jnci/djs471
10.1074/jbc.M113.493874
10.1128/MCB.23.24.9073-9080.2003
10.1111/j.1755-148X.2011.00849.x
10.1111/j.1755-148X.2008.00506.x
10.1210/me.2009-0320
10.1128/MCB.24.7.2923-2931.2004
10.1016/j.molcel.2010.11.020
10.1007/s004390000328
10.1111/pcmr.12336
10.1158/0008-5472.CAN-08-1053
10.1038/nature11538
10.1111/j.1600-0749.2006.00322.x
10.1038/nature10630
10.1172/JCI70156
10.1038/onc.2012.229
10.1158/0008-5472.CAN-14-1392
10.1158/0008-5472.CAN-07-2912
10.1016/j.ccr.2011.10.030
10.1038/34681
10.1101/gad.1020502
10.1001/jamainternmed.2014.594
10.1038/ncomms6712
10.1158/2159-8290.CD-13-1007
10.1111/j.1600-0749.2005.00234.x
10.1038/onc.2011.162
10.1128/MCB.02299-05
10.1038/onc.2014.262
10.1073/pnas.0811902106
10.1111/j.1755-148X.2011.00871.x
10.1083/jcb.200202049
10.1021/pr0705441
10.1038/nsmb.2022
10.1158/2159-8290.CD-13-0005
10.1074/jbc.273.29.17983
10.1038/nature05661
10.1038/ncb2535
10.1038/ng0398-283
10.1093/hmg/9.13.1907
10.1146/annurev.genet.38.072902.092717
10.1093/hmg/3.4.553
10.1097/CMR.0000000000000025
10.1074/jbc.M110684200
10.1158/1078-0432.CCR-12-1630
10.1038/jid.2013.293
10.1038/onc.2011.424
10.1006/excr.2000.4803
10.1126/science.1228522
10.1038/onc.2011.425
10.1158/1078-0432.CCR-13-0779
10.1593/neo.10414
10.1111/j.1755-148X.2010.00759.x
10.1093/hmg/9.1.125
10.1038/ncb1994
10.1038/onc.2010.598
10.1038/sj.gt.3302868
10.1242/dev.031989
10.1016/j.molmed.2006.07.008
10.1101/gad.14.2.158
10.1038/jid.2011.218
ContentType Journal Article
Copyright 2015 The Authors. Published by John Wiley & Sons Ltd.
2015 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons Ltd.
Copyright © 2015 John Wiley & Sons A/S
Copyright_xml – notice: 2015 The Authors. Published by John Wiley & Sons Ltd.
– notice: 2015 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons Ltd.
– notice: Copyright © 2015 John Wiley & Sons A/S
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TO
8FD
FR3
H94
K9.
P64
7X8
5PM
DOI 10.1111/pcmr.12370
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts

MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
DocumentTitleAlternate Wellbrock & Arozarena
EISSN 1755-148X
EndPage 406
ExternalDocumentID PMC4692100
3714623881
25818589
10_1111_pcmr_12370
PCMR12370
ark_67375_WNG_SV4TF8FV_L
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: CRUK
  funderid: C11591/A16416
– fundername: AICR
  funderid: 12‐0235
– fundername: Wellcome Trust
  grantid: 088785
– fundername: Cancer Research UK
  grantid: 16416
– fundername: Worldwide Cancer Research
  grantid: 12-0235
– fundername: CRUK
  grantid: C11591/A16416
– fundername: AICR
  grantid: 12‐0235
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HGLYW
HVGLF
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
~IA
~WT
24P
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QO
7TO
8FD
FR3
H94
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c6220-604df2b16fdb4f8eb59f50e9cd3a8b6613ee8222b53ef48312632f1485c56d423
IEDL.DBID DR2
ISSN 1755-1471
1755-148X
IngestDate Thu Aug 21 18:16:26 EDT 2025
Fri Jul 11 04:15:39 EDT 2025
Wed Aug 13 06:51:43 EDT 2025
Mon Jul 21 05:57:11 EDT 2025
Thu Apr 24 22:56:02 EDT 2025
Tue Jul 01 02:08:39 EDT 2025
Wed Jan 22 16:22:02 EST 2025
Wed Oct 30 09:49:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords MAP kinase pathway
microphthalmia-associated transcription factor
melanoma
MEK
BRAF
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2015 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6220-604df2b16fdb4f8eb59f50e9cd3a8b6613ee8222b53ef48312632f1485c56d423
Notes ark:/67375/WNG-SV4TF8FV-L
AICR - No. 12-0235
istex:74358B5BF484CF7F6A42AAE0C93694BC70FAAA7E
CRUK - No. C11591/A16416
ArticleID:PCMR12370
[The legal statement in the copyright line for this article was modified on 20 August 2015 after original online publication].
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpcmr.12370
PMID 25818589
PQID 1687949902
PQPubID 1036336
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4692100
proquest_miscellaneous_1689308523
proquest_journals_1687949902
pubmed_primary_25818589
crossref_citationtrail_10_1111_pcmr_12370
crossref_primary_10_1111_pcmr_12370
wiley_primary_10_1111_pcmr_12370_PCMR12370
istex_primary_ark_67375_WNG_SV4TF8FV_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2015
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: La Jolla
– name: Hoboken
PublicationTitle Pigment cell and melanoma research
PublicationTitleAlternate Pigment Cell Melanoma Res
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References Mansky, K.C., Sankar, U., Han, J., and Ostrowski, M.C. (2002). Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J. Biol. Chem. 277, 11077-11083.
Busca, R., and Ballotti, R. (2000). Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13, 60-69.
Goodall, J., Carreira, S., Denat, L., Kobi, D., Davidson, I., Nuciforo, P., Sturm, R.A., Larue, L., and Goding, C.R. (2008). Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res. 68, 7788-7794.
Tachibana, M. (2000). MITF: a stream flowing for pigment cells. Pigment Cell Res. 13, 230-240.
Levy, C., Khaled, M., Iliopoulos, D. et al. (2010). Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol. Cell 40, 841-849.
Johannessen, C.M., Johnson, L.A., Piccioni, F. et al. (2013). A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138-142.
Ploper, D., Taelman, V.F., Robert, L., Perez, B.S., Titz, B., Chen, H.W., Graeber, T.G., Von Euw, E., Ribas, A., and De Robertis, E.M. (2015). MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc. Natl. Acad. Sci. USA 112, E420-E429.
Arozarena, I., Sanchez-Laorden, B., Packer, L., Hidalgo-Carcedo, C., Hayward, R., Viros, A., Sahai, E., and Marais, R. (2011b). Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 19, 45-57.
Lowings, P., Yavuzer, U., and Goding, C.R. (1992). Positive and negative elements regulate a melanocyte-specific promoter. Mol. Cell. Biol. 12, 3653-3662.
Sato, S., Roberts, K., Gambino, G., Cook, A., Kouzarides, T., and Goding, C.R. (1997). CBP/p300 as a co-factor for the Microphthalmia transcription factor. Oncogene 14, 3083-3092.
Yasumoto, K., Yokoyama, K., Shibata, K., Tomita, Y., and Shibahara, S. (1994). Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol. Cell. Biol. 14, 8058-8070.
Damsky, W.E., Curley, D.P., Santhanakrishnan, M. et al. (2011). beta-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 20, 741-754.
Haq, R., Yokoyama, S., Hawryluk, E.B. et al. (2013b). BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc. Natl. Acad. Sci. USA 110, 4321-4326.
Thomas, A.J., and Erickson, C.A. (2009). FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism. Development 136, 1849-1858.
Lee, M., Goodall, J., Verastegui, C., Ballotti, R., and Goding, C.R. (2000). Direct regulation of the Microphthalmia promoter by Sox10 links Waardenburg-Shah syndrome (WS4)-associated hypopigmentation and deafness to WS2. J. Biol. Chem. 275, 37978-37983.
Marshall, C.J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179-185.
Watanabe, A., Takeda, K., Ploplis, B., and Tachibana, M. (1998). Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat. Genet. 18, 283-286.
Mcgill, G.G., Haq, R., Nishimura, E.K., and Fisher, D.E. (2006). c-Met expression is regulated by Mitf in the melanocyte lineage. J. Biol. Chem. 281, 10365-10373.
Bauer, G.L., Praetorius, C., Bergsteinsdottir, K. et al. (2009). The role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue. Genetics 183, 581-594.
Landsberg, J., Kohlmeyer, J., Renn, M. et al. (2012). Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412-416.
Bohm, M., Moellmann, G., Cheng, E., Alvarez-Franco, M., Wagner, S., Sassone-Corsi, P., and Halaban, R. (1995). Identification of p90RSK as the probable CREB-Ser133 kinase in human melanocytes. Cell Growth Differ. 6, 291-302.
Haflidadottir, B.S., Bergsteinsdottir, K., Praetorius, C., and Steingrimsson, E. (2010). miR-148 regulates Mitf in melanoma cells. PLoS ONE 5, e11574.
Zeng, Z., Johnson, S.L., Lister, J.A., and Patton, E.E. (2015). Temperature-sensitive splicing of mitfa by an intron mutation in zebrafish. Pigment Cell Melanoma Res. 28, 229-232.
Javelaud, D., Alexaki, V.I., Pierrat, M.J. et al. (2011). GLI2 and M-MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells. Pigment Cell Melanoma Res. 24, 932-943.
Loercher, A.E., Tank, E.M., Delston, R.B., and Harbour, J.W. (2005). MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J. Cell Biol. 168, 35-40.
Beuret, L., Flori, E., Denoyelle, C., Bille, K., Busca, R., Picardo, M., Bertolotto, C., and Ballotti, R. (2007). Up-regulation of MET expression by alpha-melanocyte-stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis. J. Biol. Chem. 282, 14140-14147.
Bertolotto, C., Abbe, P., Hemesath, T.J., Bille, K., Fisher, D.E., Ortonne, J.P., and Ballotti, R. (1998a). Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142, 827-835.
Thomson, J.A., Murphy, K., Baker, E., Sutherland, G.R., Parsons, P.G., Sturm, R.A., and Thomson, F. (1995). The brn-2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells. Oncogene 11, 691-700.
Li, W.Q., Qureshi, A.A., Robinson, K.C., and Han, J. (2014). Sildenafil use and increased risk of incident melanoma in US men: a prospective cohort study. JAMA Intern. Med. 174, 964-970.
Xu, W., Gong, L., Haddad, M.M., Bischof, O., Campisi, J., Yeh, E.T., and Medrano, E.E. (2000). Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255, 135-143.
Nakai, N., Kishida, T., Shin-Ya, M., Imanishi, J., Ueda, Y., Kishimoto, S., and Mazda, O. (2007). Therapeutic RNA interference of malignant melanoma by electrotransfer of small interfering RNA targeting Mitf. Gene Ther. 14, 357-365.
Wellbrock, C. (2014). MAPK pathway inhibition in melanoma: resistance three ways. Biochem. Soc. Trans. 42, 727-732.
Frederick, D.T., Piris, A., Cogdill, A.P. et al. (2013). BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225-1231.
Bismuth, K., Skuntz, S., Hallsson, J.H., Pak, E., Dutra, A.S., Steingrimsson, E., and Arnheiter, H. (2008). An unstable targeted allele of the mouse Mitf gene with a high somatic and germline reversion rate. Genetics 178, 259-272.
Boyle, G.M., Woods, S.L., Bonazzi, V.F., Stark, M.S., Hacker, E., Aoude, L.G., Dutton-Regester, K., Cook, A.L., Sturm, R.A., and Hayward, N.K. (2011). Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res. 24, 525-537.
Cook, A.L., Smith, A.G., Smit, D.J., Leonard, J.H., and Sturm, R.A. (2005). Co-expression of SOX9 and SOX10 during melanocytic differentiation in vitro. Exp. Cell Res. 308, 222-235.
Marquette, A., Andre, J., Bagot, M., Bensussan, A., and Dumaz, N. (2011). ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat. Struct. Mol. Biol. 18, 584-591.
Tap, W.D., Gong, K.W., Dering, J. et al. (2010). Pharmacodynamic characterization of the efficacy signals due to selective BRAF inhibition with PLX4032 in malignant melanoma. Neoplasia 12, 637-649.
Thomas, A.J., and Erickson, C.A. (2008). The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res. 21, 598-610.
Kubic, J.D., Mascarenhas, J.B., Iizuka, T., Wolfgeher, D., and Lang, D. (2012). GSK-3 promotes cell survival, growth, and PAX3 levels in human melanoma cells. Mol. Cancer Res. 10, 1065-1076.
Hoek, K.S., and Goding, C.R. (2010). Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res. 23, 746-759.
Eichhoff, O.M., Weeraratna, A., Zipser, M.C. et al. (2011). Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell Melanoma Res. 24, 631-642.
