Human Predators Outpace Other Agents of Trait Change in the Wild
The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 106; no. 3; pp. 952 - 954 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
20.01.2009
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong 'harvest selection' by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural (n = 20 systems) but also other human-driven (n = 25 systems) perturbations in the wild, outpacing them by > 300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size-or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems. |
---|---|
AbstractList | The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong ‘harvest selection’ by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural (
n
= 20 systems) but also other human-driven (
n
= 25 systems) perturbations in the wild, outpacing them by >300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size- or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems. The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong 'harvest selection' by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural (n = 20 systems) but also other human-driven (n = 25 systems) perturbations in the wild, outpacing them by > 300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size-or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems. The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong 'harvest selection'(tm) by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural (n = 20 systems) but also other human-driven (n = 25 systems) perturbations in the wild, outpacing them by >300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size- or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems. The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong 'harvest selection' by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural (n = 20 systems) but also other human-driven (n = 25 systems) perturbations in the wild, outpacing them by >300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size- or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems. [PUBLICATION ABSTRACT] The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong 'harvest selection' by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural (n = 20 systems) but also other human-driven (n = 25 systems) perturbations in the wild, outpacing them by >300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size- or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems.The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators. In stark contrast with most predators, humans now typically exploit high proportions of prey populations and target large, reproductive-aged adults. Consequently, organisms subject to consistent and strong 'harvest selection' by fishers, hunters, and plant harvesters may be expected to show particularly rapid and dramatic changes in phenotype. However, a comparison of the rate at which phenotypic changes in exploited taxa occurs relative to other systems has never been undertaken. Here, we show that average phenotypic changes in 40 human-harvested systems are much more rapid than changes reported in studies examining not only natural (n = 20 systems) but also other human-driven (n = 25 systems) perturbations in the wild, outpacing them by >300% and 50%, respectively. Accordingly, harvested organisms show some of the most abrupt trait changes ever observed in wild populations, providing a new appreciation for how fast phenotypes are capable of changing. These changes, which include average declines of almost 20% in size-related traits and shifts in life history traits of nearly 25%, are most rapid in commercially exploited systems and, thus, have profound conservation and economic implications. Specifically, the widespread potential for transitively rapid and large effects on size- or life history-mediated ecological dynamics might imperil populations, industries, and ecosystems. |
