Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy
Summary Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia‐associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances mel...
Saved in:
Published in | Pigment cell and melanoma research Vol. 28; no. 4; pp. 390 - 406 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.07.2015
Wiley Subscription Services, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia‐associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP‐kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling. |
---|---|
AbstractList | Summary Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP-kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling. Summary Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia‐associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP‐kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling. Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP-kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling. Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia‐associated transcription factor ( MITF ) is essential for the existence of melanocytes. MITF 's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF / MEK / ERK / MAP ‐kinase ( MAPK ) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF 's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling. Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP-kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling.Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP-kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling. |
Author | Wellbrock, Claudia Arozarena, Imanol |
AuthorAffiliation | 1 Manchester Cancer Research Centre Wellcome Trust Centre for Cell Matrix Research Faculty of Life Sciences The University of Manchester Manchester UK |
AuthorAffiliation_xml | – name: 1 Manchester Cancer Research Centre Wellcome Trust Centre for Cell Matrix Research Faculty of Life Sciences The University of Manchester Manchester UK |
Author_xml | – sequence: 1 givenname: Claudia surname: Wellbrock fullname: Wellbrock, Claudia email: Claudia.Wellbrock@manchester.ac.uk organization: Manchester Cancer Research Centre, Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK – sequence: 2 givenname: Imanol surname: Arozarena fullname: Arozarena, Imanol organization: Manchester Cancer Research Centre, Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25818589$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1v0zAYhSM0xD7ghh-AInEzIWX4I3acG6SpogOphQnG4M5ynDert8QOtrvRf4-7rhVMCN_Y0vuco_P6HGZ71lnIspcYneB03o568CeY0Ao9yQ5wxViBS_Fjb_eu8H52GMI1Qhyxmj7L9gkTWDBRH2R2brR34yIuVD8YVagQnDYqQptHr2zQ3ozROJt3Skfnc2PzAXpl3aDyFm6hd-MANubKtvn89Ly4MVYFyEcVF3dqlUflr-DebAFejavn2dNO9QFePNxH2bfp-4vJh2L2-ezj5HRWaE4IKjgq2440mHdtU3YCGlZ3DEGtW6pEwzmmAIIQ0jAKXSkoJpySLm3NNONtSehR9m7jOy6bAVqdInrVy9GbQfmVdMrIvyfWLOSVu5UlrwlGKBkcPxh493MJIcrBBA19Wh3cMkjMRU2RYIQm9PUj9NotvU3rramqLusarRO9-jPRLsq2igSgDZD6CMFDJ7WJav33KaDpJUZy3bZcty3v206SN48kW9d_wngD35keVv8h5flk_mWrKTYaEyL82mmUv5G8ohWT3z-dya-X5cVUTC_ljP4GohzMVA |
CitedBy_id | crossref_primary_10_1111_pcmr_12422 crossref_primary_10_1016_j_celrep_2021_109136 crossref_primary_10_3389_fcell_2016_00033 crossref_primary_10_3390_app14114548 crossref_primary_10_3390_genes13112122 crossref_primary_10_1016_j_jid_2018_06_179 crossref_primary_10_1177_1934578X231156704 crossref_primary_10_4103_ijmpo_ijmpo_204_18 crossref_primary_10_3390_dermatopathology8040051 crossref_primary_10_1002_cncr_30593 crossref_primary_10_2217_epi_2017_0034 crossref_primary_10_1016_j_jid_2021_03_013 crossref_primary_10_1038_labinvest_2016_140 crossref_primary_10_1074_jbc_RA118_003616 crossref_primary_10_1111_pcmr_12710 crossref_primary_10_3390_ijms22115761 crossref_primary_10_1126_scisignal_aac6479 crossref_primary_10_3390_ijms23116001 crossref_primary_10_1007_s00210_019_01668_5 crossref_primary_10_1002_path_5213 crossref_primary_10_1038_s41568_019_0154_4 crossref_primary_10_3389_fnmol_2019_00111 crossref_primary_10_1016_j_semcancer_2017_10_006 crossref_primary_10_1080_02656736_2021_1874062 crossref_primary_10_1016_j_celrep_2019_05_069 crossref_primary_10_1038_s41388_018_0661_x crossref_primary_10_3390_ijms22041895 crossref_primary_10_1007_s00210_024_03366_3 crossref_primary_10_1016_j_ccell_2016_02_003 crossref_primary_10_3390_biom11071021 crossref_primary_10_1016_j_jid_2016_11_026 crossref_primary_10_1038_onc_2017_135 crossref_primary_10_1016_j_cjprs_2022_09_015 crossref_primary_10_1111_pcmr_70008 crossref_primary_10_15252_msb_20177858 crossref_primary_10_18632_oncotarget_9423 crossref_primary_10_3390_cancers12071719 crossref_primary_10_1016_j_heliyon_2024_e28616 crossref_primary_10_1111_pcmr_12729 crossref_primary_10_1016_j_omto_2020_06_001 crossref_primary_10_1111_1750_3841_13380 crossref_primary_10_1038_s41571_019_0204_6 crossref_primary_10_1111_pcmr_12725 crossref_primary_10_1158_2326_6066_CIR_17_0051 crossref_primary_10_1038_s41467_021_22772_2 crossref_primary_10_18632_oncotarget_16514 crossref_primary_10_1016_j_bbagen_2020_129736 crossref_primary_10_1158_1535_7163_MCT_19_0028 crossref_primary_10_1016_j_tiv_2016_11_005 crossref_primary_10_1155_2019_1697913 crossref_primary_10_3389_fonc_2019_01506 crossref_primary_10_1111_pcmr_13092 crossref_primary_10_2492_inflammregen_35_244 crossref_primary_10_1038_s41388_020_1267_7 crossref_primary_10_1038_s41565_024_01690_6 crossref_primary_10_1038_s41388_020_01504_8 crossref_primary_10_3390_ijms21144852 crossref_primary_10_1111_pcmr_12611 crossref_primary_10_1371_journal_pone_0243565 crossref_primary_10_7554_eLife_78942 crossref_primary_10_1080_09168451_2018_1459176 crossref_primary_10_3390_ijms18050969 crossref_primary_10_3390_ijms21218274 crossref_primary_10_1186_s12943_018_0773_5 crossref_primary_10_1371_journal_pone_0158275 crossref_primary_10_1111_pcmr_12736 crossref_primary_10_1111_exd_12943 crossref_primary_10_3390_molecules30051124 crossref_primary_10_1021_acs_molpharmaceut_9b00512 crossref_primary_10_1134_S1022795424701424 crossref_primary_10_1038_s41598_017_07864_8 crossref_primary_10_3136_fstr_23_669 crossref_primary_10_3390_cancers13020166 crossref_primary_10_3390_cimb43030101 crossref_primary_10_1002_jcp_28844 crossref_primary_10_1038_s42003_022_03049_w crossref_primary_10_1073_pnas_1705206114 crossref_primary_10_1111_febs_14040 crossref_primary_10_3390_molecules26196040 crossref_primary_10_1007_s10555_017_9659_z crossref_primary_10_1042_BSR20210427 crossref_primary_10_1073_pnas_2100670119 crossref_primary_10_3389_fimmu_2017_01617 crossref_primary_10_1111_pcmr_12741 crossref_primary_10_1016_j_bbcan_2015_10_002 crossref_primary_10_1242_dmm_049229 crossref_primary_10_1186_s13072_019_0297_2 crossref_primary_10_1634_theoncologist_2019_0656 crossref_primary_10_1007_s11523_020_00695_0 crossref_primary_10_1016_j_cell_2018_06_025 crossref_primary_10_3889_oamjms_2023_11222 crossref_primary_10_1158_1078_0432_CCR_16_1192 crossref_primary_10_1111_jocd_15335 crossref_primary_10_1016_j_ejca_2017_06_033 crossref_primary_10_1038_labinvest_2017_9 crossref_primary_10_1038_s41580_020_0255_7 crossref_primary_10_1016_j_pharmthera_2017_05_010 crossref_primary_10_1038_s41419_020_2662_2 crossref_primary_10_15252_emmm_201505971 crossref_primary_10_1038_s41586_022_04774_2 crossref_primary_10_1111_pcmr_12873 crossref_primary_10_1038_s41598_024_72031_9 crossref_primary_10_1016_j_urology_2020_11_025 crossref_primary_10_1371_journal_pone_0177830 crossref_primary_10_1038_s41419_024_06580_2 crossref_primary_10_1186_s12935_024_03371_9 crossref_primary_10_1016_j_taap_2017_10_008 crossref_primary_10_1038_s41598_017_11366_y crossref_primary_10_18632_oncotarget_7030 crossref_primary_10_3390_ijms22094387 crossref_primary_10_1007_s13530_019_0405_5 crossref_primary_10_1158_1078_0432_CCR_16_0954 crossref_primary_10_3389_fcell_2023_1297910 crossref_primary_10_3390_md19110612 crossref_primary_10_1038_s41598_018_29826_4 crossref_primary_10_1016_j_jid_2017_09_056 crossref_primary_10_1038_s41419_018_1096_6 crossref_primary_10_3892_mmr_2019_9958 crossref_primary_10_3389_fimmu_2021_629519 crossref_primary_10_3389_fmars_2024_1441589 crossref_primary_10_1021_acs_chemrestox_3c00283 crossref_primary_10_1111_pcmr_13210 crossref_primary_10_1016_j_cbi_2018_02_033 crossref_primary_10_1038_nature24037 crossref_primary_10_1158_1078_0432_CCR_19_1359 crossref_primary_10_3390_cells11071157 crossref_primary_10_4062_biomolther_2024_065 crossref_primary_10_1038_s41467_021_22181_5 crossref_primary_10_15252_emmm_201607156 crossref_primary_10_1016_j_semcancer_2019_07_016 crossref_primary_10_1038_ncomms13418 crossref_primary_10_1016_j_hoc_2020_09_005 crossref_primary_10_3390_ijms22147453 crossref_primary_10_1016_j_ctrv_2020_102060 crossref_primary_10_1016_j_bbamcr_2016_03_001 crossref_primary_10_1016_j_ebiom_2017_01_013 crossref_primary_10_1016_j_survophthal_2018_12_002 crossref_primary_10_3390_cancers10060155 crossref_primary_10_1002_mc_22472 crossref_primary_10_1016_j_jid_2020_12_039 crossref_primary_10_1016_j_phymed_2019_152877 crossref_primary_10_1158_1541_7786_MCR_17_0320 crossref_primary_10_1016_j_phrs_2015_04_006 crossref_primary_10_1101_gad_324657_119 crossref_primary_10_1111_pcmr_12812 crossref_primary_10_3389_fonc_2018_00173 crossref_primary_10_1038_s41388_018_0209_0 crossref_primary_10_1016_j_jid_2019_12_007 crossref_primary_10_18632_oncotarget_7175 crossref_primary_10_3390_plants9121672 crossref_primary_10_1038_s41467_024_54324_9 crossref_primary_10_3390_cancers12113147 crossref_primary_10_3390_app14177450 crossref_primary_10_1038_s41588_020_00749_z crossref_primary_10_1038_s41598_021_97791_6 crossref_primary_10_1016_j_celrep_2022_111601 crossref_primary_10_1038_onc_2017_81 crossref_primary_10_1007_s10068_017_0171_6 crossref_primary_10_1016_j_jprot_2022_104671 crossref_primary_10_3390_cancers15123147 crossref_primary_10_52711_0974_360X_2022_00472 crossref_primary_10_1007_s10238_016_0445_y |
Cites_doi | 10.1016/j.ccr.2004.10.014 10.1128/MCB.14.12.8058 10.1073/pnas.1424576112 10.1016/j.stem.2009.12.010 10.1016/S1535-6108(02)00045-4 10.1111/j.1755-148X.2009.00653.x 10.1074/jbc.M309036200 10.1038/nature03269 10.1083/jcb.134.3.747 10.1158/1078-0432.CCR-06-2682 10.1111/pcmr.12274 10.1101/gad.450107 10.1038/jid.2008.30 10.1534/genetics.109.103945 10.1158/0008-5472.CAN-08-2149 10.1073/pnas.0808263106 10.1096/fj.07-9080com 10.1371/journal.pone.0002734 10.1074/jbc.M510590200 10.1242/jcs.013912 10.1111/j.1755-148X.2010.00757.x 10.1128/MCB.18.2.694 10.1034/j.1600-0749.2000.130404.x 10.1128/MCB.12.8.3653 10.1016/j.ccr.2013.02.003 10.1016/S0092-8674(02)00762-6 10.1242/dev.124.12.2377 10.1034/j.1600-0749.2000.130203.x 10.1038/nature03664 10.1158/0008-5472.CAN-07-2491 10.1111/j.1755-148X.2011.00931.x 10.1158/0008-5472.CAN-09-2913 10.1111/j.1755-148X.2011.00893.x 10.1074/jbc.M003816200 10.1128/MCB.24.7.2915-2922.2004 10.1093/hmg/ddt285 10.1074/jbc.273.49.33042 10.1534/genetics.107.081893 10.1038/nrm1498 10.1073/pnas.1205575110 10.1097/00000478-200101000-00005 10.1093/emboj/19.12.2900 10.1038/nature13121 10.1074/jbc.M611563200 10.1038/sj.onc.1201298 10.1101/gad.14.3.301 10.1083/jcb.200410115 10.1038/onc.2010.612 10.1074/jbc.M112.358341 10.1111/j.1755-148X.2008.00514.x 10.1074/jbc.M513094200 10.1074/jbc.M512052200 10.1038/nature12688 10.1083/jcb.142.3.827 10.1016/j.celrep.2014.06.045 10.1242/dev.064014 10.1016/j.ccr.2010.10.029 10.1074/jbc.M411757200 10.1073/pnas.1106351108 10.1101/gad.198192.112 10.1038/jid.2013.272 10.1158/2159-8290.CD-13-0617 10.1101/gad.406406 10.1111/j.1755-148X.2011.00862.x 10.1016/0092-8674(93)90429-T 10.1074/jbc.C000445200 10.1093/hmg/4.11.2131 10.1038/jid.2013.115 10.1074/jbc.C000113200 10.1016/0092-8674(95)90401-8 10.1158/1541-7786.MCR-06-0077 10.1083/jcb.200505059 10.1016/j.yexcr.2005.04.019 10.1038/ncomms1421 10.1074/jbc.M111696200 10.1158/0008-5472.CAN-03-3433 10.1016/j.molcel.2008.11.002 10.1158/2159-8290.CD-13-0424 10.1126/scisignal.2000475 10.1158/1541-7786.MCR-11-0387 10.1016/j.ajpath.2010.12.003 10.1371/journal.pone.0013779 10.1038/onc.2011.33 10.1172/JCI65780 10.1038/nature10539 10.1038/jid.2015.61 10.1042/BST20140020 10.1016/j.cub.2005.01.031 10.1158/0008-5472.CAN-09-0781 10.1371/journal.pone.0011574 10.1093/jnci/djs471 10.1074/jbc.M113.493874 10.1128/MCB.23.24.9073-9080.2003 10.1111/j.1755-148X.2011.00849.x 10.1111/j.1755-148X.2008.00506.x 10.1210/me.2009-0320 10.1128/MCB.24.7.2923-2931.2004 10.1016/j.molcel.2010.11.020 10.1007/s004390000328 10.1111/pcmr.12336 10.1158/0008-5472.CAN-08-1053 10.1038/nature11538 10.1111/j.1600-0749.2006.00322.x 10.1038/nature10630 10.1172/JCI70156 10.1038/onc.2012.229 10.1158/0008-5472.CAN-14-1392 10.1158/0008-5472.CAN-07-2912 10.1016/j.ccr.2011.10.030 10.1038/34681 10.1101/gad.1020502 10.1001/jamainternmed.2014.594 10.1038/ncomms6712 10.1158/2159-8290.CD-13-1007 10.1111/j.1600-0749.2005.00234.x 10.1038/onc.2011.162 10.1128/MCB.02299-05 10.1038/onc.2014.262 10.1073/pnas.0811902106 10.1111/j.1755-148X.2011.00871.x 10.1083/jcb.200202049 10.1021/pr0705441 10.1038/nsmb.2022 10.1158/2159-8290.CD-13-0005 10.1074/jbc.273.29.17983 10.1038/nature05661 10.1038/ncb2535 10.1038/ng0398-283 10.1093/hmg/9.13.1907 10.1146/annurev.genet.38.072902.092717 10.1093/hmg/3.4.553 10.1097/CMR.0000000000000025 10.1074/jbc.M110684200 10.1158/1078-0432.CCR-12-1630 10.1038/jid.2013.293 10.1038/onc.2011.424 10.1006/excr.2000.4803 10.1126/science.1228522 10.1038/onc.2011.425 10.1158/1078-0432.CCR-13-0779 10.1593/neo.10414 10.1111/j.1755-148X.2010.00759.x 10.1093/hmg/9.1.125 10.1038/ncb1994 10.1038/onc.2010.598 10.1038/sj.gt.3302868 10.1242/dev.031989 10.1016/j.molmed.2006.07.008 10.1101/gad.14.2.158 10.1038/jid.2011.218 |
