Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting

Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalyti...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 4587 - 11
Main Authors Zhai, Panlong, Xia, Mingyue, Wu, Yunzhen, Zhang, Guanghui, Gao, Junfeng, Zhang, Bo, Cao, Shuyan, Zhang, Yanting, Li, Zhuwei, Fan, Zhaozhong, Wang, Chen, Zhang, Xiaomeng, Miller, Jeffrey T., Sun, Licheng, Hou, Jungang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.07.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru 1 /D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru 1 /D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm −2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru 1 /D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru 1 /D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts. Rational design of single atom catalyst is critical for efficient sustainable energy conversion. Single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets achieve superior HER and OER performance in alkaline media.
AbstractList Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru 1 /D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru 1 /D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm −2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru 1 /D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru 1 /D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts. Rational design of single atom catalyst is critical for efficient sustainable energy conversion. Single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets achieve superior HER and OER performance in alkaline media.
Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru 1 /D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru 1 /D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm −2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru 1 /D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru 1 /D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.
Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.Rational design of single atom catalyst is critical for efficient sustainable energy conversion. Single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets achieve superior HER and OER performance in alkaline media.
Rational design of single atom catalyst is critical for efficient sustainable energy conversion. Single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets achieve superior HER and OER performance in alkaline media.
Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru-1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru-1/D-NiFe LDH delivers an ultralow overpotential of 18mV at 10mAcm(-2) for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru-1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O-O coupling at a Ru-O active site for oxygen evolution reaction. The Ru-1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts. Rational design of single atom catalyst is critical for efficient sustainable energy conversion. Single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets achieve superior HER and OER performance in alkaline media.
Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm-2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O-O coupling at a Ru-O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm-2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O-O coupling at a Ru-O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.
ArticleNumber 4587
Author Cao, Shuyan
Fan, Zhaozhong
Sun, Licheng
Zhang, Xiaomeng
Zhang, Yanting
Zhang, Guanghui
Zhai, Panlong
Gao, Junfeng
Miller, Jeffrey T.
Xia, Mingyue
Zhang, Bo
Li, Zhuwei
Wang, Chen
Wu, Yunzhen
Hou, Jungang
Author_xml – sequence: 1
  givenname: Panlong
  surname: Zhai
  fullname: Zhai, Panlong
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
– sequence: 2
  givenname: Mingyue
  surname: Xia
  fullname: Xia, Mingyue
  organization: Laboratory of Materials Modification by Laser Ion and Electron Beams (Dalian University of Technology), Ministry of Education
– sequence: 3
  givenname: Yunzhen
  surname: Wu
  fullname: Wu, Yunzhen
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
– sequence: 4
  givenname: Guanghui
  orcidid: 0000-0002-5854-6909
  surname: Zhang
  fullname: Zhang, Guanghui
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
– sequence: 5
  givenname: Junfeng
  surname: Gao
  fullname: Gao, Junfeng
  organization: Laboratory of Materials Modification by Laser Ion and Electron Beams (Dalian University of Technology), Ministry of Education
– sequence: 6
  givenname: Bo
  surname: Zhang
  fullname: Zhang, Bo
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
– sequence: 7
  givenname: Shuyan
  surname: Cao
  fullname: Cao, Shuyan
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
– sequence: 8
  givenname: Yanting
  surname: Zhang
  fullname: Zhang, Yanting
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
– sequence: 9
  givenname: Zhuwei
  surname: Li
  fullname: Li, Zhuwei
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
– sequence: 10
  givenname: Zhaozhong
  surname: Fan
  fullname: Fan, Zhaozhong
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
– sequence: 11
  givenname: Chen
  surname: Wang
  fullname: Wang, Chen
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
– sequence: 12
  givenname: Xiaomeng
  surname: Zhang
  fullname: Zhang, Xiaomeng
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
– sequence: 13
  givenname: Jeffrey T.
  surname: Miller
  fullname: Miller, Jeffrey T.
