Human Predators Outpace Other Agents of Trait Change in the Wild

The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 106; no. 3; pp. 952 - 954
Main Authors Darimont, Chris T., Carlson, Stephanie M., Kinnison, Michael T., Paquet, Paul C., Reimchen, Thomas E., Wilmers, Christopher C., Daily, Gretchen C.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 20.01.2009
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong 'harvest selection' by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural (n = 20 systems) but also other human-driven (n = 25 systems) perturbations in the wild, outpacing them by > 300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size-or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems.
AbstractList The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong ‘harvest selection’ by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural ( n = 20 systems) but also other human-driven ( n = 25 systems) perturbations in the wild, outpacing them by >300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size- or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems.
The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong 'harvest selection' by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural (n = 20 systems) but also other human-driven (n = 25 systems) perturbations in the wild, outpacing them by > 300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size-or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems.
The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong 'harvest selection'(tm) by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural (n = 20 systems) but also other human-driven (n = 25 systems) perturbations in the wild, outpacing them by >300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size- or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems.
The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong 'harvest selection' by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural (n = 20 systems) but also other human-driven (n = 25 systems) perturbations in the wild, outpacing them by >300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size- or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems. [PUBLICATION ABSTRACT]
The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong 'harvest selection' by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural (n = 20 systems) but also other human-driven (n = 25 systems) perturbations in the wild, outpacing them by >300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size- or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems.The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong 'harvest selection' by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural (n = 20 systems) but also other human-driven (n = 25 systems) perturbations in the wild, outpacing them by >300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size- or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems.
Author Kinnison, Michael T.
Reimchen, Thomas E.
Wilmers, Christopher C.
Carlson, Stephanie M.
Daily, Gretchen C.
Darimont, Chris T.
Paquet, Paul C.
Author_xml – sequence: 1
  givenname: Chris T.
  surname: Darimont
  fullname: Darimont, Chris T.
– sequence: 2
  givenname: Stephanie M.
  surname: Carlson
  fullname: Carlson, Stephanie M.
– sequence: 3
  givenname: Michael T.
  surname: Kinnison
  fullname: Kinnison, Michael T.
– sequence: 4
  givenname: Paul C.
  surname: Paquet
  fullname: Paquet, Paul C.
– sequence: 5
  givenname: Thomas E.
  surname: Reimchen
  fullname: Reimchen, Thomas E.
– sequence: 6
  givenname: Christopher C.
  surname: Wilmers
  fullname: Wilmers, Christopher C.
– sequence: 7
  givenname: Gretchen C.
  surname: Daily