ContentType | Journal Article |
Copyright | 2015 The Authors. Published by John Wiley & Sons Ltd. 2015 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons Ltd. Copyright © 2015 John Wiley & Sons A/S |
Copyright_xml | – notice: 2015 The Authors. Published by John Wiley & Sons Ltd. – notice: 2015 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons Ltd. – notice: Copyright © 2015 John Wiley & Sons A/S |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TO 8FD FR3 H94 K9. P64 7X8 5PM |
DOI | 10.1111/pcmr.12370 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
DocumentTitleAlternate | Wellbrock & Arozarena |
EISSN | 1755-148X |
EndPage | 406 |
ExternalDocumentID | PMC4692100 3714623881 25818589 10_1111_pcmr_12370 PCMR12370 ark_67375_WNG_SV4TF8FV_L |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: CRUK funderid: C11591/A16416 – fundername: AICR funderid: 12‐0235 – fundername: Wellcome Trust grantid: 088785 – fundername: Cancer Research UK grantid: 16416 – fundername: Worldwide Cancer Research grantid: 12-0235 – fundername: CRUK grantid: C11591/A16416 – fundername: AICR grantid: 12‐0235 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HGLYW HVGLF HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WXI WXSBR WYISQ XG1 ~IA ~WT 24P AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 1OB 7QO 7TO 8FD FR3 H94 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c6220-604df2b16fdb4f8eb59f50e9cd3a8b6613ee8222b53ef48312632f1485c56d423 |
IEDL.DBID | DR2 |
ISSN | 1755-1471 1755-148X |
IngestDate | Thu Aug 21 18:16:26 EDT 2025 Fri Jul 11 04:15:39 EDT 2025 Wed Aug 13 06:51:43 EDT 2025 Mon Jul 21 05:57:11 EDT 2025 Thu Apr 24 22:56:02 EDT 2025 Tue Jul 01 02:08:39 EDT 2025 Wed Jan 22 16:22:02 EST 2025 Wed Oct 30 09:49:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | MAP kinase pathway microphthalmia-associated transcription factor melanoma MEK BRAF |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2015 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6220-604df2b16fdb4f8eb59f50e9cd3a8b6613ee8222b53ef48312632f1485c56d423 |
Notes | ark:/67375/WNG-SV4TF8FV-L AICR - No. 12-0235 istex:74358B5BF484CF7F6A42AAE0C93694BC70FAAA7E CRUK - No. C11591/A16416 ArticleID:PCMR12370 [The legal statement in the copyright line for this article was modified on 20 August 2015 after original online publication]. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpcmr.12370 |
PMID | 25818589 |
PQID | 1687949902 |
PQPubID | 1036336 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4692100 proquest_miscellaneous_1689308523 proquest_journals_1687949902 pubmed_primary_25818589 crossref_citationtrail_10_1111_pcmr_12370 crossref_primary_10_1111_pcmr_12370 wiley_primary_10_1111_pcmr_12370_PCMR12370 istex_primary_ark_67375_WNG_SV4TF8FV_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2015 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: July 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: La Jolla – name: Hoboken |
PublicationTitle | Pigment cell and melanoma research |
PublicationTitleAlternate | Pigment Cell Melanoma Res |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | Mansky, K.C., Sankar, U., Han, J., and Ostrowski, M.C. (2002). Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J. Biol. Chem. 277, 11077-11083. Busca, R., and Ballotti, R. (2000). Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13, 60-69. Goodall, J., Carreira, S., Denat, L., Kobi, D., Davidson, I., Nuciforo, P., Sturm, R.A., Larue, L., and Goding, C.R. (2008). Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res. 68, 7788-7794. Tachibana, M. (2000). MITF: a stream flowing for pigment cells. Pigment Cell Res. 13, 230-240. Levy, C., Khaled, M., Iliopoulos, D. et al. (2010). Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol. Cell 40, 841-849. Johannessen, C.M., Johnson, L.A., Piccioni, F. et al. (2013). A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138-142. Ploper, D., Taelman, V.F., Robert, L., Perez, B.S., Titz, B., Chen, H.W., Graeber, T.G., Von Euw, E., Ribas, A., and De Robertis, E.M. (2015). MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc. Natl. Acad. Sci. USA 112, E420-E429. Arozarena, I., Sanchez-Laorden, B., Packer, L., Hidalgo-Carcedo, C., Hayward, R., Viros, A., Sahai, E., and Marais, R. (2011b). Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 19, 45-57. Lowings, P., Yavuzer, U., and Goding, C.R. (1992). Positive and negative elements regulate a melanocyte-specific promoter. Mol. Cell. Biol. 12, 3653-3662. Sato, S., Roberts, K., Gambino, G., Cook, A., Kouzarides, T., and Goding, C.R. (1997). CBP/p300 as a co-factor for the Microphthalmia transcription factor. Oncogene 14, 3083-3092. Yasumoto, K., Yokoyama, K., Shibata, K., Tomita, Y., and Shibahara, S. (1994). Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol. Cell. Biol. 14, 8058-8070. Damsky, W.E., Curley, D.P., Santhanakrishnan, M. et al. (2011). beta-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 20, 741-754. Haq, R., Yokoyama, S., Hawryluk, E.B. et al. (2013b). BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc. Natl. Acad. Sci. USA 110, 4321-4326. Thomas, A.J., and Erickson, C.A. (2009). FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism. Development 136, 1849-1858. Lee, M., Goodall, J., Verastegui, C., Ballotti, R., and Goding, C.R. (2000). Direct regulation of the Microphthalmia promoter by Sox10 links Waardenburg-Shah syndrome (WS4)-associated hypopigmentation and deafness to WS2. J. Biol. Chem. 275, 37978-37983. Marshall, C.J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179-185. Watanabe, A., Takeda, K., Ploplis, B., and Tachibana, M. (1998). Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat. Genet. 18, 283-286. Mcgill, G.G., Haq, R., Nishimura, E.K., and Fisher, D.E. (2006). c-Met expression is regulated by Mitf in the melanocyte lineage. J. Biol. Chem. 281, 10365-10373. Bauer, G.L., Praetorius, C., Bergsteinsdottir, K. et al. (2009). The role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue. Genetics 183, 581-594. Landsberg, J., Kohlmeyer, J., Renn, M. et al. (2012). Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412-416. Bohm, M., Moellmann, G., Cheng, E., Alvarez-Franco, M., Wagner, S., Sassone-Corsi, P., and Halaban, R. (1995). Identification of p90RSK as the probable CREB-Ser133 kinase in human melanocytes. Cell Growth Differ. 6, 291-302. Haflidadottir, B.S., Bergsteinsdottir, K., Praetorius, C., and Steingrimsson, E. (2010). miR-148 regulates Mitf in melanoma cells. PLoS ONE 5, e11574. Zeng, Z., Johnson, S.L., Lister, J.A., and Patton, E.E. (2015). Temperature-sensitive splicing of mitfa by an intron mutation in zebrafish. Pigment Cell Melanoma Res. 28, 229-232. Javelaud, D., Alexaki, V.I., Pierrat, M.J. et al. (2011). GLI2 and M-MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells. Pigment Cell Melanoma Res. 24, 932-943. Loercher, A.E., Tank, E.M., Delston, R.B., and Harbour, J.W. (2005). MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J. Cell Biol. 168, 35-40. Beuret, L., Flori, E., Denoyelle, C., Bille, K., Busca, R., Picardo, M., Bertolotto, C., and Ballotti, R. (2007). Up-regulation of MET expression by alpha-melanocyte-stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis. J. Biol. Chem. 282, 14140-14147. Bertolotto, C., Abbe, P., Hemesath, T.J., Bille, K., Fisher, D.E., Ortonne, J.P., and Ballotti, R. (1998a). Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142, 827-835. Thomson, J.A., Murphy, K., Baker, E., Sutherland, G.R., Parsons, P.G., Sturm, R.A., and Thomson, F. (1995). The brn-2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells. Oncogene 11, 691-700. Li, W.Q., Qureshi, A.A., Robinson, K.C., and Han, J. (2014). Sildenafil use and increased risk of incident melanoma in US men: a prospective cohort study. JAMA Intern. Med. 174, 964-970. Xu, W., Gong, L., Haddad, M.M., Bischof, O., Campisi, J., Yeh, E.T., and Medrano, E.E. (2000). Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255, 135-143. Nakai, N., Kishida, T., Shin-Ya, M., Imanishi, J., Ueda, Y., Kishimoto, S., and Mazda, O. (2007). Therapeutic RNA interference of malignant melanoma by electrotransfer of small interfering RNA targeting Mitf. Gene Ther. 14, 357-365. Wellbrock, C. (2014). MAPK pathway inhibition in melanoma: resistance three ways. Biochem. Soc. Trans. 42, 727-732. Frederick, D.T., Piris, A., Cogdill, A.P. et al. (2013). BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225-1231. Bismuth, K., Skuntz, S., Hallsson, J.H., Pak, E., Dutra, A.S., Steingrimsson, E., and Arnheiter, H. (2008). An unstable targeted allele of the mouse Mitf gene with a high somatic and germline reversion rate. Genetics 178, 259-272. Boyle, G.M., Woods, S.L., Bonazzi, V.F., Stark, M.S., Hacker, E., Aoude, L.G., Dutton-Regester, K., Cook, A.L., Sturm, R.A., and Hayward, N.K. (2011). Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res. 24, 525-537. Cook, A.L., Smith, A.G., Smit, D.J., Leonard, J.H., and Sturm, R.A. (2005). Co-expression of SOX9 and SOX10 during melanocytic differentiation in vitro. Exp. Cell Res. 308, 222-235. Marquette, A., Andre, J., Bagot, M., Bensussan, A., and Dumaz, N. (2011). ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat. Struct. Mol. Biol. 18, 584-591. Tap, W.D., Gong, K.W., Dering, J. et al. (2010). Pharmacodynamic characterization of the efficacy signals due to selective BRAF inhibition with PLX4032 in malignant melanoma. Neoplasia 12, 637-649. Thomas, A.J., and Erickson, C.A. (2008). The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res. 21, 598-610. Kubic, J.D., Mascarenhas, J.B., Iizuka, T., Wolfgeher, D., and Lang, D. (2012). GSK-3 promotes cell survival, growth, and PAX3 levels in human melanoma cells. Mol. Cancer Res. 10, 1065-1076. Hoek, K.S., and Goding, C.R. (2010). Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res. 23, 746-759. Eichhoff, O.M., Weeraratna, A., Zipser, M.C. et al. (2011). Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell Melanoma Res. 24, 631-642. Takeda, K., Yasumoto, K., Takada, R., Takada, S., Watanabe, K., Udono, T., Saito, H., Takahashi, K., and Shibahara, S. (2000b). Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J. Biol. Chem. 275, 14013-14016. Bronisz, A., Carey, H.A., Godlewski, J., Sif, S., Ostrowski, M.C., and Sharma, S.M. (2014). The multifunctional protein fused in sarcoma (FUS) is a coactivator of microphthalmia-associated transcription factor (MITF). J. Biol. Chem. 289, 326-334. Hodgkinson, C.A., Moore, K.J., Nakayama, A., Steingrimsson, E., Copeland, N.G., Jenkins, N.A., and Arnheiter, H. (1993). Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74, 395-404. Cantin, G.T., Yi, W., Lu, B., Park, S.K., Xu, T., Lee, J.D., and Yates, J.R. 3rd (2008). Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J. Proteome Res. 7, 1346-1351. Delmas, V., Beermann, F., Martinozzi, S. et al. (2007). Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 21, 2923-2935. Sun, C., Wang, L., Huang, S. et al. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508, 118-122. Ugurel, S., Houben, R., Schrama, D., Voigt, H., Zapatka, M., Schadendorf, D., Brocker, E.B., and Becker, J.C. (2007). Microphthalmia-ass 2002; 16 2010; 12 2005; 170 2013; 3 2002; 158 2002; 277 2013; 123 2014; 27 2004; 6 2014; 24 2008; 32 2000; 255 2012; 14 2009; 119 2003; 278 2012; 10 2014; 134 2010; 23 2009; 11 1998; 18 2001; 61 2000; 19 2006; 20 2010; 24 1998b; 18 2000; 14 2004; 38 2000; 13 2012; 490 2006; 26 2008; 21 2008; 22 2006; 281 2012; 26 2010; 3 2011; 480 2010; 5 1996; 134 2010; 6 2014; 124 2011; 138 2007; 445 2009; 69 2011; 2 2007; 282 2004a; 24 2013; 504 2004a; 5 2013; 105 2002; 1 2008; 128 2008; 121 1998b; 273 1995; 4 2001; 25 1995; 6 2007; 13 2012; 31 2010; 40 2007; 14 2000b; 275 2004b; 64 2011; 131 2014; 42 1998; 391 2013a; 23 2013; 339 2015; 112 2000; 107 1994; 14 2009; 183 2005; 15 2005; 18 2009; 106 2003; 23 2012; 287 2013; 22 2000; 9 2000a; 9 2011a; 30 2008; 7 2008; 3 2014; 174 1992; 12 2011; 18 2013; 19 2014; 5 2014; 4 1997; 14 1993; 74 2011; 20 2008; 68 2005; 308 2000; 60 2011b; 19 2011; 24 2002; 109 2010; 70 2014; 8 2007; 21 2014; 289 2013b; 110 2006; 12 2005; 433 1995; 11 2005; 436 1998a; 273 2011; 30 2006; 19 2006; 4 2000; 275 2004b; 24 2011; 178 2009; 136 1997; 124 2005; 280 2015; 28 2011; 108 2014; 508 1995; 80 2013; 32 2005; 168 1998a; 142 2013; 133 2015 2014 2008; 178 2014; 74 1994; 3 e_1_2_17_95_1 e_1_2_17_3_1 e_1_2_17_30_1 e_1_2_17_72_1 e_1_2_17_53_1 e_1_2_17_99_1 e_1_2_17_7_1 e_1_2_17_11_1 e_1_2_17_34_1 e_1_2_17_76_1 e_1_2_17_152_1 e_1_2_17_15_1 e_1_2_17_38_1 e_1_2_17_57_1 e_1_2_17_19_1 e_1_2_17_103_1 e_1_2_17_126_1 Passeron T. (e_1_2_17_100_1) 2009; 119 e_1_2_17_145_1 e_1_2_17_107_1 Salti G.I. (e_1_2_17_110_1) 2000; 60 e_1_2_17_149_1 e_1_2_17_91_1 e_1_2_17_41_1 e_1_2_17_60_1 e_1_2_17_83_1 e_1_2_17_22_1 e_1_2_17_45_1 e_1_2_17_64_1 e_1_2_17_87_1 e_1_2_17_26_1 e_1_2_17_49_1 e_1_2_17_68_1 e_1_2_17_122_1 e_1_2_17_141_1 Bohm M. (e_1_2_17_18_1) 1995; 6 e_1_2_17_115_1 e_1_2_17_134_1 e_1_2_17_119_1 e_1_2_17_138_1 e_1_2_17_50_1 e_1_2_17_73_1 e_1_2_17_96_1 e_1_2_17_2_1 e_1_2_17_54_1 e_1_2_17_77_1 e_1_2_17_31_1 e_1_2_17_6_1 e_1_2_17_12_1 e_1_2_17_35_1 e_1_2_17_16_1 e_1_2_17_58_1 e_1_2_17_155_1 e_1_2_17_39_1 e_1_2_17_132_1 e_1_2_17_151_1 e_1_2_17_125_1 e_1_2_17_148_1 e_1_2_17_102_1 e_1_2_17_129_1 e_1_2_17_106_1 e_1_2_17_92_1 e_1_2_17_84_1 e_1_2_17_61_1 e_1_2_17_42_1 e_1_2_17_88_1 e_1_2_17_23_1 e_1_2_17_65_1 e_1_2_17_140_1 e_1_2_17_46_1 e_1_2_17_27_1 e_1_2_17_69_1 e_1_2_17_121_1 e_1_2_17_144_1 e_1_2_17_137_1 e_1_2_17_118_1 e_1_2_17_156_1 e_1_2_17_80_1 e_1_2_17_5_1 e_1_2_17_74_1 e_1_2_17_51_1 e_1_2_17_93_1 e_1_2_17_9_1 e_1_2_17_32_1 e_1_2_17_78_1 e_1_2_17_55_1 e_1_2_17_97_1 e_1_2_17_13_1 e_1_2_17_36_1 e_1_2_17_59_1 e_1_2_17_154_1 e_1_2_17_17_1 e_1_2_17_131_1 e_1_2_17_150_1 e_1_2_17_147_1 e_1_2_17_101_1 e_1_2_17_124_1 e_1_2_17_105_1 e_1_2_17_128_1 Scholl F.A. (e_1_2_17_114_1) 2001; 61 e_1_2_17_109_1 e_1_2_17_70_1 e_1_2_17_62_1 e_1_2_17_85_1 e_1_2_17_20_1 e_1_2_17_43_1 e_1_2_17_66_1 e_1_2_17_89_1 e_1_2_17_24_1 e_1_2_17_47_1 e_1_2_17_28_1 e_1_2_17_143_1 e_1_2_17_120_1 e_1_2_17_136_1 e_1_2_17_113_1 e_1_2_17_117_1 e_1_2_17_81_1 e_1_2_17_4_1 e_1_2_17_52_1 e_1_2_17_71_1 e_1_2_17_94_1 e_1_2_17_8_1 e_1_2_17_10_1 e_1_2_17_56_1 e_1_2_17_75_1 e_1_2_17_98_1 e_1_2_17_33_1 e_1_2_17_14_1 e_1_2_17_153_1 e_1_2_17_79_1 e_1_2_17_37_1 e_1_2_17_111_1 Thomson J.A. (e_1_2_17_133_1) 1995; 11 e_1_2_17_130_1 e_1_2_17_104_1 e_1_2_17_123_1 e_1_2_17_146_1 e_1_2_17_108_1 e_1_2_17_127_1 e_1_2_17_90_1 e_1_2_17_63_1 e_1_2_17_40_1 e_1_2_17_82_1 e_1_2_17_21_1 e_1_2_17_67_1 e_1_2_17_44_1 e_1_2_17_86_1 e_1_2_17_25_1 e_1_2_17_48_1 e_1_2_17_29_1 e_1_2_17_142_1 e_1_2_17_112_1 e_1_2_17_135_1 e_1_2_17_116_1 e_1_2_17_139_1 |
References_xml | – reference: Hou, J.M., Krebs, M., Ward, T., Sloane, R., Priest, L., Hughes, A., Clack, G., Ranson, M., Blackhall, F., and Dive, C. (2011). Circulating tumor cells as a window on metastasis biology in lung cancer. Am. J. Pathol. 178, 989-996. – reference: Shakhova, O., Zingg, D., Schaefer, S.M. et al. (2012). Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat. Cell Biol. 14, 882-890. – reference: Goodall, J., Carreira, S., Denat, L., Kobi, D., Davidson, I., Nuciforo, P., Sturm, R.A., Larue, L., and Goding, C.R. (2008). Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res. 68, 7788-7794. – reference: Chien, A.J., Moore, E.C., Lonsdorf, A.S., Kulikauskas, R.M., Rothberg, B.G., Berger, A.J., Major, M.B., Hwang, S.T., Rimm, D.L., and Moon, R.T. (2009). Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc. Natl. Acad. Sci. USA 106, 1193-1198. – reference: Li, W.Q., Qureshi, A.A., Robinson, K.C., and Han, J. (2014). Sildenafil use and increased risk of incident melanoma in US men: a prospective cohort study. JAMA Intern. Med. 174, 964-970. – reference: Cheli, Y., Ohanna, M., Ballotti, R., and Bertolotto, C. (2010). Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res. 23, 27-40. – reference: Damsky, W.E., Curley, D.P., Santhanakrishnan, M. et al. (2011). beta-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 20, 741-754. – reference: Passeron, T., Valencia, J.C., Namiki, T., Vieira, W.D., Passeron, H., Miyamura, Y., and Hearing, V.J. (2009). Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. J. Clin. Invest. 119, 954-963. – reference: Abel, E.V., Basile, K.J., Kugel, C.H. 3rd et al. (2013). Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J. Clin. Invest. 123, 2155-2168. – reference: Bertolotto, C., Lesueur, F., Giuliano, S. et al. (2011). A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480, 94-98. – reference: Molina, D.M., Grewal, S., and Bardwell, L. (2005). Characterization of an ERK-binding domain in microphthalmia-associated transcription factor and differential inhibition of ERK2-mediated substrate phosphorylation. J. Biol. Chem. 280, 42051-42060. – reference: Sato-Jin, K., Nishimura, E.K., Akasaka, E. et al. (2008). Epistatic connections between microphthalmia-associated transcription factor and endothelin signaling in Waardenburg syndrome and other pigmentary disorders. FASEB J. 22, 1155-1168. – reference: Frederick, D.T., Piris, A., Cogdill, A.P. et al. (2013). BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225-1231. – reference: Ploper, D., Taelman, V.F., Robert, L., Perez, B.S., Titz, B., Chen, H.W., Graeber, T.G., Von Euw, E., Ribas, A., and De Robertis, E.M. (2015). MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc. Natl. Acad. Sci. USA 112, E420-E429. – reference: Ennen, M., Keime, C., Kobi, D., Mengus, G., Lipsker, D., Thibault-Carpentier, C., and Davidson, I. (2014). Single-cell gene expression signatures reveal melanoma cell heterogeneity. Oncogene doi: 10.1038/onc.2014.262. [Epub ahead of print]. – reference: Patton, E.E., Widlund, H.R., Kutok, J.L. et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr. Biol. 15, 249-254. – reference: Arozarena, I., Sanchez-Laorden, B., Packer, L., Hidalgo-Carcedo, C., Hayward, R., Viros, A., Sahai, E., and Marais, R. (2011b). Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 19, 45-57. – reference: Steingrimsson, E., Copeland, N.G., and Jenkins, N.A. (2004). Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 38, 365-411. – reference: Thomas, A.J., and Erickson, C.A. (2009). FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism. Development 136, 1849-1858. – reference: Arozarena, I., Bischof, H., Gilby, D., Belloni, B., Dummer, R., and Wellbrock, C. (2011a). In melanoma, beta-catenin is a suppressor of invasion. Oncogene 30, 4531-4543. – reference: Murakami, H., and Arnheiter, H. (2005). Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Pigment Cell Res. 18, 265-277. – reference: Tachibana, M. (2000). MITF: a stream flowing for pigment cells. Pigment Cell Res. 13, 230-240. – reference: Gallagher, S.J., Rambow, F., Kumasaka, M., Champeval, D., Bellacosa, A., Delmas, V., and Larue, L. (2013). Beta-catenin inhibits melanocyte migration but induces melanoma metastasis. Oncogene 32, 2230-2238. – reference: Boyle, G.M., Woods, S.L., Bonazzi, V.F., Stark, M.S., Hacker, E., Aoude, L.G., Dutton-Regester, K., Cook, A.L., Sturm, R.A., and Hayward, N.K. (2011). Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res. 24, 525-537. – reference: Mcgill, G.G., Horstmann, M., Widlund, H.R. et al. (2002). Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707-718. – reference: Eichhoff, O.M., Weeraratna, A., Zipser, M.C. et al. (2011). Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell Melanoma Res. 24, 631-642. – reference: Lauss, M., Haq, R., Cirenajwis, H. et al. (2015). Genome-wide DNA methylation analysis in melanoma reveals the importance of CpG methylation in MITF regulation. J. Invest. Dermatol. doi: 10.1038/jid.2015.61. [Epub ahead of print]. – reference: Wellbrock, C., Rana, S., Paterson, H., Pickersgill, H., Brummelkamp, T., and Marais, R. (2008). Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS ONE 3, e2734. – reference: Dorsky, R.I., Raible, D.W., and Moon, R.T. (2000). Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Genes Dev. 14, 158-162. – reference: Takeda, K., Yasumoto, K., Takada, R., Takada, S., Watanabe, K., Udono, T., Saito, H., Takahashi, K., and Shibahara, S. (2000b). Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J. Biol. Chem. 275, 14013-14016. – reference: Busca, R., Abbe, P., Mantoux, F., Aberdam, E., Peyssonnaux, C., Eychene, A., Ortonne, J.P., and Ballotti, R. (2000). Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J. 19, 2900-2910. – reference: Verastegui, C., Bille, K., Ortonne, J.P., and Ballotti, R. (2000). Regulation of the microphthalmia-associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10. J. Biol. Chem. 275, 30757-30760. – reference: Feige, E., Yokoyama, S., Levy, C. et al. (2011). Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF. Proc. Natl. Acad. Sci. USA 108, E924-E933. – reference: King, R., Googe, P.B., Weilbaecher, K.N., Mihm, M.C. Jr, and Fisher, D.E. (2001). Microphthalmia transcription factor expression in cutaneous benign, malignant melanocytic, and nonmelanocytic tumors. Am. J. Surg. Pathol. 25, 51-57. – reference: Lister, J.A., Capper, A., Zeng, Z., Mathers, M.E., Richardson, J., Paranthaman, K., Jackson, I.J., and Patton, E.E. (2014). A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion vs. regression in vivo. J. Invest. Dermatol. 134, 133-140. – reference: Kono, M., Dunn, I.S., Durda, P.J., Butera, D., Rose, L.B., Haggerty, T.J., Benson, E.M., and Kurnick, J.T. (2006). Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol. Cancer Res. 4, 779-792. – reference: Bell, R.E., and Levy, C. (2011). The three M's: melanoma, microphthalmia-associated transcription factor and microRNA. Pigment Cell Melanoma Res. 24, 1088-1106. – reference: Wellbrock, C. (2014). MAPK pathway inhibition in melanoma: resistance three ways. Biochem. Soc. Trans. 42, 727-732. – reference: Goodall, J., Martinozzi, S., Dexter, T.J., Champeval, D., Carreira, S., Larue, L., and Goding, C.R. (2004a). Brn-2 expression controls melanoma proliferation and is directly regulated by beta-catenin. Mol. Cell. Biol. 24, 2915-2922. – reference: Bismuth, K., Skuntz, S., Hallsson, J.H., Pak, E., Dutra, A.S., Steingrimsson, E., and Arnheiter, H. (2008). An unstable targeted allele of the mouse Mitf gene with a high somatic and germline reversion rate. Genetics 178, 259-272. – reference: Zhao, X., Fiske, B., Kawakami, A., Li, J., and Fisher, D.E. (2011). Regulation of MITF stability by the USP13 deubiquitinase. Nat. Commun. 2, 414. – reference: Busca, R., and Ballotti, R. (2000). Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13, 60-69. – reference: Garraway, L.A., Widlund, H.R., Rubin, M.A. et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117-122. – reference: Huber, W.E., Price, E.R., Widlund, H.R., Du, J., Davis, I.J., Wegner, M., and Fisher, D.E. (2003). A tissue-restricted cAMP transcriptional response: SOX10 modulates alpha-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. J. Biol. Chem. 278, 45224-45230. – reference: Chapman, A., Fernandez Del Ama, L., Ferguson, J., Kamarashev, J., Wellbrock, C., and Hurlstone, A. (2014). Heterogeneous tumor subpopulations cooperate to drive invasion. Cell Rep. 8, 688-695. – reference: Levy, C., Khaled, M., and Fisher, D.E. (2006). MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med. 12, 406-414. – reference: Sturm, R.A., Fox, C., Mcclenahan, P. et al. (2014). Phenotypic characterization of nevus and tumor patterns in MITF E318K mutation carrier melanoma patients. J. Invest. Dermatol. 134, 141-149. – reference: Marshall, C.J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179-185. – reference: Bauer, G.L., Praetorius, C., Bergsteinsdottir, K. et al. (2009). The role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue. Genetics 183, 581-594. – reference: Marquette, A., Andre, J., Bagot, M., Bensussan, A., and Dumaz, N. (2011). ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat. Struct. Mol. Biol. 18, 584-591. – reference: Wellbrock, C., Karasarides, M., and Marais, R. (2004a). The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 5, 875-885. – reference: Smith, M.P., Ferguson, J., Arozarena, I., Hayward, R., Marais, R., Chapman, A., Hurlstone, A., and Wellbrock, C. (2013). Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J. Natl Cancer Inst. 105, 33-46. – reference: Grill, C., Bergsteinsdóttir, K., Ogmundsdóttir, M.H., Pogenberg, V., Schepsky, A., Wilmanns, M., Pingault, V., and Steingrímsson, E. (2013). MITF mutations associated with pigment deficiency syndromes and melanoma have different effects on protein function. Hum Mol Genet. 22, 4357-4367. – reference: Nishimura, E.K., Suzuki, M., Igras, V., Du, J., Lonning, S., Miyachi, Y., Roes, J., Beermann, F., and Fisher, D.E. (2010). Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 6, 130-140. – reference: Sensi, M., Catani, M., Castellano, G. et al. (2011). Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase. J. Invest. Dermatol. 131, 2448-2457. – reference: Salti, G.I., Manougian, T., Farolan, M., Shilkaitis, A., Majumdar, D., and Das Gupta, T.K. (2000). Micropthalmia transcription factor: a new prognostic marker in intermediate-thickness cutaneous malignant melanoma. Cancer Res. 60, 5012-5016. – reference: Thurber, A.E., Douglas, G., Sturm, E.C., Zabierowski, S.E., Smit, D.J., Ramakrishnan, S.N., Hacker, E., Leonard, J.H., Herlyn, M., and Sturm, R.A. (2011). Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway. Oncogene 30, 3036-3048. – reference: Landsberg, J., Kohlmeyer, J., Renn, M. et al. (2012). Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412-416. – reference: Opdecamp, K., Nakayama, A., Nguyen, M.T., Hodgkinson, C.A., Pavan, W.J., and Arnheiter, H. (1997). Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 124, 2377-2386. – reference: Lowings, P., Yavuzer, U., and Goding, C.R. (1992). Positive and negative elements regulate a melanocyte-specific promoter. Mol. Cell. Biol. 12, 3653-3662. – reference: Van Allen, E.M., Wagle, N., Sucker, A. et al. (2014). The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94-109. – reference: Haass, N.K., Beaumont, K.A., Hill, D.S., Anfosso, A., Mrass, P., Munoz, M.A., Kinjyo, I., and Weninger, W. (2014). Real-time cell cycle imaging during melanoma growth, invasion, and drug response. Pigment Cell Melanoma Res. 27, 764-776. – reference: Sun, C., Wang, L., Huang, S. et al. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508, 118-122. – reference: Arnheiter, H. (2010). The discovery of the microphthalmia locus and its gene, Mitf. Pigment Cell Melanoma Res. 23, 729-735. – reference: Hanna, L.A., Foreman, R.K., Tarasenko, I.A., Kessler, D.S., and Labosky, P.A. (2002). Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 16, 2650-2661. – reference: Houben, R., Vetter-Kauczok, C.S., Ortmann, S., Rapp, U.R., Broecker, E.B., and Becker, J.C. (2008). Phospho-ERK staining is a poor indicator of the mutational status of BRAF and NRAS in human melanoma. J. Invest. Dermatol. 128, 2003-2012. – reference: Yu, M., Bardia, A., Wittner, B.S. et al. (2013). Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580-584. – reference: Nakai, N., Kishida, T., Shin-Ya, M., Imanishi, J., Ueda, Y., Kishimoto, S., and Mazda, O. (2007). Therapeutic RNA interference of malignant melanoma by electrotransfer of small interfering RNA targeting Mitf. Gene Ther. 14, 357-365. – reference: Lee, M., Goodall, J., Verastegui, C., Ballotti, R., and Goding, C.R. (2000). Direct regulation of the Microphthalmia promoter by Sox10 links Waardenburg-Shah syndrome (WS4)-associated hypopigmentation and deafness to WS2. J. Biol. Chem. 275, 37978-37983. – reference: Wellbrock, C., Weisser, C., Geissinger, E., Troppmair, J., and Schartl, M. (2002). Activation of p59(Fyn) leads to melanocyte dedifferentiation by influencing MKP-1-regulated mitogen-activated protein kinase signaling. J. Biol. Chem. 277, 6443-6454. – reference: Wellbrock, C., and Marais, R. (2005). Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J. Cell Biol. 170, 703-708. – reference: Javelaud, D., Alexaki, V.I., Pierrat, M.J. et al. (2011). GLI2 and M-MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells. Pigment Cell Melanoma Res. 24, 932-943. – reference: Levy, C., Khaled, M., Iliopoulos, D. et al. (2010). Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol. Cell 40, 841-849. – reference: Olsen, J.V., Vermeulen, M., Santamaria, A. et al. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3. – reference: Takeda, K., Takemoto, C., Kobayashi, I., Watanabe, A., Nobukuni, Y., Fisher, D.E., and Tachibana, M. (2000a). Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Hum. Mol. Genet. 9, 125-132. – reference: Wu, M., Hemesath, T.J., Takemoto, C.M., Horstmann, M.A., Wells, A.G., Price, E.R., Fisher, D.Z., and Fisher, D.E. (2000). c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14, 301-312. – reference: Hoek, K.S., and Goding, C.R. (2010). Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res. 23, 746-759. – reference: Cook, A.L., Smith, A.G., Smit, D.J., Leonard, J.H., and Sturm, R.A. (2005). Co-expression of SOX9 and SOX10 during melanocytic differentiation in vitro. Exp. Cell Res. 308, 222-235. – reference: De La Serna, I.L., Ohkawa, Y., Higashi, C., Dutta, C., Osias, J., Kommajosyula, N., Tachibana, T., and Imbalzano, A.N. (2006). The microphthalmia-associated transcription factor requires SWI/SNF enzymes to activate melanocyte-specific genes. J. Biol. Chem. 281, 20233-20241. – reference: Li, X.H., Kishore, A.H., Dao, D., Zheng, W., Roman, C.A., and Word, R.A. (2010). A novel isoform of microphthalmia-associated transcription factor inhibits IL-8 gene expression in human cervical stromal cells. Mol. Endocrinol. 24, 1512-1528. – reference: Dissanayake, S.K., Olkhanud, P.B., O'connell, M.P. et al. (2008). Wnt5A regulates expression of tumor-associated antigens in melanoma via changes in signal transducers and activators of transcription 3 phosphorylation. Cancer Res. 68, 10205-10214. – reference: Price, E.R., Horstmann, M.A., Wells, A.G., Weilbaecher, K.N., Takemoto, C.M., Landis, M.W., and Fisher, D.E. (1998b). alpha-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J. Biol. Chem. 273, 33042-33047. – reference: Giuliano, S., Cheli, Y., Ohanna, M. et al. (2010). Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas. Cancer Res. 70, 3813-3822. – reference: Bertolotto, C., Abbe, P., Hemesath, T.J., Bille, K., Fisher, D.E., Ortonne, J.P., and Ballotti, R. (1998a). Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142, 827-835. – reference: Smith, M.P., Sanchez-Laorden, B., O'brien, K. et al. (2014). The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFalpha. Cancer Discov. 4, 1214-1229. – reference: Sato, S., Roberts, K., Gambino, G., Cook, A., Kouzarides, T., and Goding, C.R. (1997). CBP/p300 as a co-factor for the Microphthalmia transcription factor. Oncogene 14, 3083-3092. – reference: Beuret, L., Flori, E., Denoyelle, C., Bille, K., Busca, R., Picardo, M., Bertolotto, C., and Ballotti, R. (2007). Up-regulation of MET expression by alpha-melanocyte-stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis. J. Biol. Chem. 282, 14140-14147. – reference: Tap, W.D., Gong, K.W., Dering, J. et al. (2010). Pharmacodynamic characterization of the efficacy signals due to selective BRAF inhibition with PLX4032 in malignant melanoma. Neoplasia 12, 637-649. – reference: Beuret, L., Ohanna, M., Strub, T., Allegra, M., Davidson, I., Bertolotto, C., and Ballotti, R. (2011). BRCA1 is a new MITF target gene. Pigment Cell Melanoma Res. 24, 725-727. – reference: Cheli, Y., Giuliano, S., Fenouille, N. et al. (2012). Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene 31, 2461-2470. – reference: Weeraratna, A.T., Jiang, Y., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M., and Trent, J.M. (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1, 279-288. – reference: Gopal, Y.N., Rizos, H., Chen, G., et al. (2014). Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and oxidative p hosphorylation in melanoma. Cancer Res. 74, 7037-7047. – reference: Taylor, K.L., Lister, J.A., Zeng, Z., Ishizaki, H., Anderson, C., Kelsh, R.N., Jackson, I.J., and Patton, E.E. (2011). Differentiated melanocyte cell division occurs in vivo and is promoted by mutations in Mitf. Development 138, 3579-3589. – reference: Bemis, L.T., Chen, R., Amato, C.M., Classen, E.H., Robinson, S.E., Coffey, D.G., Erickson, P.F., Shellman, Y.G., and Robinson, W.A. (2008). MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res. 68, 1362-1368. – reference: Konieczkowski, D.J., Johannessen, C.M., Abudayyeh, O. et al. (2014). A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 4, 816-827. – reference: Xu, W., Gong, L., Haddad, M.M., Bischof, O., Campisi, J., Yeh, E.T., and Medrano, E.E. (2000). Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255, 135-143. – reference: Bertolotto, C., Busca, R., Abbe, P., Bille, K., Aberdam, E., Ortonne, J.P., and Ballotti, R. (1998b). Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol. Cell. Biol. 18, 694-702. – reference: Widlund, H.R., Horstmann, M.A., Price, E.R., Cui, J., Lessnick, S.L., Wu, M., He, X., and Fisher, D.E. (2002). Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J. Cell Biol. 158, 1079-1087. – reference: Hoek, K.S., Eichhoff, O.M., Schlegel, N.C., Dobbeling, U., Kobert, N., Schaerer, L., Hemmi, S., and Dummer, R. (2008). In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 68, 650-656. – reference: Cheli, Y., Giuliano, S., Botton, T., Rocchi, S., Hofman, V., Hofman, P., Bahadoran, P., Bertolotto, C., and Ballotti, R. (2011). Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 30, 2307-2318. – reference: Bohm, M., Moellmann, G., Cheng, E., Alvarez-Franco, M., Wagner, S., Sassone-Corsi, P., and Halaban, R. (1995). Identification of p90RSK as the probable CREB-Ser133 kinase in human melanocytes. Cell Growth Differ. 6, 291-302. – reference: Goodall, J., Wellbrock, C., Dexter, T.J., Roberts, K., Marais, R., and Goding, C.R. (2004b). The Brn-2 transcription factor links activated BRAF to melanoma proliferation. Mol. Cell. Biol. 24, 2923-2931. – reference: Mazar, J., Deyoung, K., Khaitan, D., Meister, E., Almodovar, A., Goydos, J., Ray, A., and Perera, R.J. (2010). The regulation of miRNA-211 expression and its role in melanoma cell invasiveness. PLoS ONE 5, e13779. – reference: Gray-Schopfer, V., Wellbrock, C., and Marais, R. (2007). Melanoma biology and new targeted therapy. Nature 445, 851-857. – reference: Carreira, S., Goodall, J., Aksan, I., La Rocca, S.A., Galibert, M.D., Denat, L., Larue, L., and Goding, C.R. (2005). Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433, 764-769. – reference: Scholl, F.A., Kamarashev, J., Murmann, O.V., Geertsen, R., Dummer, R., and Schafer, B.W. (2001). PAX3 is expressed in human melanomas and contributes to tumor cell survival. Cancer Res. 61, 823-826. – reference: Delmas, V., Beermann, F., Martinozzi, S. et al. (2007). Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 21, 2923-2935. – reference: Miller, A.J., Levy, C., Davis, I.J., Razin, E., and Fisher, D.E. (2005). Sumoylation of MITF and its related family members TFE3 and TFEB. J. Biol. Chem. 280, 146-155. – reference: Potterf, S.B., Furumura, M., Dunn, K.J., Arnheiter, H., and Pavan, W.J. (2000). Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum. Genet. 107, 1-6. – reference: Basile, K.J., Abel, E.V., and Aplin, A.E. (2012). Adaptive upregulation of FOXD3 and resistance to PLX4032/4720-induced cell death in mutant B-RAF melanoma cells. Oncogene 31, 2471-2479. – reference: Salama, A.K., and Flaherty, K.T. (2013). BRAF in melanoma: current strategies and future directions. Clin. Cancer Res. 19, 4326-4334. – reference: Pogenberg, V., Ogmundsdottir, M.H., Bergsteinsdottir, K., Schepsky, A., Phung, B., Deineko, V., Milewski, M., Steingrimsson, E., and Wilmanns, M. (2012). Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF. Genes Dev. 26, 2647-2658. – reference: Pierrat, M.J., Marsaud, V., Mauviel, A., and Javelaud, D. (2012). Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-beta. J. Biol. Chem. 287, 17996-18004. – reference: Haflidadottir, B.S., Bergsteinsdottir, K., Praetorius, C., and Steingrimsson, E. (2010). miR-148 regulates Mitf in melanoma cells. PLoS ONE 5, e11574. – reference: Hoek, K.S., Schlegel, N.C., Brafford, P. et al. (2006). Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res. 19, 290-302. – reference: Hodgkinson, C.A., Moore, K.J., Nakayama, A., Steingrimsson, E., Copeland, N.G., Jenkins, N.A., and Arnheiter, H. (1993). Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74, 395-404. – reference: Mansky, K.C., Sankar, U., Han, J., and Ostrowski, M.C. (2002). Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J. Biol. Chem. 277, 11077-11083. – reference: Yokoyama, S., Woods, S.L., Boyle, G.M. et al. (2011). A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 480, 99-103. – reference: Thomson, J.A., Murphy, K., Baker, E., Sutherland, G.R., Parsons, P.G., Sturm, R.A., and Thomson, F. (1995). The brn-2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells. Oncogene 11, 691-700. – reference: Pinner, S., Jordan, P., Sharrock, K., Bazley, L., Collinson, L., Marais, R., Bonvin, E., Goding, C., and Sahai, E. (2009). Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. Cancer Res. 69, 7969-7977. – reference: Du, J., Widlund, H.R., Horstmann, M.A., Ramaswamy, S., Ross, K., Huber, W.E., Nishimura, E.K., Golub, T.R., and Fisher, D.E. (2004). Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6, 565-576. – reference: Wellbrock, C., Ogilvie, L., Hedley, D., Karasarides, M., Martin, J., Niculescu-Duvaz, D., Springer, C.J., and Marais, R. (2004b). V599EB-RAF is an oncogene in melanocytes. Cancer Res. 64, 2338-2342. – reference: Tassabehji, M., Newton, V.E., Liu, X.Z. et al. (1995). The mutational spectrum in Waardenburg syndrome. Hum. Mol. Genet. 4, 2131-2137. – reference: Muller, J., Krijgsman, O., Tsoi, J. et al. (2014). Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat. Commun. 5, 5712. – reference: O'connell, M.P., Marchbank, K., Webster, M.R. et al. (2013). Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov. 3, 1378-1393. – reference: Cantin, G.T., Yi, W., Lu, B., Park, S.K., Xu, T., Lee, J.D., and Yates, J.R. 3rd (2008). Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J. Proteome Res. 7, 1346-1351. – reference: Haq, R., Shoag, J., Andreu-Perez, P. et al. (2013a). Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23, 302-315. – reference: Hemesath, T.J., Price, E.R., Takemoto, C., Badalian, T., and Fisher, D.E. (1998). MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391, 298-301. – reference: Kubic, J.D., Mascarenhas, J.B., Iizuka, T., Wolfgeher, D., and Lang, D. (2012). GSK-3 promotes cell survival, growth, and PAX3 levels in human melanoma cells. Mol. Cancer Res. 10, 1065-1076. – reference: Von Kriegsheim, A., Baiocchi, D., Birtwistle, M. et al. (2009). Cell fate decisions are specified by the dynamic ERK interactome. Nat. Cell Biol. 11, 1458-1464. – reference: Watanabe, A., Takeda, K., Ploplis, B., and Tachibana, M. (1998). Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat. Genet. 18, 283-286. – reference: Zeng, Z., Johnson, S.L., Lister, J.A., and Patton, E.E. (2015). Temperature-sensitive splicing of mitfa by an intron mutation in zebrafish. Pigment Cell Melanoma Res. 28, 229-232. – reference: Carreira, S., Goodall, J., Denat, L., Rodriguez, M., Nuciforo, P., Hoek, K.S., Testori, A., Larue, L., and Goding, C.R. (2006). Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 20, 3426-3439. – reference: Yasumoto, K., Yokoyama, K., Shibata, K., Tomita, Y., and Shibahara, S. (1994). Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol. Cell. Biol. 14, 8058-8070. – reference: Ugurel, S., Houben, R., Schrama, D., Voigt, H., Zapatka, M., Schadendorf, D., Brocker, E.B., and Becker, J.C. (2007). Microphthalmia-associated transcription factor gene amplification in metastatic melanoma is a prognostic marker for patient survival, but not a predictive marker for chemosensitivity and chemotherapy response. Clin. Cancer Res. 13, 6344-6350. – reference: Loercher, A.E., Tank, E.M., Delston, R.B., and Harbour, J.W. (2005). MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J. Cell Biol. 168, 35-40. – reference: Bondurand, N., Pingault, V., Goerich, D.E., Lemort, N., Sock, E., Le Caignec, C., Wegner, M., and Goossens, M. (2000). Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum. Mol. Genet. 9, 1907-1917. – reference: Bronisz, A., Carey, H.A., Godlewski, J., Sif, S., Ostrowski, M.C., and Sharma, S.M. (2014). The multifunctional protein fused in sarcoma (FUS) is a coactivator of microphthalmia-associated transcription factor (MITF). J. Biol. Chem. 289, 326-334. – reference: Yang, G., Li, Y., Nishimura, E.K., Xin, H., Zhou, A., Guo, Y., Dong, L., Denning, M.F., Nickoloff, B.J., and Cui, R. (2008). Inhibition of PAX3 by TGF-beta modulates melanocyte viability. Mol. Cell 32, 554-563. – reference: Anastas, J.N., Kulikauskas, R.M., Tamir, T. et al. (2014). WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. J. Clin. Invest. 124, 2877-2890. – reference: Kubic, J.D., Young, K.P., Plummer, R.S., Ludvik, A.E., and Lang, D. (2008). Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Pigment Cell Melanoma Res. 21, 627-645. – reference: Thomas, A.J., and Erickson, C.A. (2008). The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res. 21, 598-610. – reference: Widmer, D.S., Hoek, K.S., Cheng, P.F., Eichhoff, O.M., Biedermann, T., Raaijmakers, M.I., Hemmi, S., Dummer, R., and Levesque, M.P. (2013). Hypoxia contributes to melanoma heterogeneity by triggering HIF1alpha-dependent phenotype switching. J. Invest. Dermatol. 133, 2436-2443. – reference: Tachibana, M., Perez-Jurado, L.A., Nakayama, A., Hodgkinson, C.A., Li, X., Schneider, M., Miki, T., Fex, J., Francke, U., and Arnheiter, H. (1994). Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromosome 3p14.1-p12.3. Hum. Mol. Genet. 3, 553-557. – reference: Khoja, L., Shenjere, P., Hodgson, C., Hodgetts, J., Clack, G., Hughes, A., Lorigan, P., and Dive, C. (2014). Prevalence and heterogeneity of circulating tumour cells in metastatic cutaneous melanoma. Melanoma Res. 24, 40-46. – reference: Strub, T., Giuliano, S., Ye, T. et al. (2011). Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene 30, 2319-2332. – reference: Johannessen, C.M., Johnson, L.A., Piccioni, F. et al. (2013). A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138-142. – reference: Schepsky, A., Bruser, K., Gunnarsson, G.J., Goodall, J., Hallsson, J.H., Goding, C.R., Steingrimsson, E., and Hecht, A. (2006). The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Mol. Cell. Biol. 26, 8914-8927. – reference: Diwakar, G., Zhang, D., Jiang, S., and Hornyak, T.J. (2008). Neurofibromin as a regulator of melanocyte development and differentiation. J. Cell Sci. 121, 167-177. – reference: Haq, R., Yokoyama, S., Hawryluk, E.B. et al. (2013b). BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc. Natl. Acad. Sci. USA 110, 4321-4326. – reference: Levy, C., Sonnenblick, A., and Razin, E. (2003). Role played by microphthalmia transcription factor phosphorylation and its Zip domain in its transcriptional inhibition by PIAS3. Mol. Cell. Biol. 23, 9073-9080. – reference: Mcgill, G.G., Haq, R., Nishimura, E.K., and Fisher, D.E. (2006). c-Met expression is regulated by Mitf in the melanocyte lineage. J. Biol. Chem. 281, 10365-10373. – reference: Price, E.R., Ding, H.F., Badalian, T., Bhattacharya, S., Takemoto, C., Yao, T.P., Hemesath, T.J., and Fisher, D.E. (1998a). Lineage-specific signaling in melanocytes. C-kit stimulation recruits p300/CBP to microphthalmia. J. Biol. Chem. 273, 17983-17986. – reference: Bertolotto, C., Bille, K., Ortonne, J.P., and Ballotti, R. (1996). Regulation of tyrosinase gene expression by cAMP in B16 melanoma cells involves two CATGTG motifs surrounding the TATA box: implication of the microphthalmia gene product. J. Cell Biol. 134, 747-755. – reference: Segura, M.F., Hanniford, D., Menendez, S. et al. (2009). Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc. Natl. Acad. Sci. USA 106, 1814-1819. – volume: 109 start-page: 707 year: 2002 end-page: 718 article-title: Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability publication-title: Cell – volume: 3 start-page: 553 year: 1994 end-page: 557 article-title: Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromosome 3p14.1‐p12.3 publication-title: Hum. Mol. Genet. – volume: 38 start-page: 365 year: 2004 end-page: 411 article-title: Melanocytes and the microphthalmia transcription factor network publication-title: Annu. Rev. Genet. – volume: 21 start-page: 627 year: 2008 end-page: 645 article-title: Pigmentation PAX‐ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease publication-title: Pigment Cell Melanoma Res. – volume: 11 start-page: 691 year: 1995 end-page: 700 article-title: The brn‐2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells publication-title: Oncogene – volume: 19 start-page: 45 year: 2011b end-page: 57 article-title: Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP‐specific phosphodiesterase PDE5A publication-title: Cancer Cell – volume: 24 start-page: 1512 year: 2010 end-page: 1528 article-title: A novel isoform of microphthalmia‐associated transcription factor inhibits IL‐8 gene expression in human cervical stromal cells publication-title: Mol. Endocrinol. – volume: 30 start-page: 4531 year: 2011a end-page: 4543 article-title: In melanoma, beta‐catenin is a suppressor of invasion publication-title: Oncogene – volume: 24 start-page: 1088 year: 2011 end-page: 1106 article-title: The three M's: melanoma, microphthalmia‐associated transcription factor and microRNA publication-title: Pigment Cell Melanoma Res. – volume: 68 start-page: 7788 year: 2008 end-page: 7794 article-title: Brn‐2 represses microphthalmia‐associated transcription factor expression and marks a distinct subpopulation of microphthalmia‐associated transcription factor‐negative melanoma cells publication-title: Cancer Res. – volume: 19 start-page: 290 year: 2006 end-page: 302 article-title: Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature publication-title: Pigment Cell Res. – volume: 12 start-page: 406 year: 2006 end-page: 414 article-title: MITF: master regulator of melanocyte development and melanoma oncogene publication-title: Trends Mol. Med. – volume: 64 start-page: 2338 year: 2004b end-page: 2342 article-title: V599EB‐RAF is an oncogene in melanocytes publication-title: Cancer Res. – volume: 105 start-page: 33 year: 2013 end-page: 46 article-title: Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma publication-title: J. Natl Cancer Inst. – volume: 30 start-page: 2307 year: 2011 end-page: 2318 article-title: Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny publication-title: Oncogene – volume: 281 start-page: 10365 year: 2006 end-page: 10373 article-title: c‐Met expression is regulated by Mitf in the melanocyte lineage publication-title: J. Biol. Chem. – volume: 27 start-page: 764 year: 2014 end-page: 776 article-title: Real‐time cell cycle imaging during melanoma growth, invasion, and drug response publication-title: Pigment Cell Melanoma Res. – volume: 119 start-page: 954 year: 2009 end-page: 963 article-title: Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid publication-title: J. Clin. Invest. – volume: 42 start-page: 727 year: 2014 end-page: 732 article-title: MAPK pathway inhibition in melanoma: resistance three ways publication-title: Biochem. Soc. Trans. – volume: 4 start-page: 2131 year: 1995 end-page: 2137 article-title: The mutational spectrum in Waardenburg syndrome publication-title: Hum. Mol. Genet. – volume: 178 start-page: 989 year: 2011 end-page: 996 article-title: Circulating tumor cells as a window on metastasis biology in lung cancer publication-title: Am. J. Pathol. – volume: 15 start-page: 249 year: 2005 end-page: 254 article-title: BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma publication-title: Curr. Biol. – volume: 24 start-page: 2923 year: 2004b end-page: 2931 article-title: The Brn‐2 transcription factor links activated BRAF to melanoma proliferation publication-title: Mol. Cell. Biol. – volume: 24 start-page: 40 year: 2014 end-page: 46 article-title: Prevalence and heterogeneity of circulating tumour cells in metastatic cutaneous melanoma publication-title: Melanoma Res. – volume: 9 start-page: 1907 year: 2000 end-page: 1917 article-title: Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome publication-title: Hum. Mol. Genet. – volume: 18 start-page: 265 year: 2005 end-page: 277 article-title: Sumoylation modulates transcriptional activity of MITF in a promoter‐specific manner publication-title: Pigment Cell Res. – volume: 282 start-page: 