  organization: Davidson School of Chemical Engineering, Purdue University
– sequence: 14
  givenname: Licheng
  orcidid: 0000-0002-4521-2870
  surname: Sun
  fullname: Sun, Licheng
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology
– sequence: 15
  givenname: Jungang
  orcidid: 0000-0003-1896-2999
  surname: Hou
  fullname: Hou, Jungang
  email: jhou@dlut.edu.cn
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300032$$DView record from Swedish Publication Index
BookMark eNp9Uk1vEzEQXaEiWkL_ACdLXLgsrD_W670gVaVApUpcgKvl2LOJU8cOtjclR_453iQC0kN9sEfj996Mx-9ldeaDh6p6jZt3uKHifWKY8a5uCK4JE0TU_bPqgjQM17gj9Oy_-Ly6TGnVlEV7LBh7UZ1TRslEv6h-3_iF9QDR-gVKZXNQqxzWVqM45iV4O66RVlm5XS65ZDMkFDwyMIDOdgvIW30PrraxZJ3aQQSDTBjnDtByZ2L4ZQ2gIUQUthCVc-hBZYgobZzNuRR8VT0flEtweTxn1fdPN9-uv9R3Xz_fXl_d1ZoTnOue0JbxVrMed5gK0ioiuGkVLiGfY9IKYRih0BDKjSLtQHFf0oywpjNi3tBZdXvQNUGt5CbatYo7GZSV-0SIC6lieaMDqVozdAPmHChhHRt60c2J7jTvGz1vuS5a9UErPcBmnJ-ofbQ_rvZq93kp6TR1UvAfDvgCXoPR4HMZxQnt9MbbpVyErRTlFYyKIvD2KBDDzxFSlmubNDinPIQxSdK2nArBuqnWm0fQVRijL6OdUG3XCV6-f1aRA0rHkFKE4W8zuJGTweTBYLIYTO4NJvtCEo9I2maVbZiatu5pKj1ObDNZDeK_rp5g_QHzF-aS
CitedBy_id crossref_primary_10_1016_j_cej_2023_144970
crossref_primary_10_1016_j_cej_2023_142555
crossref_primary_10_1021_acssuschemeng_2c03887
crossref_primary_10_1002_ange_202217296
crossref_primary_10_1016_j_cej_2023_145826
crossref_primary_10_1016_j_ccr_2022_214973
crossref_primary_10_1039_D5CC00344J
crossref_primary_10_1080_14686996_2023_2277681
crossref_primary_10_1039_D3RA03643J
crossref_primary_10_1002_slct_202400490
crossref_primary_10_1002_sstr_202200094
crossref_primary_10_1002_smll_202207999
crossref_primary_10_1039_D3SC05891C
crossref_primary_10_1016_j_joule_2023_08_008
crossref_primary_10_1016_j_jece_2024_113773
crossref_primary_10_1021_acsami_3c03161
crossref_primary_10_1002_adma_202412925
crossref_primary_10_1016_j_cej_2022_136962
crossref_primary_10_1016_j_mtnano_2022_100272
crossref_primary_10_1016_j_jcis_2023_07_048
crossref_primary_10_1016_j_electacta_2024_144607
crossref_primary_10_1039_D3CY01085F
crossref_primary_10_1021_acs_energyfuels_4c02080
crossref_primary_10_1016_j_nanoen_2023_108296
crossref_primary_10_1002_chem_202302251
crossref_primary_10_1039_D2EE02836K
crossref_primary_10_1016_j_ijhydene_2022_08_147
crossref_primary_10_1002_adfm_202405919
crossref_primary_10_1002_adfm_202425606
crossref_primary_10_1002_ange_202309293
crossref_primary_10_1016_j_cej_2023_142538
crossref_primary_10_1016_j_ijhydene_2022_09_077
crossref_primary_10_1016_j_cej_2022_135884
crossref_primary_10_1002_adfm_202308533
crossref_primary_10_1016_j_cej_2024_152860
crossref_primary_10_1002_adma_202419644
crossref_primary_10_1002_adfm_202413533
crossref_primary_10_1016_j_jallcom_2023_173029
crossref_primary_10_1016_j_apcatb_2024_124506
crossref_primary_10_1002_smo_20230026
crossref_primary_10_1016_j_apcatb_2023_123332
crossref_primary_10_1073_pnas_2319136121
crossref_primary_10_1039_D4QI01046A
crossref_primary_10_1021_acscatal_2c03476
crossref_primary_10_1021_acsomega_2c05156
crossref_primary_10_3390_molecules29184304
crossref_primary_10_1039_D2CC02732A