  fullname: Daily, Gretchen C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19139415$$D View this record in MEDLINE/PubMed
BookMark eNqFks1vEzEQxS1URNPCmRPI4sAt7fh7fUFUEVCkSuFQxNFy197E0WYdbC-i_30dNSSlAvXkw_vN07zxO0FHQxw8Qq8JnBFQ7Hwz2HwGDWjKBAH5DE0IaDKVXMMRmgBQNW045cfoJOcVAGjRwAt0TDRhmhMxQR8vx7Ud8LfknS0xZTwfy8a2Hs_L0id8sfBDyTh2-DrZUPBsaYeFx2HAVcY_Qu9eoued7bN_tXtP0ffPn65nl9Or-Zevs4uraSspKVMnOG-15kKB5E7XjVvlHGugU9BIJplvObUAN61kxFLrfOec4p76hnWKUXaKPtz7bsabtXdt3SvZ3mxSWNt0a6IN5m9lCEuziL8MlQxAkmrwfmeQ4s_R52LWIbe-7-3g45iNlA2TQognQV7NhBbsSZCCUkQCVPDdI3AVxzTUc1WGMK4IlxV6-zDgPtmfv6qAuAfaFHNOvjNtKLaEuM0bekPAbDthtp0wh07UufNHc3vr_0682a2yFQ60NMxoQR8E_6duurHvi_9dDkarXMu1JzlQwZVq2B1ymtfA
CitedBy_id crossref_primary_10_1670_11_023
crossref_primary_10_1038_s41559_019_0901_7
crossref_primary_10_1080_10871209_2015_1046533
crossref_primary_10_1371_journal_pone_0029312
crossref_primary_10_1371_journal_pone_0245255
crossref_primary_10_1016_j_biocon_2017_03_014
crossref_primary_10_1007_s11252_018_0758_6
crossref_primary_10_1111_ele_14285
crossref_primary_10_1098_rsos_240788
crossref_primary_10_1007_s10530_021_02588_3
crossref_primary_10_1111_1365_2656_12576
crossref_primary_10_1371_journal_pone_0064311
crossref_primary_10_1002_ecy_1940
crossref_primary_10_1073_pnas_09007871106
crossref_primary_10_1111_faf_12770
crossref_primary_10_1111_j_1600_0706_2012_20319_x
crossref_primary_10_1111_eva_12179
crossref_primary_10_1002_fee_1743
crossref_primary_10_1111_pala_12059
crossref_primary_10_1666_10048_1
crossref_primary_10_1139_cjz_2014_0122
crossref_primary_10_1146_annurev_environ_031809_133103
crossref_primary_10_3389_fpsyg_2020_589978
crossref_primary_10_1007_s10531_017_1381_1
crossref_primary_10_1002_jwmg_195
crossref_primary_10_1038_s41598_019_51168_y
crossref_primary_10_1111_j_1365_2664_2011_02006_x
crossref_primary_10_1111_1365_2664_13764
crossref_primary_10_1111_oik_08592
crossref_primary_10_1111_j_1365_2656_2009_01579_x
crossref_primary_10_1111_faf_12789
crossref_primary_10_1111_eva_12044
crossref_primary_10_1111_eva_12285
crossref_primary_10_1111_eva_13253
crossref_primary_10_1534_genetics_118_301824
crossref_primary_10_1002_ece3_2598
crossref_primary_10_1111_j_1752_4571_2010_00169_x
crossref_primary_10_1038_srep45222
crossref_primary_10_1186_s12915_017_0476_1
crossref_primary_10_1007_s13280_021_01587_x
crossref_primary_10_1098_rspb_2020_0526
crossref_primary_10_1139_cjfas_2016_0173
crossref_primary_10_1016_j_biocon_2009_10_017
crossref_primary_10_1111_1365_2656_13771
crossref_primary_10_1111_j_1600_0706_2010_18852_x
crossref_primary_10_1016_j_scitotenv_2020_138193
crossref_primary_10_1002_ecs2_3071
crossref_primary_10_1111_j_1600_0706_2013_00698_x
crossref_primary_10_1111_1365_2745_12140
crossref_primary_10_1098_rspb_2015_0603
crossref_primary_10_1016_j_tree_2011_08_004
crossref_primary_10_1525_bio_2012_62_12_6
crossref_primary_10_1111_j_1752_4571_2011_00230_x
crossref_primary_10_3389_fevo_2020_00177
crossref_primary_10_1111_1365_2664_12893
crossref_primary_10_1098_rspb_2010_0923
crossref_primary_10_1086_695834
crossref_primary_10_3390_su16031216
crossref_primary_10_1111_eva_12268
crossref_primary_10_1002_ece3_1044
crossref_primary_10_1016_j_jnc_2016_09_004
crossref_primary_10_1643_OT_17_631
crossref_primary_10_1098_rsbl_2015_1009
crossref_primary_10_1139_er_2013_0038
crossref_primary_10_18475_cjos_v53i2_a12
crossref_primary_10_1111_j_1365_2427_2010_02501_x
crossref_primary_10_1086_701652
crossref_primary_10_1111_eva_12373
crossref_primary_10_1002_ece3_3116
crossref_primary_10_7868_S0320965217040088
crossref_primary_10_1111_fme_12073
crossref_primary_10_1146_annurev_ecolsys_110218_024621
crossref_primary_10_1111_j_1755_263X_2010_00145_x
crossref_primary_10_1016_j_tig_2016_04_005
crossref_primary_10_1111_eva_12123
