Proteasome and p62/SQSTM1 are involved in methylmercury toxicity mitigation in mouse embryonic fibroblast cells

Methylmercury (MeHg), an environmental pollutant, disrupts and impairs cellular function. MeHg binds to various cellular proteins, causing dysfunction and misfolding, which are considered underlying causes of MeHg toxicity. The p62 protein, also termed SQSTM1, is a ubiquitin-binding protein that tar...

Full description

Saved in:
Bibliographic Details
Published inJournal of toxicological sciences Vol. 48; no. 6; pp. 355 - 361
Main Authors Nakamura, Ryosuke, Kiyono, Masako, Ohshiro, Yuka, Takanezawa, Yasukazu, Uraguchi, Shimpei
Format Journal Article
LanguageEnglish
Published Japan The Japanese Society of Toxicology 01.01.2023
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0388-1350
1880-3989
1880-3989
DOI10.2131/jts.48.355

Cover

Abstract Methylmercury (MeHg), an environmental pollutant, disrupts and impairs cellular function. MeHg binds to various cellular proteins, causing dysfunction and misfolding, which are considered underlying causes of MeHg toxicity. The p62 protein, also termed SQSTM1, is a ubiquitin-binding protein that targets ubiquitinated substrates to undergo autophagy and plays a key role in ameliorating MeHg toxicity. p62 also delivers ubiquitinated substrates to proteasomes. However, the role of these degradation systems in mitigating MeHg toxicity remains unknown. Herein, we explored the impact of the proteasome inhibitor MG132 on MeHg toxicity and examined the toxicity of co-treatment with MG132 and MeHg in p62KO mouse embryonic fibroblasts (MEFs) by analyzing cell viability, immunoblotting, mRNA levels, immunofluorescence, and the mercury content. The proteasome inhibitor MG132 enhanced MeHg-induced cytotoxicity while reducing intracellular mercury levels in MEFs. Co-treatment with MG132 and MeHg markedly increased levels of p62 and ubiquitinated proteins. Furthermore, co-treatment with MG132 and MeHg reduced p62KO MEF viability compared to that of wild-type MEFs. Our findings suggest that the proteasome participates in mitigating MeHg cytotoxicity, while p62 may play an important role in transporting MeHg-induced ubiquitinated proteins to the proteasome, as well as in autophagy. Collectively, these results imply that p62, and proteasome, and autophagy are vital for cytoprotection against MeHg toxicity.
AbstractList Methylmercury (MeHg), an environmental pollutant, disrupts and impairs cellular function. MeHg binds to various cellular proteins, causing dysfunction and misfolding, which are considered underlying causes of MeHg toxicity. The p62 protein, also termed SQSTM1, is a ubiquitin-binding protein that targets ubiquitinated substrates to undergo autophagy and plays a key role in ameliorating MeHg toxicity. p62 also delivers ubiquitinated substrates to proteasomes. However, the role of these degradation systems in mitigating MeHg toxicity remains unknown. Herein, we explored the impact of the proteasome inhibitor MG132 on MeHg toxicity and examined the toxicity of co-treatment with MG132 and MeHg in p62KO mouse embryonic fibroblasts (MEFs) by analyzing cell viability, immunoblotting, mRNA levels, immunofluorescence, and the mercury content. The proteasome inhibitor MG132 enhanced MeHg-induced cytotoxicity while reducing intracellular mercury levels in MEFs. Co-treatment with MG132 and MeHg markedly increased levels of p62 and ubiquitinated proteins. Furthermore, co-treatment with MG132 and MeHg reduced p62KO MEF viability compared to that of wild-type MEFs. Our findings suggest that the proteasome participates in mitigating MeHg cytotoxicity, while p62 may play an important role in transporting MeHg-induced ubiquitinated proteins to the proteasome, as well as in autophagy. Collectively, these results imply that p62, and proteasome, and autophagy are vital for cytoprotection against MeHg toxicity.