Takeda, K., Yasumoto, K., Takada, R., Takada, S., Watanabe, K., Udono, T., Saito, H., Takahashi, K., and Shibahara, S. (2000b). Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J. Biol. Chem. 275, 14013-14016.
Bronisz, A., Carey, H.A., Godlewski, J., Sif, S., Ostrowski, M.C., and Sharma, S.M. (2014). The multifunctional protein fused in sarcoma (FUS) is a coactivator of microphthalmia-associated transcription factor (MITF). J. Biol. Chem. 289, 326-334.
Hodgkinson, C.A., Moore, K.J., Nakayama, A., Steingrimsson, E., Copeland, N.G., Jenkins, N.A., and Arnheiter, H. (1993). Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74, 395-404.
Cantin, G.T., Yi, W., Lu, B., Park, S.K., Xu, T., Lee, J.D., and Yates, J.R. 3rd (2008). Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J. Proteome Res. 7, 1346-1351.
Delmas, V., Beermann, F., Martinozzi, S. et al. (2007). Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 21, 2923-2935.
Sun, C., Wang, L., Huang, S. et al. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508, 118-122.
Ugurel, S., Houben, R., Schrama, D., Voigt, H., Zapatka, M., Schadendorf, D., Brocker, E.B., and Becker, J.C. (2007). Microphthalmia-ass
2002; 16
2010; 12
2005; 170
2013; 3
2002; 158
2002; 277
2013; 123
2014; 27
2004; 6
2014; 24
2008; 32
2000; 255
2012; 14
2009; 119
2003; 278
2012; 10
2014; 134
2010; 23
2009; 11
1998; 18
2001; 61
2000; 19
2006; 20
2010; 24
1998b; 18
2000; 14
2004; 38
2000; 13
2012; 490
2006; 26
2008; 21
2008; 22
2006; 281
2012; 26
2010; 3
2011; 480
2010; 5
1996; 134
2010; 6
2014; 124
2011; 138
2007; 445
2009; 69
2011; 2
2007; 282
2004a; 24
2013; 504
2004a; 5
2013; 105
2002; 1
2008; 128
2008; 121
1998b; 273
1995; 4
2001; 25
1995; 6
2007; 13
2012; 31
2010; 40
2007; 14
2000b; 275
2004b; 64
2011; 131
2014; 42
1998; 391
2013a; 23
2013; 339
2015; 112
2000; 107
1994; 14
2009; 183
2005; 15
2005; 18
2009; 106
2003; 23
2012; 287
2013; 22
2000; 9
2000a; 9
2011a; 30
2008; 7
2008; 3
2014; 174
1992; 12
2011; 18
2013; 19
2014; 5
2014; 4
1997; 14
1993; 74
2011; 20
2008; 68
2005; 308
2000; 60
2011b; 19
2011; 24
2002; 109
2010; 70
2014; 8
2007; 21
2014; 289
2013b; 110
2006; 12
2005; 433
1995; 11
2005; 436
1998a; 273
2011; 30
2006; 19
2006; 4
2000; 275
2004b; 24
2011; 178
2009; 136
1997; 124
2005; 280
2015; 28
2011; 108
2014; 508
1995; 80
2013; 32
2005; 168
1998a; 142
2013; 133
2015
2014
2008; 178
2014; 74
1994; 3
e_1_2_17_95_1
e_1_2_17_3_1
e_1_2_17_30_1
e_1_2_17_72_1
e_1_2_17_53_1
e_1_2_17_99_1
e_1_2_17_7_1
e_1_2_17_11_1
e_1_2_17_34_1
e_1_2_17_76_1
e_1_2_17_152_1
e_1_2_17_15_1
e_1_2_17_38_1
e_1_2_17_57_1
e_1_2_17_19_1
e_1_2_17_103_1
e_1_2_17_126_1
Passeron T. (e_1_2_17_100_1) 2009; 119
e_1_2_17_145_1
e_1_2_17_107_1
Salti G.I. (e_1_2_17_110_1) 2000; 60
e_1_2_17_149_1
e_1_2_17_91_1
e_1_2_17_41_1
e_1_2_17_60_1
e_1_2_17_83_1
e_1_2_17_22_1
e_1_2_17_45_1
e_1_2_17_64_1
e_1_2_17_87_1
e_1_2_17_26_1
e_1_2_17_49_1
e_1_2_17_68_1
e_1_2_17_122_1
e_1_2_17_141_1
Bohm M. (e_1_2_17_18_1) 1995; 6
e_1_2_17_115_1
e_1_2_17_134_1
e_1_2_17_119_1
e_1_2_17_138_1
e_1_2_17_50_1
e_1_2_17_73_1
e_1_2_17_96_1
e_1_2_17_2_1
e_1_2_17_54_1
e_1_2_17_77_1
e_1_2_17_31_1
e_1_2_17_6_1
e_1_2_17_12_1
e_1_2_17_35_1
e_1_2_17_16_1
e_1_2_17_58_1
e_1_2_17_155_1
e_1_2_17_39_1
e_1_2_17_132_1
e_1_2_17_151_1
e_1_2_17_125_1
e_1_2_17_148_1
e_1_2_17_102_1
e_1_2_17_129_1
e_1_2_17_106_1
e_1_2_17_92_1
e_1_2_17_84_1
e_1_2_17_61_1
e_1_2_17_42_1
e_1_2_17_88_1
e_1_2_17_23_1
e_1_2_17_65_1
e_1_2_17_140_1
e_1_2_17_46_1
e_1_2_17_27_1
e_1_2_17_69_1
e_1_2_17_121_1
e_1_2_17_144_1
e_1_2_17_137_1
e_1_2_17_118_1
e_1_2_17_156_1
e_1_2_17_80_1
e_1_2_17_5_1
e_1_2_17_74_1
e_1_2_17_51_1
e_1_2_17_93_1
e_1_2_17_9_1
e_1_2_17_32_1
e_1_2_17_78_1
e_1_2_17_55_1
e_1_2_17_97_1
e_1_2_17_13_1
e_1_2_17_36_1
e_1_2_17_59_1
e_1_2_17_154_1
e_1_2_17_17_1
e_1_2_17_131_1
e_1_2_17_150_1
e_1_2_17_147_1
e_1_2_17_101_1
e_1_2_17_124_1
e_1_2_17_105_1
e_1_2_17_128_1
Scholl F.A. (e_1_2_17_114_1) 2001; 61
e_1_2_17_109_1
e_1_2_17_70_1
e_1_2_17_62_1
e_1_2_17_85_1
e_1_2_17_20_1
e_1_2_17_43_1
e_1_2_17_66_1
e_1_2_17_89_1
e_1_2_17_24_1
e_1_2_17_47_1
e_1_2_17_28_1
e_1_2_17_143_1
e_1_2_17_120_1
e_1_2_17_136_1
e_1_2_17_113_1
e_1_2_17_117_1
e_1_2_17_81_1
e_1_2_17_4_1
e_1_2_17_52_1
e_1_2_17_71_1
e_1_2_17_94_1
e_1_2_17_8_1
e_1_2_17_10_1
e_1_2_17_56_1
e_1_2_17_75_1
e_1_2_17_98_1
e_1_2_17_33_1
e_1_2_17_14_1
e_1_2_17_153_1
e_1_2_17_79_1
e_1_2_17_37_1
e_1_2_17_111_1
Thomson J.A. (e_1_2_17_133_1) 1995; 11
e_1_2_17_130_1
e_1_2_17_104_1
e_1_2_17_123_1
e_1_2_17_146_1
e_1_2_17_108_1
e_1_2_17_127_1
e_1_2_17_90_1
e_1_2_17_63_1
e_1_2_17_40_1
e_1_2_17_82_1
e_1_2_17_21_1
e_1_2_17_67_1
e_1_2_17_44_1
e_1_2_17_86_1
e_1_2_17_25_1
e_1_2_17_48_1
e_1_2_17_29_1
e_1_2_17_142_1
e_1_2_17_112_1
e_1_2_17_135_1
e_1_2_17_116_1
e_1_2_17_139_1
References_xml – reference: Hou, J.M., Krebs, M., Ward, T., Sloane, R., Priest, L., Hughes, A., Clack, G., Ranson, M., Blackhall, F., and Dive, C. (2011). Circulating tumor cells as a window on metastasis biology in lung cancer. Am. J. Pathol. 178, 989-996.
– reference: Shakhova, O., Zingg, D., Schaefer, S.M. et al. (2012). Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat. Cell Biol. 14, 882-890.
– reference: Goodall, J., Carreira, S., Denat, L., Kobi, D., Davidson, I., Nuciforo, P., Sturm, R.A., Larue, L., and Goding, C.R. (2008). Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res. 68, 7788-7794.
– reference: Chien, A.J., Moore, E.C., Lonsdorf, A.S., Kulikauskas, R.M., Rothberg, B.G., Berger, A.J., Major, M.B., Hwang, S.T., Rimm, D.L., and Moon, R.T. (2009). Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc. Natl. Acad. Sci. USA 106, 1193-1198.
– reference: Li, W.Q., Qureshi, A.A., Robinson, K.C., and Han, J. (2014). Sildenafil use and increased risk of incident melanoma in US men: a prospective cohort study. JAMA Intern. Med. 174, 964-970.
– reference: Cheli, Y., Ohanna, M., Ballotti, R., and Bertolotto, C. (2010). Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res. 23, 27-40.
– reference: Damsky, W.E., Curley, D.P., Santhanakrishnan, M. et al. (2011). beta-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 20, 741-754.
– reference: Passeron, T., Valencia, J.C., Namiki, T., Vieira, W.D., Passeron, H., Miyamura, Y., and Hearing, V.J. (2009). Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. J. Clin. Invest. 119, 954-963.
– reference: Abel, E.V., Basile, K.J., Kugel, C.H. 3rd et al. (2013). Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J. Clin. Invest. 123, 2155-2168.
– reference: Bertolotto, C., Lesueur, F., Giuliano, S. et al. (2011). A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480, 94-98.
– reference: Molina, D.M., Grewal, S., and Bardwell, L. (2005). Characterization of an ERK-binding domain in microphthalmia-associated transcription factor and differential inhibition of ERK2-mediated substrate phosphorylation. J. Biol. Chem. 280, 42051-42060.
– reference: Sato-Jin, K., Nishimura, E.K., Akasaka, E. et al. (2008). Epistatic connections between microphthalmia-associated transcription factor and endothelin signaling in Waardenburg syndrome and other pigmentary disorders. FASEB J. 22, 1155-1168.
– reference: Frederick, D.T., Piris, A., Cogdill, A.P. et al. (2013). BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225-1231.
– reference: Ploper, D., Taelman, V.F., Robert, L., Perez, B.S., Titz, B., Chen, H.W., Graeber, T.G., Von Euw, E., Ribas, A., and De Robertis, E.M. (2015). MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc. Natl. Acad. Sci. USA 112, E420-E429.
– reference: Ennen, M., Keime, C., Kobi, D., Mengus, G., Lipsker, D., Thibault-Carpentier, C., and Davidson, I. (2014). Single-cell gene expression signatures reveal melanoma cell heterogeneity. Oncogene doi: 10.1038/onc.2014.262. [Epub ahead of print].
– reference: Patton, E.E., Widlund, H.R., Kutok, J.L. et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr. Biol. 15, 249-254.
– reference: Arozarena, I., Sanchez-Laorden, B., Packer, L., Hidalgo-Carcedo, C., Hayward, R., Viros, A., Sahai, E., and Marais, R. (2011b). Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 19, 45-57.
– reference: Steingrimsson, E., Copeland, N.G., and Jenkins, N.A. (2004). Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 38, 365-411.
– reference: Thomas, A.J., and Erickson, C.A. (2009). FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism. Development 136, 1849-1858.
– reference: Arozarena, I., Bischof, H., Gilby, D., Belloni, B., Dummer, R., and Wellbrock, C. (2011a). In melanoma, beta-catenin is a suppressor of invasion. Oncogene 30, 4531-4543.
– reference: Murakami, H., and Arnheiter, H. (2005). Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Pigment Cell Res. 18, 265-277.
– reference: Tachibana, M. (2000). MITF: a stream flowing for pigment cells. Pigment Cell Res. 13, 230-240.
– reference: Gallagher, S.J., Rambow, F., Kumasaka, M., Champeval, D., Bellacosa, A., Delmas, V., and Larue, L. (2013). Beta-catenin inhibits melanocyte migration but induces melanoma metastasis. Oncogene 32, 2230-2238.
– reference: Boyle, G.M., Woods, S.L., Bonazzi, V.F., Stark, M.S., Hacker, E., Aoude, L.G., Dutton-Regester, K., Cook, A.L., Sturm, R.A., and Hayward, N.K. (2011). Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res. 24, 525-537.
– reference: Mcgill, G.G., Horstmann, M., Widlund, H.R. et al. (2002). Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707-718.
– reference: Eichhoff, O.M., Weeraratna, A., Zipser, M.C. et al. (2011). Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell Melanoma Res. 24, 631-642.