crossref_primary_10_1111_gcb_12205
crossref_primary_10_1111_eva_12127
crossref_primary_10_1111_oik_02877
crossref_primary_10_1002_ece3_1185
crossref_primary_10_1002_ece3_6995
crossref_primary_10_1002_ece3_335
crossref_primary_10_1098_rsos_191231
crossref_primary_10_1016_j_gecco_2025_e03485
crossref_primary_10_1002_ece3_61
crossref_primary_10_1098_rstb_2011_0422
crossref_primary_10_1007_s10682_012_9568_0
crossref_primary_10_1007_s40011_018_0963_3
crossref_primary_10_1890_15_0776
crossref_primary_10_1016_j_fishres_2024_106946
crossref_primary_10_1073_pnas_0901325106
crossref_primary_10_1111_eva_12358
crossref_primary_10_1111_mec_16299
crossref_primary_10_1098_rsbl_2011_1207
crossref_primary_10_1002_jwmg_21089
crossref_primary_10_1038_nature14258
crossref_primary_10_1016_j_fishres_2013_06_004
crossref_primary_10_1017_S0025315411000828
crossref_primary_10_1126_science_aar7121
crossref_primary_10_1111_bij_12241
crossref_primary_10_1016_j_biocon_2017_09_022
crossref_primary_10_1073_pnas_2221691120
crossref_primary_10_1111_j_1469_1795_2010_00355_x
crossref_primary_10_1139_f2012_047
crossref_primary_10_1111_j_1752_4571_2011_00229_x
crossref_primary_10_2192_URSU_D_16_00028_1
crossref_primary_10_1016_j_tree_2017_03_011
crossref_primary_10_1111_1755_0998_13361
crossref_primary_10_1098_rspb_2018_2047
crossref_primary_10_1098_rspb_2009_1020
crossref_primary_10_1111_acv_12131
crossref_primary_10_1111_j_1600_0706_2013_01093_x
crossref_primary_10_1890_11_1189_1
crossref_primary_10_1128_CMR_00050_19
crossref_primary_10_1002_ece3_1769
crossref_primary_10_1071_PC16026
crossref_primary_10_1038_srep03524
crossref_primary_10_1038_s41559_016_0065
crossref_primary_10_3917_set_001_0030
crossref_primary_10_1098_rsfs_2016_0133
crossref_primary_10_1007_s11692_015_9333_8
crossref_primary_10_1111_csp2_447
crossref_primary_10_1111_j_1752_4571_2011_00185_x
crossref_primary_10_1111_cobi_12651
crossref_primary_10_1111_j_1461_0248_2009_01311_x
crossref_primary_10_1111_j_1752_4571_2010_00165_x
crossref_primary_10_1139_cjz_2014_0311
crossref_primary_10_1007_s10682_010_9450_x
crossref_primary_10_1086_658902
crossref_primary_10_1038_s42003_023_04940_w
crossref_primary_10_1111_1365_2664_12004
crossref_primary_10_1111_ele_13344
crossref_primary_10_1002_wsb_597
crossref_primary_10_1093_biosci_biab055
crossref_primary_10_1111_1365_2656_13371
crossref_primary_10_1007_s12052_009_0128_1
crossref_primary_10_1111_oik_04725
crossref_primary_10_1111_j_1752_4571_2010_00154_x
crossref_primary_10_1371_journal_pbio_3001145
crossref_primary_10_2981_wlb_00526
crossref_primary_10_1111_1365_2664_12379
crossref_primary_10_1111_evo_12653
crossref_primary_10_1073_pnas_0912771107
crossref_primary_10_1139_cjfas_2013_0171
crossref_primary_10_1111_faf_12007
crossref_primary_10_1016_j_biocon_2024_110831
crossref_primary_10_1098_rspb_2024_0980
crossref_primary_10_1111_faf_12248
crossref_primary_10_1007_s00442_017_3912_6
crossref_primary_10_1111_1365_2435_12354
crossref_primary_10_1111_ele_13677
crossref_primary_10_1002_ece3_9285
crossref_primary_10_1098_rspb_2016_0600
crossref_primary_10_1111_ele_12107
crossref_primary_10_1111_1365_2656_13221
crossref_primary_10_1111_j_1558_5646_2011_01366_x
crossref_primary_10_1002_jwmg_21241
crossref_primary_10_1111_j_1467_2979_2010_00387_x
crossref_primary_10_1134_S1995082917030075
crossref_primary_10_1111_1365_2435_13685
crossref_primary_10_1080_17513758_2012_697195
crossref_primary_10_7717_peerj_163
crossref_primary_10_1093_biosci_biac004
crossref_primary_10_1111_ddi_12496
crossref_primary_10_1017_ext_2024_4
crossref_primary_10_1111_nyas_12974
crossref_primary_10_1111_j_1365_2664_2012_02160_x
crossref_primary_10_1111_j_1558_5646_2011_01331_x
crossref_primary_10_1098_rspb_2012_1483
crossref_primary_10_1086_678407