Methylmercury (MeHg), an environmental pollutant, disrupts and impairs cellular function. MeHg binds to various cellular proteins, causing dysfunction and misfolding, which are considered underlying causes of MeHg toxicity. The p62 protein, also termed SQSTM1, is a ubiquitin-binding protein that targets ubiquitinated substrates to undergo autophagy and plays a key role in ameliorating MeHg toxicity. p62 also delivers ubiquitinated substrates to proteasomes. However, the role of these degradation systems in mitigating MeHg toxicity remains unknown. Herein, we explored the impact of the proteasome inhibitor MG132 on MeHg toxicity and examined the toxicity of co-treatment with MG132 and MeHg in p62KO mouse embryonic fibroblasts (MEFs) by analyzing cell viability, immunoblotting, mRNA levels, immunofluorescence, and the mercury content. The proteasome inhibitor MG132 enhanced MeHg-induced cytotoxicity while reducing intracellular mercury levels in MEFs. Co-treatment with MG132 and MeHg markedly increased levels of p62 and ubiquitinated proteins. Furthermore, co-treatment with MG132 and MeHg reduced p62KO MEF viability compared to that of wild-type MEFs. Our findings suggest that the proteasome participates in mitigating MeHg cytotoxicity, while p62 may play an important role in transporting MeHg-induced ubiquitinated proteins to the proteasome, as well as in autophagy. Collectively, these results imply that p62, and proteasome, and autophagy are vital for cytoprotection against MeHg toxicity.Methylmercury (MeHg), an environmental pollutant, disrupts and impairs cellular function. MeHg binds to various cellular proteins, causing dysfunction and misfolding, which are considered underlying causes of MeHg toxicity. The p62 protein, also termed SQSTM1, is a ubiquitin-binding protein that targets ubiquitinated substrates to undergo autophagy and plays a key role in ameliorating MeHg toxicity. p62 also delivers ubiquitinated substrates to proteasomes. However, the role of these degradation systems in mitigating MeHg toxicity remains unknown. Herein, we explored the impact of the proteasome inhibitor MG132 on MeHg toxicity and examined the toxicity of co-treatment with MG132 and MeHg in p62KO mouse embryonic fibroblasts (MEFs) by analyzing cell viability, immunoblotting, mRNA levels, immunofluorescence, and the mercury content. The proteasome inhibitor MG132 enhanced MeHg-induced cytotoxicity while reducing intracellular mercury levels in MEFs. Co-treatment with MG132 and MeHg markedly increased levels of p62 and ubiquitinated proteins. Furthermore, co-treatment with MG132 and MeHg reduced p62KO MEF viability compared to that of wild-type MEFs. Our findings suggest that the proteasome participates in mitigating MeHg cytotoxicity, while p62 may play an important role in transporting MeHg-induced ubiquitinated proteins to the proteasome, as well as in autophagy. Collectively, these results imply that p62, and proteasome, and autophagy are vital for cytoprotection against MeHg toxicity.
Author Takanezawa, Yasukazu
Ohshiro, Yuka
Uraguchi, Shimpei
Nakamura, Ryosuke
Kiyono, Masako
Author_xml – sequence: 1
  fullname: Nakamura, Ryosuke
  organization: Department of Public Health, School of Pharmacy, Kitasato University
– sequence: 1
  fullname: Kiyono, Masako
  organization: Department of Public Health, School of Pharmacy, Kitasato University
– sequence: 1
  fullname: Ohshiro, Yuka
  organization: Department of Public Health, School of Pharmacy, Kitasato University
– sequence: 1
  fullname: Takanezawa, Yasukazu
  organization: Department of Public Health, School of Pharmacy, Kitasato University
– sequence: 1
  fullname: Uraguchi, Shimpei
  organization: Department of Public Health, School of Pharmacy, Kitasato University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37258240$$D View this record in MEDLINE/PubMed