– reference: Lauss, M., Haq, R., Cirenajwis, H. et al. (2015). Genome-wide DNA methylation analysis in melanoma reveals the importance of CpG methylation in MITF regulation. J. Invest. Dermatol. doi: 10.1038/jid.2015.61. [Epub ahead of print].
– reference: Wellbrock, C., Rana, S., Paterson, H., Pickersgill, H., Brummelkamp, T., and Marais, R. (2008). Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS ONE 3, e2734.
– reference: Dorsky, R.I., Raible, D.W., and Moon, R.T. (2000). Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Genes Dev. 14, 158-162.
– reference: Takeda, K., Yasumoto, K., Takada, R., Takada, S., Watanabe, K., Udono, T., Saito, H., Takahashi, K., and Shibahara, S. (2000b). Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J. Biol. Chem. 275, 14013-14016.
– reference: Busca, R., Abbe, P., Mantoux, F., Aberdam, E., Peyssonnaux, C., Eychene, A., Ortonne, J.P., and Ballotti, R. (2000). Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J. 19, 2900-2910.
– reference: Verastegui, C., Bille, K., Ortonne, J.P., and Ballotti, R. (2000). Regulation of the microphthalmia-associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10. J. Biol. Chem. 275, 30757-30760.
– reference: Feige, E., Yokoyama, S., Levy, C. et al. (2011). Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF. Proc. Natl. Acad. Sci. USA 108, E924-E933.
– reference: King, R., Googe, P.B., Weilbaecher, K.N., Mihm, M.C. Jr, and Fisher, D.E. (2001). Microphthalmia transcription factor expression in cutaneous benign, malignant melanocytic, and nonmelanocytic tumors. Am. J. Surg. Pathol. 25, 51-57.
– reference: Lister, J.A., Capper, A., Zeng, Z., Mathers, M.E., Richardson, J., Paranthaman, K., Jackson, I.J., and Patton, E.E. (2014). A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion vs. regression in vivo. J. Invest. Dermatol. 134, 133-140.
– reference: Kono, M., Dunn, I.S., Durda, P.J., Butera, D., Rose, L.B., Haggerty, T.J., Benson, E.M., and Kurnick, J.T. (2006). Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol. Cancer Res. 4, 779-792.
– reference: Bell, R.E., and Levy, C. (2011). The three M's: melanoma, microphthalmia-associated transcription factor and microRNA. Pigment Cell Melanoma Res. 24, 1088-1106.
– reference: Wellbrock, C. (2014). MAPK pathway inhibition in melanoma: resistance three ways. Biochem. Soc. Trans. 42, 727-732.
– reference: Goodall, J., Martinozzi, S., Dexter, T.J., Champeval, D., Carreira, S., Larue, L., and Goding, C.R. (2004a). Brn-2 expression controls melanoma proliferation and is directly regulated by beta-catenin. Mol. Cell. Biol. 24, 2915-2922.
– reference: Bismuth, K., Skuntz, S., Hallsson, J.H., Pak, E., Dutra, A.S., Steingrimsson, E., and Arnheiter, H. (2008). An unstable targeted allele of the mouse Mitf gene with a high somatic and germline reversion rate. Genetics 178, 259-272.
– reference: Zhao, X., Fiske, B., Kawakami, A., Li, J., and Fisher, D.E. (2011). Regulation of MITF stability by the USP13 deubiquitinase. Nat. Commun. 2, 414.
– reference: Busca, R., and Ballotti, R. (2000). Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13, 60-69.
– reference: Garraway, L.A., Widlund, H.R., Rubin, M.A. et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117-122.
– reference: Huber, W.E., Price, E.R., Widlund, H.R., Du, J., Davis, I.J., Wegner, M., and Fisher, D.E. (2003). A tissue-restricted cAMP transcriptional response: SOX10 modulates alpha-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. J. Biol. Chem. 278, 45224-45230.
– reference: Chapman, A., Fernandez Del Ama, L., Ferguson, J., Kamarashev, J., Wellbrock, C., and Hurlstone, A. (2014). Heterogeneous tumor subpopulations cooperate to drive invasion. Cell Rep. 8, 688-695.
– reference: Levy, C., Khaled, M., and Fisher, D.E. (2006). MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med. 12, 406-414.
– reference: Sturm, R.A., Fox, C., Mcclenahan, P. et al. (2014). Phenotypic characterization of nevus and tumor patterns in MITF E318K mutation carrier melanoma patients. J. Invest. Dermatol. 134, 141-149.
– reference: Marshall, C.J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179-185.
– reference: Bauer, G.L., Praetorius, C., Bergsteinsdottir, K. et al. (2009). The role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue. Genetics 183, 581-594.
– reference: Marquette, A., Andre, J., Bagot, M., Bensussan, A., and Dumaz, N. (2011). ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat. Struct. Mol. Biol. 18, 584-591.
– reference: Wellbrock, C., Karasarides, M., and Marais, R. (2004a). The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 5, 875-885.
– reference: Smith, M.P., Ferguson, J., Arozarena, I., Hayward, R., Marais, R., Chapman, A., Hurlstone, A., and Wellbrock, C. (2013). Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J. Natl Cancer Inst. 105, 33-46.
– reference: Grill, C., Bergsteinsdóttir, K., Ogmundsdóttir, M.H., Pogenberg, V., Schepsky, A., Wilmanns, M., Pingault, V., and Steingrímsson, E. (2013). MITF mutations associated with pigment deficiency syndromes and melanoma have different effects on protein function. Hum Mol Genet. 22, 4357-4367.
– reference: Nishimura, E.K., Suzuki, M., Igras, V., Du, J., Lonning, S., Miyachi, Y., Roes, J., Beermann, F., and Fisher, D.E. (2010). Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 6, 130-140.
– reference: Sensi, M., Catani, M., Castellano, G. et al. (2011). Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase. J. Invest. Dermatol. 131, 2448-2457.
– reference: Salti, G.I., Manougian, T., Farolan, M., Shilkaitis, A., Majumdar, D., and Das Gupta, T.K. (2000). Micropthalmia transcription factor: a new prognostic marker in intermediate-thickness cutaneous malignant melanoma. Cancer Res. 60, 5012-5016.
– reference: Thurber, A.E., Douglas, G., Sturm, E.C., Zabierowski, S.E., Smit, D.J., Ramakrishnan, S.N., Hacker, E., Leonard, J.H., Herlyn, M., and Sturm, R.A. (2011). Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway. Oncogene 30, 3036-3048.
– reference: Landsberg, J., Kohlmeyer, J., Renn, M. et al. (2012). Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412-416.
– reference: Opdecamp, K., Nakayama, A., Nguyen, M.T., Hodgkinson, C.A., Pavan, W.J., and Arnheiter, H. (1997). Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 124, 2377-2386.
– reference: Lowings, P., Yavuzer, U., and Goding, C.R. (1992). Positive and negative elements regulate a melanocyte-specific promoter. Mol. Cell. Biol. 12, 3653-3662.
– reference: Van Allen, E.M., Wagle, N., Sucker, A. et al. (2014). The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94-109.
– reference: Haass, N.K., Beaumont, K.A., Hill, D.S., Anfosso, A., Mrass, P., Munoz, M.A., Kinjyo, I., and Weninger, W. (2014). Real-time cell cycle imaging during melanoma growth, invasion, and drug response. Pigment Cell Melanoma Res. 27, 764-776.
– reference: Sun, C., Wang, L., Huang, S. et al. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508, 118-122.
– reference: Arnheiter, H. (2010). The discovery of the microphthalmia locus and its gene, Mitf. Pigment Cell Melanoma Res. 23, 729-735.
– reference: Hanna, L.A., Foreman, R.K., Tarasenko, I.A., Kessler, D.S., and Labosky, P.A. (2002). Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 16, 2650-2661.
– reference: Houben, R., Vetter-Kauczok, C.S., Ortmann, S., Rapp, U.R., Broecker, E.B., and Becker, J.C. (2008). Phospho-ERK staining is a poor indicator of the mutational status of BRAF and NRAS in human melanoma. J. Invest. Dermatol. 128, 2003-2012.
– reference: Yu, M., Bardia, A., Wittner, B.S. et al. (2013). Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580-584.
– reference: Nakai, N., Kishida, T., Shin-Ya, M., Imanishi, J., Ueda, Y., Kishimoto, S., and Mazda, O. (2007). Therapeutic RNA interference of malignant melanoma by electrotransfer of small interfering RNA targeting Mitf. Gene Ther. 14, 357-365.
– reference: Lee, M., Goodall, J., Verastegui, C., Ballotti, R., and Goding, C.R. (2000). Direct regulation of the Microphthalmia promoter by Sox10 links Waardenburg-Shah syndrome (WS4)-associated hypopigmentation and deafness to WS2. J. Biol. Chem. 275, 37978-37983.
– reference: Wellbrock, C., Weisser, C., Geissinger, E., Troppmair, J., and Schartl, M. (2002). Activation of p59(Fyn) leads to melanocyte dedifferentiation by influencing MKP-1-regulated mitogen-activated protein kinase signaling. J. Biol. Chem. 277, 6443-6454.
– reference: Wellbrock, C., and Marais, R. (2005). Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J. Cell Biol. 170, 703-708.
– reference: Javelaud, D., Alexaki, V.I., Pierrat, M.J. et al. (2011). GLI2 and M-MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells. Pigment Cell Melanoma Res. 24, 932-943.
– reference: Levy, C., Khaled, M., Iliopoulos, D. et al. (2010). Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol. Cell 40, 841-849.
– reference: Olsen, J.V., Vermeulen, M., Santamaria, A. et al. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3.
– reference: Takeda, K., Takemoto, C., Kobayashi, I., Watanabe, A., Nobukuni, Y., Fisher, D.E., and Tachibana, M. (2000a). Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Hum. Mol. Genet. 9, 125-132.
– reference: Wu, M., Hemesath, T.J., Takemoto, C.M., Horstmann, M.A., Wells, A.G., Price, E.R., Fisher, D.Z., and Fisher, D.E. (2000). c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14, 301-312.
– reference: Hoek, K.S., and Goding, C.R. (2010). Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res. 23, 746-759.
– reference: Cook, A.L., Smith, A.G., Smit, D.J., Leonard, J.H., and Sturm, R.A. (2005). Co-expression of SOX9 and SOX10 during melanocytic differentiation in vitro. Exp. Cell Res. 308, 222-235.
– reference: De La Serna, I.L., Ohkawa, Y., Higashi, C., Dutta, C., Osias, J., Kommajosyula, N., Tachibana, T., and Imbalzano, A.N. (2006). The microphthalmia-associated transcription factor requires SWI/SNF enzymes to activate melanocyte-specific genes. J. Biol. Chem. 281, 20233-20241.
– reference: Li, X.H., Kishore, A.H., Dao, D., Zheng, W., Roman, C.A., and Word, R.A. (2010). A novel isoform of microphthalmia-associated transcription factor inhibits IL-8 gene expression in human cervical stromal cells. Mol. Endocrinol. 24, 1512-1528.
– reference: Dissanayake, S.K., Olkhanud, P.B., O'connell, M.P. et al. (2008). Wnt5A regulates expression of tumor-associated antigens in melanoma via changes in signal transducers and activators of transcription 3 phosphorylation. Cancer Res. 68, 10205-10214.
– reference: Price, E.R., Horstmann, M.A., Wells, A.G., Weilbaecher, K.N., Takemoto, C.M., Landis, M.W., and Fisher, D.E. (1998b). alpha-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J. Biol. Chem. 273, 33042-33047.
– reference: Giuliano, S., Cheli, Y., Ohanna, M. et al. (2010). Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas. Cancer Res. 70, 3813-3822.
– reference: Bertolotto, C., Abbe, P., Hemesath, T.J., Bille, K., Fisher, D.E., Ortonne, J.P., and Ballotti, R. (1998a). Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142, 827-835.
– reference: Smith, M.P., Sanchez-Laorden, B., O'brien, K. et al. (2014). The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFalpha. Cancer Discov. 4, 1214-1229.
– reference: Sato, S., Roberts, K., Gambino, G., Cook, A., Kouzarides, T., and Goding, C.R. (1997). CBP/p300 as a co-factor for the Microphthalmia transcription factor. Oncogene 14, 3083-3092.
– reference: Beuret, L., Flori, E., Denoyelle, C., Bille, K., Busca, R., Picardo, M., Bertolotto, C., and Ballotti, R. (2007). Up-regulation of MET expression by alpha-melanocyte-stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis. J. Biol. Chem. 282, 14140-14147.
– reference: Tap, W.D., Gong, K.W., Dering, J. et al. (2010). Pharmacodynamic characterization of the efficacy signals due to selective BRAF inhibition with PLX4032 in malignant melanoma. Neoplasia 12, 637-649.