crossref_primary_10_1111_1365_2664_13562
crossref_primary_10_1111_evo_12952
crossref_primary_10_1111_1365_2435_14667
crossref_primary_10_1111_eva_13178
crossref_primary_10_1111_mec_15813
crossref_primary_10_1002_eap_1805
crossref_primary_10_1007_s11160_019_09547_1
crossref_primary_10_1098_rspb_2012_0120
crossref_primary_10_1111_j_1558_5646_2012_01592_x
crossref_primary_10_1016_j_ecolmodel_2011_03_041
crossref_primary_10_1111_faf_12156
crossref_primary_10_1139_cjfas_2019_0408
crossref_primary_10_1139_cjfas_2019_0406
crossref_primary_10_1016_j_jtbi_2014_10_017
crossref_primary_10_1093_biosci_biab010
crossref_primary_10_1146_annurev_ecolsys_112414_054339
crossref_primary_10_3389_fenvs_2021_692401
crossref_primary_10_1002_ece3_1471
crossref_primary_10_1002_jwmg_21487
crossref_primary_10_1016_j_scitotenv_2022_160812
crossref_primary_10_2112_JCOASTRES_D_13_00066_1
crossref_primary_10_1016_j_fishres_2011_05_016
crossref_primary_10_1111_eth_13238
crossref_primary_10_1111_j_1752_4571_2009_00075_x
crossref_primary_10_1073_pnas_0900520106
crossref_primary_10_1016_j_scitotenv_2018_06_335
crossref_primary_10_1093_conphys_cow005
crossref_primary_10_1038_s41598_021_00567_1
crossref_primary_10_1002_ece3_1921
crossref_primary_10_1111_j_1558_5646_2010_00945_x
crossref_primary_10_1007_s10144_018_0608_7
crossref_primary_10_3354_meps09098
crossref_primary_10_1111_j_1752_4571_2009_00087_x
crossref_primary_10_1038_s41576_020_00288_7
crossref_primary_10_1007_s11355_020_00434_7
crossref_primary_10_1098_rsos_190989
crossref_primary_10_1371_journal_pone_0261198
crossref_primary_10_1111_eva_12730
crossref_primary_10_1146_annurev_ecolsys_102710_145100
crossref_primary_10_1111_ele_12551
crossref_primary_10_1073_pnas_1407508111
crossref_primary_10_1016_j_ancene_2016_10_002
crossref_primary_10_1098_rspb_2014_0012
crossref_primary_10_1007_s10531_021_02166_y
crossref_primary_10_1007_s10682_010_9427_9
crossref_primary_10_1111_eva_12841
crossref_primary_10_1002_jwmg_21337
crossref_primary_10_1111_jzo_12471
crossref_primary_10_1007_s00442_024_05623_x
crossref_primary_10_1111_j_1095_8649_2012_03342_x
crossref_primary_10_1126_science_1233774
crossref_primary_10_1007_s10764_022_00331_w
crossref_primary_10_1134_S199542551905007X
crossref_primary_10_1002_jwmg_21451
crossref_primary_10_1093_biolinnean_blaa084
crossref_primary_10_1644_11_MAMM_A_183_2
crossref_primary_10_1126_science_abe7389
crossref_primary_10_1371_journal_pone_0153808
crossref_primary_10_1002_wsb_182
crossref_primary_10_1007_s10344_023_01728_5
crossref_primary_10_1111_jfb_12516
crossref_primary_10_1890_12_0229_1
crossref_primary_10_1890_09_1914_1
crossref_primary_10_1111_j_1752_4571_2009_00086_x
crossref_primary_10_1016_j_anbehav_2020_09_013
crossref_primary_10_1890_14_1461
crossref_primary_10_1007_s10592_015_0797_y
crossref_primary_10_1371_journal_pone_0103487
crossref_primary_10_1073_pnas_1525749113
crossref_primary_10_1139_F10_090
crossref_primary_10_1111_j_1752_4571_2010_00173_x
crossref_primary_10_1126_science_abm2980
crossref_primary_10_1139_cjz_2021_0082
crossref_primary_10_1093_biolinnean_blab060
crossref_primary_10_1086_605982
crossref_primary_10_7717_peerj_3153
crossref_primary_10_1371_journal_pone_0078041
crossref_primary_10_1007_s00265_012_1449_6
crossref_primary_10_1016_j_tree_2015_04_014
crossref_primary_10_1016_j_cub_2020_10_078
crossref_primary_10_1111_eva_12941
crossref_primary_10_1126_science_aac4249
crossref_primary_10_1073_pnas_2025453118
crossref_primary_10_1038_hdy_2010_162
crossref_primary_10_1093_conphys_cou023
crossref_primary_10_1007_s00442_012_2488_4
crossref_primary_10_1016_j_tree_2010_12_008
crossref_primary_10_1038_nchem_2725
crossref_primary_10_1111_j_1752_4571_2012_00245_x
crossref_primary_10_1007_s10682_010_9412_3