Author | Kinnison, Michael T. Reimchen, Thomas E. Wilmers, Christopher C. Carlson, Stephanie M. Daily, Gretchen C. Darimont, Chris T. Paquet, Paul C. |
Author_xml | – sequence: 1 givenname: Chris T. surname: Darimont fullname: Darimont, Chris T. – sequence: 2 givenname: Stephanie M. surname: Carlson fullname: Carlson, Stephanie M. – sequence: 3 givenname: Michael T. surname: Kinnison fullname: Kinnison, Michael T. – sequence: 4 givenname: Paul C. surname: Paquet fullname: Paquet, Paul C. – sequence: 5 givenname: Thomas E. surname: Reimchen fullname: Reimchen, Thomas E. – sequence: 6 givenname: Christopher C. surname: Wilmers fullname: Wilmers, Christopher C. – sequence: 7 givenname: Gretchen C. surname: Daily fullname: Daily, Gretchen C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19139415$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1vEzEQxS1URNPCmRPI4sAt7fh7fUFUEVCkSuFQxNFy197E0WYdbC-i_30dNSSlAvXkw_vN07zxO0FHQxw8Qq8JnBFQ7Hwz2HwGDWjKBAH5DE0IaDKVXMMRmgBQNW045cfoJOcVAGjRwAt0TDRhmhMxQR8vx7Ud8LfknS0xZTwfy8a2Hs_L0id8sfBDyTh2-DrZUPBsaYeFx2HAVcY_Qu9eoued7bN_tXtP0ffPn65nl9Or-Zevs4uraSspKVMnOG-15kKB5E7XjVvlHGugU9BIJplvObUAN61kxFLrfOec4p76hnWKUXaKPtz7bsabtXdt3SvZ3mxSWNt0a6IN5m9lCEuziL8MlQxAkmrwfmeQ4s_R52LWIbe-7-3g45iNlA2TQognQV7NhBbsSZCCUkQCVPDdI3AVxzTUc1WGMK4IlxV6-zDgPtmfv6qAuAfaFHNOvjNtKLaEuM0bekPAbDthtp0wh07UufNHc3vr_0682a2yFQ60NMxoQR8E_6duurHvi_9dDkarXMu1JzlQwZVq2B1ymtfA |
CitedBy_id | crossref_primary_10_1670_11_023 crossref_primary_10_1038_s41559_019_0901_7 crossref_primary_10_1080_10871209_2015_1046533 crossref_primary_10_1371_journal_pone_0029312 crossref_primary_10_1371_journal_pone_0245255 crossref_primary_10_1016_j_biocon_2017_03_014 crossref_primary_10_1007_s11252_018_0758_6 crossref_primary_10_1111_ele_14285 crossref_primary_10_1098_rsos_240788 crossref_primary_10_1007_s10530_021_02588_3 crossref_primary_10_1111_1365_2656_12576 crossref_primary_10_1371_journal_pone_0064311 crossref_primary_10_1002_ecy_1940 crossref_primary_10_1073_pnas_09007871106 crossref_primary_10_1111_faf_12770 crossref_primary_10_1111_j_1600_0706_2012_20319_x crossref_primary_10_1111_eva_12179 crossref_primary_10_1002_fee_1743 crossref_primary_10_1111_pala_12059 crossref_primary_10_1666_10048_1 crossref_primary_10_1139_cjz_2014_0122 crossref_primary_10_1146_annurev_environ_031809_133103 crossref_primary_10_3389_fpsyg_2020_589978 crossref_primary_10_1007_s10531_017_1381_1 crossref_primary_10_1002_jwmg_195 crossref_primary_10_1038_s41598_019_51168_y crossref_primary_10_1111_j_1365_2664_2011_02006_x crossref_primary_10_1111_1365_2664_13764 crossref_primary_10_1111_oik_08592 crossref_primary_10_1111_j_1365_2656_2009_01579_x crossref_primary_10_1111_faf_12789 crossref_primary_10_1111_eva_12044 crossref_primary_10_1111_eva_12285 crossref_primary_10_1111_eva_13253 crossref_primary_10_1534_genetics_118_301824 crossref_primary_10_1002_ece3_2598 crossref_primary_10_1111_j_1752_4571_2010_00169_x crossref_primary_10_1038_srep45222 crossref_primary_10_1186_s12915_017_0476_1 crossref_primary_10_1007_s13280_021_01587_x crossref_primary_10_1098_rspb_2020_0526 crossref_primary_10_1139_cjfas_2016_0173 crossref_primary_10_1016_j_biocon_2009_10_017 crossref_primary_10_1111_1365_2656_13771 crossref_primary_10_1111_j_1600_0706_2010_18852_x crossref_primary_10_1016_j_scitotenv_2020_138193 crossref_primary_10_1002_ecs2_3071 crossref_primary_10_1111_j_1600_0706_2013_00698_x crossref_primary_10_1111_1365_2745_12140 crossref_primary_10_1098_rspb_2015_0603 crossref_primary_10_1016_j_tree_2011_08_004 crossref_primary_10_1525_bio_2012_62_12_6 crossref_primary_10_1111_j_1752_4571_2011_00230_x crossref_primary_10_3389_fevo_2020_00177 crossref_primary_10_1111_1365_2664_12893 crossref_primary_10_1098_rspb_2010_0923 crossref_primary_10_1086_695834 crossref_primary_10_3390_su16031216 