14140 year: 2007 end-page: 14147 article-title: Up‐regulation of MET expression by alpha‐melanocyte‐stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis publication-title: J. Biol. Chem. – volume: 6 start-page: 291 year: 1995 end-page: 302 article-title: Identification of p90RSK as the probable CREB‐Ser133 kinase in human melanocytes publication-title: Cell Growth Differ. – volume: 13 start-page: 60 year: 2000 end-page: 69 article-title: Cyclic AMP a key messenger in the regulation of skin pigmentation publication-title: Pigment Cell Res. – volume: 16 start-page: 2650 year: 2002 end-page: 2661 article-title: Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo publication-title: Genes Dev. – volume: 19 start-page: 1225 year: 2013 end-page: 1231 article-title: BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma publication-title: Clin. Cancer Res. – volume: 21 start-page: 2923 year: 2007 end-page: 2935 article-title: Beta‐catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N‐Ras in melanoma development publication-title: Genes Dev. – volume: 445 start-page: 851 year: 2007 end-page: 857 article-title: Melanoma biology and new targeted therapy publication-title: Nature – volume: 4 start-page: 94 year: 2014 end-page: 109 article-title: The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma publication-title: Cancer Discov. – volume: 178 start-page: 259 year: 2008 end-page: 272 article-title: An unstable targeted allele of the mouse Mitf gene with a high somatic and germline reversion rate publication-title: Genetics – volume: 255 start-page: 135 year: 2000 end-page: 143 article-title: Regulation of microphthalmia‐associated transcription factor MITF protein levels by association with the ubiquitin‐conjugating enzyme hUBC9 publication-title: Exp. Cell Res. – volume: 6 start-page: 565 year: 2004 end-page: 576 article-title: Critical role of CDK2 for melanoma growth linked to its melanocyte‐specific transcriptional regulation by MITF publication-title: Cancer Cell – volume: 69 start-page: 7969 year: 2009 end-page: 7977 article-title: Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination publication-title: Cancer Res. – volume: 23 start-page: 746 year: 2010 end-page: 759 article-title: Cancer stem cells versus phenotype‐switching in melanoma publication-title: Pigment Cell Melanoma Res. – volume: 3 start-page: 1378 year: 2013 end-page: 1393 article-title: Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2 publication-title: Cancer Discov. – volume: 5 start-page: 5712 year: 2014 article-title: Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma publication-title: Nat. Commun. – volume: 124 start-page: 2377 year: 1997 end-page: 2386 article-title: Melanocyte development and in neural crest cell cultures: crucial dependence on the Mitf basic‐helix‐loop‐helix‐zipper transcription factor publication-title: Development – volume: 19 start-page: 4326 year: 2013 end-page: 4334 article-title: BRAF in melanoma: current strategies and future directions publication-title: Clin. Cancer Res. – volume: 280 start-page: 42051 year: 2005 end-page: 42060 article-title: Characterization of an ERK‐binding domain in microphthalmia‐associated transcription factor and differential inhibition of ERK2‐mediated substrate phosphorylation publication-title: J. Biol. Chem. – volume: 142 start-page: 827 year: 1998a end-page: 835 article-title: Microphthalmia gene product as a signal transducer in cAMP‐induced differentiation of melanocytes publication-title: J. Cell Biol. – volume: 9 start-page: 125 year: 2000a end-page: 132 article-title: Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance publication-title: Hum. Mol. Genet. – year: 2014 article-title: Single‐cell gene expression signatures reveal melanoma cell heterogeneity publication-title: Oncogene – volume: 4 start-page: 816 year: 2014 end-page: 827 article-title: A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors publication-title: Cancer Discov. – volume: 74 start-page: 395 year: 1993 end-page: 404 article-title: Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic‐helix‐loop‐helix‐zipper protein publication-title: Cell – volume: 6 start-page: 130 year: 2010 end-page: 140 article-title: Key roles for transforming growth factor beta in melanocyte stem cell maintenance publication-title: Cell Stem Cell – volume: 14 start-page: 8058 year: 1994 end-page: 8070 article-title: Microphthalmia‐associated transcription factor as a regulator for melanocyte‐specific transcription of the human tyrosinase gene publication-title: Mol. Cell. Biol. – volume: 128 start-page: 2003 year: 2008 end-page: 2012 article-title: Phospho‐ERK staining is a poor indicator of the mutational status of BRAF and NRAS in human melanoma publication-title: J. Invest. Dermatol. – volume: 275 start-page: 30757 year: 2000 end-page: 30760 article-title: Regulation of the microphthalmia‐associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10 publication-title: J. Biol. Chem. – volume: 289 start-page: 326 year: 2014 end-page: 334 article-title: The multifunctional protein fused in sarcoma (FUS) is a coactivator of microphthalmia‐associated transcription factor (MITF) publication-title: J. Biol. Chem. – volume: 134 start-page: 141 year: 2014 end-page: 149 article-title: Phenotypic characterization of nevus and tumor patterns in MITF E318K mutation carrier melanoma patients publication-title: J. Invest. Dermatol. – volume: 480 start-page: 99 year: 2011 end-page: 103 article-title: A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma publication-title: Nature – volume: 25 start-page: 51 year: 2001 end-page: 57 article-title: Microphthalmia transcription factor expression in cutaneous benign, malignant melanocytic, and nonmelanocytic tumors publication-title: Am. J. Surg. Pathol. – volume: 12 start-page: 637 year: 2010 end-page: 649 article-title: Pharmacodynamic characterization of the efficacy signals due to selective BRAF inhibition with PLX4032 in malignant melanoma publication-title: Neoplasia – volume: 508 start-page: 118 year: 2014 end-page: 122 article-title: Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma publication-title: Nature – volume: 14 start-page: 158 year: 2000 end-page: 162 article-title: Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway publication-title: Genes Dev. – volume: 23 start-page: 302 year: 2013a end-page: 315 article-title: Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF publication-title: Cancer Cell – volume: 70 start-page: 3813 year: 2010 end-page: 3822 article-title: Microphthalmia‐associated transcription factor controls the DNA damage response and a lineage‐specific senescence program in melanomas publication-title: Cancer Res. – volume: 26 start-page: 8914 year: 2006 end-page: 8927 article-title: The microphthalmia‐associated transcription factor Mitf interacts with beta‐catenin to determine target gene expression publication-title: Mol. Cell. Biol. – volume: 277 start-page: 6443 year: 2002 end-page: 6454 article-title: Activation of p59(Fyn) leads to melanocyte dedifferentiation by influencing MKP‐1‐regulated mitogen‐activated protein kinase signaling publication-title: J. Biol. Chem. – volume: 107 start-page: 1 year: 2000 end-page: 6 article-title: Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3 publication-title: Hum. Genet. – volume: 106 start-page: 1814 year: 2009 end-page: 1819 article-title: Aberrant miR‐182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia‐associated transcription factor publication-title: Proc. Natl. Acad. Sci. USA – volume: 30 start-page: 2319 year: 2011 end-page: 2332 article-title: Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma publication-title: Oncogene – volume: 106 start-page: 1193 year: 2009 end-page: 1198 article-title: Activated Wnt/beta‐catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model publication-title: Proc. Natl. Acad. Sci. USA – volume: 277 start-page: 11077 year: 2002 end-page: 11083 article-title: Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF‐kappa B ligand signaling publication-title: J. Biol. Chem. – volume: 60 start-page: 5012 year: 2000 end-page: 5016 article-title: Micropthalmia transcription factor: a new prognostic marker in intermediate‐thickness cutaneous malignant melanoma publication-title: Cancer Res. – volume: 5 start-page: 875 year: 2004a end-page: 885 article-title: The RAF proteins take centre stage publication-title: Nat. Rev. Mol. Cell Biol. – volume: 123 start-page: 2155 year: 2013 end-page: 2168 article-title: Melanoma adapts to RAF/MEK inhibitors through FOXD3‐mediated upregulation of ERBB3 publication-title: J. Clin. Invest. – volume: 275 start-page: 14013 year: 2000b end-page: 14016 article-title: Induction of melanocyte‐specific microphthalmia‐associated transcription factor by Wnt‐3a publication-title: J. Biol. Chem. – volume: 28 start-page: 229 year: 2015 end-page: 232 article-title: Temperature‐sensitive splicing of mitfa by an intron mutation in zebrafish publication-title: Pigment Cell Melanoma Res. – volume: 112 start-page: E420 year: 2015 end-page: E429 article-title: MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 230 year: 2000 end-page: 240 article-title: MITF: a stream flowing for pigment cells publication-title: Pigment Cell Res. – volume: 32 start-page: 2230 year: 2013 end-page: 2238 article-title: Beta‐catenin inhibits melanocyte migration but induces melanoma metastasis publication-title: Oncogene – volume: 273 start-page: 33042 year: 1998b end-page: 33047 article-title: alpha‐Melanocyte‐stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome publication-title: J. Biol. Chem. – volume: 68 start-page: 1362 year: 2008 end-page: 1368 article-title: MicroRNA‐137 targets microphthalmia‐associated transcription factor in melanoma cell lines publication-title: Cancer Res. – volume: 168 start-page: 35 year: 2005 end-page: 40 article-title: MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A publication-title: J. Cell Biol. – volume: 158 start-page: 1079 year: 2002 end-page: 1087 article-title: Beta‐catenin‐induced melanoma growth requires the downstream target Microphthalmia‐associated transcription factor publication-title: J. Cell Biol. – volume: 14 start-page: 301 year: 2000 end-page: 312 article-title: c‐Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi publication-title: Genes Dev. – volume: 14 start-page: 882 year: 2012 end-page: 890 article-title: Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma publication-title: Nat. Cell Biol. – volume: 5 start-page: e13779 year: 2010 article-title: The regulation of miRNA‐211 expression and its role in melanoma cell invasiveness publication-title: PLoS ONE – volume: 24 start-page: 525 year: 2011 end-page: 537 article-title: Melanoma cell invasiveness is regulated by miR‐211 suppression of the BRN2 transcription factor publication-title: Pigment Cell Melanoma Res. – volume: 4 start-page: 779 year: 2006 end-page: 792 article-title: Role of the mitogen‐activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression publication-title: Mol. Cancer Res. – volume: 110 start-page: 4321 year: 2013b end-page: 4326 article-title: BCL2A1 is a lineage‐specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition publication-title: Proc. Natl. Acad. Sci. USA – volume: 275 start-page: 37978 year: 2000 end-page: 37983 article-title: Direct regulation of the Microphthalmia promoter by Sox10 links Waardenburg‐Shah syndrome (WS4)‐associated hypopigmentation and deafness to WS2 publication-title: J. Biol. Chem. – volume: 1 start-page: 279 year: 2002 end-page: 288 article-title: Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma publication-title: Cancer Cell – volume: 121 start-page: 167 year: 2008 end-page: 177 article-title: Neurofibromin as a regulator of melanocyte development and differentiation publication-title: J. Cell Sci. – volume: 22 start-page: 4357 year: 2013 end-page: 4367 article-title: MITF mutations associated with pigment deficiency syndromes and melanoma have different effects on protein function publication-title: Hum Mol Genet. – volume: 183 start-page: 581 year: 2009 end-page: 594 article-title: The role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue publication-title: Genetics – volume: 23 start-page: 9073 year: 2003 end-page: 9080 article-title: Role played by microphthalmia transcription factor phosphorylation and its Zip domain in its transcriptional inhibition by PIAS3 publication-title: Mol. Cell. Biol. – volume: 