crossref_primary_10_1098_rspb_2022_1718
crossref_primary_10_1093_icesjms_fsr195
crossref_primary_10_1177_2053019615588791
crossref_primary_10_1016_j_rsma_2024_103623
crossref_primary_10_24072_pcjournal_306
crossref_primary_10_1111_j_1752_4571_2011_00212_x
crossref_primary_10_1101_cshperspect_a041455
crossref_primary_10_1016_j_seares_2012_06_011
crossref_primary_10_1139_cjfas_2014_0006
crossref_primary_10_1073_pnas_1806013115
crossref_primary_10_1111_brv_13069
crossref_primary_10_1073_pnas_1811559115
crossref_primary_10_1002_ajpa_24470
crossref_primary_10_1002_ajpa_21195
crossref_primary_10_1016_j_pecon_2017_11_003
crossref_primary_10_1093_conphys_cou050
crossref_primary_10_1111_j_1469_1795_2011_00458_x
crossref_primary_10_1111_j_1752_4571_2010_00171_x
crossref_primary_10_1016_j_anbehav_2013_10_021
crossref_primary_10_1071_AM24032
crossref_primary_10_1109_MCAS_2015_2510200
crossref_primary_10_1139_cjfas_2014_0221
crossref_primary_10_1002_jwmg_21400
crossref_primary_10_1002_jwmg_644
crossref_primary_10_1111_j_1749_6632_2009_05286_x
crossref_primary_10_16995_zygon_10885
crossref_primary_10_1007_s10531_018_1668_x
crossref_primary_10_1002_ece3_11532
crossref_primary_10_1016_j_fishres_2015_07_028
crossref_primary_10_1098_rspb_2010_0960
crossref_primary_10_1016_j_tree_2014_01_002
crossref_primary_10_1111_1365_2656_12970
crossref_primary_10_1093_icb_icaa001
crossref_primary_10_1111_jeb_13700
crossref_primary_10_1111_evo_13277
crossref_primary_10_1126_science_1251817
crossref_primary_10_1016_j_ecohyd_2024_01_002
crossref_primary_10_1111_eva_12217
crossref_primary_10_1098_rstb_2018_0057
crossref_primary_10_1111_eva_12332
crossref_primary_10_1111_1365_2664_13805
crossref_primary_10_1098_rstb_2016_0028
crossref_primary_10_3375_043_036_0314
crossref_primary_10_1073_pnas_0901069106
crossref_primary_10_1016_j_ecolmodel_2022_110150
crossref_primary_10_1086_692011
crossref_primary_10_1371_journal_pone_0148770
crossref_primary_10_1139_cjfas_2016_0434
crossref_primary_10_1098_rsos_210842
crossref_primary_10_1111_gcb_17187
crossref_primary_10_1002_wmon_1007
crossref_primary_10_1016_j_anbehav_2015_01_012
crossref_primary_10_1098_rspb_2018_2745
crossref_primary_10_1111_1365_2656_12954
crossref_primary_10_1111_j_1752_4571_2009_00070_x
crossref_primary_10_1051_alr_2022012
crossref_primary_10_1093_mollus_eyu029
crossref_primary_10_1139_cjfas_2016_0211
crossref_primary_10_1186_s10152_017_0487_x
crossref_primary_10_1038_s41467_018_03506_3
crossref_primary_10_1002_ece3_244
crossref_primary_10_1111_j_1523_1739_2011_01752_x
crossref_primary_10_1002_ece3_5479
crossref_primary_10_1111_nyas_12032
crossref_primary_10_1093_beheco_arz079
crossref_primary_10_1016_j_mambio_2015_07_006
crossref_primary_10_1890_12_1196_1
crossref_primary_10_1111_jeb_12603
crossref_primary_10_1080_01650424_2018_1499937
crossref_primary_10_1016_j_biocon_2016_06_024
crossref_primary_10_1002_ece3_4270
crossref_primary_10_1098_rsos_231470
crossref_primary_10_3390_su8010010
crossref_primary_10_1111_oik_08448
crossref_primary_10_1134_S0032945222060108
crossref_primary_10_1111_j_1365_294X_2011_05463_x
crossref_primary_10_1007_s00227_014_2543_2
crossref_primary_10_1111_eva_12416
crossref_primary_10_1146_annurev_ecolsys_120213_091747
crossref_primary_10_1007_s11252_021_01156_w
crossref_primary_10_1111_jav_01507
crossref_primary_10_1126_science_ado5331
crossref_primary_10_1111_j_1461_0248_2009_01381_x
crossref_primary_10_1002_ece3_8887
crossref_primary_10_1139_cjfas_2018_0424
crossref_primary_10_1111_mec_14179
crossref_primary_10_1111_j_1600_0706_2009_17835_x
crossref_primary_10_1111_j_1752_4571_2009_00081_x
crossref_primary_10_1155_2012_567276
crossref_primary_10_3390_ani13101716
crossref_primary_10_1038_s41559_022_01967_w
crossref_primary_10_1038_s41598_018_24555_0