crossref_primary_10_1111_eva_12268 crossref_primary_10_1002_ece3_1044 crossref_primary_10_1016_j_jnc_2016_09_004 crossref_primary_10_1643_OT_17_631 crossref_primary_10_1098_rsbl_2015_1009 crossref_primary_10_1139_er_2013_0038 crossref_primary_10_18475_cjos_v53i2_a12 crossref_primary_10_1111_j_1365_2427_2010_02501_x crossref_primary_10_1086_701652 crossref_primary_10_1111_eva_12373 crossref_primary_10_1002_ece3_3116 crossref_primary_10_7868_S0320965217040088 crossref_primary_10_1111_fme_12073 crossref_primary_10_1146_annurev_ecolsys_110218_024621 crossref_primary_10_1111_j_1755_263X_2010_00145_x crossref_primary_10_1016_j_tig_2016_04_005 crossref_primary_10_1111_eva_12123 crossref_primary_10_1111_gcb_12205 crossref_primary_10_1111_eva_12127 crossref_primary_10_1111_oik_02877 crossref_primary_10_1002_ece3_1185 crossref_primary_10_1002_ece3_6995 crossref_primary_10_1002_ece3_335 crossref_primary_10_1098_rsos_191231 crossref_primary_10_1016_j_gecco_2025_e03485 crossref_primary_10_1002_ece3_61 crossref_primary_10_1098_rstb_2011_0422 crossref_primary_10_1007_s10682_012_9568_0 crossref_primary_10_1007_s40011_018_0963_3 crossref_primary_10_1890_15_0776 crossref_primary_10_1016_j_fishres_2024_106946 crossref_primary_10_1073_pnas_0901325106 crossref_primary_10_1111_eva_12358 crossref_primary_10_1111_mec_16299 crossref_primary_10_1098_rsbl_2011_1207 crossref_primary_10_1002_jwmg_21089 crossref_primary_10_1038_nature14258 crossref_primary_10_1016_j_fishres_2013_06_004 crossref_primary_10_1017_S0025315411000828 crossref_primary_10_1126_science_aar7121 crossref_primary_10_1111_bij_12241 crossref_primary_10_1016_j_biocon_2017_09_022 crossref_primary_10_1073_pnas_2221691120 crossref_primary_10_1111_j_1469_1795_2010_00355_x crossref_primary_10_1139_f2012_047 crossref_primary_10_1111_j_1752_4571_2011_00229_x crossref_primary_10_2192_URSU_D_16_00028_1 crossref_primary_10_1016_j_tree_2017_03_011 crossref_primary_10_1111_1755_0998_13361 crossref_primary_10_1098_rspb_2018_2047 crossref_primary_10_1098_rspb_2009_1020 crossref_primary_10_1111_acv_12131 crossref_primary_10_1111_j_1600_0706_2013_01093_x crossref_primary_10_1890_11_1189_1 crossref_primary_10_1128_CMR_00050_19 crossref_primary_10_1002_ece3_1769 crossref_primary_10_1071_PC16026 crossref_primary_10_1038_srep03524 crossref_primary_10_1038_s41559_016_0065 crossref_primary_10_3917_set_001_0030 crossref_primary_10_1098_rsfs_2016_0133 crossref_primary_10_1007_s11692_015_9333_8 crossref_primary_10_1111_csp2_447 crossref_primary_10_1111_j_1752_4571_2011_00185_x crossref_primary_10_1111_cobi_12651 crossref_primary_10_1111_j_1461_0248_2009_01311_x crossref_primary_10_1111_j_1752_4571_2010_00165_x crossref_primary_10_1139_cjz_2014_0311 crossref_primary_10_1007_s10682_010_9450_x crossref_primary_10_1086_658902 crossref_primary_10_1038_s42003_023_04940_w crossref_primary_10_1111_1365_2664_12004 crossref_primary_10_1111_ele_13344 crossref_primary_10_1002_wsb_597 crossref_primary_10_1093_biosci_biab055 crossref_primary_10_1111_1365_2656_13371 crossref_primary_10_1007_s12052_009_0128_1 crossref_primary_10_1111_oik_04725 crossref_primary_10_1111_j_1752_4571_2010_00154_x crossref_primary_10_1371_journal_pbio_3001145 crossref_primary_10_2981_wlb_00526 crossref_primary_10_1111_1365_2664_12379 crossref_primary_10_1111_evo_12653 crossref_primary_10_1073_pnas_0912771107 crossref_primary_10_1139_cjfas_2013_0171 crossref_primary_10_1111_faf_12007 crossref_primary_10_1016_j_biocon_2024_110831 crossref_primary_10_1098_rspb_2024_0980 crossref_primary_10_1111_faf_12248 crossref_primary_10_1007_s00442_017_3912_6 crossref_primary_10_1111_1365_2435_12354 crossref_primary_10_1111_ele_13677 crossref_primary_10_1002_ece3_9285 crossref_primary_10_1098_rspb_2016_0600 crossref_primary_10_1111_ele_12107 crossref_primary_10_1111_1365_2656_13221 crossref_primary_10_1111_j_1558_5646_2011_01366_x