crossref_primary_10_1002_ange_202308091
crossref_primary_10_1016_j_jallcom_2022_167784
crossref_primary_10_1016_j_matlet_2024_135868
crossref_primary_10_1016_j_cej_2025_159303
crossref_primary_10_1002_adfm_202213058
crossref_primary_10_1021_acscatal_2c03230
crossref_primary_10_1016_j_ijhydene_2024_12_485
crossref_primary_10_1002_cssc_202401186
crossref_primary_10_3390_ma16083280
crossref_primary_10_1016_j_apcatb_2023_123227
crossref_primary_10_1021_acsnano_2c07255
crossref_primary_10_1002_adfm_202208718
crossref_primary_10_3390_ma16083044
crossref_primary_10_1002_ange_202200946
crossref_primary_10_1002_ange_202404418
crossref_primary_10_1016_j_ijhydene_2023_01_212
crossref_primary_10_1002_ange_202312644
crossref_primary_10_1016_j_jcis_2023_05_123
crossref_primary_10_1039_D3CC03260D
crossref_primary_10_1039_D4SC05547K
crossref_primary_10_1002_adma_202203420
crossref_primary_10_1007_s12598_022_02168_x
crossref_primary_10_1016_j_jelechem_2024_118284
crossref_primary_10_1039_D1EE03610F
crossref_primary_10_1016_j_apcatb_2024_123717
crossref_primary_10_3390_molecules26216501
crossref_primary_10_1016_j_fuel_2024_131128
crossref_primary_10_1002_adfm_202210837
crossref_primary_10_1039_D3EE03896C
crossref_primary_10_1360_SSC_2022_0242
crossref_primary_10_1016_j_apcatb_2024_123830
crossref_primary_10_1016_j_ccr_2021_214261
crossref_primary_10_1016_j_electacta_2023_142242
crossref_primary_10_1016_j_ijhydene_2023_03_236
crossref_primary_10_1002_aesr_202100189
crossref_primary_10_1016_j_nanoen_2024_110545
crossref_primary_10_1002_celc_202101387
crossref_primary_10_1016_j_jallcom_2023_168952
crossref_primary_10_1021_acsami_3c07326
crossref_primary_10_1002_adfm_202402933
crossref_primary_10_1016_j_electacta_2023_143335
crossref_primary_10_1016_j_apcatb_2023_123327
crossref_primary_10_1002_adfm_202408364
crossref_primary_10_1016_j_apcatb_2022_122295
crossref_primary_10_1016_j_apcatb_2024_123706
crossref_primary_10_1002_aenm_202202595
crossref_primary_10_1002_sstr_202200041
crossref_primary_10_1016_j_matt_2024_05_034
crossref_primary_10_1002_chem_202302055
crossref_primary_10_1002_adma_202107488
crossref_primary_10_1016_j_matre_2022_100146
crossref_primary_10_1002_advs_202406008
crossref_primary_10_1002_smll_202206531
crossref_primary_10_1016_j_matre_2022_100144
crossref_primary_10_1039_D1TA09441F
crossref_primary_10_1002_advs_202412805
crossref_primary_10_1039_D4TA08245A
crossref_primary_10_1002_aenm_202202317
crossref_primary_10_1039_D4CE00945B
crossref_primary_10_2139_ssrn_4007241
crossref_primary_10_1021_acs_nanolett_3c04419
crossref_primary_10_1039_D2QI02325C
crossref_primary_10_1016_j_apcatb_2023_122683
crossref_primary_10_1016_j_apcatb_2023_122684
crossref_primary_10_1038_s41467_023_37530_9
crossref_primary_10_1016_j_cej_2024_152808
crossref_primary_10_1016_j_mattod_2025_02_024
crossref_primary_10_1002_aenm_202300254
crossref_primary_10_1002_smll_202409097
crossref_primary_10_1021_acsnano_4c06220
crossref_primary_10_1038_s41467_022_33778_9
crossref_primary_10_1002_cctc_202400622
crossref_primary_10_1021_acscatal_2c01090
crossref_primary_10_1039_D3QI01609A
crossref_primary_10_1002_adfm_202214069