crossref_primary_10_1126_science_1193954
crossref_primary_10_2981_13_006
crossref_primary_10_1017_S0962728600001433
crossref_primary_10_1111_eva_12764
crossref_primary_10_1890_120229
crossref_primary_10_1038_457803a
crossref_primary_10_1016_j_biocon_2010_04_034
crossref_primary_10_1111_ele_14186
crossref_primary_10_1080_00028487_2016_1173589
crossref_primary_10_1371_journal_pone_0230735
crossref_primary_10_3390_ani10061003
crossref_primary_10_1007_s10682_010_9444_8
crossref_primary_10_1098_rspb_2018_1698
crossref_primary_10_1007_s10811_024_03269_z
crossref_primary_10_1111_acv_12624
crossref_primary_10_1016_j_fishres_2021_105926
crossref_primary_10_1111_j_1752_4571_2010_00125_x
crossref_primary_10_1002_fee_1264
crossref_primary_10_1038_s41598_019_48853_3
crossref_primary_10_1111_j_1467_2979_2009_00349_x
crossref_primary_10_1080_21513732_2013_818060
crossref_primary_10_1111_eva_12992
crossref_primary_10_1002_jwmg_21804
crossref_primary_10_1016_j_quascirev_2023_108100
crossref_primary_10_1016_j_tree_2016_04_001
crossref_primary_10_1016_j_biocon_2011_05_005
crossref_primary_10_1093_jhered_esv085
crossref_primary_10_1002_ece3_11003
crossref_primary_10_1016_j_seares_2012_04_003
crossref_primary_10_1111_j_1365_2656_2011_01919_x
crossref_primary_10_1111_j_1752_4571_2009_00080_x
crossref_primary_10_1098_rstb_2016_0044
crossref_primary_10_2981_wlb_00165
crossref_primary_10_1016_j_biocon_2013_09_024
crossref_primary_10_1111_j_1365_2656_2011_01862_x
Cites_doi 10.1111/j.1461-0248.2007.01046.x
10.1038/nature02177
10.1098/rstb.2004.1586
10.1086/510633
10.1038/nature02430
10.1126/science.1074085
10.1038/nature06851
10.1023/A:1013375419520
10.1126/science.293.5536.1786
10.1006/jmsc.2000.0731
10.1111/j.1365-294X.2007.03495.x
10.1111/j.1558-5646.1999.tb04550.x
10.1073/pnas.0705908104
10.1111/j.1365-2435.2007.01278.x
10.1111/j.1365-294X.2007.03428.x
10.1111/j.1365-2435.2007.01275.x
10.1111/j.1365-294X.2007.03485.x
10.1126/science.1148089
10.1038/nature01767
10.1111/j.1365-294X.2007.03522.x
10.1126/science.222.4620.159
10.1111/j.1558-5646.1995.tb02236.x
10.1111/j.1558-5646.1987.tb02474.x
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jan 20, 2009
2009 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright National Academy of Sciences Jan 20, 2009
– notice: 2009 by The National Academy of Sciences of the USA
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7ST
7U6
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0809235106
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE
Ecology Abstracts
Virology and AIDS Abstracts
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 954
ExternalDocumentID PMC2630061
1632022561
19139415
10_1073_pnas_0809235106
106_3_952
40254778
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7ST
7U6
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c621t-d544c99457064d9809c7dd380f7086363ec42a00bc631a2adefdd74e2e83f7323
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:49:27 EDT 2025
Fri Jul 11 09:22:05 EDT 2025
Thu Jul 10 18:12:46 EDT 2025
Fri Jul 11 06:39:42 EDT 2025
Mon Jun 30 08:22:30 EDT 2025
Wed Feb 19 02:42:09 EST 2025
Tue Jul 01 02:39:10 EDT 2025
Thu Apr 24 22:56:30 EDT 2025
Thu May 30 08:49:35 EDT 2019
Wed Nov 11 00:29:47 EST 2020
Thu May 29 08:42:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c621t-d544c99457064d9809c7dd380f7086363ec42a00bc631a2adefdd74e2e83f7323
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Gretchen C. Daily, Stanford University, Stanford, CA, and approved November 21, 2008
Author contributions: C.T.D., M.T.K., P.C.P., and T.E.R. designed research; C.T.D., S.M.C., and C.C.W. performed research; C.T.D., S.M.C., and C.C.W. analyzed data; and C.T.D., S.M.C., M.T.K., P.C.P., T.E.R., and C.C.W. wrote the paper.