crossref_primary_10_1002_jwmg_21241 crossref_primary_10_1111_j_1467_2979_2010_00387_x crossref_primary_10_1134_S1995082917030075 crossref_primary_10_1111_1365_2435_13685 crossref_primary_10_1080_17513758_2012_697195 crossref_primary_10_7717_peerj_163 crossref_primary_10_1093_biosci_biac004 crossref_primary_10_1111_ddi_12496 crossref_primary_10_1017_ext_2024_4 crossref_primary_10_1111_nyas_12974 crossref_primary_10_1111_j_1365_2664_2012_02160_x crossref_primary_10_1111_j_1558_5646_2011_01331_x crossref_primary_10_1098_rspb_2012_1483 crossref_primary_10_1086_678407 crossref_primary_10_1111_1365_2664_13562 crossref_primary_10_1111_evo_12952 crossref_primary_10_1111_1365_2435_14667 crossref_primary_10_1111_eva_13178 crossref_primary_10_1111_mec_15813 crossref_primary_10_1002_eap_1805 crossref_primary_10_1007_s11160_019_09547_1 crossref_primary_10_1098_rspb_2012_0120 crossref_primary_10_1111_j_1558_5646_2012_01592_x crossref_primary_10_1016_j_ecolmodel_2011_03_041 crossref_primary_10_1111_faf_12156 crossref_primary_10_1139_cjfas_2019_0408 crossref_primary_10_1139_cjfas_2019_0406 crossref_primary_10_1016_j_jtbi_2014_10_017 crossref_primary_10_1093_biosci_biab010 crossref_primary_10_1146_annurev_ecolsys_112414_054339 crossref_primary_10_3389_fenvs_2021_692401 crossref_primary_10_1002_ece3_1471 crossref_primary_10_1002_jwmg_21487 crossref_primary_10_1016_j_scitotenv_2022_160812 crossref_primary_10_2112_JCOASTRES_D_13_00066_1 crossref_primary_10_1016_j_fishres_2011_05_016 crossref_primary_10_1111_eth_13238 crossref_primary_10_1111_j_1752_4571_2009_00075_x crossref_primary_10_1073_pnas_0900520106 crossref_primary_10_1016_j_scitotenv_2018_06_335 crossref_primary_10_1093_conphys_cow005 crossref_primary_10_1038_s41598_021_00567_1 crossref_primary_10_1002_ece3_1921 crossref_primary_10_1111_j_1558_5646_2010_00945_x crossref_primary_10_1007_s10144_018_0608_7 crossref_primary_10_3354_meps09098 crossref_primary_10_1111_j_1752_4571_2009_00087_x crossref_primary_10_1038_s41576_020_00288_7 crossref_primary_10_1007_s11355_020_00434_7 crossref_primary_10_1098_rsos_190989 crossref_primary_10_1371_journal_pone_0261198 crossref_primary_10_1111_eva_12730 crossref_primary_10_1146_annurev_ecolsys_102710_145100 crossref_primary_10_1111_ele_12551 crossref_primary_10_1073_pnas_1407508111 crossref_primary_10_1016_j_ancene_2016_10_002 crossref_primary_10_1098_rspb_2014_0012 crossref_primary_10_1007_s10531_021_02166_y crossref_primary_10_1007_s10682_010_9427_9 crossref_primary_10_1111_eva_12841 crossref_primary_10_1002_jwmg_21337 crossref_primary_10_1111_jzo_12471 crossref_primary_10_1007_s00442_024_05623_x crossref_primary_10_1111_j_1095_8649_2012_03342_x crossref_primary_10_1126_science_1233774 crossref_primary_10_1007_s10764_022_00331_w crossref_primary_10_1134_S199542551905007X crossref_primary_10_1002_jwmg_21451 crossref_primary_10_1093_biolinnean_blaa084 crossref_primary_10_1644_11_MAMM_A_183_2 crossref_primary_10_1126_science_abe7389 crossref_primary_10_1371_journal_pone_0153808 crossref_primary_10_1002_wsb_182 crossref_primary_10_1007_s10344_023_01728_5 crossref_primary_10_1111_jfb_12516 crossref_primary_10_1890_12_0229_1 crossref_primary_10_1890_09_1914_1 crossref_primary_10_1111_j_1752_4571_2009_00086_x crossref_primary_10_1016_j_anbehav_2020_09_013 crossref_primary_10_1890_14_1461 crossref_primary_10_1007_s10592_015_0797_y crossref_primary_10_1371_journal_pone_0103487 crossref_primary_10_1073_pnas_1525749113 crossref_primary_10_1139_F10_090 crossref_primary_10_1111_j_1752_4571_2010_00173_x crossref_primary_10_1126_science_abm2980 crossref_primary_10_1139_cjz_2021_0082 crossref_primary_10_1093_biolinnean_blab060 crossref_primary_10_1086_605982 crossref_primary_10_7717_peerj_3153 crossref_primary_10_1371_journal_pone_0078041 crossref_primary_10_1007_s00265_012_1449_6 crossref_primary_10_1016_j_tree_2015_04_014 crossref_primary_10_1016_j_cub_2020_10_078 