crossref_primary_10_1002_cctc_202401950
crossref_primary_10_1016_j_cinorg_2024_100043
crossref_primary_10_1016_j_cej_2022_135456
crossref_primary_10_1039_D3EY00165B
crossref_primary_10_1039_D2CE00924B
crossref_primary_10_1016_j_fuel_2022_126209
crossref_primary_10_1016_j_apsusc_2023_156616
crossref_primary_10_1016_j_nanoen_2023_109236
crossref_primary_10_1021_acscatal_4c04454
crossref_primary_10_1039_D2EE01094A
crossref_primary_10_1002_cctc_202401584
crossref_primary_10_1016_j_cej_2023_142035
crossref_primary_10_1016_j_gee_2022_12_003
crossref_primary_10_1002_adfm_202309250
crossref_primary_10_1002_adma_202414138
crossref_primary_10_1039_D2TA04120K
crossref_primary_10_1002_smll_202404545
crossref_primary_10_1039_D3TA08079J
crossref_primary_10_1039_D3DT01562A
crossref_primary_10_1039_D2DT01394K
crossref_primary_10_1016_j_cej_2024_150054
crossref_primary_10_1002_anie_202217815
crossref_primary_10_1016_j_apsusc_2022_153717
crossref_primary_10_1016_j_jcat_2024_115352
crossref_primary_10_1039_D4CY00550C
crossref_primary_10_1016_j_chempr_2023_08_014
crossref_primary_10_1016_j_jcat_2024_115354
crossref_primary_10_1016_j_jallcom_2025_179306
crossref_primary_10_1002_adfm_202311683
crossref_primary_10_1002_adfm_202301526
crossref_primary_10_1039_D4CS00333K
crossref_primary_10_1002_metm_11
crossref_primary_10_1007_s12274_022_5118_4
crossref_primary_10_1039_D3QI01131C
crossref_primary_10_1002_aenm_202301224
crossref_primary_10_1002_aenm_202200409
crossref_primary_10_1002_aenm_202302436
crossref_primary_10_1016_j_jechem_2024_08_030
crossref_primary_10_1039_D5CC00884K
crossref_primary_10_1080_10408347_2024_2358492
crossref_primary_10_1002_smll_202207235
crossref_primary_10_1002_adma_202418504
crossref_primary_10_1007_s12598_024_03201_x
crossref_primary_10_1002_aenm_202203913
crossref_primary_10_1021_acsmaterialslett_4c00066
crossref_primary_10_1016_j_enchem_2024_100119
crossref_primary_10_1016_j_susmat_2022_e00461
crossref_primary_10_1016_j_nanoen_2022_107615
crossref_primary_10_1039_D3TA05863H
crossref_primary_10_1016_j_apcatb_2022_122139
crossref_primary_10_1016_j_ijhydene_2023_03_426
crossref_primary_10_1364_AO_462113
crossref_primary_10_1021_jacs_1c07391
crossref_primary_10_1002_smll_202311217
crossref_primary_10_1002_adma_202206960
crossref_primary_10_1016_j_jcis_2024_04_180
crossref_primary_10_1021_acsanm_4c02906
crossref_primary_10_1021_acs_energyfuels_3c05075
crossref_primary_10_1007_s12274_022_4618_6
crossref_primary_10_1007_s12274_023_5558_5
crossref_primary_10_1002_anie_202404418
crossref_primary_10_1007_s40242_021_1336_7
crossref_primary_10_1016_S1872_2067_21_63987_6
crossref_primary_10_1002_adfm_202310690
crossref_primary_10_1016_j_jallcom_2025_178477
crossref_primary_10_1016_j_jcis_2023_05_074
crossref_primary_10_1016_j_mtsust_2022_100295
crossref_primary_10_1002_slct_202404910
crossref_primary_10_1016_j_checat_2023_100751
crossref_primary_10_1016_j_jcis_2024_12_046
crossref_primary_10_1039_D2DT00749E
crossref_primary_10_1016_j_fuel_2022_124349
crossref_primary_10_1039_D3QI02220J
crossref_primary_10_1016_j_apcatb_2021_121008
crossref_primary_10_1002_smll_202207253