3 start-page: e2734 year: 2008 article-title: Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF publication-title: PLoS ONE – volume: 108 start-page: E924 year: 2011 end-page: E933 article-title: Hypoxia‐induced transcriptional repression of the melanoma‐associated oncogene MITF publication-title: Proc. Natl. Acad. Sci. USA – volume: 74 start-page: 7037 year: 2014 end-page: 7047 article-title: Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and oxidative p hosphorylation in melanoma publication-title: Cancer Res. – volume: 20 start-page: 3426 year: 2006 end-page: 3439 article-title: Mitf regulation of Dia1 controls melanoma proliferation and invasiveness publication-title: Genes Dev. – volume: 68 start-page: 10205 year: 2008 end-page: 10214 article-title: Wnt5A regulates expression of tumor‐associated antigens in melanoma via changes in signal transducers and activators of transcription 3 phosphorylation publication-title: Cancer Res. – volume: 287 start-page: 17996 year: 2012 end-page: 18004 article-title: Expression of microphthalmia‐associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor‐beta publication-title: J. Biol. Chem. – volume: 4 start-page: 1214 year: 2014 end-page: 1229 article-title: The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage‐derived TNFalpha publication-title: Cancer Discov. – volume: 31 start-page: 2471 year: 2012 end-page: 2479 article-title: Adaptive upregulation of FOXD3 and resistance to PLX4032/4720‐induced cell death in mutant B‐RAF melanoma cells publication-title: Oncogene – volume: 80 start-page: 179 year: 1995 end-page: 185 article-title: Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal‐regulated kinase activation publication-title: Cell – volume: 24 start-page: 725 year: 2011 end-page: 727 article-title: BRCA1 is a new MITF target gene publication-title: Pigment Cell Melanoma Res. – volume: 31 start-page: 2461 year: 2012 end-page: 2470 article-title: Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells publication-title: Oncogene – volume: 13 start-page: 6344 year: 2007 end-page: 6350 article-title: Microphthalmia‐associated transcription factor gene amplification in metastatic melanoma is a prognostic marker for patient survival, but not a predictive marker for chemosensitivity and chemotherapy response publication-title: Clin. Cancer Res. – volume: 174 start-page: 964 year: 2014 end-page: 970 article-title: Sildenafil use and increased risk of incident melanoma in US men: a prospective cohort study publication-title: JAMA Intern. Med. – volume: 8 start-page: 688 year: 2014 end-page: 695 article-title: Heterogeneous tumor subpopulations cooperate to drive invasion publication-title: Cell Rep. – volume: 133 start-page: 2436 year: 2013 end-page: 2443 article-title: Hypoxia contributes to melanoma heterogeneity by triggering HIF1alpha‐dependent phenotype switching publication-title: J. Invest. Dermatol. – volume: 480 start-page: 94 year: 2011 end-page: 98 article-title: A SUMOylation‐defective MITF germline mutation predisposes to melanoma and renal carcinoma publication-title: Nature – volume: 18 start-page: 584 year: 2011 end-page: 591 article-title: ERK and PDE4 cooperate to induce RAF isoform switching in melanoma publication-title: Nat. Struct. Mol. Biol. – volume: 26 start-page: 2647 year: 2012 end-page: 2658 article-title: Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF publication-title: Genes Dev. – volume: 21 start-page: 598 year: 2008 end-page: 610 article-title: The making of a melanocyte: the specification of melanoblasts from the neural crest publication-title: Pigment Cell Melanoma Res. – volume: 131 start-page: 2448 year: 2011 end-page: 2457 article-title: Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase publication-title: J. Invest. Dermatol. – volume: 339 start-page: 580 year: 2013 end-page: 584 article-title: Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition publication-title: Science – volume: 32 start-page: 554 year: 2008 end-page: 563 article-title: Inhibition of PAX3 by TGF‐beta modulates melanocyte viability publication-title: Mol. Cell – volume: 391 start-page: 298 year: 1998 end-page: 301 article-title: MAP kinase links the transcription factor Microphthalmia to c‐Kit signalling in melanocytes publication-title: Nature – volume: 280 start-page: 146 year: 2005 end-page: 155 article-title: Sumoylation of MITF and its related family members TFE3 and TFEB publication-title: J. Biol. Chem. – volume: 3 start-page: ra3 year: 2010 article-title: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis publication-title: Sci. Signal. – volume: 11 start-page: 1458 year: 2009 end-page: 1464 article-title: Cell fate decisions are specified by the dynamic ERK interactome publication-title: Nat. Cell Biol. – volume: 7 start-page: 1346 year: 2008 end-page: 1351 article-title: Combining protein‐based IMAC, peptide‐based IMAC, and MudPIT for efficient phosphoproteomic analysis publication-title: J. Proteome Res. – volume: 20 start-page: 741 year: 2011 end-page: 754 article-title: beta‐catenin signaling controls metastasis in Braf‐activated Pten‐deficient melanomas publication-title: Cancer Cell – volume: 2 start-page: 414 year: 2011 article-title: Regulation of MITF stability by the USP13 deubiquitinase publication-title: Nat. Commun. – volume: 22 start-page: 1155 year: 2008 end-page: 1168 article-title: Epistatic connections between microphthalmia‐associated transcription factor and endothelin signaling in Waardenburg syndrome and other pigmentary disorders publication-title: FASEB J. – volume: 490 start-page: 412 year: 2012 end-page: 416 article-title: Melanomas resist T‐cell therapy through inflammation‐induced reversible dedifferentiation publication-title: Nature – volume: 134 start-page: 133 year: 2014 end-page: 140 article-title: A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion vs. regression publication-title: J. Invest. Dermatol. – volume: 5 start-page: e11574 year: 2010 article-title: miR‐148 regulates Mitf in melanoma cells publication-title: PLoS ONE – volume: 18 start-page: 694 year: 1998b end-page: 702 article-title: Different cis‐acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia publication-title: Mol. Cell. Biol. – volume: 281 start-page: 20233 year: 2006 end-page: 20241 article-title: The microphthalmia‐associated transcription factor requires SWI/SNF enzymes to activate melanocyte‐specific genes publication-title: J. Biol. Chem. – volume: 12 start-page: 3653 year: 1992 end-page: 3662 article-title: Positive and negative elements regulate a melanocyte‐specific promoter publication-title: Mol. Cell. Biol. – volume: 18 start-page: 283 year: 1998 end-page: 286 article-title: Epistatic relationship between Waardenburg syndrome genes MITF and PAX3 publication-title: Nat. Genet. – volume: 504 start-page: 138 year: 2013 end-page: 142 article-title: A melanocyte lineage program confers resistance to MAP kinase pathway inhibition publication-title: Nature – volume: 433 start-page: 764 year: 2005 end-page: 769 article-title: Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression publication-title: Nature – volume: 24 start-page: 932 year: 2011 end-page: 943 article-title: GLI2 and M‐MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells publication-title: Pigment Cell Melanoma Res. – volume: 24 start-page: 631 year: 2011 end-page: 642 article-title: Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching publication-title: Pigment Cell Melanoma Res. – volume: 30 start-page: 3036 year: 2011 end-page: 3048 article-title: Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway publication-title: Oncogene – volume: 170 start-page: 703 year: 2005 end-page: 708 article-title: Elevated expression of MITF counteracts B‐RAF‐stimulated melanocyte and melanoma cell proliferation publication-title: J. Cell Biol. – volume: 273 start-page: 17983 year: 1998a end-page: 17986 article-title: Lineage‐specific signaling in melanocytes. C‐kit stimulation recruits p300/CBP to microphthalmia publication-title: J. Biol. Chem. – volume: 61 start-page: 823 year: 2001 end-page: 826 article-title: PAX3 is expressed in human melanomas and contributes to tumor cell survival publication-title: Cancer Res. – volume: 24 start-page: 2915 year: 2004a end-page: 2922 article-title: Brn‐2 expression controls melanoma proliferation and is directly regulated by beta‐catenin publication-title: Mol. Cell. Biol. – volume: 138 start-page: 3579 year: 2011 end-page: 3589 article-title: Differentiated melanocyte cell division occurs and is promoted by mutations in Mitf publication-title: Development – volume: 40 start-page: 841 year: 2010 end-page: 849 article-title: Intronic miR‐211 assumes the tumor suppressive function of its host gene in melanoma publication-title: Mol. Cell – volume: 23 start-page: 27 year: 2010 end-page: 40 article-title: Fifteen‐year quest for microphthalmia‐associated transcription factor target genes publication-title: Pigment Cell Melanoma Res. – volume: 10 start-page: 1065 year: 2012 end-page: 1076 article-title: GSK‐3 promotes cell survival, growth, and PAX3 levels in human melanoma cells publication-title: Mol. Cancer Res. – volume: 308 start-page: 222 year: 2005 end-page: 235 article-title: Co‐expression of SOX9 and SOX10 during melanocytic differentiation publication-title: Exp. Cell Res. – year: 2015 article-title: Genome‐wide DNA methylation analysis in melanoma reveals the importance of CpG methylation in MITF regulation publication-title: J. Invest. Dermatol. – volume: 136 start-page: 1849 year: 2009 end-page: 1858 article-title: FOXD3 regulates the lineage switch between neural crest‐derived glial cells and pigment cells by repressing MITF through a non‐canonical mechanism publication-title: Development – volume: 19 start-page: 2900 year: 2000 end-page: 2910 article-title: Ras mediates the cAMP‐dependent activation of extracellular signal‐regulated kinases (ERKs) in melanocytes publication-title: EMBO J. – volume: 124 start-page: 2877 year: 2014 end-page: 2890 article-title: WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors publication-title: J. Clin. Invest. – volume: 436 start-page: 117 year: 2005 end-page: 122 article-title: Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma publication-title: Nature – volume: 23 start-page: 729 year: 2010 end-page: 735 article-title: The discovery of the microphthalmia locus and its gene, Mitf publication-title: Pigment Cell Melanoma Res. – volume: 14 start-page: 357 year: 2007 end-page: 365 article-title: Therapeutic RNA interference of malignant melanoma by electrotransfer of small interfering RNA targeting Mitf publication-title: Gene Ther. – volume: 14 start-page: 3083 year: 1997 end-page: 3092 article-title: CBP/p300 as a co‐factor for the Microphthalmia transcription factor publication-title: Oncogene – volume: 134 start-page: 747 year: 1996 end-page: 755 article-title: Regulation of tyrosinase gene expression by cAMP in B16 melanoma cells involves two CATGTG motifs surrounding the TATA box: implication of the microphthalmia gene product publication-title: J. Cell Biol. – volume: 68 start-page: 650 year: 2008 end-page: 656 article-title: switching of human melanoma cells between proliferative and invasive states publication-title: Cancer Res. – volume: 278 start-page: 45224 year: 2003 end-page: 45230 article-title: A tissue‐restricted cAMP transcriptional response: SOX10 modulates alpha‐melanocyte‐stimulating hormone‐triggered expression of microphthalmia‐associated transcription factor in melanocytes publication-title: J. Biol. Chem. – ident: e_1_2_17_39_1 doi: 10.1016/j.ccr.2004.10.014 – ident: e_1_2_17_152_1 doi: 10.1128/MCB.14.12.8058 – ident: e_1_2_17_104_1 doi: 10.1073/pnas.1424576112 – ident: e_1_2_17_96_1 doi: 10.1016/j.stem.2009.12.010 – ident: e_1_2_17_140_1 doi: 10.1016/S1535-6108(02)00045-4 – ident: e_1_2_17_28_1 doi: 10.1111/j.1755-148X.2009.00653.x – ident: e_1_2_17_65_1 doi: 10.1074/jbc.M309036200 – ident: e_1_2_17_25_1 doi: 10.1038/nature03269 – ident: e_1_2_17_11_1 doi: 10.1083/jcb.134.3.747 – ident: e_1_2_17_135_1 doi: 10.1158/1078-0432.CCR-06-2682 – ident: e_1_2_17_53_1 doi: 10.1111/pcmr.12274 – ident: e_1_2_17_35_1 doi: 10.1101/gad.450107 – ident: e_1_2_17_64_1 doi: 10.1038/jid.2008.30 – ident: e_1_2_17_8_1 doi: 10.1534/genetics.109.103945 – ident: e_1_2_17_36_1 doi: 10.1158/0008-5472.CAN-08-2149 – ident: e_1_2_17_115_1 doi: 10.1073/pnas.0808263106 – ident: e_1_2_17_112_1 doi: 