OpenAccessLink http://doi.org/10.1073/pnas.0809235106
PMID 19139415
PQID 201347146
PQPubID 42026
PageCount 3
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2630061
pubmed_primary_19139415
jstor_primary_40254778
crossref_citationtrail_10_1073_pnas_0809235106
proquest_miscellaneous_46135953
crossref_primary_10_1073_pnas_0809235106
pnas_primary_106_3_952
pnas_primary_106_3_952_fulltext
proquest_miscellaneous_66836555
proquest_miscellaneous_20771600
proquest_journals_201347146
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-01-20
PublicationDateYYYYMMDD 2009-01-20
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-20
  day: 20
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Futuyma DJ (e_1_3_3_1_2) 2001
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_10_2
Endler JA (e_1_3_3_2_2) 1986
Burnham KP (e_1_3_3_26_2) 2001
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_25_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
17784924 - Mol Ecol. 2008 Jan;17(1):294-313
14668862 - Nature. 2003 Dec 11;426(6967):655-8
17741657 - Science. 1983 Oct 14;222(4620):159-61
17898170 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15799-804
17498150 - Ecol Lett. 2007 Jun;10(6):512-21
19304796 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):E32; author reply E33
18421346 - Nature. 2008 Apr 17;452(7189):835-9
17908221 - Mol Ecol. 2008 Jan;17(1):405-14
15118724 - Nature. 2004 Apr 29;428(6986):932-5
17211806 - Am Nat. 2007 Feb;169(2):227-44
15814348 - Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):315-38
18033868 - Science. 2007 Nov 23;318(5854):1247-8
12098697 - Science. 2002 Jul 5;297(5578):94-6
28565449 - Evolution. 1999 Dec;53(6):1637-1653
17868288 - Mol Ecol. 2008 Jan;17(1):209-20
11546863 - Science. 2001 Sep 7;293(5536):1786-90
11838763 - Genetica. 2001;112-113:145-64
28563598 - Evolution. 1987 Nov;41(6):1370-1385
12867979 - Nature. 2003 Jul 17;424(6946):303-6
18173498 - Mol Ecol. 2008 Jan;17(1):20-9
28565006 - Evolution. 1995 Apr;49(2):241-251
References_xml – ident: e_1_3_3_10_2
  doi: 10.1111/j.1461-0248.2007.01046.x
– ident: e_1_3_3_8_2
  doi: 10.1038/nature02177
– volume-title: Model selection and inference: A practical information-theoretic approach
  year: 2001
  ident: e_1_3_3_26_2
– ident: e_1_3_3_9_2
  doi: 10.1098/rstb.2004.1586
– ident: e_1_3_3_24_2
  doi: 10.1086/510633
– ident: e_1_3_3_21_2
  doi: 10.1038/nature02430
– ident: e_1_3_3_15_2
  doi: 10.1126/science.1074085
– volume-title: Evolutionary Biology
  year: 2001
  ident: e_1_3_3_1_2
– ident: e_1_3_3_16_2
  doi: 10.1038/nature06851
– ident: e_1_3_3_25_2
  doi: 10.1023/A:1013375419520
– ident: e_1_3_3_3_2
  doi: 10.1126/science.293.5536.1786
– ident: e_1_3_3_5_2
  doi: 10.1006/jmsc.2000.0731
– ident: e_1_3_3_14_2
  doi: 10.1111/j.1365-294X.2007.03495.x
– ident: e_1_3_3_20_2
  doi: 10.1111/j.1558-5646.1999.tb04550.x
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.0705908104
– ident: e_1_3_3_12_2
  doi: 10.1111/j.1365-2435.2007.01278.x
– ident: e_1_3_3_4_2
  doi: 10.1111/j.1365-294X.2007.03428.x
– ident: e_1_3_3_13_2
  doi: 10.1111/j.1365-2435.2007.01275.x
– ident: e_1_3_3_7_2
  doi: 10.1111/j.1365-294X.2007.03485.x
– ident: e_1_3_3_17_2
  doi: 10.1126/science.1148089
– ident: e_1_3_3_11_2
  doi: 10.1038/nature01767
– ident: e_1_3_3_6_2
  doi: 10.1111/j.1365-294X.2007.03522.x
– ident: e_1_3_3_19_2
  doi: 10.1126/science.222.4620.159
– volume-title: Natural Selection in the Wild
  year: 1986
  ident: e_1_3_3_2_2
– ident: e_1_3_3_22_2
  doi: 10.1111/j.1558-5646.1995.tb02236.x
– ident: e_1_3_3_23_2
  doi: 10.1111/j.1558-5646.1987.tb02474.x
– reference: 18173498 - Mol Ecol. 2008 Jan;17(1):20-9
– reference: 15118724 - Nature. 2004 Apr 29;428(6986):932-5
– reference: 18033868 - Science. 2007 Nov 23;318(5854):1247-8
– reference: 11546863 - Science. 2001 Sep 7;293(5536):1786-90
– reference: 28563598 - Evolution. 1987 Nov;41(6):1370-1385
– reference: 28565006 - Evolution. 1995 Apr;49(2):241-251
– reference: 17498150 - Ecol Lett. 2007 Jun;10(6):512-21
– reference: 12098697 - Science. 2002 Jul 5;297(5578):94-6
– reference: 28565449 - Evolution. 1999 Dec;53(6):1637-1653
– reference: 17784924 - Mol Ecol. 2008 Jan;17(1):294-313
– reference: 12867979 - Nature. 2003 Jul 17;424(6946):303-6
– reference: 17908221 - Mol Ecol. 2008 Jan;17(1):405-14
– reference: 19304796 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):E32; author reply E33
– reference: 14668862 - Nature. 2003 Dec 11;426(6967):655-8
– reference: 18421346 - Nature. 2008 Apr 17;452(7189):835-9
– reference: 17211806 - Am Nat. 2007 Feb;169(2):227-44
– reference: 17868288 - Mol Ecol. 2008 Jan;17(1):209-20
– reference: 17741657 - Science. 1983 Oct 14;222(4620):159-61
– reference: 17898170 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15799-804
– reference: 15814348 - Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):315-38
– reference: 11838763 - Genetica. 2001;112-113:145-64
SSID ssj0009580
Score 2.4783652
Snippet The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators....