crossref_primary_10_1038_s41467_022_32937_2
crossref_primary_10_1002_smll_202309249
crossref_primary_10_1016_j_jcis_2023_01_108
crossref_primary_10_1039_D3TA03473A
crossref_primary_10_1016_j_chempr_2022_07_010
crossref_primary_10_1039_D2EE01337A
crossref_primary_10_1007_s12274_023_6104_1
crossref_primary_10_1016_j_cej_2024_150374
crossref_primary_10_1002_chem_202301589
crossref_primary_10_3390_ma16072709
crossref_primary_10_1016_j_est_2023_109102
crossref_primary_10_1016_j_watres_2024_123077
crossref_primary_10_1016_j_fuel_2024_131762
crossref_primary_10_1039_D2QI01494G
crossref_primary_10_1007_s41918_024_00219_8
crossref_primary_10_1021_acs_inorgchem_2c04181
crossref_primary_10_1002_sstr_202100153
crossref_primary_10_1016_j_checat_2022_08_010
crossref_primary_10_1021_acsami_2c23284
crossref_primary_10_1021_acs_nanolett_2c04380
crossref_primary_10_1016_j_apcatb_2024_124072
crossref_primary_10_1016_j_jcis_2023_04_172
crossref_primary_10_1002_aenm_202203955
crossref_primary_10_1021_acsami_3c04573
crossref_primary_10_1007_s40843_023_2515_0
crossref_primary_10_1016_j_jelechem_2023_117640
crossref_primary_10_1021_acssuschemeng_2c06708
crossref_primary_10_1039_D2TA03143D
crossref_primary_10_1007_s12274_023_5769_9
crossref_primary_10_1002_advs_202207321
crossref_primary_10_1016_j_cej_2023_144872
crossref_primary_10_1007_s12274_022_5075_y
crossref_primary_10_1038_s41467_022_33847_z
crossref_primary_10_1002_adma_202207850
crossref_primary_10_1039_D2QI02582E
crossref_primary_10_1016_j_jallcom_2023_170078
crossref_primary_10_1002_aenm_202401716
crossref_primary_10_1039_D2CE00723A
crossref_primary_10_1021_acs_chemmater_1c03015
crossref_primary_10_1016_j_catcom_2022_106425
crossref_primary_10_1016_j_ccr_2022_214869
crossref_primary_10_1021_acs_analchem_2c02334
crossref_primary_10_1016_j_carbon_2023_118141
crossref_primary_10_1021_acsmaterialsau_4c00062
crossref_primary_10_1002_adfm_202202141
crossref_primary_10_1002_advs_202300342
crossref_primary_10_1007_s41918_023_00186_6
crossref_primary_10_1016_j_apcatb_2022_121354
crossref_primary_10_1016_j_ijhydene_2022_11_295
crossref_primary_10_1016_j_jpowsour_2023_233163
crossref_primary_10_1021_acs_inorgchem_3c04266
crossref_primary_10_1016_j_jallcom_2022_167743
crossref_primary_10_1016_j_ijhydene_2025_01_170
crossref_primary_10_1016_j_cej_2024_151330
crossref_primary_10_1016_j_gee_2024_02_006
crossref_primary_10_1002_ange_202302220
crossref_primary_10_1016_j_cej_2024_149498
crossref_primary_10_1016_j_apcatb_2022_122316
crossref_primary_10_1002_adfm_202203342
crossref_primary_10_1039_D3QM01179H
crossref_primary_10_1039_D2QI00847E
crossref_primary_10_1002_smll_202311076
crossref_primary_10_1002_cphc_202200776
crossref_primary_10_1016_j_jcis_2023_10_106
crossref_primary_10_1002_cssc_202201030
crossref_primary_10_1002_idm2_12011
crossref_primary_10_1021_acscatal_4c01829
crossref_primary_10_1021_acsaem_3c00537
crossref_primary_10_1016_j_seppur_2023_123771
crossref_primary_10_1002_cssc_202400640
crossref_primary_10_1002_adfm_202406670
crossref_primary_10_1002_smll_202305877
crossref_primary_10_1002_ange_202306553