BookMark eNpt0U1r3DAQBmBREppN2kt_QBH0Ugre6Mta-dBDCekHJLQl6dnI0jjRYktbSQ7xv682u9lD6EmDeGYY3jlFRz54QOgdJUtGOT1f57QUasnr-hVaUKVIxRvVHKEF4UpVlNfkBJ2mtCaErUgtXqMTvmK1YoIsUPgVQwadwghYe4s3kp3f_L65vaZYR8DOP4ThAWwp8Aj5fh5GiGaKM87h0RmXZzy67O50dsE_oTAlwDB2cQ7eGdy7LoZu0CljA8OQ3qDjXg8J3u7fM_Tn6-Xtxffq6ue3HxdfriojGc2VlUD6VWcpMNLUglqipDW6loKDpLbXjdRd3_WCddJ0RnNjRemRnBNBxYrwM_RxN3cTw98JUm5Hl7YbaA9lxZYpRqVggrFCP7yg6zBFX7YrapuUbDgv6v1eTd0Itt1EN-o4t89RFvBpB0wMKUXoD4SSdnunttypFaotdyqYvMAly6cQc9Ru-H_L513LOmV9B4fpOmZnBnimcu8P_-ZexxY8_wf87a0Q
CitedBy_id crossref_primary_10_1248_bpbreports_6_4_126
crossref_primary_10_1016_j_bbrc_2025_151461
crossref_primary_10_1039_D3RA05512D
Cites_doi 10.1016/j.bbamcr.2013.06.031
10.1016/j.toxlet.2021.10.008
10.1248/bpb.b17-00359
10.1128/MCB.24.18.8055-8068.2004
10.1016/j.pneurobio.2011.11.005
10.1093/toxsci/kfz094
10.1016/j.bbrc.2019.02.084
10.1096/fj.01-0899fje
10.1124/mol.105.013516
10.1289/ehp.1104494
10.1186/s11658-016-0031-z
10.1016/j.molcel.2009.01.021
10.1016/j.toxlet.2016.09.007
10.1093/toxsci/kfn201
10.1016/j.bbadis.2018.10.024
10.1083/jcb.200507002
10.1186/1476-069X-2-8
10.1016/S0305-7372(03)00081-1
10.1016/j.neuro.2004.12.005
10.1038/ncb2021
10.1073/pnas.1615455113
10.1080/10408440600845619
10.1038/s41598-017-17112-8
10.1016/j.neulet.2017.06.014
10.3389/fgene.2018.00373
10.1155/2013/848279
10.5483/BMBRep.2020.53.1.283
10.1038/s41598-017-09435-3
ContentType Journal Article
Copyright 2023 The Japanese Society of Toxicology
Copyright Japan Science and Technology Agency 2023
Copyright_xml – notice: 2023 The Japanese Society of Toxicology
– notice: Copyright Japan Science and Technology Agency 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7ST
7U7
C1K
SOI
7X8
DOI 10.2131/jts.48.355
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Toxicology Abstracts
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1880-3989
EndPage 361
ExternalDocumentID 37258240
10_2131_jts_48_355
article_jts_48_6_48_355_article_char_en
Genre Journal Article
GroupedDBID .55
123
29L
2WC
36B
3O-
53G
ABDBF
ACPRK
ACUHS
ADBBV
AEGXH
AENEX
AFRAH
AL-
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESX
F5P
GX1
HH5
JSF
JSH
KQ8
OK1
OVT
RJT
RNS
RZJ
SV3
TKC
TR2
TUS
X7M
XSB
~8M
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7ST
7U7
C1K
SOI
7X8
ID FETCH-LOGICAL-c621t-d6e0f7bd1e209541d086dca5643e61dfa96abfbf42b6cbca3cd4d6e6330414703
ISSN 0388-1350
1880-3989
IngestDate Fri Jul 11 05:15:31 EDT 2025
Mon Jun 30 02:37:37 EDT 2025
Thu Apr 03 07:08:35 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Tue Jul 01 01:36:59 EDT 2025
Wed Sep 03 06:30:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords MG132
p62/SQSTM1
Cell death
Methylmercury
Proteasome
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c621t-d6e0f7bd1e209541d086dca5643e61dfa96abfbf42b6cbca3cd4d6e6330414703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jts/48/6/48_355/_article/-char/en
PMID 37258240
PQID 2837256933
PQPubID 2029103
PageCount 7
ParticipantIDs proquest_miscellaneous_2821642422
proquest_journals_2837256933
pubmed_primary_37258240
crossref_primary_10_2131_jts_48_355
crossref_citationtrail_10_2131_jts_48_355
jstage_primary_article_jts_48_6_48_355_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Suita
PublicationTitle Journal of toxicological sciences
PublicationTitleAlternate J Toxicol Sci
PublicationYear 2023
Publisher The Japanese Society of Toxicology
Japan Science and Technology Agency
Publisher_xml – name: The Japanese Society of Toxicology
– name: Japan Science and Technology Agency
References Takanezawa, Y., Nakamura, R., Sone, Y., Uraguchi, S. and Kiyono, M. (2019b): An autophagy deficiency promotes methylmercury-induced multinuclear cell formation. Biochem. Biophys. Res. Commun., 511, 460-467.