10.1096/fj.07-9080com – ident: e_1_2_17_146_1 doi: 10.1371/journal.pone.0002734 – ident: e_1_2_17_92_1 doi: 10.1074/jbc.M510590200 – ident: e_1_2_17_37_1 doi: 10.1242/jcs.013912 – ident: e_1_2_17_60_1 doi: 10.1111/j.1755-148X.2010.00757.x – ident: e_1_2_17_13_1 doi: 10.1128/MCB.18.2.694 – ident: e_1_2_17_124_1 doi: 10.1034/j.1600-0749.2000.130404.x – ident: e_1_2_17_84_1 doi: 10.1128/MCB.12.8.3653 – ident: e_1_2_17_56_1 doi: 10.1016/j.ccr.2013.02.003 – ident: e_1_2_17_89_1 doi: 10.1016/S0092-8674(02)00762-6 – ident: e_1_2_17_99_1 doi: 10.1242/dev.124.12.2377 – ident: e_1_2_17_22_1 doi: 10.1034/j.1600-0749.2000.130203.x – ident: e_1_2_17_45_1 doi: 10.1038/nature03664 – ident: e_1_2_17_62_1 doi: 10.1158/0008-5472.CAN-07-2491 – ident: e_1_2_17_9_1 doi: 10.1111/j.1755-148X.2011.00931.x – ident: e_1_2_17_46_1 doi: 10.1158/0008-5472.CAN-09-2913 – ident: e_1_2_17_66_1 doi: 10.1111/j.1755-148X.2011.00893.x – volume: 11 start-page: 691 year: 1995 ident: e_1_2_17_133_1 article-title: The brn‐2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells publication-title: Oncogene – ident: e_1_2_17_76_1 doi: 10.1074/jbc.M003816200 – ident: e_1_2_17_47_1 doi: 10.1128/MCB.24.7.2915-2922.2004 – ident: e_1_2_17_52_1 doi: 10.1093/hmg/ddt285 – ident: e_1_2_17_108_1 doi: 10.1074/jbc.273.49.33042 – ident: e_1_2_17_17_1 doi: 10.1534/genetics.107.081893 – ident: e_1_2_17_144_1 doi: 10.1038/nrm1498 – ident: e_1_2_17_57_1 doi: 10.1073/pnas.1205575110 – ident: e_1_2_17_69_1 doi: 10.1097/00000478-200101000-00005 – ident: e_1_2_17_23_1 doi: 10.1093/emboj/19.12.2900 – ident: e_1_2_17_123_1 doi: 10.1038/nature13121 – ident: e_1_2_17_15_1 doi: 10.1074/jbc.M611563200 – ident: e_1_2_17_111_1 doi: 10.1038/sj.onc.1201298 – ident: e_1_2_17_149_1 doi: 10.1101/gad.14.3.301 – ident: e_1_2_17_83_1 doi: 10.1083/jcb.200410115 – ident: e_1_2_17_121_1 doi: 10.1038/onc.2010.612 – ident: e_1_2_17_102_1 doi: 10.1074/jbc.M112.358341 – ident: e_1_2_17_72_1 doi: 10.1111/j.1755-148X.2008.00514.x – ident: e_1_2_17_90_1 doi: 10.1074/jbc.M513094200 – ident: e_1_2_17_34_1 doi: 10.1074/jbc.M512052200 – ident: e_1_2_17_67_1 doi: 10.1038/nature12688 – ident: e_1_2_17_12_1 doi: 10.1083/jcb.142.3.827 – ident: e_1_2_17_27_1 doi: 10.1016/j.celrep.2014.06.045 – ident: e_1_2_17_130_1 doi: 10.1242/dev.064014 – ident: e_1_2_17_6_1 doi: 10.1016/j.ccr.2010.10.029 – volume: 6 start-page: 291 year: 1995 ident: e_1_2_17_18_1 article-title: Identification of p90RSK as the probable CREB‐Ser133 kinase in human melanocytes publication-title: Cell Growth Differ. – ident: e_1_2_17_91_1 doi: 10.1074/jbc.M411757200 – ident: e_1_2_17_42_1 doi: 10.1073/pnas.1106351108 – ident: e_1_2_17_105_1 doi: 10.1101/gad.198192.112 – ident: e_1_2_17_122_1 doi: 10.1038/jid.2013.272 – volume: 61 start-page: 823 year: 2001 ident: e_1_2_17_114_1 article-title: PAX3 is expressed in human melanomas and contributes to tumor cell survival publication-title: Cancer Res. – ident: e_1_2_17_136_1 doi: 10.1158/2159-8290.CD-13-0617 – ident: e_1_2_17_26_1 doi: 10.1101/gad.406406 – ident: e_1_2_17_16_1 doi: 10.1111/j.1755-148X.2011.00862.x – ident: e_1_2_17_59_1 doi: 10.1016/0092-8674(93)90429-T – ident: e_1_2_17_137_1 doi: 10.1074/jbc.C000445200 – ident: e_1_2_17_129_1 doi: 10.1093/hmg/4.11.2131 – ident: e_1_2_17_148_1 doi: 10.1038/jid.2013.115 – ident: e_1_2_17_127_1 doi: 10.1074/jbc.C000113200 – ident: e_1_2_17_87_1 doi: 10.1016/0092-8674(95)90401-8 – volume: 119 start-page: 954 year: 2009 ident: e_1_2_17_100_1 article-title: Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid publication-title: J. Clin. Invest. – ident: e_1_2_17_71_1 doi: 10.1158/1541-7786.MCR-06-0077 – ident: e_1_2_17_142_1 doi: 10.1083/jcb.200505059 – ident: e_1_2_17_32_1 doi: 10.1016/j.yexcr.2005.04.019 – volume: 60 start-page: 5012 year: 2000 ident: e_1_2_17_110_1 article-title: Micropthalmia transcription factor: a new prognostic marker in intermediate‐thickness cutaneous malignant melanoma publication-title: Cancer Res. – ident: e_1_2_17_156_1 doi: 10.1038/ncomms1421 – ident: e_1_2_17_85_1 doi: 10.1074/jbc.M111696200 – ident: e_1_2_17_145_1 doi: 10.1158/0008-5472.CAN-03-3433 – ident: e_1_2_17_151_1 doi: 10.1016/j.molcel.2008.11.002 – ident: e_1_2_17_70_1 doi: 10.1158/2159-8290.CD-13-0424 – ident: e_1_2_17_98_1 doi: 10.1126/scisignal.2000475 – ident: e_1_2_17_73_1 doi: 10.1158/1541-7786.MCR-11-0387 – ident: e_1_2_17_63_1 doi: 10.1016/j.ajpath.2010.12.003 – ident: e_1_2_17_88_1 doi: 10.1371/journal.pone.0013779 – ident: e_1_2_17_134_1 doi: 10.1038/onc.2011.33 – ident: e_1_2_17_2_1 doi: 10.1172/JCI65780 – ident: e_1_2_17_14_1 doi: 10.1038/nature10539 – ident: e_1_2_17_75_1 doi: 10.1038/jid.2015.61 – ident: e_1_2_17_141_1 doi: 10.1042/BST20140020 – ident: e_1_2_17_101_1 doi: 10.1016/j.cub.2005.01.031 – ident: e_1_2_17_103_1 doi: 10.1158/0008-5472.CAN-09-0781 – ident: e_1_2_17_54_1 doi: 10.1371/journal.pone.0011574 – ident: e_1_2_17_118_1 doi: 10.1093/jnci/djs471 – ident: e_1_2_17_21_1 doi: 10.1074/jbc.M113.493874 – ident: e_1_2_17_77_1 doi: 10.1128/MCB.23.24.9073-9080.2003 – ident: e_1_2_17_20_1 doi: 10.1111/j.1755-148X.2011.00849.x – ident: e_1_2_17_131_1 doi: 10.1111/j.1755-148X.2008.00506.x – ident: e_1_2_17_80_1 doi: 10.1210/me.2009-0320 – ident: e_1_2_17_48_1 doi: 10.1128/MCB.24.7.2923-2931.2004 – ident: e_1_2_17_79_1 doi: 10.1016/j.molcel.2010.11.020 – ident: e_1_2_17_106_1 doi: 10.1007/s004390000328 – ident: e_1_2_17_155_1 doi: 10.1111/pcmr.12336 – ident: e_1_2_17_49_1 doi: 10.1158/0008-5472.CAN-08-1053 – ident: e_1_2_17_74_1 doi: 10.1038/nature11538 – ident: e_1_2_17_61_1 doi: 10.1111/j.1600-0749.2006.00322.x – ident: e_1_2_17_153_1 doi: 10.1038/nature10630 – ident: e_1_2_17_3_1 doi: 10.1172/JCI70156 – ident: e_1_2_17_44_1 doi: 10.1038/onc.2012.229 – ident: e_1_2_17_50_1 doi: 10.1158/0008-5472.CAN-14-1392 – ident: e_1_2_17_10_1 doi: 10.1158/0008-5472.CAN-07-2912 – ident: e_1_2_17_33_1 doi: 10.1016/j.ccr.2011.10.030 – ident: e_1_2_17_58_1 doi: 10.1038/34681 – ident: e_1_2_17_55_1 doi: 10.1101/gad.1020502 – ident: e_1_2_17_81_1 doi: 10.1001/jamainternmed.2014.594 – ident: e_1_2_17_93_1 doi: 10.1038/ncomms6712 – ident: e_1_2_17_119_1 doi: 10.1158/2159-8290.CD-13-1007 – ident: e_1_2_17_94_1 doi: 10.1111/j.1600-0749.2005.00234.x – ident: e_1_2_17_5_1 doi: 10.1038/onc.2011.162 – ident: e_1_2_17_113_1 doi: 10.1128/MCB.02299-05 – ident: e_1_2_17_41_1 doi: 10.1038/onc.2014.262 – ident: e_1_2_17_31_1 doi: 10.1073/pnas.0811902106 – ident: e_1_2_17_40_1 doi: 10.1111/j.1755-148X.2011.00871.x – ident: e_1_2_17_147_1 doi: 10.1083/jcb.200202049 – ident: e_1_2_17_24_1 doi: 10.1021/pr0705441 – ident: e_1_2_17_86_1 doi: 10.1038/nsmb.2022 – ident: e_1_2_17_97_1 doi: 10.1158/2159-8290.CD-13-0005 – ident: e_1_2_17_107_1 doi: 10.1074/jbc.273.29.17983 – ident: e_1_2_17_51_1 doi: 10.1038/nature05661 – ident: e_1_2_17_117_1 doi: 10.1038/ncb2535 – ident: e_1_2_17_139_1 doi: 10.1038/ng0398-283 – ident: e_1_2_17_19_1 doi: 10.1093/hmg/9.13.1907 – ident: e_1_2_17_120_1 doi: 10.1146/annurev.genet.38.072902.092717 – ident: e_1_2_17_125_1 doi: 10.1093/hmg/3.4.553 – ident: e_1_2_17_68_1 doi: 10.1097/CMR.0000000000000025 – ident: e_1_2_17_143_1 doi: 10.1074/jbc.M110684200 – ident: e_1_2_17_43_1 doi: 10.1158/1078-0432.CCR-12-1630 – ident: e_1_2_17_82_1 doi: 10.1038/jid.2013.293 – ident: e_1_2_17_7_1 doi: 10.1038/onc.2011.424 – ident: e_1_2_17_150_1 doi: 10.1006/excr.2000.4803 – ident: e_1_2_17_154_1 doi: 10.1126/science.1228522 – ident: e_1_2_17_30_1 doi: 10.1038/onc.2011.425 – ident: e_1_2_17_109_1 doi: 10.1158/1078-0432.CCR-13-0779 – ident: e_1_2_17_128_1 doi: 10.1593/neo.10414 – ident: e_1_2_17_4_1 doi: 10.1111/j.1755-148X.2010.00759.x – ident: e_1_2_17_126_1 doi: 10.1093/hmg/9.1.125 – ident: e_1_2_17_138_1 doi: 10.1038/ncb1994 – ident: e_1_2_17_29_1 doi: 10.1038/onc.2010.598 – ident: e_1_2_17_95_1 doi: 10.1038/sj.gt.3302868 – ident: e_1_2_17_132_1 doi: 10.1242/dev.031989 – ident: e_1_2_17_78_1 doi: 10.1016/j.molmed.2006.07.008 – ident: e_1_2_17_38_1 doi: 10.1101/gad.14.2.158 – ident: e_1_2_17_116_1 doi: 10.1038/jid.2011.218 |
SSID | ssj0060593 |
Score | 2.5100942 |
SecondaryResourceType | review_article |
Snippet | Summary
Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia‐associated transcription factor (MITF) is essential for the existence of... Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia‐associated transcription factor ( MITF ) is essential for the existence of melanocytes.... Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of melanocytes.... Summary Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 390 |
SubjectTerms | Animals BRAF Carcinogenesis - metabolism Carcinogenesis - pathology Cell Cycle Heterogeneity Humans Kinases MAP kinase pathway MAP Kinase Signaling System MEK Melanoma Melanoma - enzymology Melanoma - genetics Melanoma - pathology Melanoma - therapy Melanoma, Cutaneous Malignant microphthalmia-associated transcription factor Microphthalmia-Associated Transcription Factor - genetics Microphthalmia-Associated Transcription Factor - metabolism Molecular Targeted Therapy Pigmentation Review Reviews Skin cancer Skin Neoplasms Transcription factors |
Title | Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy |
URI | https://api.istex.fr/ark:/67375/WNG-SV4TF8FV-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpcmr.12370 https://www.ncbi.nlm.nih.gov/pubmed/25818589 https://www.proquest.com/docview/1687949902 https://www.proquest.com/docview/1689308523 https://pubmed.ncbi.nlm.nih.gov/PMC4692100 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UiuCLd2u0lhFFUMiSy8xkAr6U4lrELUttaxEkTDITdtnd7LLN4uXJn-Bv9Jc4ZyZJu1oEfQvk5DKTc_lO8uUbgGdMJEqGnPllxIWPCc8X-LkwKQOalCmNhVXXHxzw_WP69pSdbsCr9l8Ypw_RvXDDyLD5GgNc5mcXgnxRzJY9k3cTbNiRrIWI6LDTjuKBU9w15ZH5oUnBjTYp0njOD12rRldxYr9cBjX_ZExeRLK2FPVvwqd2EI6BMumt6rxXfPtN3_F_R3kLbjQYlew6p7oNG7q6A9c-zu0b-LuwHCCJbzGqR3I6G8uf33_I5hlrRWqsfW0mIm41HzKuyExPZTWfSaLOWUpEVooMdofmDJNxZcopwfWRP8uvxPHT8XRO9OAeHPdfH-3t-83SDX7BI2xIA6rKKA95qXJaCp2ztGSBTgsVS5EbTBBrjdAkZ7EuqYhDlI0vTWvGCsaVgXj3YbOaV_oBEJmkymCetAi0otQcbiAWj7k02EVTgy89eNE-wqxodM1xeY1p1vY3OIeZnUMPnna2C6fmcanVc-sJnYlcTpD_lrDsw8Gb7P0JPeqL_kn2zoPt1lWyJvTPspCLBBV_gsiDJ91uE7T4JUZWer6yNmlswG4Ue7DlPKu7WMQQQ4nUg2TN5zoDFARf31ONR1YYnPLUdPDm_l9al_rLELPh3uDQbj38F-NHcN0ARuboytuwWS9X-rEBZXW-A1ciOtyxIfgLIe824A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJgQvjDsZA4xASCClysV2nMdpohRoqml0Y-LFcmJHrdqmVZeKyxM_gd_IL8HHTrMVJiR4i5STi-1z-Y5z8h2EnlOeKBky6pcR4z44PJ_D58KkDEhSpiTmll0_G7DeMXl3Sk-b2hz4F8bxQ7QbbmAZ1l-DgcOG9AUrXxSzZcc43sRk7NvQ0ttmVEctexQLHOeuCZDUD40TbthJoZDn_NqNeLQNU_vlMrD5Z83kRSxrg1F3x3VcPbMchlCDMums6rxTfPuN4fG_x3kT3WhgKt53enULXdHVbXT109xuwt9Bywzq-BajeiSns7H8-f2HbJZZK1xD-Fs7I-wa-uBxhWd6Kqv5TGJ1XqiEZaVwtn9o7jAZVyaiYmiR_Fl-xa5EHW7neA_uouPu6-FBz2-6N_gFiyAnDYgqozxkpcpJyXVO05IGOi1ULHluYEGsNaCTnMa6JDwOgTm-NNkZLShTBuXdQ1vVvNIPEJZJqgzsSYtAK0LM5QZlsZhJA1-0WfjAQy_XayiKhtocOmxMxTrFgTkUdg499KyVXThCj0ulXlhVaEXkcgIlcAkVHwdvxIcTMuzy7onoe2hvrSuisf4zETKeAOlPEHnoaXva2C18jJGVnq-sTBobvBvFHrrvVKt9WEQBRvHUQ8mG0rUCwAm-eaYajyw3OGGpSeLN-7-yOvWXIYrDg-zIHu3-i_ATdK03zPqi_3bw_iG6bvAjddXLe2irXq70I4PR6vyxtcRfBlA6JA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTSBexp0FBhiBkEBKlYvtOBIv00YYsFbV2MaEhCwnttWqbVqVVlye-An8Rn4JPs5lK0xI8BYpJxc75_Id--Q7CD2hPFEyZNQ3EeM-ODyfw3ZhYgKSmJTE3LHrd3ts_5i8OaWna-hF8y9MxQ_RLriBZTh_DQY-U-ackc-Kybxj_W5iE_YNwgIOOr132JJHsaCi3LXxkfqh9cE1OSnU8ZxduxKONmBmv1yENf8smTwPZV0syq6ij80oqhKUUWe5yDvFt98IHv93mNfQZg1S8U6lVdfRmi5voEsfpm4J_iaad6GKbzZYDOR4MpQ_v_-Q9UfWCi8g-DWuCFftfPCwxBM9luV0IrE6K1PCslS4u9O3dxgNSxtPMTRI_iy_4qpAHW5XsR7cQsfZy6Pdfb_u3eAXLIKMNCDKRHnIjMqJ4TqnqaGBTgsVS55bUBBrDdgkp7E2hMch8MYbm5vRgjJlMd5ttF5OS72FsExSZUFPWgRaEWIvtxiLxUxa8KKJBZgeetZ8QlHUxObQX2MsmgQH5lC4OfTQ41Z2VtF5XCj11GlCKyLnIyiAS6h433sl3p2Qo4xnJ-LAQ9uNqoja9j-JkPEEKH-CyEOP2tPWamErRpZ6unQyaWzRbhR76E6lWe3DIgogiqceSlZ0rhUARvDVM-Vw4JjBCUttCm_f_7lTqb8MUfR3u4fu6O6_CD9El_t7mTh43Xt7D12x4JFWpcvbaH0xX-r7FqAt8gfODn8BW0M43A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microphthalmia-associated+transcription+factor+in+melanoma+development+and+MAP-kinase+pathway+targeted+therapy&rft.jtitle=Pigment+cell+and+melanoma+research&rft.au=Wellbrock%2C+Claudia&rft.au=Arozarena%2C+Imanol&rft.date=2015-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1755-1471&rft.eissn=1755-148X&rft.volume=28&rft.issue=4&rft.spage=390&rft_id=info:doi/10.1111%2Fpcmr.12370&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3714623881 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-1471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-1471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-1471&client=summon |