– reference: Beuret, L., Ohanna, M., Strub, T., Allegra, M., Davidson, I., Bertolotto, C., and Ballotti, R. (2011). BRCA1 is a new MITF target gene. Pigment Cell Melanoma Res. 24, 725-727.
– reference: Cheli, Y., Giuliano, S., Fenouille, N. et al. (2012). Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene 31, 2461-2470.
– reference: Weeraratna, A.T., Jiang, Y., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M., and Trent, J.M. (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1, 279-288.
– reference: Gopal, Y.N., Rizos, H., Chen, G., et al. (2014). Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and oxidative p hosphorylation in melanoma. Cancer Res. 74, 7037-7047.
– reference: Taylor, K.L., Lister, J.A., Zeng, Z., Ishizaki, H., Anderson, C., Kelsh, R.N., Jackson, I.J., and Patton, E.E. (2011). Differentiated melanocyte cell division occurs in vivo and is promoted by mutations in Mitf. Development 138, 3579-3589.
– reference: Bemis, L.T., Chen, R., Amato, C.M., Classen, E.H., Robinson, S.E., Coffey, D.G., Erickson, P.F., Shellman, Y.G., and Robinson, W.A. (2008). MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res. 68, 1362-1368.
– reference: Konieczkowski, D.J., Johannessen, C.M., Abudayyeh, O. et al. (2014). A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 4, 816-827.
– reference: Xu, W., Gong, L., Haddad, M.M., Bischof, O., Campisi, J., Yeh, E.T., and Medrano, E.E. (2000). Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255, 135-143.
– reference: Bertolotto, C., Busca, R., Abbe, P., Bille, K., Aberdam, E., Ortonne, J.P., and Ballotti, R. (1998b). Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol. Cell. Biol. 18, 694-702.
– reference: Widlund, H.R., Horstmann, M.A., Price, E.R., Cui, J., Lessnick, S.L., Wu, M., He, X., and Fisher, D.E. (2002). Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J. Cell Biol. 158, 1079-1087.
– reference: Hoek, K.S., Eichhoff, O.M., Schlegel, N.C., Dobbeling, U., Kobert, N., Schaerer, L., Hemmi, S., and Dummer, R. (2008). In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 68, 650-656.
– reference: Cheli, Y., Giuliano, S., Botton, T., Rocchi, S., Hofman, V., Hofman, P., Bahadoran, P., Bertolotto, C., and Ballotti, R. (2011). Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 30, 2307-2318.
– reference: Bohm, M., Moellmann, G., Cheng, E., Alvarez-Franco, M., Wagner, S., Sassone-Corsi, P., and Halaban, R. (1995). Identification of p90RSK as the probable CREB-Ser133 kinase in human melanocytes. Cell Growth Differ. 6, 291-302.
– reference: Goodall, J., Wellbrock, C., Dexter, T.J., Roberts, K., Marais, R., and Goding, C.R. (2004b). The Brn-2 transcription factor links activated BRAF to melanoma proliferation. Mol. Cell. Biol. 24, 2923-2931.
– reference: Mazar, J., Deyoung, K., Khaitan, D., Meister, E., Almodovar, A., Goydos, J., Ray, A., and Perera, R.J. (2010). The regulation of miRNA-211 expression and its role in melanoma cell invasiveness. PLoS ONE 5, e13779.
– reference: Gray-Schopfer, V., Wellbrock, C., and Marais, R. (2007). Melanoma biology and new targeted therapy. Nature 445, 851-857.
– reference: Carreira, S., Goodall, J., Aksan, I., La Rocca, S.A., Galibert, M.D., Denat, L., Larue, L., and Goding, C.R. (2005). Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433, 764-769.
– reference: Scholl, F.A., Kamarashev, J., Murmann, O.V., Geertsen, R., Dummer, R., and Schafer, B.W. (2001). PAX3 is expressed in human melanomas and contributes to tumor cell survival. Cancer Res. 61, 823-826.
– reference: Delmas, V., Beermann, F., Martinozzi, S. et al. (2007). Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 21, 2923-2935.
– reference: Miller, A.J., Levy, C., Davis, I.J., Razin, E., and Fisher, D.E. (2005). Sumoylation of MITF and its related family members TFE3 and TFEB. J. Biol. Chem. 280, 146-155.
– reference: Potterf, S.B., Furumura, M., Dunn, K.J., Arnheiter, H., and Pavan, W.J. (2000). Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum. Genet. 107, 1-6.
– reference: Basile, K.J., Abel, E.V., and Aplin, A.E. (2012). Adaptive upregulation of FOXD3 and resistance to PLX4032/4720-induced cell death in mutant B-RAF melanoma cells. Oncogene 31, 2471-2479.
– reference: Salama, A.K., and Flaherty, K.T. (2013). BRAF in melanoma: current strategies and future directions. Clin. Cancer Res. 19, 4326-4334.
– reference: Pogenberg, V., Ogmundsdottir, M.H., Bergsteinsdottir, K., Schepsky, A., Phung, B., Deineko, V., Milewski, M., Steingrimsson, E., and Wilmanns, M. (2012). Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF. Genes Dev. 26, 2647-2658.
– reference: Pierrat, M.J., Marsaud, V., Mauviel, A., and Javelaud, D. (2012). Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-beta. J. Biol. Chem. 287, 17996-18004.
– reference: Haflidadottir, B.S., Bergsteinsdottir, K., Praetorius, C., and Steingrimsson, E. (2010). miR-148 regulates Mitf in melanoma cells. PLoS ONE 5, e11574.
– reference: Hoek, K.S., Schlegel, N.C., Brafford, P. et al. (2006). Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res. 19, 290-302.
– reference: Hodgkinson, C.A., Moore, K.J., Nakayama, A., Steingrimsson, E., Copeland, N.G., Jenkins, N.A., and Arnheiter, H. (1993). Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74, 395-404.
– reference: Mansky, K.C., Sankar, U., Han, J., and Ostrowski, M.C. (2002). Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J. Biol. Chem. 277, 11077-11083.
– reference: Yokoyama, S., Woods, S.L., Boyle, G.M. et al. (2011). A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 480, 99-103.
– reference: Thomson, J.A., Murphy, K., Baker, E., Sutherland, G.R., Parsons, P.G., Sturm, R.A., and Thomson, F. (1995). The brn-2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells. Oncogene 11, 691-700.
– reference: Pinner, S., Jordan, P., Sharrock, K., Bazley, L., Collinson, L., Marais, R., Bonvin, E., Goding, C., and Sahai, E. (2009). Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. Cancer Res. 69, 7969-7977.
– reference: Du, J., Widlund, H.R., Horstmann, M.A., Ramaswamy, S., Ross, K., Huber, W.E., Nishimura, E.K., Golub, T.R., and Fisher, D.E. (2004). Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6, 565-576.
– reference: Wellbrock, C., Ogilvie, L., Hedley, D., Karasarides, M., Martin, J., Niculescu-Duvaz, D., Springer, C.J., and Marais, R. (2004b). V599EB-RAF is an oncogene in melanocytes. Cancer Res. 64, 2338-2342.
– reference: Tassabehji, M., Newton, V.E., Liu, X.Z. et al. (1995). The mutational spectrum in Waardenburg syndrome. Hum. Mol. Genet. 4, 2131-2137.
– reference: Muller, J., Krijgsman, O., Tsoi, J. et al. (2014). Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat. Commun. 5, 5712.
– reference: O'connell, M.P., Marchbank, K., Webster, M.R. et al. (2013). Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov. 3, 1378-1393.
– reference: Cantin, G.T., Yi, W., Lu, B., Park, S.K., Xu, T., Lee, J.D., and Yates, J.R. 3rd (2008). Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J. Proteome Res. 7, 1346-1351.
– reference: Haq, R., Shoag, J., Andreu-Perez, P. et al. (2013a). Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23, 302-315.
– reference: Hemesath, T.J., Price, E.R., Takemoto, C., Badalian, T., and Fisher, D.E. (1998). MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391, 298-301.
– reference: Kubic, J.D., Mascarenhas, J.B., Iizuka, T., Wolfgeher, D., and Lang, D. (2012). GSK-3 promotes cell survival, growth, and PAX3 levels in human melanoma cells. Mol. Cancer Res. 10, 1065-1076.
– reference: Von Kriegsheim, A., Baiocchi, D., Birtwistle, M. et al. (2009). Cell fate decisions are specified by the dynamic ERK interactome. Nat. Cell Biol. 11, 1458-1464.
– reference: Watanabe, A., Takeda, K., Ploplis, B., and Tachibana, M. (1998). Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat. Genet. 18, 283-286.
– reference: Zeng, Z., Johnson, S.L., Lister, J.A., and Patton, E.E. (2015). Temperature-sensitive splicing of mitfa by an intron mutation in zebrafish. Pigment Cell Melanoma Res. 28, 229-232.
– reference: Carreira, S., Goodall, J., Denat, L., Rodriguez, M., Nuciforo, P., Hoek, K.S., Testori, A., Larue, L., and Goding, C.R. (2006). Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 20, 3426-3439.
– reference: Yasumoto, K., Yokoyama, K., Shibata, K., Tomita, Y., and Shibahara, S. (1994). Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol. Cell. Biol. 14, 8058-8070.
– reference: Ugurel, S., Houben, R., Schrama, D., Voigt, H., Zapatka, M., Schadendorf, D., Brocker, E.B., and Becker, J.C. (2007). Microphthalmia-associated transcription factor gene amplification in metastatic melanoma is a prognostic marker for patient survival, but not a predictive marker for chemosensitivity and chemotherapy response. Clin. Cancer Res. 13, 6344-6350.
– reference: Loercher, A.E., Tank, E.M., Delston, R.B., and Harbour, J.W. (2005). MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J. Cell Biol. 168, 35-40.
– reference: Bondurand, N., Pingault, V., Goerich, D.E., Lemort, N., Sock, E., Le Caignec, C., Wegner, M., and Goossens, M. (2000). Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum. Mol. Genet. 9, 1907-1917.
– reference: Bronisz, A., Carey, H.A., Godlewski, J., Sif, S., Ostrowski, M.C., and Sharma, S.M. (2014). The multifunctional protein fused in sarcoma (FUS) is a coactivator of microphthalmia-associated transcription factor (MITF). J. Biol. Chem. 289, 326-334.
– reference: Yang, G., Li, Y., Nishimura, E.K., Xin, H., Zhou, A., Guo, Y., Dong, L., Denning, M.F., Nickoloff, B.J., and Cui, R. (2008). Inhibition of PAX3 by TGF-beta modulates melanocyte viability. Mol. Cell 32, 554-563.
– reference: Anastas, J.N., Kulikauskas, R.M., Tamir, T. et al. (2014). WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. J. Clin. Invest. 124, 2877-2890.
– reference: Kubic, J.D., Young, K.P., Plummer, R.S., Ludvik, A.E., and Lang, D. (2008). Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Pigment Cell Melanoma Res. 21, 627-645.
– reference: Thomas, A.J., and Erickson, C.A. (2008). The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res. 21, 598-610.
– reference: Widmer, D.S., Hoek, K.S., Cheng, P.F., Eichhoff, O.M., Biedermann, T., Raaijmakers, M.I., Hemmi, S., Dummer, R., and Levesque, M.P. (2013). Hypoxia contributes to melanoma heterogeneity by triggering HIF1alpha-dependent phenotype switching. J. Invest. Dermatol. 133, 2436-2443.
– reference: Tachibana, M., Perez-Jurado, L.A., Nakayama, A., Hodgkinson, C.A., Li, X., Schneider, M., Miki, T., Fex, J., Francke, U., and Arnheiter, H. (1994). Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromosome 3p14.1-p12.3. Hum. Mol. Genet. 3, 553-557.
– reference: Khoja, L., Shenjere, P., Hodgson, C., Hodgetts, J., Clack, G., Hughes, A., Lorigan, P., and Dive, C. (2014). Prevalence and heterogeneity of circulating tumour cells in metastatic cutaneous melanoma. Melanoma Res. 24, 40-46.
– reference: Strub, T., Giuliano, S., Ye, T. et al. (2011). Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene 30, 2319-2332.
– reference: Johannessen, C.M., Johnson, L.A., Piccioni, F. et al. (2013). A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138-142.
– reference: Schepsky, A., Bruser, K., Gunnarsson, G.J., Goodall, J., Hallsson, J.H., Goding, C.R., Steingrimsson, E., and Hecht, A. (2006). The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Mol. Cell. Biol. 26, 8914-8927.
– reference: Diwakar, G., Zhang, D., Jiang, S., and Hornyak, T.J. (2008). Neurofibromin as a regulator of melanocyte development and differentiation. J. Cell Sci. 121, 167-177.
– reference: Haq, R., Yokoyama, S., Hawryluk, E.B. et al. (2013b). BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc. Natl. Acad. Sci. USA 110, 4321-4326.