Korolchuk, V.I., Mansilla, A., Menzies, F.M. and Rubinsztein, D.C. (2009): Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell, 33, 517-527.
Tominaga, T., Goto, M., Onoue, T., Mizoguchi, A., Sugiyama, M., Tsunekawa, T., Hagiwara, D., Morishita, Y., Ito, Y., Iwama, S., Suga, H., Banno, R. and Arima, H. (2017): Sequestosome 1 (SQSTM1/p62) maintains protein folding capacity under endoplasmic reticulum stress in mouse hypothalamic organotypic culture. Neurosci. Lett., 656, 103-107.
Usuki, F., Fujimura, M. and Yamashita, A. (2017): Endoplasmic reticulum stress preconditioning modifies intracellular mercury content by upregulating membrane transporters. Sci. Rep., 7, 12390.
Karagas, M.R., Choi, A.L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., Cowell, W., Grandjean, P. and Korrick, S. (2012): Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Perspect., 120, 799-806.
Shin, W.H., Park, J.H. and Chung, K.C. (2020): The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson’s disease. BMB Rep., 53, 56-63.
Seibenhener, M.L., Babu, J.R., Geetha, T., Wong, H.C., Krishna, N.R. and Wooten, M.W. (2004): Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol., 24, 8055-8068.
Bjørkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Øvervatn, A., Stenmark, H. and Johansen, T. (2005): p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol., 171, 603-614.
Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y.S., Ueno, I., Sakamoto, A., Tong, K.I., Kim, M., Nishito, Y., Iemura, S., Natsume, T., Ueno, T., Kominami, E., Motohashi, H., Tanaka, K. and Yamamoto, M. (2010): The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol., 12, 213-223.
Yokoo, E.M., Valente, J.G., Grattan, L., Schmidt, S.L., Platt, I. and Silbergeld, E.K. (2003): Low level methylmercury exposure affects neuropsychological function in adults. Environ. Health, 2, 8.
Takanezawa, Y., Nakamura, R., Sugimoto, T., Ohshiro, Y., Uraguchi, S. and Kiyono, M. (2021): p62/sequestosome 1 attenuates methylmercury-induced endoplasmic reticulum stress in mouse embryonic fibroblasts. Toxicol. Lett., 353, 93-99.
Ke, T., Gonçalves, F.M., Gonçalves, C.L., Dos Santos, A.A., Rocha, J.B., Farina, M., Skalny, A., Tsatsakis, A., Bowman, A.B. and Aschner, M. (2019): Post-translational modifications in MeHg-induced neurotoxicity. Biochim. Biophys. Acta Mol. Basis Dis., 1865, 2068-2081.
Liu, W.J., Ye, L., Huang, W.F., Guo, L.J., Xu, Z.G., Wu, H.L., Yang, C. and Liu, H.F. (2016): p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell. Mol. Biol. Lett., 21, 29.
Hiraoka, H., Nakahara, K., Kaneko, Y., Akiyama, S., Okuda, K., Iwawaki, T., Fujimura, M., Kumagai, Y., Takasugi, N. and Uehara, T. (2017): Modulation of unfolded protein response by methylmercury. Biol. Pharm. Bull., 40, 1595-1598.
Wang, L., Jiang, H., Yin, Z., Aschner, M. and Cai, J. (2009): Methylmercury toxicity and Nrf2-dependent detoxification in astrocytes. Toxicol. Sci., 107, 135-143.