crossref_primary_10_1111_eva_12941 crossref_primary_10_1126_science_aac4249 crossref_primary_10_1073_pnas_2025453118 crossref_primary_10_1038_hdy_2010_162 crossref_primary_10_1093_conphys_cou023 crossref_primary_10_1007_s00442_012_2488_4 crossref_primary_10_1016_j_tree_2010_12_008 crossref_primary_10_1038_nchem_2725 crossref_primary_10_1111_j_1752_4571_2012_00245_x crossref_primary_10_1007_s10682_010_9412_3 crossref_primary_10_1098_rspb_2022_1718 crossref_primary_10_1093_icesjms_fsr195 crossref_primary_10_1177_2053019615588791 crossref_primary_10_1016_j_rsma_2024_103623 crossref_primary_10_24072_pcjournal_306 crossref_primary_10_1111_j_1752_4571_2011_00212_x crossref_primary_10_1101_cshperspect_a041455 crossref_primary_10_1016_j_seares_2012_06_011 crossref_primary_10_1139_cjfas_2014_0006 crossref_primary_10_1073_pnas_1806013115 crossref_primary_10_1111_brv_13069 crossref_primary_10_1073_pnas_1811559115 crossref_primary_10_1002_ajpa_24470 crossref_primary_10_1002_ajpa_21195 crossref_primary_10_1016_j_pecon_2017_11_003 crossref_primary_10_1093_conphys_cou050 crossref_primary_10_1111_j_1469_1795_2011_00458_x crossref_primary_10_1111_j_1752_4571_2010_00171_x crossref_primary_10_1016_j_anbehav_2013_10_021 crossref_primary_10_1071_AM24032 crossref_primary_10_1109_MCAS_2015_2510200 crossref_primary_10_1139_cjfas_2014_0221 crossref_primary_10_1002_jwmg_21400 crossref_primary_10_1002_jwmg_644 crossref_primary_10_1111_j_1749_6632_2009_05286_x crossref_primary_10_16995_zygon_10885 crossref_primary_10_1007_s10531_018_1668_x crossref_primary_10_1002_ece3_11532 crossref_primary_10_1016_j_fishres_2015_07_028 crossref_primary_10_1098_rspb_2010_0960 crossref_primary_10_1016_j_tree_2014_01_002 crossref_primary_10_1111_1365_2656_12970 crossref_primary_10_1093_icb_icaa001 crossref_primary_10_1111_jeb_13700 crossref_primary_10_1111_evo_13277 crossref_primary_10_1126_science_1251817 crossref_primary_10_1016_j_ecohyd_2024_01_002 crossref_primary_10_1111_eva_12217 crossref_primary_10_1098_rstb_2018_0057 crossref_primary_10_1111_eva_12332 crossref_primary_10_1111_1365_2664_13805 crossref_primary_10_1098_rstb_2016_0028 crossref_primary_10_3375_043_036_0314 crossref_primary_10_1073_pnas_0901069106 crossref_primary_10_1016_j_ecolmodel_2022_110150 crossref_primary_10_1086_692011 crossref_primary_10_1371_journal_pone_0148770 crossref_primary_10_1139_cjfas_2016_0434 crossref_primary_10_1098_rsos_210842 crossref_primary_10_1111_gcb_17187 crossref_primary_10_1002_wmon_1007 crossref_primary_10_1016_j_anbehav_2015_01_012 crossref_primary_10_1098_rspb_2018_2745 crossref_primary_10_1111_1365_2656_12954 crossref_primary_10_1111_j_1752_4571_2009_00070_x crossref_primary_10_1051_alr_2022012 crossref_primary_10_1093_mollus_eyu029 crossref_primary_10_1139_cjfas_2016_0211 crossref_primary_10_1186_s10152_017_0487_x crossref_primary_10_1038_s41467_018_03506_3 crossref_primary_10_1002_ece3_244 crossref_primary_10_1111_j_1523_1739_2011_01752_x crossref_primary_10_1002_ece3_5479 crossref_primary_10_1111_nyas_12032 crossref_primary_10_1093_beheco_arz079 crossref_primary_10_1016_j_mambio_2015_07_006 crossref_primary_10_1890_12_1196_1 crossref_primary_10_1111_jeb_12603 crossref_primary_10_1080_01650424_2018_1499937 crossref_primary_10_1016_j_biocon_2016_06_024 crossref_primary_10_1002_ece3_4270 crossref_primary_10_1098_rsos_231470 crossref_primary_10_3390_su8010010 crossref_primary_10_1111_oik_08448 crossref_primary_10_1134_S0032945222060108 crossref_primary_10_1111_j_1365_294X_2011_05463_x crossref_primary_10_1007_s00227_014_2543_2 crossref_primary_10_1111_eva_12416 crossref_primary_10_1146_annurev_ecolsys_120213_091747 crossref_primary_10_1007_s11252_021_01156_w crossref_primary_10_1111_jav_01507 crossref_primary_10_1126_science_ado5331 crossref_primary_10_1111_j_1461_0248_2009_01381_x crossref_primary_10_1002_ece3_8887 crossref_primary_10_1139_cjfas_2018_0424 