– reference: Levy, C., Sonnenblick, A., and Razin, E. (2003). Role played by microphthalmia transcription factor phosphorylation and its Zip domain in its transcriptional inhibition by PIAS3. Mol. Cell. Biol. 23, 9073-9080.
– reference: Mcgill, G.G., Haq, R., Nishimura, E.K., and Fisher, D.E. (2006). c-Met expression is regulated by Mitf in the melanocyte lineage. J. Biol. Chem. 281, 10365-10373.
– reference: Price, E.R., Ding, H.F., Badalian, T., Bhattacharya, S., Takemoto, C., Yao, T.P., Hemesath, T.J., and Fisher, D.E. (1998a). Lineage-specific signaling in melanocytes. C-kit stimulation recruits p300/CBP to microphthalmia. J. Biol. Chem. 273, 17983-17986.
– reference: Bertolotto, C., Bille, K., Ortonne, J.P., and Ballotti, R. (1996). Regulation of tyrosinase gene expression by cAMP in B16 melanoma cells involves two CATGTG motifs surrounding the TATA box: implication of the microphthalmia gene product. J. Cell Biol. 134, 747-755.
– reference: Segura, M.F., Hanniford, D., Menendez, S. et al. (2009). Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc. Natl. Acad. Sci. USA 106, 1814-1819.
– volume: 109
  start-page: 707
  year: 2002
  end-page: 718
  article-title: Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability
  publication-title: Cell
– volume: 3
  start-page: 553
  year: 1994
  end-page: 557
  article-title: Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromosome 3p14.1‐p12.3
  publication-title: Hum. Mol. Genet.
– volume: 38
  start-page: 365
  year: 2004
  end-page: 411
  article-title: Melanocytes and the microphthalmia transcription factor network
  publication-title: Annu. Rev. Genet.
– volume: 21
  start-page: 627
  year: 2008
  end-page: 645
  article-title: Pigmentation PAX‐ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease
  publication-title: Pigment Cell Melanoma Res.
– volume: 11
  start-page: 691
  year: 1995
  end-page: 700
  article-title: The brn‐2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells
  publication-title: Oncogene
– volume: 19
  start-page: 45
  year: 2011b
  end-page: 57
  article-title: Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP‐specific phosphodiesterase PDE5A
  publication-title: Cancer Cell
– volume: 24
  start-page: 1512
  year: 2010
  end-page: 1528
  article-title: A novel isoform of microphthalmia‐associated transcription factor inhibits IL‐8 gene expression in human cervical stromal cells
  publication-title: Mol. Endocrinol.
– volume: 30
  start-page: 4531
  year: 2011a
  end-page: 4543
  article-title: In melanoma, beta‐catenin is a suppressor of invasion
  publication-title: Oncogene
– volume: 24
  start-page: 1088
  year: 2011
  end-page: 1106
  article-title: The three M's: melanoma, microphthalmia‐associated transcription factor and microRNA
  publication-title: Pigment Cell Melanoma Res.
– volume: 68
  start-page: 7788
  year: 2008
  end-page: 7794
  article-title: Brn‐2 represses microphthalmia‐associated transcription factor expression and marks a distinct subpopulation of microphthalmia‐associated transcription factor‐negative melanoma cells
  publication-title: Cancer Res.
– volume: 19
  start-page: 290
  year: 2006
  end-page: 302
  article-title: Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature
  publication-title: Pigment Cell Res.
– volume: 12
  start-page: 406
  year: 2006
  end-page: 414
  article-title: MITF: master regulator of melanocyte development and melanoma oncogene
  publication-title: Trends Mol. Med.
– volume: 64
  start-page: 2338
  year: 2004b
  end-page: 2342
  article-title: V599EB‐RAF is an oncogene in melanocytes
  publication-title: Cancer Res.
– volume: 105
  start-page: 33
  year: 2013
  end-page: 46
  article-title: Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma
  publication-title: J. Natl Cancer Inst.
– volume: 30
  start-page: 2307
  year: 2011
  end-page: 2318
  article-title: Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny
  publication-title: Oncogene
– volume: 281
  start-page: 10365
  year: 2006
  end-page: 10373
  article-title: c‐Met expression is regulated by Mitf in the melanocyte lineage
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 764
  year: 2014
  end-page: 776
  article-title: Real‐time cell cycle imaging during melanoma growth, invasion, and drug response
  publication-title: Pigment Cell Melanoma Res.
– volume: 119
  start-page: 954
  year: 2009
  end-page: 963
  article-title: Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid
  publication-title: J. Clin. Invest.
– volume: 42
  start-page: 727
  year: 2014
  end-page: 732
  article-title: MAPK pathway inhibition in melanoma: resistance three ways
  publication-title: Biochem. Soc. Trans.
– volume: 4
  start-page: 2131
  year: 1995
  end-page: 2137
  article-title: The mutational spectrum in Waardenburg syndrome
  publication-title: Hum. Mol. Genet.
– volume: 178
  start-page: 989
  year: 2011
  end-page: 996
  article-title: Circulating tumor cells as a window on metastasis biology in lung cancer
  publication-title: Am. J. Pathol.
– volume: 15
  start-page: 249
  year: 2005
  end-page: 254
  article-title: BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma
  publication-title: Curr. Biol.
– volume: 24
  start-page: 2923
  year: 2004b
  end-page: 2931
  article-title: The Brn‐2 transcription factor links activated BRAF to melanoma proliferation
  publication-title: Mol. Cell. Biol.
– volume: 24
  start-page: 40
  year: 2014
  end-page: 46
  article-title: Prevalence and heterogeneity of circulating tumour cells in metastatic cutaneous melanoma
  publication-title: Melanoma Res.
– volume: 9
  start-page: 1907
  year: 2000
  end-page: 1917
  article-title: Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome
  publication-title: Hum. Mol. Genet.
– volume: 18
  start-page: 265
  year: 2005
  end-page: 277
  article-title: Sumoylation modulates transcriptional activity of MITF in a promoter‐specific manner
  publication-title: Pigment Cell Res.
– volume: 282
  start-page: 14140
  year: 2007
  end-page: 14147
  article-title: Up‐regulation of MET expression by alpha‐melanocyte‐stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 291
  year: 1995
  end-page: 302
  article-title: Identification of p90RSK as the probable CREB‐Ser133 kinase in human melanocytes
  publication-title: Cell Growth Differ.
– volume: 13
  start-page: 60
  year: 2000
  end-page: 69
  article-title: Cyclic AMP a key messenger in the regulation of skin pigmentation
  publication-title: Pigment Cell Res.
– volume: 16
  start-page: 2650
  year: 2002
  end-page: 2661
  article-title: Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo
  publication-title: Genes Dev.
– volume: 19
  start-page: 1225
  year: 2013
  end-page: 1231
  article-title: BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma
  publication-title: Clin. Cancer Res.
– volume: 21
  start-page: 2923
  year: 2007
  end-page: 2935
  article-title: Beta‐catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N‐Ras in melanoma development
  publication-title: Genes Dev.
– volume: 445
  start-page: 851
  year: 2007
  end-page: 857
  article-title: Melanoma biology and new targeted therapy
  publication-title: Nature
– volume: 4
  start-page: 94
  year: 2014
  end-page: 109
  article-title: The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma
  publication-title: Cancer Discov.
– volume: 178
  start-page: 259
  year: 2008
  end-page: 272
  article-title: An unstable targeted allele of the mouse Mitf gene with a high somatic and germline reversion rate
  publication-title: Genetics
– volume: 255
  start-page: 135
  year: 2000
  end-page: 143
  article-title: Regulation of microphthalmia‐associated transcription factor MITF protein levels by association with the ubiquitin‐conjugating enzyme hUBC9
  publication-title: Exp. Cell Res.
– volume: 6
  start-page: 565
  year: 2004
  end-page: 576
  article-title: Critical role of CDK2 for melanoma growth linked to its melanocyte‐specific transcriptional regulation by MITF
  publication-title: Cancer Cell
– volume: 69
  start-page: 7969
  year: 2009
  end-page: 7977
  article-title: Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination
  publication-title: Cancer Res.
– volume: 23
  start-page: 746
  year: 2010
  end-page: 759
  article-title: Cancer stem cells versus phenotype‐switching in melanoma
  publication-title: Pigment Cell Melanoma Res.
– volume: 3
  start-page: 1378
  year: 2013
  end-page: 1393
  article-title: Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2
  publication-title: Cancer Discov.
– volume: 5
  start-page: 5712
  year: 2014
  article-title: Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma
  publication-title: Nat. Commun.
– volume: 124
  start-page: 2377
  year: 1997
  end-page: 2386
  article-title: Melanocyte development and in neural crest cell cultures: crucial dependence on the Mitf basic‐helix‐loop‐helix‐zipper transcription factor
  publication-title: Development
– volume: 19
  start-page: 4326
  year: 2013
  end-page: 4334
  article-title: BRAF in melanoma: current strategies and future directions
  publication-title: Clin. Cancer Res.
– volume: 280
  start-page: 42051
  year: 2005
  end-page: 42060
  article-title: Characterization of an ERK‐binding domain in microphthalmia‐associated transcription factor and differential inhibition of ERK2‐mediated substrate phosphorylation
  publication-title: J. Biol. Chem.
– volume: 142
  start-page: 827
  year: 1998a
  end-page: 835
  article-title: Microphthalmia gene product as a signal transducer in cAMP‐induced differentiation of melanocytes
  publication-title: J. Cell Biol.
– volume: 9
  start-page: 125
  year: 2000a
  end-page: 132
  article-title: Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance
  publication-title: Hum. Mol. Genet.
– year: 2014
  article-title: Single‐cell gene expression signatures reveal melanoma cell heterogeneity
  publication-title: Oncogene
– volume: 4
  start-page: 816
  year: 2014
  end-page: 827
  article-title: A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors
  publication-title: Cancer Discov.
– volume: 74
  start-page: 395
  year: 1993
  end-page: 404
  article-title: Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic‐helix‐loop‐helix‐zipper protein
  publication-title: Cell
– volume: 6
  start-page: 130
  year: 2010
  end-page: 140
  article-title: Key roles for transforming growth factor beta in melanocyte stem cell maintenance
  publication-title: Cell Stem Cell
– volume: 14
  start-page: 8058
  year: 1994
  end-page: 8070
  article-title: Microphthalmia‐associated transcription factor as a regulator for melanocyte‐specific transcription of the human tyrosinase gene
  publication-title: Mol. Cell. Biol.
– volume: 128
  start-page: 2003
  year: 2008
  end-page: 2012
  article-title: Phospho‐ERK staining is a poor indicator of the mutational status of BRAF and NRAS in human melanoma
  publication-title: J. Invest. Dermatol.
– volume: 275
  start-page: 30757
  year: 2000
  end-page: 30760
  article-title: Regulation of the microphthalmia‐associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10
  publication-title: J. Biol. Chem.
– volume: 289
  start-page: 326
  year: 2014
  end-page: 334
  article-title: The multifunctional protein fused in sarcoma (FUS) is a coactivator of microphthalmia‐associated transcription factor (MITF)
  publication-title: J. Biol. Chem.
– volume: 134
  start-page: 141
  year: 2014
  end-page: 149
  article-title: Phenotypic characterization of nevus and tumor patterns in MITF E318K mutation carrier melanoma patients
  publication-title: J. Invest. Dermatol.
– volume: 480
  start-page: 99
  year: 2011
  end-page: 103
  article-title: A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma
  publication-title: Nature
– volume: 25
  start-page: 51
  year: 2001
  end-page: 57
  article-title: Microphthalmia transcription factor expression in cutaneous benign, malignant melanocytic, and nonmelanocytic tumors
  publication-title: Am. J. Surg. Pathol.
– volume: 12
  start-page: 637
  year: 2010
  end-page: 649
  article-title: Pharmacodynamic characterization of the efficacy signals due to selective BRAF inhibition with PLX4032 in malignant melanoma
  publication-title: Neoplasia
– volume: 508
  start-page: 118
  year: 2014
  end-page: 122
  article-title: Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma
  publication-title: Nature
– volume: 14
  start-page: 158
  year: 2000
  end-page: 162
  article-title: Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway
  publication-title: Genes Dev.
– volume: 23
  start-page: 302
  year: 2013a
  end-page: 315
  article-title: Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF
  publication-title: Cancer Cell
– volume: 70
  start-page: 3813
  year: 2010
  end-page: 3822
  article-title: Microphthalmia‐associated transcription factor controls the DNA damage response and a lineage‐specific senescence program in melanomas
  publication-title: Cancer Res.
– volume: 26
  start-page: 8914
  year: 2006
  end-page: 8927
  article-title: The microphthalmia‐associated transcription factor Mitf interacts with beta‐catenin to determine target gene expression
  publication-title: Mol. Cell. Biol.
– volume: 277
  start-page: 6443
  year: 2002
  end-page: 6454
  article-title: Activation of p59(Fyn) leads to melanocyte dedifferentiation by influencing MKP‐1‐regulated mitogen‐activated protein kinase signaling
  publication-title: J. Biol. Chem.