Salminen, A., Kaarniranta, K., Haapasalo, A., Hiltunen, M., Soininen, H. and Alafuzoff, I. (2012): Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer’s disease. Prog. Neurobiol., 96, 87-95.
Auger, N., Kofman, O., Kosatsky, T. and Armstrong, B. (2005): Low-level methylmercury exposure as a risk factor for neurologic abnormalities in adults. Neurotoxicology, 26, 149-157.
Amm, I., Sommer, T. and Wolf, D.H. (2014): Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim. Biophys. Acta, 1843, 182-196.
Takanezawa, Y., Nakamura, R., Sone, Y., Uraguchi, S. and Kiyono, M. (2016): Atg5-dependent autophagy plays a protective role against methylmercury-induced cytotoxicity. Toxicol. Lett., 262, 135-141.
Hwang, G.-W., Sasaki, D. and Naganuma, A. (2005): Overexpression of Rad23 confers resistance to methylmercury in saccharomyces cerevisiae via inhibition of the degradation of ubiquitinated proteins. Mol. Pharmacol., 68, 1074-1078.
Cohen-Kaplan, V., Livneh, I., Avni, N., Fabre, B., Ziv, T., Kwon, Y.T. and Ciechanover, A. (2016): p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc. Natl. Acad. Sci. USA, 113, E7490-E7499.
Unoki, T., Akiyama, M., Kumagai, Y., Gonçalves, F.M., Farina, M., da Rocha, J.B. and Aschner, M. (2018): Molecular pathways associated with methylmercury-induced Nrf2 modulation. Front. Genet., 9, 373.
Hwang, G.-W., Furuchi, T. and Naganuma, A. (2002): A ubiquitin-proteasome system is responsible for the protection of yeast and human cells against methylmercury. FASEB J., 16, 709-711.
Takanezawa, Y., Nakamura, R., Harada, R., Sone, Y., Uraguchi, S. and Kiyono, M. (2017): Sequestosome1/p62 protects mouse embryonic fibroblasts against low-dose methylercury-induced cytotoxicity and is involved in clearance of ubiquitinated proteins. Sci. Rep., 7, 16735.
Clarkson, T.W. and Magos, L. (2006): The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol., 36, 609-662.
Adams, J. (2003): The proteasome: structure, function, and role in the cell. Cancer Treat. Rev., 29 (Suppl 1), 3-9.
Takanezawa, Y., Nakamura, R., Matsuda, H., Yagi, T., Egawa, Z., Sone, Y., Uraguchi, S., Adachi, T. and Kiyono, M. (2019a): Intracellular demethylation of methylmercury to inorganic mercury by organomercurial lyase (MerB) strengthens cytotoxicity. Toxicol. Sci., 170, 438-451.
Kumagai, Y., Kanda, H., Shinkai, Y. and Toyama, T. (2013): The role of the Keap1/Nrf2 pathway in the cellular response to methylmercury. Oxid. Med. Cell. Longev., 2013, 848279.
22
23
24
25
26
27
28
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: Clarkson, T.W. and Magos, L. (2006): The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol., 36, 609-662.
– reference: Kumagai, Y., Kanda, H., Shinkai, Y. and Toyama, T. (2013): The role of the Keap1/Nrf2 pathway in the cellular response to methylmercury. Oxid. Med. Cell. Longev., 2013, 848279.
– reference: Takanezawa, Y., Nakamura, R., Sone, Y., Uraguchi, S. and Kiyono, M. (2016): Atg5-dependent autophagy plays a protective role against methylmercury-induced cytotoxicity. Toxicol. Lett., 262, 135-141.
– reference: Korolchuk, V.I., Mansilla, A., Menzies, F.M. and Rubinsztein, D.C. (2009): Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell, 33, 517-527.
– reference: Hiraoka, H., Nakahara, K., Kaneko, Y., Akiyama, S., Okuda, K., Iwawaki, T., Fujimura, M., Kumagai, Y., Takasugi, N. and Uehara, T. (2017): Modulation of unfolded protein response by methylmercury. Biol. Pharm. Bull., 40, 1595-1598.