crossref_primary_10_1111_mec_14179 crossref_primary_10_1111_j_1600_0706_2009_17835_x crossref_primary_10_1111_j_1752_4571_2009_00081_x crossref_primary_10_1155_2012_567276 crossref_primary_10_3390_ani13101716 crossref_primary_10_1038_s41559_022_01967_w crossref_primary_10_1038_s41598_018_24555_0 crossref_primary_10_1126_science_1193954 crossref_primary_10_2981_13_006 crossref_primary_10_1017_S0962728600001433 crossref_primary_10_1111_eva_12764 crossref_primary_10_1890_120229 crossref_primary_10_1038_457803a crossref_primary_10_1016_j_biocon_2010_04_034 crossref_primary_10_1111_ele_14186 crossref_primary_10_1080_00028487_2016_1173589 crossref_primary_10_1371_journal_pone_0230735 crossref_primary_10_3390_ani10061003 crossref_primary_10_1007_s10682_010_9444_8 crossref_primary_10_1098_rspb_2018_1698 crossref_primary_10_1007_s10811_024_03269_z crossref_primary_10_1111_acv_12624 crossref_primary_10_1016_j_fishres_2021_105926 crossref_primary_10_1111_j_1752_4571_2010_00125_x crossref_primary_10_1002_fee_1264 crossref_primary_10_1038_s41598_019_48853_3 crossref_primary_10_1111_j_1467_2979_2009_00349_x crossref_primary_10_1080_21513732_2013_818060 crossref_primary_10_1111_eva_12992 crossref_primary_10_1002_jwmg_21804 crossref_primary_10_1016_j_quascirev_2023_108100 crossref_primary_10_1016_j_tree_2016_04_001 crossref_primary_10_1016_j_biocon_2011_05_005 crossref_primary_10_1093_jhered_esv085 crossref_primary_10_1002_ece3_11003 crossref_primary_10_1016_j_seares_2012_04_003 crossref_primary_10_1111_j_1365_2656_2011_01919_x crossref_primary_10_1111_j_1752_4571_2009_00080_x crossref_primary_10_1098_rstb_2016_0044 crossref_primary_10_2981_wlb_00165 crossref_primary_10_1016_j_biocon_2013_09_024 crossref_primary_10_1111_j_1365_2656_2011_01862_x |
Cites_doi | 10.1111/j.1461-0248.2007.01046.x 10.1038/nature02177 10.1098/rstb.2004.1586 10.1086/510633 10.1038/nature02430 10.1126/science.1074085 10.1038/nature06851 10.1023/A:1013375419520 10.1126/science.293.5536.1786 10.1006/jmsc.2000.0731 10.1111/j.1365-294X.2007.03495.x 10.1111/j.1558-5646.1999.tb04550.x 10.1073/pnas.0705908104 10.1111/j.1365-2435.2007.01278.x 10.1111/j.1365-294X.2007.03428.x 10.1111/j.1365-2435.2007.01275.x 10.1111/j.1365-294X.2007.03485.x 10.1126/science.1148089 10.1038/nature01767 10.1111/j.1365-294X.2007.03522.x 10.1126/science.222.4620.159 10.1111/j.1558-5646.1995.tb02236.x 10.1111/j.1558-5646.1987.tb02474.x |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jan 20, 2009 2009 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright National Academy of Sciences Jan 20, 2009 – notice: 2009 by The National Academy of Sciences of the USA |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7ST 7U6 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0809235106 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Ecology Abstracts Virology and AIDS Abstracts AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 954 |
ExternalDocumentID | PMC2630061 1632022561 19139415 10_1073_pnas_0809235106 106_3_952 40254778 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7ST 7U6 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c621t-d544c99457064d9809c7dd380f7086363ec42a00bc631a2adefdd74e2e83f7323 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:49:27 EDT 2025 Fri Jul 11 09:22:05 EDT 2025 Thu Jul 10 18:12:46 EDT 2025 Fri Jul 11 06:39:42 EDT 2025 Mon Jun 30 08:22:30 EDT 2025 Wed Feb 19 02:42:09 EST 2025 Tue Jul 01 02:39:10 EDT 2025 Thu Apr 24 22:56:30 EDT 2025 Thu May 30 08:49:35 EDT 2019 Wed Nov 11 00:29:47 EST 2020 Thu May 29 08:42:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c621t-d544c99457064d9809c7dd380f7086363ec42a00bc631a2adefdd74e2e83f7323 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Gretchen C. Daily, Stanford University, Stanford, CA, and approved November 21, 2008 Author contributions: C.T.D., M.T.K., P.C.P., and T.E.R. designed research; C.T.D., S.M.C., and C.C.W. performed research; C.T.D., S.M.C., and C.C.W. analyzed data; and C.T.D., S.M.C., M.T.K., P.C.P., T.E.R., and C.C.W. wrote the paper. |