– volume: 107
  start-page: 1
  year: 2000
  end-page: 6
  article-title: Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3
  publication-title: Hum. Genet.
– volume: 106
  start-page: 1814
  year: 2009
  end-page: 1819
  article-title: Aberrant miR‐182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia‐associated transcription factor
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 30
  start-page: 2319
  year: 2011
  end-page: 2332
  article-title: Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma
  publication-title: Oncogene
– volume: 106
  start-page: 1193
  year: 2009
  end-page: 1198
  article-title: Activated Wnt/beta‐catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 277
  start-page: 11077
  year: 2002
  end-page: 11083
  article-title: Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF‐kappa B ligand signaling
  publication-title: J. Biol. Chem.
– volume: 60
  start-page: 5012
  year: 2000
  end-page: 5016
  article-title: Micropthalmia transcription factor: a new prognostic marker in intermediate‐thickness cutaneous malignant melanoma
  publication-title: Cancer Res.
– volume: 5
  start-page: 875
  year: 2004a
  end-page: 885
  article-title: The RAF proteins take centre stage
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 123
  start-page: 2155
  year: 2013
  end-page: 2168
  article-title: Melanoma adapts to RAF/MEK inhibitors through FOXD3‐mediated upregulation of ERBB3
  publication-title: J. Clin. Invest.
– volume: 275
  start-page: 14013
  year: 2000b
  end-page: 14016
  article-title: Induction of melanocyte‐specific microphthalmia‐associated transcription factor by Wnt‐3a
  publication-title: J. Biol. Chem.
– volume: 28
  start-page: 229
  year: 2015
  end-page: 232
  article-title: Temperature‐sensitive splicing of mitfa by an intron mutation in zebrafish
  publication-title: Pigment Cell Melanoma Res.
– volume: 112
  start-page: E420
  year: 2015
  end-page: E429
  article-title: MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 230
  year: 2000
  end-page: 240
  article-title: MITF: a stream flowing for pigment cells
  publication-title: Pigment Cell Res.
– volume: 32
  start-page: 2230
  year: 2013
  end-page: 2238
  article-title: Beta‐catenin inhibits melanocyte migration but induces melanoma metastasis
  publication-title: Oncogene
– volume: 273
  start-page: 33042
  year: 1998b
  end-page: 33047
  article-title: alpha‐Melanocyte‐stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome
  publication-title: J. Biol. Chem.
– volume: 68
  start-page: 1362
  year: 2008
  end-page: 1368
  article-title: MicroRNA‐137 targets microphthalmia‐associated transcription factor in melanoma cell lines
  publication-title: Cancer Res.
– volume: 168
  start-page: 35
  year: 2005
  end-page: 40
  article-title: MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A
  publication-title: J. Cell Biol.
– volume: 158
  start-page: 1079
  year: 2002
  end-page: 1087
  article-title: Beta‐catenin‐induced melanoma growth requires the downstream target Microphthalmia‐associated transcription factor
  publication-title: J. Cell Biol.
– volume: 14
  start-page: 301
  year: 2000
  end-page: 312
  article-title: c‐Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi
  publication-title: Genes Dev.
– volume: 14
  start-page: 882
  year: 2012
  end-page: 890
  article-title: Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma
  publication-title: Nat. Cell Biol.
– volume: 5
  start-page: e13779
  year: 2010
  article-title: The regulation of miRNA‐211 expression and its role in melanoma cell invasiveness
  publication-title: PLoS ONE
– volume: 24
  start-page: 525
  year: 2011
  end-page: 537
  article-title: Melanoma cell invasiveness is regulated by miR‐211 suppression of the BRN2 transcription factor
  publication-title: Pigment Cell Melanoma Res.
– volume: 4
  start-page: 779
  year: 2006
  end-page: 792
  article-title: Role of the mitogen‐activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression
  publication-title: Mol. Cancer Res.
– volume: 110
  start-page: 4321
  year: 2013b
  end-page: 4326
  article-title: BCL2A1 is a lineage‐specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 275
  start-page: 37978
  year: 2000
  end-page: 37983
  article-title: Direct regulation of the Microphthalmia promoter by Sox10 links Waardenburg‐Shah syndrome (WS4)‐associated hypopigmentation and deafness to WS2
  publication-title: J. Biol. Chem.
– volume: 1
  start-page: 279
  year: 2002
  end-page: 288
  article-title: Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma
  publication-title: Cancer Cell
– volume: 121
  start-page: 167
  year: 2008
  end-page: 177
  article-title: Neurofibromin as a regulator of melanocyte development and differentiation
  publication-title: J. Cell Sci.
– volume: 22
  start-page: 4357
  year: 2013
  end-page: 4367
  article-title: MITF mutations associated with pigment deficiency syndromes and melanoma have different effects on protein function
  publication-title: Hum Mol Genet.
– volume: 183
  start-page: 581
  year: 2009
  end-page: 594
  article-title: The role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue
  publication-title: Genetics
– volume: 23
  start-page: 9073
  year: 2003
  end-page: 9080
  article-title: Role played by microphthalmia transcription factor phosphorylation and its Zip domain in its transcriptional inhibition by PIAS3
  publication-title: Mol. Cell. Biol.
– volume: 3
  start-page: e2734
  year: 2008
  article-title: Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF
  publication-title: PLoS ONE
– volume: 108
  start-page: E924
  year: 2011
  end-page: E933
  article-title: Hypoxia‐induced transcriptional repression of the melanoma‐associated oncogene MITF
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 74
  start-page: 7037
  year: 2014
  end-page: 7047
  article-title: Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and oxidative p hosphorylation in melanoma
  publication-title: Cancer Res.
– volume: 20
  start-page: 3426
  year: 2006
  end-page: 3439
  article-title: Mitf regulation of Dia1 controls melanoma proliferation and invasiveness
  publication-title: Genes Dev.
– volume: 68
  start-page: 10205
  year: 2008
  end-page: 10214
  article-title: Wnt5A regulates expression of tumor‐associated antigens in melanoma via changes in signal transducers and activators of transcription 3 phosphorylation
  publication-title: Cancer Res.
– volume: 287
  start-page: 17996
  year: 2012
  end-page: 18004
  article-title: Expression of microphthalmia‐associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor‐beta
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 1214
  year: 2014
  end-page: 1229
  article-title: The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage‐derived TNFalpha
  publication-title: Cancer Discov.
– volume: 31
  start-page: 2471
  year: 2012
  end-page: 2479
  article-title: Adaptive upregulation of FOXD3 and resistance to PLX4032/4720‐induced cell death in mutant B‐RAF melanoma cells
  publication-title: Oncogene
– volume: 80
  start-page: 179
  year: 1995
  end-page: 185
  article-title: Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal‐regulated kinase activation
  publication-title: Cell
– volume: 24
  start-page: 725
  year: 2011
  end-page: 727
  article-title: BRCA1 is a new MITF target gene
  publication-title: Pigment Cell Melanoma Res.
– volume: 31
  start-page: 2461
  year: 2012
  end-page: 2470
  article-title: Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells
  publication-title: Oncogene
– volume: 13
  start-page: 6344
  year: 2007
  end-page: 6350
  article-title: Microphthalmia‐associated transcription factor gene amplification in metastatic melanoma is a prognostic marker for patient survival, but not a predictive marker for chemosensitivity and chemotherapy response
  publication-title: Clin. Cancer Res.
– volume: 174
  start-page: 964
  year: 2014
  end-page: 970
  article-title: Sildenafil use and increased risk of incident melanoma in US men: a prospective cohort study
  publication-title: JAMA Intern. Med.
– volume: 8
  start-page: 688
  year: 2014
  end-page: 695
  article-title: Heterogeneous tumor subpopulations cooperate to drive invasion
  publication-title: Cell Rep.
– volume: 133
  start-page: 2436
  year: 2013
  end-page: 2443
  article-title: Hypoxia contributes to melanoma heterogeneity by triggering HIF1alpha‐dependent phenotype switching
  publication-title: J. Invest. Dermatol.
– volume: 480
  start-page: 94
  year: 2011
  end-page: 98
  article-title: A SUMOylation‐defective MITF germline mutation predisposes to melanoma and renal carcinoma
  publication-title: Nature
– volume: 18
  start-page: 584
  year: 2011
  end-page: 591
  article-title: ERK and PDE4 cooperate to induce RAF isoform switching in melanoma
  publication-title: Nat. Struct. Mol. Biol.
– volume: 26
  start-page: 2647
  year: 2012
  end-page: 2658
  article-title: Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF
  publication-title: Genes Dev.
– volume: 21
  start-page: 598
  year: 2008
  end-page: 610
  article-title: The making of a melanocyte: the specification of melanoblasts from the neural crest
  publication-title: Pigment Cell Melanoma Res.
– volume: 131
  start-page: 2448
  year: 2011
  end-page: 2457
  article-title: Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase
  publication-title: J. Invest. Dermatol.
– volume: 339
  start-page: 580
  year: 2013
  end-page: 584
  article-title: Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition
  publication-title: Science
– volume: 32
  start-page: 554
  year: 2008
  end-page: 563
  article-title: Inhibition of PAX3 by TGF‐beta modulates melanocyte viability
  publication-title: Mol. Cell
– volume: 391
  start-page: 298
  year: 1998
  end-page: 301
  article-title: MAP kinase links the transcription factor Microphthalmia to c‐Kit signalling in melanocytes
  publication-title: Nature
– volume: 280
  start-page: 146
  year: 2005
  end-page: 155
  article-title: Sumoylation of MITF and its related family members TFE3 and TFEB
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: ra3
  year: 2010
  article-title: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis
  publication-title: Sci. Signal.
– volume: 11
  start-page: 1458
  year: 2009
  end-page: 1464
  article-title: Cell fate decisions are specified by the dynamic ERK interactome
  publication-title: Nat. Cell Biol.
– volume: 7
  start-page: 1346
  year: 2008
  end-page: 1351
  article-title: Combining protein‐based IMAC, peptide‐based IMAC, and MudPIT for efficient phosphoproteomic analysis
  publication-title: J. Proteome Res.
– volume: 20
  start-page: 741
  year: 2011
  end-page: 754
  article-title: beta‐catenin signaling controls metastasis in Braf‐activated Pten‐deficient melanomas
  publication-title: Cancer Cell
– volume: 2
  start-page: 414
  year: 2011
  article-title: Regulation of MITF stability by the USP13 deubiquitinase
  publication-title: Nat. Commun.
– volume: 22
  start-page: 1155
  year: 2008
  end-page: 1168
  article-title: Epistatic connections between microphthalmia‐associated transcription factor and endothelin signaling in Waardenburg syndrome and other pigmentary disorders
  publication-title: FASEB J.
– volume: 490
  start-page: 412
  year: 2012
  end-page: 416
  article-title: Melanomas resist T‐cell therapy through inflammation‐induced reversible dedifferentiation
  publication-title: Nature
– volume: 134
  start-page: 133
  year: 2014
  end-page: 140
  article-title: A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion vs. regression
  publication-title: J. Invest. Dermatol.
– volume: 5
  start-page: e11574
  year: 2010
  article-title: miR‐148 regulates Mitf in melanoma cells
  publication-title: PLoS ONE
– volume: 18
  start-page: 694
  year: 1998b
  end-page: 702
  article-title: Different cis‐acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia
  publication-title: Mol. Cell. Biol.
– volume: 281
  start-page: 20233
  year: 2006
  end-page: 20241
  article-title: The microphthalmia‐associated transcription factor requires SWI/SNF enzymes to activate melanocyte‐specific genes
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 3653
  year: 1992
  end-page: 3662
  article-title: Positive and negative elements regulate a melanocyte‐specific promoter
  publication-title: Mol. Cell. Biol.
– volume: 18
  start-page: 283
  year: 1998
  end-page: 286
  article-title: Epistatic relationship between Waardenburg syndrome genes MITF and PAX3
  publication-title: Nat. Genet.
– volume: 504
  start-page: 138
  year: 2013
  end-page: 142
  article-title: A melanocyte lineage program confers resistance to MAP kinase pathway inhibition
  publication-title: Nature
– volume: 433
  start-page: 764
  year: 2005
  end-page: 769
  article-title: Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression
  publication-title: Nature
– volume: 24
  start-page: 932
  year: 2011
  end-page: 943
  article-title: GLI2 and M‐MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells
  publication-title: Pigment Cell Melanoma Res.
– volume: 24
  start-page: 631
  year: 2011
  end-page: 642
  article-title: Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching
  publication-title: Pigment Cell Melanoma Res.
– volume: 30
  start-page: 3036
  year: 2011
  end-page: 3048
  article-title: Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway
  publication-title: Oncogene
– volume: 170
  start-page: 703
  year: 2005
  end-page: 708
  article-title: Elevated expression of MITF counteracts B‐RAF‐stimulated melanocyte and melanoma cell proliferation
  publication-title: J. Cell Biol.