– reference: Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y.S., Ueno, I., Sakamoto, A., Tong, K.I., Kim, M., Nishito, Y., Iemura, S., Natsume, T., Ueno, T., Kominami, E., Motohashi, H., Tanaka, K. and Yamamoto, M. (2010): The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol., 12, 213-223.
– reference: Takanezawa, Y., Nakamura, R., Harada, R., Sone, Y., Uraguchi, S. and Kiyono, M. (2017): Sequestosome1/p62 protects mouse embryonic fibroblasts against low-dose methylercury-induced cytotoxicity and is involved in clearance of ubiquitinated proteins. Sci. Rep., 7, 16735.
– reference: Shin, W.H., Park, J.H. and Chung, K.C. (2020): The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson’s disease. BMB Rep., 53, 56-63.
– reference: Amm, I., Sommer, T. and Wolf, D.H. (2014): Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim. Biophys. Acta, 1843, 182-196.
– reference: Usuki, F., Fujimura, M. and Yamashita, A. (2017): Endoplasmic reticulum stress preconditioning modifies intracellular mercury content by upregulating membrane transporters. Sci. Rep., 7, 12390.
– reference: Karagas, M.R., Choi, A.L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., Cowell, W., Grandjean, P. and Korrick, S. (2012): Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Perspect., 120, 799-806.
– reference: Tominaga, T., Goto, M., Onoue, T., Mizoguchi, A., Sugiyama, M., Tsunekawa, T., Hagiwara, D., Morishita, Y., Ito, Y., Iwama, S., Suga, H., Banno, R. and Arima, H. (2017): Sequestosome 1 (SQSTM1/p62) maintains protein folding capacity under endoplasmic reticulum stress in mouse hypothalamic organotypic culture. Neurosci. Lett., 656, 103-107.
– reference: Takanezawa, Y., Nakamura, R., Matsuda, H., Yagi, T., Egawa, Z., Sone, Y., Uraguchi, S., Adachi, T. and Kiyono, M. (2019a): Intracellular demethylation of methylmercury to inorganic mercury by organomercurial lyase (MerB) strengthens cytotoxicity. Toxicol. Sci., 170, 438-451.
– reference: Adams, J. (2003): The proteasome: structure, function, and role in the cell. Cancer Treat. Rev., 29 (Suppl 1), 3-9.
– reference: Takanezawa, Y., Nakamura, R., Sone, Y., Uraguchi, S. and Kiyono, M. (2019b): An autophagy deficiency promotes methylmercury-induced multinuclear cell formation. Biochem. Biophys. Res. Commun., 511, 460-467.
– reference: Wang, L., Jiang, H., Yin, Z., Aschner, M. and Cai, J. (2009): Methylmercury toxicity and Nrf2-dependent detoxification in astrocytes. Toxicol. Sci., 107, 135-143.
– reference: Hwang, G.-W., Sasaki, D. and Naganuma, A. (2005): Overexpression of Rad23 confers resistance to methylmercury in saccharomyces cerevisiae via inhibition of the degradation of ubiquitinated proteins. Mol. Pharmacol., 68, 1074-1078.
– reference: Auger, N., Kofman, O., Kosatsky, T. and Armstrong, B. (2005): Low-level methylmercury exposure as a risk factor for neurologic abnormalities in adults. Neurotoxicology, 26, 149-157.
– reference: Cohen-Kaplan, V., Livneh, I., Avni, N., Fabre, B., Ziv, T., Kwon, Y.T. and Ciechanover, A. (2016): p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc. Natl. Acad. Sci. USA, 113, E7490-E7499.
– reference: Salminen, A., Kaarniranta, K., Haapasalo, A., Hiltunen, M., Soininen, H. and Alafuzoff, I. (2012): Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer’s disease. Prog. Neurobiol., 96, 87-95.
– reference: Bjørkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Øvervatn, A., Stenmark, H. and Johansen, T. (2005): p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol., 171, 603-614.