OpenAccessLink | http://doi.org/10.1073/pnas.0809235106 |
PMID | 19139415 |
PQID | 201347146 |
PQPubID | 42026 |
PageCount | 3 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2630061 pubmed_primary_19139415 jstor_primary_40254778 crossref_citationtrail_10_1073_pnas_0809235106 proquest_miscellaneous_46135953 crossref_primary_10_1073_pnas_0809235106 pnas_primary_106_3_952 pnas_primary_106_3_952_fulltext proquest_miscellaneous_66836555 proquest_miscellaneous_20771600 proquest_journals_201347146 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-01-20 |
PublicationDateYYYYMMDD | 2009-01-20 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-20 day: 20 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2009 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Futuyma DJ (e_1_3_3_1_2) 2001 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_10_2 Endler JA (e_1_3_3_2_2) 1986 Burnham KP (e_1_3_3_26_2) 2001 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_25_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 17784924 - Mol Ecol. 2008 Jan;17(1):294-313 14668862 - Nature. 2003 Dec 11;426(6967):655-8 17741657 - Science. 1983 Oct 14;222(4620):159-61 17898170 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15799-804 17498150 - Ecol Lett. 2007 Jun;10(6):512-21 19304796 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):E32; author reply E33 18421346 - Nature. 2008 Apr 17;452(7189):835-9 17908221 - Mol Ecol. 2008 Jan;17(1):405-14 15118724 - Nature. 2004 Apr 29;428(6986):932-5 17211806 - Am Nat. 2007 Feb;169(2):227-44 15814348 - Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):315-38 18033868 - Science. 2007 Nov 23;318(5854):1247-8 12098697 - Science. 2002 Jul 5;297(5578):94-6 28565449 - Evolution. 1999 Dec;53(6):1637-1653 17868288 - Mol Ecol. 2008 Jan;17(1):209-20 11546863 - Science. 2001 Sep 7;293(5536):1786-90 11838763 - Genetica. 2001;112-113:145-64 28563598 - Evolution. 1987 Nov;41(6):1370-1385 12867979 - Nature. 2003 Jul 17;424(6946):303-6 18173498 - Mol Ecol. 2008 Jan;17(1):20-9 28565006 - Evolution. 1995 Apr;49(2):241-251 |
References_xml | – ident: e_1_3_3_10_2 doi: 10.1111/j.1461-0248.2007.01046.x – ident: e_1_3_3_8_2 doi: 10.1038/nature02177 – volume-title: Model selection and inference: A practical information-theoretic approach year: 2001 ident: e_1_3_3_26_2 – ident: e_1_3_3_9_2 doi: 10.1098/rstb.2004.1586 – ident: e_1_3_3_24_2 doi: 10.1086/510633 – ident: e_1_3_3_21_2 doi: 10.1038/nature02430 – ident: e_1_3_3_15_2 doi: 10.1126/science.1074085 – volume-title: Evolutionary Biology year: 2001 ident: e_1_3_3_1_2 – ident: e_1_3_3_16_2 doi: 10.1038/nature06851 – ident: e_1_3_3_25_2 doi: 10.1023/A:1013375419520 – ident: e_1_3_3_3_2 doi: 10.1126/science.293.5536.1786 – ident: e_1_3_3_5_2 doi: 10.1006/jmsc.2000.0731 – ident: e_1_3_3_14_2 doi: 10.1111/j.1365-294X.2007.03495.x – ident: e_1_3_3_20_2 doi: 10.1111/j.1558-5646.1999.tb04550.x – ident: e_1_3_3_18_2 doi: 10.1073/pnas.0705908104 – ident: e_1_3_3_12_2 doi: 10.1111/j.1365-2435.2007.01278.x – ident: e_1_3_3_4_2 doi: 10.1111/j.1365-294X.2007.03428.x – ident: e_1_3_3_13_2 doi: 10.1111/j.1365-2435.2007.01275.x – ident: e_1_3_3_7_2 doi: 10.1111/j.1365-294X.2007.03485.x – ident: e_1_3_3_17_2 doi: 10.1126/science.1148089 – ident: e_1_3_3_11_2 doi: 10.1038/nature01767 – ident: e_1_3_3_6_2 doi: 10.1111/j.1365-294X.2007.03522.x – ident: e_1_3_3_19_2 doi: 10.1126/science.222.4620.159 – volume-title: Natural Selection in the Wild year: 1986 ident: e_1_3_3_2_2 – ident: e_1_3_3_22_2 doi: 10.1111/j.1558-5646.1995.tb02236.x – ident: e_1_3_3_23_2 doi: 10.1111/j.1558-5646.1987.tb02474.x – reference: 18173498 - Mol Ecol. 2008 Jan;17(1):20-9 – reference: 15118724 - Nature. 