– volume: 273
  start-page: 17983
  year: 1998a
  end-page: 17986
  article-title: Lineage‐specific signaling in melanocytes. C‐kit stimulation recruits p300/CBP to microphthalmia
  publication-title: J. Biol. Chem.
– volume: 61
  start-page: 823
  year: 2001
  end-page: 826
  article-title: PAX3 is expressed in human melanomas and contributes to tumor cell survival
  publication-title: Cancer Res.
– volume: 24
  start-page: 2915
  year: 2004a
  end-page: 2922
  article-title: Brn‐2 expression controls melanoma proliferation and is directly regulated by beta‐catenin
  publication-title: Mol. Cell. Biol.
– volume: 138
  start-page: 3579
  year: 2011
  end-page: 3589
  article-title: Differentiated melanocyte cell division occurs and is promoted by mutations in Mitf
  publication-title: Development
– volume: 40
  start-page: 841
  year: 2010
  end-page: 849
  article-title: Intronic miR‐211 assumes the tumor suppressive function of its host gene in melanoma
  publication-title: Mol. Cell
– volume: 23
  start-page: 27
  year: 2010
  end-page: 40
  article-title: Fifteen‐year quest for microphthalmia‐associated transcription factor target genes
  publication-title: Pigment Cell Melanoma Res.
– volume: 10
  start-page: 1065
  year: 2012
  end-page: 1076
  article-title: GSK‐3 promotes cell survival, growth, and PAX3 levels in human melanoma cells
  publication-title: Mol. Cancer Res.
– volume: 308
  start-page: 222
  year: 2005
  end-page: 235
  article-title: Co‐expression of SOX9 and SOX10 during melanocytic differentiation
  publication-title: Exp. Cell Res.
– year: 2015
  article-title: Genome‐wide DNA methylation analysis in melanoma reveals the importance of CpG methylation in MITF regulation
  publication-title: J. Invest. Dermatol.
– volume: 136
  start-page: 1849
  year: 2009
  end-page: 1858
  article-title: FOXD3 regulates the lineage switch between neural crest‐derived glial cells and pigment cells by repressing MITF through a non‐canonical mechanism
  publication-title: Development
– volume: 19
  start-page: 2900
  year: 2000
  end-page: 2910
  article-title: Ras mediates the cAMP‐dependent activation of extracellular signal‐regulated kinases (ERKs) in melanocytes
  publication-title: EMBO J.
– volume: 124
  start-page: 2877
  year: 2014
  end-page: 2890
  article-title: WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors
  publication-title: J. Clin. Invest.
– volume: 436
  start-page: 117
  year: 2005
  end-page: 122
  article-title: Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma
  publication-title: Nature
– volume: 23
  start-page: 729
  year: 2010
  end-page: 735
  article-title: The discovery of the microphthalmia locus and its gene, Mitf
  publication-title: Pigment Cell Melanoma Res.
– volume: 14
  start-page: 357
  year: 2007
  end-page: 365
  article-title: Therapeutic RNA interference of malignant melanoma by electrotransfer of small interfering RNA targeting Mitf
  publication-title: Gene Ther.
– volume: 14
  start-page: 3083
  year: 1997
  end-page: 3092
  article-title: CBP/p300 as a co‐factor for the Microphthalmia transcription factor
  publication-title: Oncogene
– volume: 134
  start-page: 747
  year: 1996
  end-page: 755
  article-title: Regulation of tyrosinase gene expression by cAMP in B16 melanoma cells involves two CATGTG motifs surrounding the TATA box: implication of the microphthalmia gene product
  publication-title: J. Cell Biol.
– volume: 68
  start-page: 650
  year: 2008
  end-page: 656
  article-title: switching of human melanoma cells between proliferative and invasive states
  publication-title: Cancer Res.
– volume: 278
  start-page: 45224
  year: 2003
  end-page: 45230
  article-title: A tissue‐restricted cAMP transcriptional response: SOX10 modulates alpha‐melanocyte‐stimulating hormone‐triggered expression of microphthalmia‐associated transcription factor in melanocytes
  publication-title: J. Biol. Chem.
– ident: e_1_2_17_39_1
  doi: 10.1016/j.ccr.2004.10.014
– ident: e_1_2_17_152_1
  doi: 10.1128/MCB.14.12.8058
– ident: e_1_2_17_104_1
  doi: 10.1073/pnas.1424576112
– ident: e_1_2_17_96_1
  doi: 10.1016/j.stem.2009.12.010
– ident: e_1_2_17_140_1
  doi: 10.1016/S1535-6108(02)00045-4
– ident: e_1_2_17_28_1
  doi: 10.1111/j.1755-148X.2009.00653.x
– ident: e_1_2_17_65_1
  doi: 10.1074/jbc.M309036200
– ident: e_1_2_17_25_1
  doi: 10.1038/nature03269
– ident: e_1_2_17_11_1
  doi: 10.1083/jcb.134.3.747
– ident: e_1_2_17_135_1
  doi: 10.1158/1078-0432.CCR-06-2682
– ident: e_1_2_17_53_1
  doi: 10.1111/pcmr.12274
– ident: e_1_2_17_35_1
  doi: 10.1101/gad.450107
– ident: e_1_2_17_64_1
  doi: 10.1038/jid.2008.30
– ident: e_1_2_17_8_1
  doi: 10.1534/genetics.109.103945
– ident: e_1_2_17_36_1
  doi: 10.1158/0008-5472.CAN-08-2149
– ident: e_1_2_17_115_1
  doi: 10.1073/pnas.0808263106
– ident: e_1_2_17_112_1
  doi: 10.1096/fj.07-9080com
– ident: e_1_2_17_146_1
  doi: 10.1371/journal.pone.0002734
– ident: e_1_2_17_92_1
  doi: 10.1074/jbc.M510590200
– ident: e_1_2_17_37_1
  doi: 10.1242/jcs.013912
– ident: e_1_2_17_60_1
  doi: 10.1111/j.1755-148X.2010.00757.x
– ident: e_1_2_17_13_1
  doi: 10.1128/MCB.18.2.694
– ident: e_1_2_17_124_1
  doi: 10.1034/j.1600-0749.2000.130404.x
– ident: e_1_2_17_84_1
  doi: 10.1128/MCB.12.8.3653
– ident: e_1_2_17_56_1
  doi: 10.1016/j.ccr.2013.02.003
– ident: e_1_2_17_89_1
  doi: 10.1016/S0092-8674(02)00762-6
– ident: e_1_2_17_99_1
  doi: 10.1242/dev.124.12.2377
– ident: e_1_2_17_22_1
  doi: 10.1034/j.1600-0749.2000.130203.x
– ident: e_1_2_17_45_1
  doi: 10.1038/nature03664
– ident: e_1_2_17_62_1
  doi: 10.1158/0008-5472.CAN-07-2491
– ident: e_1_2_17_9_1
  doi: 10.1111/j.1755-148X.2011.00931.x
– ident: e_1_2_17_46_1
  doi: 10.1158/0008-5472.CAN-09-2913
– ident: e_1_2_17_66_1
  doi: 10.1111/j.1755-148X.2011.00893.x
– volume: 11
  start-page: 691
  year: 1995
  ident: e_1_2_17_133_1
  article-title: The brn‐2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells
  publication-title: Oncogene
– ident: e_1_2_17_76_1
  doi: 10.1074/jbc.M003816200
– ident: e_1_2_17_47_1
  doi: 10.1128/MCB.24.7.2915-2922.2004
– ident: e_1_2_17_52_1
  doi: 10.1093/hmg/ddt285
– ident: e_1_2_17_108_1
  doi: 10.1074/jbc.273.49.33042
– ident: e_1_2_17_17_1
  doi: 10.1534/genetics.107.081893
– ident: e_1_2_17_144_1
  doi: 10.1038/nrm1498
– ident: e_1_2_17_57_1
  doi: 10.1073/pnas.1205575110
– ident: e_1_2_17_69_1
  doi: 10.1097/00000478-200101000-00005
– ident: e_1_2_17_23_1
  doi: 10.1093/emboj/19.12.2900
– ident: e_1_2_17_123_1
  doi: 10.1038/nature13121
– ident: e_1_2_17_15_1
  doi: 10.1074/jbc.M611563200
– ident: e_1_2_17_111_1
  doi: 10.1038/sj.onc.1201298
– ident: e_1_2_17_149_1
  doi: 10.1101/gad.14.3.301
– ident: e_1_2_17_83_1
  doi: 10.1083/jcb.200410115
– ident: e_1_2_17_121_1
  doi: 10.1038/onc.2010.612
– ident: e_1_2_17_102_1
  doi: 10.1074/jbc.M112.358341
– ident: e_1_2_17_72_1
  doi: 10.1111/j.1755-148X.2008.00514.x
– ident: e_1_2_17_90_1
  doi: 10.1074/jbc.M513094200
– ident: e_1_2_17_34_1
  doi: 10.1074/jbc.M512052200
– ident: e_1_2_17_67_1
  doi: 10.1038/nature12688
– ident: e_1_2_17_12_1
  doi: 10.1083/jcb.142.3.827
– ident: e_1_2_17_27_1
  doi: 10.1016/j.celrep.2014.06.045
– ident: e_1_2_17_130_1
  doi: 10.1242/dev.064014
– ident: e_1_2_17_6_1
  doi: 10.1016/j.ccr.2010.10.029
– volume: 6
  start-page: 291
  year: 1995
  ident: e_1_2_17_18_1
  article-title: Identification of p90RSK as the probable CREB‐Ser133 kinase in human melanocytes
  publication-title: Cell Growth Differ.
– ident: e_1_2_17_91_1
  doi: 10.1074/jbc.M411757200
– ident: e_1_2_17_42_1
  doi: 10.1073/pnas.1106351108
– ident: e_1_2_17_105_1
  doi: 10.1101/gad.198192.112
– ident: e_1_2_17_122_1
  doi: 10.1038/jid.2013.272
– volume: 61
  start-page: 823
  year: 2001
  ident: e_1_2_17_114_1
  article-title: PAX3 is expressed in human melanomas and contributes to tumor cell survival
  publication-title: Cancer Res.
– ident: e_1_2_17_136_1
  doi: 10.1158/2159-8290.CD-13-0617
– ident: e_1_2_17_26_1
  doi: 10.1101/gad.406406
– ident: e_1_2_17_16_1
  doi: 10.1111/j.1755-148X.2011.00862.x
– ident: e_1_2_17_59_1
  doi: 10.1016/0092-8674(93)90429-T
– ident: e_1_2_17_137_1
  doi: 10.1074/jbc.C000445200
– ident: e_1_2_17_129_1
  doi: 10.1093/hmg/4.11.2131
– ident: e_1_2_17_148_1
  doi: 10.1038/jid.2013.115
– ident: e_1_2_17_127_1
  doi: 10.1074/jbc.C000113200
– ident: e_1_2_17_87_1
  doi: 10.1016/0092-8674(95)90401-8
– volume: 119
  start-page: 954
  year: 2009
  ident: e_1_2_17_100_1
  article-title: Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid
  publication-title: J. Clin. Invest.
– ident: e_1_2_17_71_1
  doi: 10.1158/1541-7786.MCR-06-0077
– ident: e_1_2_17_142_1
  doi: 10.1083/jcb.200505059
– ident: e_1_2_17_32_1
  doi: 10.1016/j.yexcr.2005.04.019
– volume: 60
  start-page: 5012
  year: 2000
  ident: e_1_2_17_110_1
  article-title: Micropthalmia transcription factor: a new prognostic marker in intermediate‐thickness cutaneous malignant melanoma
  publication-title: Cancer Res.