– reference: Ke, T., Gonçalves, F.M., Gonçalves, C.L., Dos Santos, A.A., Rocha, J.B., Farina, M., Skalny, A., Tsatsakis, A., Bowman, A.B. and Aschner, M. (2019): Post-translational modifications in MeHg-induced neurotoxicity. Biochim. Biophys. Acta Mol. Basis Dis., 1865, 2068-2081.
– reference: Liu, W.J., Ye, L., Huang, W.F., Guo, L.J., Xu, Z.G., Wu, H.L., Yang, C. and Liu, H.F. (2016): p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell. Mol. Biol. Lett., 21, 29.
– reference: Seibenhener, M.L., Babu, J.R., Geetha, T., Wong, H.C., Krishna, N.R. and Wooten, M.W. (2004): Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol., 24, 8055-8068.
– reference: Yokoo, E.M., Valente, J.G., Grattan, L., Schmidt, S.L., Platt, I. and Silbergeld, E.K. (2003): Low level methylmercury exposure affects neuropsychological function in adults. Environ. Health, 2, 8.
– reference: Takanezawa, Y., Nakamura, R., Sugimoto, T., Ohshiro, Y., Uraguchi, S. and Kiyono, M. (2021): p62/sequestosome 1 attenuates methylmercury-induced endoplasmic reticulum stress in mouse embryonic fibroblasts. Toxicol. Lett., 353, 93-99.
– reference: Unoki, T., Akiyama, M., Kumagai, Y., Gonçalves, F.M., Farina, M., da Rocha, J.B. and Aschner, M. (2018): Molecular pathways associated with methylmercury-induced Nrf2 modulation. Front. Genet., 9, 373.
– reference: Hwang, G.-W., Furuchi, T. and Naganuma, A. (2002): A ubiquitin-proteasome system is responsible for the protection of yeast and human cells against methylmercury. FASEB J., 16, 709-711.
– ident: 2
  doi: 10.1016/j.bbamcr.2013.06.031
– ident: 23
  doi: 10.1016/j.toxlet.2021.10.008
– ident: 7
  doi: 10.1248/bpb.b17-00359
– ident: 17
  doi: 10.1128/MCB.24.18.8055-8068.2004
– ident: 16
  doi: 10.1016/j.pneurobio.2011.11.005
– ident: 20
  doi: 10.1093/toxsci/kfz094
– ident: 21
  doi: 10.1016/j.bbrc.2019.02.084
– ident: 8
  doi: 10.1096/fj.01-0899fje
– ident: 9
  doi: 10.1124/mol.105.013516
– ident: 10
  doi: 10.1289/ehp.1104494
– ident: 15
  doi: 10.1186/s11658-016-0031-z
– ident: 13
  doi: 10.1016/j.molcel.2009.01.021
– ident: 22
  doi: 10.1016/j.toxlet.2016.09.007
– ident: 27
  doi: 10.1093/toxsci/kfn201
– ident: 11
  doi: 10.1016/j.bbadis.2018.10.024
– ident: 4
  doi: 10.1083/jcb.200507002
– ident: 28
  doi: 10.1186/1476-069X-2-8
– ident: 1
  doi: 10.1016/S0305-7372(03)00081-1
– ident: 3
  doi: 10.1016/j.neuro.2004.12.005
– ident: 12
  doi: 10.1038/ncb2021
– ident: 6
  doi: 10.1073/pnas.1615455113
– ident: 5
  doi: 10.1080/10408440600845619
– ident: 19
  doi: 10.1038/s41598-017-17112-8
– ident: 24
  doi: 10.1016/j.neulet.2017.06.014
– ident: 25
  doi: 10.3389/fgene.2018.00373
– ident: 14
  doi: 10.1155/2013/848279
– ident: 18
  doi: 10.5483/BMBRep.2020.53.1.283
– ident: 26
  doi: 10.1038/s41598-017-09435-3
SSID ssj0027054
ssib003171048
ssib058493355
ssib048302261
ssib023157186
Score 2.406423