crossref_primary_10_1016_j_colsurfa_2022_129320
crossref_primary_10_1016_j_ijhydene_2024_01_026
crossref_primary_10_1016_j_flatc_2024_100775
crossref_primary_10_1016_j_seppur_2023_124638
crossref_primary_10_3390_nano12172970
crossref_primary_10_1016_j_jallcom_2022_165705
crossref_primary_10_3390_catal13040712
crossref_primary_10_1016_j_mseb_2023_116884
crossref_primary_10_1002_smll_202203838
crossref_primary_10_1002_smll_202201896
crossref_primary_10_3390_nano13010074
crossref_primary_10_1007_s12274_023_5469_5
crossref_primary_10_1016_j_cej_2024_156430
crossref_primary_10_1002_smll_202306836
crossref_primary_10_1016_j_jmst_2024_07_025
crossref_primary_10_1039_D4QI01851F
crossref_primary_10_1002_smll_202208045
crossref_primary_10_1016_j_nanoen_2022_107212
crossref_primary_10_1021_acs_inorgchem_3c01587
crossref_primary_10_1039_D2TA07292K
crossref_primary_10_1016_j_ijhydene_2024_10_084
crossref_primary_10_1002_aenm_202302727
crossref_primary_10_1016_j_jcis_2023_03_133
crossref_primary_10_1039_D1NJ05434A
crossref_primary_10_1016_j_susmat_2024_e01160
crossref_primary_10_1021_acssuschemeng_2c04034
crossref_primary_10_1016_j_fuel_2024_133804
crossref_primary_10_1039_D4TA01763C
crossref_primary_10_1002_smll_202406105
crossref_primary_10_1002_inf2_12357
crossref_primary_10_1016_j_ijhydene_2024_01_363
crossref_primary_10_1002_adfm_202408872
crossref_primary_10_1016_j_ces_2023_119089
crossref_primary_10_1002_adma_202210703
crossref_primary_10_1016_j_apcatb_2022_121799
crossref_primary_10_1039_D4CY00314D
crossref_primary_10_1002_ange_202306333
crossref_primary_10_1039_D2TA07196G
crossref_primary_10_1016_j_ccr_2024_215832
crossref_primary_10_1039_D3DT03249C
crossref_primary_10_1002_adma_202401694
crossref_primary_10_1002_adma_202411134
crossref_primary_10_1007_s40820_024_01424_2
crossref_primary_10_1021_jacs_5c00033
crossref_primary_10_1039_D2CE00886F
crossref_primary_10_1002_ange_202406043
crossref_primary_10_1002_smll_202304636
crossref_primary_10_1016_j_cej_2024_154235
crossref_primary_10_1002_smll_202410603
crossref_primary_10_1002_advs_202104706
crossref_primary_10_1039_D1CC05683B
crossref_primary_10_1002_ange_202217815
crossref_primary_10_1002_anie_202214259
crossref_primary_10_1002_advs_202304179
crossref_primary_10_1016_j_apcatb_2022_121541
crossref_primary_10_1002_anie_202306333
crossref_primary_10_1002_advs_202300639
crossref_primary_10_1039_D1TA06216F
crossref_primary_10_1002_smll_202201740
crossref_primary_10_1016_j_ijhydene_2025_02_023
crossref_primary_10_20517_microstructures_2024_76
crossref_primary_10_1002_adfm_202414493
crossref_primary_10_1016_j_cej_2022_138497
crossref_primary_10_1002_aenm_202102573
crossref_primary_10_1016_j_cej_2022_137161
crossref_primary_10_1039_D2QI02285K
crossref_primary_10_1016_j_jallcom_2023_169496
crossref_primary_10_1016_j_cej_2024_158701
crossref_primary_10_1016_j_jechem_2023_05_013
crossref_primary_10_1016_j_jelechem_2023_117591
crossref_primary_10_1021_acs_inorgchem_2c03929
crossref_primary_10_1016_j_jpowsour_2022_231068
crossref_primary_10_1002_cey2_554
crossref_primary_10_1016_j_trechm_2023_01_002
crossref_primary_10_3390_catal13010090