2004 Apr 29;428(6986):932-5 – reference: 18033868 - Science. 2007 Nov 23;318(5854):1247-8 – reference: 11546863 - Science. 2001 Sep 7;293(5536):1786-90 – reference: 28563598 - Evolution. 1987 Nov;41(6):1370-1385 – reference: 28565006 - Evolution. 1995 Apr;49(2):241-251 – reference: 17498150 - Ecol Lett. 2007 Jun;10(6):512-21 – reference: 12098697 - Science. 2002 Jul 5;297(5578):94-6 – reference: 28565449 - Evolution. 1999 Dec;53(6):1637-1653 – reference: 17784924 - Mol Ecol. 2008 Jan;17(1):294-313 – reference: 12867979 - Nature. 2003 Jul 17;424(6946):303-6 – reference: 17908221 - Mol Ecol. 2008 Jan;17(1):405-14 – reference: 19304796 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):E32; author reply E33 – reference: 14668862 - Nature. 2003 Dec 11;426(6967):655-8 – reference: 18421346 - Nature. 2008 Apr 17;452(7189):835-9 – reference: 17211806 - Am Nat. 2007 Feb;169(2):227-44 – reference: 17868288 - Mol Ecol. 2008 Jan;17(1):209-20 – reference: 17741657 - Science. 1983 Oct 14;222(4620):159-61 – reference: 17898170 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15799-804 – reference: 15814348 - Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):315-38 – reference: 11838763 - Genetica. 2001;112-113:145-64 |
SSID | ssj0009580 |
Score | 2.4783652 |
Snippet | The observable traits of wild populations are continually shaped and reshaped by the environment and numerous agents of natural selection, including predators.... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 952 |
SubjectTerms | adults Animals Biological Evolution Biological Sciences Crop harvesting Ecological genetics Ecological life histories Ecosystem ecosystems Evolution Evolutionary biology Fish harvest Genotype & phenotype harvesters Human Activities Humans hunters industry Life history natural selection Organisms Phenotype Phenotypic traits Population characteristics Population dynamics Population ecology Predation Predators |
Title | Human Predators Outpace Other Agents of Trait Change in the Wild |
URI | https://www.jstor.org/stable/40254778 http://www.pnas.org/content/106/3/952.abstract https://www.ncbi.nlm.nih.gov/pubmed/19139415 https://www.proquest.com/docview/201347146 https://www.proquest.com/docview/20771600 https://www.proquest.com/docview/46135953 https://www.proquest.com/docview/66836555 https://pubmed.ncbi.nlm.nih.gov/PMC2630061 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZguXBBLLAQlocPHBZVKUn8Sm6seKgCUfWwK-0tysNmK0FaNemFX8_4laSllYBLVMXjNMl8dmbsmW8QelMIQRioM0xrxkMYiXGYpTQLJVEVIbFSxGR4f5vz2TX9csNuhlUlk13SldPq18G8kv_RKpwDveos2X_QbH9ROAG_Qb9wBA3D8a90bFfg1xtZF6ZozmrbgQssJyaralJ8ly7GRdeB6FyOrw9sBBt5p0bnov-StT5uYO4XCi-HtBM3F7STcLKYD0WMP4LLDY_d9XwFo-DrYuMZIU1Imc5pH9Zgvy6bZtnuhPAPXRcFfLU6H8DoFnT9EoUOwAoTu9si7bQKVknIqS0M2s-7ER8BjIxm0cyS2v4xu8N0pEsSN0U7BUMXTFPmrjHS9fqnUXas6U6pzRTdI9T2TXfRvQR8CxMNOhszNaeR54AS5N3evxmSWdt_x5KxwayaIRfkD3kr-0G3Iyvm6iF64NwPfGmxdIruyOYROvVKxReOhfztY_TegAv34MIOXNiAC1tw4ZXCBlzYggsvGwzNWIPrCbr-_Onqwyx05TbCiidxF9aM0irLKBNgptYZPHIl6pqkkRLg9xJOZEWTIorKipO4SAB4qq4FlYlMiRIkIWfopFk18hnCWV3o7XMusjKjZZqUUa1SXoIprKpMURGgqX91eeW46PXd_shNTIQguX6N-fDaA3TRd1hbGpbjomdGF70c1YQPQqTQYESH_jwnOWAtQK8PN-TKBWAF6NwrNHfjv83BdCZg2lGu-_tWmJz1jlvRyNVWiwgRg0txXIKCOc0yRo5LcJ4SzhgL0FMLoOE-HRADJHag1Qto6vjdlmZ5ayjkE820x-PnR695ju4PI_kFOuk2W_kSzO-ufGWGy28MRNhx |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+predators+outpace+other+agents+of+trait+change+in+the+wild&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Darimont%2C+Chris+T&rft.au=Carlson%2C+Stephanie+M&rft.au=Kinnison%2C+Michael+T&rft.au=Paquet%2C+Paul+C&rft.date=2009-01-20&rft.eissn=1091-6490&rft.volume=106&rft.issue=3&rft.spage=952&rft_id=info:doi/10.1073%2Fpnas.0809235106&rft_id=info%3Apmid%2F19139415&rft.externalDocID=19139415 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F3.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F3.cover.gif |