Snippet Methylmercury (MeHg), an environmental pollutant, disrupts and impairs cellular function. MeHg binds to various cellular proteins, causing dysfunction and...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 355
SubjectTerms Animals
Autophagy
Cell death
Cell viability
Cytotoxicity
Dimethylmercury
Embryo fibroblasts
Fibroblasts
Immunoblotting
Immunofluorescence
Mercury
Mercury (metal)
Mercury - metabolism
Mercury Poisoning - drug therapy
Mercury Poisoning - prevention & control
Methylmercury
Methylmercury Compounds - metabolism
Methylmercury Compounds - toxicity
MG132
Mice
Mitigation
mRNA
p62 Protein
p62/SQSTM1
Proteasome
Proteasome Endopeptidase Complex - metabolism
Proteasome inhibitors
Proteasome Inhibitors - metabolism
Proteasome Inhibitors - pharmacology
Proteasomes
Protein transport
Proteins
Sequestosome-1 Protein - genetics
Sequestosome-1 Protein - metabolism
Substrates
Toxicity
Ubiquitin
Ubiquitinated Proteins - metabolism
Title Proteasome and p62/SQSTM1 are involved in methylmercury toxicity mitigation in mouse embryonic fibroblast cells
URI https://www.jstage.jst.go.jp/article/jts/48/6/48_355/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/37258240
https://www.proquest.com/docview/2837256933
https://www.proquest.com/docview/2821642422
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Journal of Toxicological Sciences, 2023, Vol.48(6), pp.355-361
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK4AEJIb7pGMgIXlCVLh-Omz4itGnA2EBLpe4pshNnK1vbqU2B9oG_nTs7cVLUSYOXKnLObuT7-fy7S3xHyNtIcRHl_cAJZc91MMeUIznLnTByWYYFqGCx49cWR_xgwD4Nw2Gr9bt5uqSQ3XS18VzJ_2gV2kCveEr2HzRrB4UGuAb9wi9oGH5vpOOvmGRBzKdj8w7gimOa05NvJ_EXr4NfdI0mYHx-KEyvpEtFL7FWSgqzCIzz1yhFAj4emSQb5otHjAOojhrL2VJXxsnBmZ5KINhFByP882uorB7NWtFyU7VkPRYXYqJW4qfmqadivrgQq4WNQsPd8WJmOOxyCjct1I7PMXSuY7mn0KdqHszEGZZw0YHb8xHw_lEzduEHjdiFMbdgPZygb4oIddWGttJGs6iBxabBDUyS3783At8L9EZQzLss6pZC69m2j46T_cHhYRLvDeNb5Lbf65nX_B8_1w67q6vo2Scy6W1x7N165DVCc-c7cPozdb27omlL_IDcL5VE3xvwPCQtNXlE7plgLTVn0B6TaQ0kCkCiAKRdAyMKMKIVjOCCrsGIVjCiNYy0EMKIWhjRGkZUw-gJGezvxR8OnLISh5Ny3yucjCs378nMUz5QcuZl4AhnqQiBziruZbnocyFzmTNf8lSmIkgzBn04Bss8BpvKU7I1mU7Uc0JDFYELIF0vUoL1uSfyVAYZz7AuAo_coE3eVdOZpGWaeqyWcpmAu4pTn8DUJyxKYOrb5I2VvTLJWTZKcaMVK1Mu2EqGl4K2HQ88gn1pk51Ki0m56ucJZosCN6EfwJO-trfBJuP8wWqCCQYZ3wO_Hixfmzwz2rf_jb0joNHbN-j9gtytV80O2SpmC_USOHAhX2mg_gGx-7s8
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteasome+and+p62%2FSQSTM1+are+involved+in+methylmercury+toxicity+mitigation+in+mouse+embryonic+fibroblast+cells&rft.jtitle=Journal+of+toxicological+sciences&rft.au=Takanezawa%2C+Yasukazu&rft.au=Nakamura%2C+Ryosuke&rft.au=Ohshiro%2C+Yuka&rft.au=Uraguchi%2C+Shimpei&rft.date=2023-01-01&rft.issn=1880-3989&rft.eissn=1880-3989&rft.volume=48&rft.issue=6&rft.spage=355&rft_id=info:doi/10.2131%2Fjts.48.355&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0388-1350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0388-1350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0388-1350&client=summon