crossref_primary_10_1016_j_cej_2021_133648
crossref_primary_10_1039_D3TA02332J
crossref_primary_10_1039_D3TA07803E
crossref_primary_10_1038_s44221_023_00169_3
crossref_primary_10_1002_tcr_202200237
crossref_primary_10_20517_microstructures_2024_62
crossref_primary_10_1039_D2SE01032A
crossref_primary_10_1016_j_jallcom_2023_172200
crossref_primary_10_1021_acs_chemmater_2c00932
crossref_primary_10_1039_D4TA04340E
crossref_primary_10_1016_j_mtchem_2023_101747
crossref_primary_10_1002_smll_202306631
crossref_primary_10_1002_aenm_202303730
crossref_primary_10_1021_acs_energyfuels_2c00565
crossref_primary_10_1002_adfm_202313770
crossref_primary_10_1002_anie_202306553
crossref_primary_10_1016_j_cej_2023_142177
crossref_primary_10_1039_D2TA03368B
crossref_primary_10_3390_nano14141168
crossref_primary_10_1002_aenm_202303614
crossref_primary_10_1016_j_jcis_2023_08_112
crossref_primary_10_1021_acsnano_1c06017
crossref_primary_10_1016_j_apsusc_2023_158474
crossref_primary_10_1002_smll_202304560
crossref_primary_10_1063_5_0136851
crossref_primary_10_3390_en15134645
crossref_primary_10_1039_D2CC06879F
crossref_primary_10_1002_cey2_695
crossref_primary_10_1016_j_ijhydene_2022_06_265
crossref_primary_10_1002_cey2_575
crossref_primary_10_1002_advs_202415525
crossref_primary_10_1002_tcr_202200212
crossref_primary_10_1002_anie_202306420
crossref_primary_10_1002_anie_202312644
crossref_primary_10_1016_j_checat_2022_05_003
crossref_primary_10_1021_acs_iecr_2c02958
crossref_primary_10_3390_su151914556
crossref_primary_10_1016_j_apsusc_2022_155904
crossref_primary_10_3390_ma17010199
crossref_primary_10_1021_acs_jpcc_3c06622
crossref_primary_10_1039_D3TA00156C
crossref_primary_10_1002_adfm_202205920
crossref_primary_10_1002_ange_202306420
crossref_primary_10_1021_jacs_4c15847
crossref_primary_10_1002_smll_202208261
crossref_primary_10_1016_j_mtener_2022_100966
crossref_primary_10_1021_acsanm_4c05845
crossref_primary_10_1016_j_cej_2024_150976
crossref_primary_10_1039_D2NR05245H
crossref_primary_10_1002_anie_202200946
crossref_primary_10_1016_j_apcatb_2022_121605
crossref_primary_10_1002_adfm_202422634
crossref_primary_10_1021_acsanm_3c02247
crossref_primary_10_1002_advs_202204751
crossref_primary_10_1038_s41467_024_54318_7
crossref_primary_10_1016_j_ccr_2023_215143
crossref_primary_10_1039_D3TA04947G
crossref_primary_10_1007_s12274_021_4024_5
crossref_primary_10_1002_adma_202311148
crossref_primary_10_1021_acsmaterialslett_4c00633
crossref_primary_10_1016_j_mtnano_2023_100387
crossref_primary_10_1073_pnas_2315362121
crossref_primary_10_1002_adfm_202413916
crossref_primary_10_1039_D3CS00708A
crossref_primary_10_1039_D3SE00233K
crossref_primary_10_1016_j_ccr_2024_215899
crossref_primary_10_3390_molecules28010315
crossref_primary_10_1007_s40242_024_4121_6
crossref_primary_10_1002_adma_202303649
crossref_primary_10_1039_D2TA04789F
crossref_primary_10_1016_j_jallcom_2023_168994
crossref_primary_10_1016_j_ijhydene_2024_09_338
crossref_primary_10_1007_s13391_024_00538_4
crossref_primary_10_1016_j_cej_2022_139957
crossref_primary_10_1016_j_csbj_2022_11_015
crossref_primary_10_1016_j_pmatsci_2024_101410