– ident: e_1_2_17_156_1
  doi: 10.1038/ncomms1421
– ident: e_1_2_17_85_1
  doi: 10.1074/jbc.M111696200
– ident: e_1_2_17_145_1
  doi: 10.1158/0008-5472.CAN-03-3433
– ident: e_1_2_17_151_1
  doi: 10.1016/j.molcel.2008.11.002
– ident: e_1_2_17_70_1
  doi: 10.1158/2159-8290.CD-13-0424
– ident: e_1_2_17_98_1
  doi: 10.1126/scisignal.2000475
– ident: e_1_2_17_73_1
  doi: 10.1158/1541-7786.MCR-11-0387
– ident: e_1_2_17_63_1
  doi: 10.1016/j.ajpath.2010.12.003
– ident: e_1_2_17_88_1
  doi: 10.1371/journal.pone.0013779
– ident: e_1_2_17_134_1
  doi: 10.1038/onc.2011.33
– ident: e_1_2_17_2_1
  doi: 10.1172/JCI65780
– ident: e_1_2_17_14_1
  doi: 10.1038/nature10539
– ident: e_1_2_17_75_1
  doi: 10.1038/jid.2015.61
– ident: e_1_2_17_141_1
  doi: 10.1042/BST20140020
– ident: e_1_2_17_101_1
  doi: 10.1016/j.cub.2005.01.031
– ident: e_1_2_17_103_1
  doi: 10.1158/0008-5472.CAN-09-0781
– ident: e_1_2_17_54_1
  doi: 10.1371/journal.pone.0011574
– ident: e_1_2_17_118_1
  doi: 10.1093/jnci/djs471
– ident: e_1_2_17_21_1
  doi: 10.1074/jbc.M113.493874
– ident: e_1_2_17_77_1
  doi: 10.1128/MCB.23.24.9073-9080.2003
– ident: e_1_2_17_20_1
  doi: 10.1111/j.1755-148X.2011.00849.x
– ident: e_1_2_17_131_1
  doi: 10.1111/j.1755-148X.2008.00506.x
– ident: e_1_2_17_80_1
  doi: 10.1210/me.2009-0320
– ident: e_1_2_17_48_1
  doi: 10.1128/MCB.24.7.2923-2931.2004
– ident: e_1_2_17_79_1
  doi: 10.1016/j.molcel.2010.11.020
– ident: e_1_2_17_106_1
  doi: 10.1007/s004390000328
– ident: e_1_2_17_155_1
  doi: 10.1111/pcmr.12336
– ident: e_1_2_17_49_1
  doi: 10.1158/0008-5472.CAN-08-1053
– ident: e_1_2_17_74_1
  doi: 10.1038/nature11538
– ident: e_1_2_17_61_1
  doi: 10.1111/j.1600-0749.2006.00322.x
– ident: e_1_2_17_153_1
  doi: 10.1038/nature10630
– ident: e_1_2_17_3_1
  doi: 10.1172/JCI70156
– ident: e_1_2_17_44_1
  doi: 10.1038/onc.2012.229
– ident: e_1_2_17_50_1
  doi: 10.1158/0008-5472.CAN-14-1392
– ident: e_1_2_17_10_1
  doi: 10.1158/0008-5472.CAN-07-2912
– ident: e_1_2_17_33_1
  doi: 10.1016/j.ccr.2011.10.030
– ident: e_1_2_17_58_1
  doi: 10.1038/34681
– ident: e_1_2_17_55_1
  doi: 10.1101/gad.1020502
– ident: e_1_2_17_81_1
  doi: 10.1001/jamainternmed.2014.594
– ident: e_1_2_17_93_1
  doi: 10.1038/ncomms6712
– ident: e_1_2_17_119_1
  doi: 10.1158/2159-8290.CD-13-1007
– ident: e_1_2_17_94_1
  doi: 10.1111/j.1600-0749.2005.00234.x
– ident: e_1_2_17_5_1
  doi: 10.1038/onc.2011.162
– ident: e_1_2_17_113_1
  doi: 10.1128/MCB.02299-05
– ident: e_1_2_17_41_1
  doi: 10.1038/onc.2014.262
– ident: e_1_2_17_31_1
  doi: 10.1073/pnas.0811902106
– ident: e_1_2_17_40_1
  doi: 10.1111/j.1755-148X.2011.00871.x
– ident: e_1_2_17_147_1
  doi: 10.1083/jcb.200202049
– ident: e_1_2_17_24_1
  doi: 10.1021/pr0705441
– ident: e_1_2_17_86_1
  doi: 10.1038/nsmb.2022
– ident: e_1_2_17_97_1
  doi: 10.1158/2159-8290.CD-13-0005
– ident: e_1_2_17_107_1
  doi: 10.1074/jbc.273.29.17983
– ident: e_1_2_17_51_1
  doi: 10.1038/nature05661
– ident: e_1_2_17_117_1
  doi: 10.1038/ncb2535
– ident: e_1_2_17_139_1
  doi: 10.1038/ng0398-283
– ident: e_1_2_17_19_1
  doi: 10.1093/hmg/9.13.1907
– ident: e_1_2_17_120_1
  doi: 10.1146/annurev.genet.38.072902.092717
– ident: e_1_2_17_125_1
  doi: 10.1093/hmg/3.4.553
– ident: e_1_2_17_68_1
  doi: 10.1097/CMR.0000000000000025
– ident: e_1_2_17_143_1
  doi: 10.1074/jbc.M110684200
– ident: e_1_2_17_43_1
  doi: 10.1158/1078-0432.CCR-12-1630
– ident: e_1_2_17_82_1
  doi: 10.1038/jid.2013.293
– ident: e_1_2_17_7_1
  doi: 10.1038/onc.2011.424
– ident: e_1_2_17_150_1
  doi: 10.1006/excr.2000.4803
– ident: e_1_2_17_154_1
  doi: 10.1126/science.1228522
– ident: e_1_2_17_30_1
  doi: 10.1038/onc.2011.425
– ident: e_1_2_17_109_1
  doi: 10.1158/1078-0432.CCR-13-0779
– ident: e_1_2_17_128_1
  doi: 10.1593/neo.10414
– ident: e_1_2_17_4_1
  doi: 10.1111/j.1755-148X.2010.00759.x
– ident: e_1_2_17_126_1
  doi: 10.1093/hmg/9.1.125
– ident: e_1_2_17_138_1
  doi: 10.1038/ncb1994
– ident: e_1_2_17_29_1
  doi: 10.1038/onc.2010.598
– ident: e_1_2_17_95_1
  doi: 10.1038/sj.gt.3302868
– ident: e_1_2_17_132_1
  doi: 10.1242/dev.031989
– ident: e_1_2_17_78_1
  doi: 10.1016/j.molmed.2006.07.008
– ident: e_1_2_17_38_1
  doi: 10.1101/gad.14.2.158
– ident: e_1_2_17_116_1
  doi: 10.1038/jid.2011.218
SSID ssj0060593
Score 2.5100942
SecondaryResourceType review_article
Snippet Summary Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia‐associated transcription factor (MITF) is essential for the existence of...
Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia‐associated transcription factor ( MITF ) is essential for the existence of melanocytes....
Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of melanocytes....
Summary Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 390
SubjectTerms Animals
BRAF
Carcinogenesis - metabolism
Carcinogenesis - pathology
Cell Cycle
Heterogeneity
Humans
Kinases
MAP kinase pathway
MAP Kinase Signaling System
MEK
Melanoma
Melanoma - enzymology
Melanoma - genetics
Melanoma - pathology
Melanoma - therapy
Melanoma, Cutaneous Malignant
microphthalmia-associated transcription factor
Microphthalmia-Associated Transcription Factor - genetics
Microphthalmia-Associated Transcription Factor - metabolism
Molecular Targeted Therapy
Pigmentation
Review
Reviews
Skin cancer
Skin Neoplasms
Transcription factors
Title Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy
URI https://api.istex.fr/ark:/67375/WNG-SV4TF8FV-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpcmr.12370
https://www.ncbi.nlm.nih.gov/pubmed/25818589
https://www.proquest.com/docview/1687949902
https://www.proquest.com/docview/1689308523
https://pubmed.ncbi.nlm.nih.gov/PMC4692100
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UiuCLd2u0lhFFUMiSy8xkAr6U4lrELUttaxEkTDITdtnd7LLN4uXJn-Bv9Jc4ZyZJu1oEfQvk5DKTc_lO8uUbgGdMJEqGnPllxIWPCc8X-LkwKQOalCmNhVXXHxzw_WP69pSdbsCr9l8Ypw_RvXDDyLD5GgNc5mcXgnxRzJY9k3cTbNiRrIWI6LDTjuKBU9w15ZH5oUnBjTYp0njOD12rRldxYr9cBjX_ZExeRLK2FPVvwqd2EI6BMumt6rxXfPtN3_F_R3kLbjQYlew6p7oNG7q6A9c-zu0b-LuwHCCJbzGqR3I6G8uf33_I5hlrRWqsfW0mIm41HzKuyExPZTWfSaLOWUpEVooMdofmDJNxZcopwfWRP8uvxPHT8XRO9OAeHPdfH-3t-83SDX7BI2xIA6rKKA95qXJaCp2ztGSBTgsVS5EbTBBrjdAkZ7EuqYhDlI0vTWvGCsaVgXj3YbOaV_oBEJmkymCetAi0otQcbiAWj7k02EVTgy89eNE-wqxodM1xeY1p1vY3OIeZnUMPnna2C6fmcanVc-sJnYlcTpD_lrDsw8Gb7P0JPeqL_kn2zoPt1lWyJvTPspCLBBV_gsiDJ91uE7T4JUZWer6yNmlswG4Ue7DlPKu7WMQQQ4nUg2TN5zoDFARf31ONR1YYnPLUdPDm_l9al_rLELPh3uDQbj38F-NHcN0ARuboytuwWS9X-rEBZXW-A1ciOtyxIfgLIe824A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJgQvjDsZA4xASCClysV2nMdpohRoqml0Y-LFcmJHrdqmVZeKyxM_gd_IL8HHTrMVJiR4i5STi-1z-Y5z8h2EnlOeKBky6pcR4z44PJ_D58KkDEhSpiTmll0_G7DeMXl3Sk-b2hz4F8bxQ7QbbmAZ1l-DgcOG9AUrXxSzZcc43sRk7NvQ0ttmVEctexQLHOeuCZDUD40TbthJoZDn_NqNeLQNU_vlMrD5Z83kRSxrg1F3x3VcPbMchlCDMums6rxTfPuN4fG_x3kT3WhgKt53enULXdHVbXT109xuwt9Bywzq-BajeiSns7H8-f2HbJZZK1xD-Fs7I-wa-uBxhWd6Kqv5TGJ1XqiEZaVwtn9o7jAZVyaiYmiR_Fl-xa5EHW7neA_uouPu6-FBz2-6N_gFiyAnDYgqozxkpcpJyXVO05IGOi1ULHluYEGsNaCTnMa6JDwOgTm-NNkZLShTBuXdQ1vVvNIPEJZJqgzsSYtAK0LM5QZlsZhJA1-0WfjAQy_XayiKhtocOmxMxTrFgTkUdg499KyVXThCj0ulXlhVaEXkcgIlcAkVHwdvxIcTMuzy7onoe2hvrSuisf4zETKeAOlPEHnoaXva2C18jJGVnq-sTBobvBvFHrrvVKt9WEQBRvHUQ8mG0rUCwAm-eaYajyw3OGGpSeLN-7-yOvWXIYrDg-zIHu3-i_ATdK03zPqi_3bw_iG6bvAjddXLe2irXq70I4PR6vyxtcRfBlA6JA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTSBexp0FBhiBkEBKlYvtOBIv00YYsFbV2MaEhCwnttWqbVqVVlye-An8Rn4JPs5lK0xI8BYpJxc75_Id--Q7CD2hPFEyZNQ3EeM-ODyfw3ZhYgKSmJTE3LHrd3ts_5i8OaWna-hF8y9MxQ_RLriBZTh_DQY-U-ackc-Kybxj_W5iE_YNwgIOOr132JJHsaCi3LXxkfqh9cE1OSnU8ZxduxKONmBmv1yENf8smTwPZV0syq6ij80oqhKUUWe5yDvFt98IHv93mNfQZg1S8U6lVdfRmi5voEsfpm4J_iaad6GKbzZYDOR4MpQ_v_-Q9UfWCi8g-DWuCFftfPCwxBM9luV0IrE6K1PCslS4u9O3dxgNSxtPMTRI_iy_4qpAHW5XsR7cQsfZy6Pdfb_u3eAXLIKMNCDKRHnIjMqJ4TqnqaGBTgsVS55bUBBrDdgkp7E2hMch8MYbm5vRgjJlMd5ttF5OS72FsExSZUFPWgRaEWIvtxiLxUxa8KKJBZgeetZ8QlHUxObQX2MsmgQH5lC4OfTQ41Z2VtF5XCj11GlCKyLnIyiAS6h433sl3p2Qo4xnJ-LAQ9uNqoja9j-JkPEEKH-CyEOP2tPWamErRpZ6unQyaWzRbhR76E6lWe3DIgogiqceSlZ0rhUARvDVM-Vw4JjBCUttCm_f_7lTqb8MUfR3u4fu6O6_CD9El_t7mTh43Xt7D12x4JFWpcvbaH0xX-r7FqAt8gfODn8BW0M43A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microphthalmia-associated+transcription+factor+in+melanoma+development+and+MAP-kinase+pathway+targeted+therapy&rft.jtitle=Pigment+cell+and+melanoma+research&rft.au=Wellbrock%2C+Claudia&rft.au=Arozarena%2C+Imanol&rft.date=2015-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1755-1471&rft.eissn=1755-148X&rft.volume=28&rft.issue=4&rft.spage=390&rft_id=info:doi/10.1111%2Fpcmr.12370&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3714623881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-1471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-1471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-1471&client=summon