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 952
SubjectTerms adults
Animals
Biological Evolution
Biological Sciences
Crop harvesting
Ecological genetics
Ecological life histories
Ecosystem
ecosystems
Evolution
Evolutionary biology
Fish harvest
Genotype & phenotype
harvesters
Human Activities
Humans
hunters
industry
Life history
natural selection
Organisms
Phenotype
Phenotypic traits
Population characteristics
Population dynamics
Population ecology
Predation
Predators
Title Human Predators Outpace Other Agents of Trait Change in the Wild
URI https://www.jstor.org/stable/40254778
http://www.pnas.org/content/106/3/952.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19139415
https://www.proquest.com/docview/201347146
https://www.proquest.com/docview/20771600
https://www.proquest.com/docview/46135953
https://www.proquest.com/docview/66836555
https://pubmed.ncbi.nlm.nih.gov/PMC2630061
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZguXBBLLAQlocPHBZVKUn8Sm6seKgCUfWwK-0tysNmK0FaNemFX8_4laSllYBLVMXjNMl8dmbsmW8QelMIQRioM0xrxkMYiXGYpTQLJVEVIbFSxGR4f5vz2TX9csNuhlUlk13SldPq18G8kv_RKpwDveos2X_QbH9ROAG_Qb9wBA3D8a90bFfg1xtZF6ZozmrbgQssJyaralJ8ly7GRdeB6FyOrw9sBBt5p0bnov-StT5uYO4XCi-HtBM3F7STcLKYD0WMP4LLDY_d9XwFo-DrYuMZIU1Imc5pH9Zgvy6bZtnuhPAPXRcFfLU6H8DoFnT9EoUOwAoTu9si7bQKVknIqS0M2s-7ER8BjIxm0cyS2v4xu8N0pEsSN0U7BUMXTFPmrjHS9fqnUXas6U6pzRTdI9T2TXfRvQR8CxMNOhszNaeR54AS5N3evxmSWdt_x5KxwayaIRfkD3kr-0G3Iyvm6iF64NwPfGmxdIruyOYROvVKxReOhfztY_TegAv34MIOXNiAC1tw4ZXCBlzYggsvGwzNWIPrCbr-_Onqwyx05TbCiidxF9aM0irLKBNgptYZPHIl6pqkkRLg9xJOZEWTIorKipO4SAB4qq4FlYlMiRIkIWfopFk18hnCWV3o7XMusjKjZZqUUa1SXoIprKpMURGgqX91eeW46PXd_shNTIQguX6N-fDaA3TRd1hbGpbjomdGF70c1YQPQqTQYESH_jwnOWAtQK8PN-TKBWAF6NwrNHfjv83BdCZg2lGu-_tWmJz1jlvRyNVWiwgRg0txXIKCOc0yRo5LcJ4SzhgL0FMLoOE-HRADJHag1Qto6vjdlmZ5ayjkE820x-PnR695ju4PI_kFOuk2W_kSzO-ufGWGy28MRNhx
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+predators+outpace+other+agents+of+trait+change+in+the+wild&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Darimont%2C+Chris+T&rft.au=Carlson%2C+Stephanie+M&rft.au=Kinnison%2C+Michael+T&rft.au=Paquet%2C+Paul+C&rft.date=2009-01-20&rft.eissn=1091-6490&rft.volume=106&rft.issue=3&rft.spage=952&rft_id=info:doi/10.1073%2Fpnas.0809235106&rft_id=info%3Apmid%2F19139415&rft.externalDocID=19139415
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F3.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F3.cover.gif