crossref_primary_10_1016_j_jechem_2023_03_037
crossref_primary_10_1016_j_cej_2023_146062
crossref_primary_10_1016_j_ijhydene_2023_01_277
crossref_primary_10_1038_s41467_024_53824_y
crossref_primary_10_1016_j_ijhydene_2023_08_107
crossref_primary_10_1038_s41467_022_28918_0
crossref_primary_10_1002_adfm_202209543
crossref_primary_10_1021_acsanm_4c05501
crossref_primary_10_1002_admi_202400916
crossref_primary_10_1016_j_apsusc_2024_160112
crossref_primary_10_1016_j_electacta_2024_145529
crossref_primary_10_1021_acsaem_3c02348
crossref_primary_10_1021_acssuschemeng_4c02912
crossref_primary_10_1016_j_apsusc_2023_159089
crossref_primary_10_1038_s41578_023_00633_2
crossref_primary_10_1002_anie_202406043
crossref_primary_10_1016_j_jece_2024_112996
crossref_primary_10_1021_acsami_4c10721
crossref_primary_10_1038_s41929_024_01209_1
crossref_primary_10_1002_adma_202500595
crossref_primary_10_1039_D3MH00644A
crossref_primary_10_1016_j_est_2024_112174
crossref_primary_10_1002_adfm_202308813
crossref_primary_10_1002_smtd_202201472
crossref_primary_10_1016_j_apcatb_2022_121832
crossref_primary_10_1002_adma_202419360
crossref_primary_10_1002_smll_202206844
crossref_primary_10_1016_j_ijhydene_2022_07_013
crossref_primary_10_1016_j_apsusc_2024_161335
crossref_primary_10_1016_j_electacta_2022_140665
crossref_primary_10_1016_j_cclet_2023_109268
crossref_primary_10_1038_s41467_023_37676_6
crossref_primary_10_1002_cctc_202400827
crossref_primary_10_1002_solr_202200587
crossref_primary_10_1016_j_coelec_2024_101552
crossref_primary_10_1016_j_apcatb_2023_123187
crossref_primary_10_1039_D4TA05839A
crossref_primary_10_1016_j_apcatb_2024_124214
crossref_primary_10_1016_j_apcatb_2024_124213
crossref_primary_10_1016_j_nanoen_2023_108225
crossref_primary_10_1021_acsami_4c00974
crossref_primary_10_1038_s41467_022_30766_x
crossref_primary_10_1039_D2TA01333A
crossref_primary_10_1002_adfm_202421740
crossref_primary_10_1002_smll_202402846
crossref_primary_10_1002_aenm_202400059
crossref_primary_10_1039_D4DT01285B
crossref_primary_10_1007_s12598_023_02389_8
crossref_primary_10_1039_D4TA07453J
crossref_primary_10_1002_adma_202501387
crossref_primary_10_1002_anie_202309293
crossref_primary_10_1016_j_jechem_2024_05_019
crossref_primary_10_1021_acs_inorgchem_1c03602
crossref_primary_10_1002_tcr_202300013
crossref_primary_10_1002_smtd_202201371
crossref_primary_10_1002_ange_202214259
crossref_primary_10_1016_j_nanoen_2022_107266
crossref_primary_10_1021_acsaem_4c02585
crossref_primary_10_1002_cssc_202201985
crossref_primary_10_1002_smll_202308530
crossref_primary_10_1016_j_apsusc_2024_159576
crossref_primary_10_1016_j_ijhydene_2023_03_077
crossref_primary_10_1039_D1CC06612A
crossref_primary_10_1021_acsanm_3c01222
crossref_primary_10_1002_cnma_202300125
crossref_primary_10_1002_anie_202308091
crossref_primary_10_1016_j_cej_2024_157208
crossref_primary_10_1016_j_ijhydene_2023_10_096
crossref_primary_10_1039_D2SE01355J
crossref_primary_10_1063_5_0160301
crossref_primary_10_1002_adfm_202315674
crossref_primary_10_1016_j_ijhydene_2023_01_237
crossref_primary_10_1002_cssc_202400737
crossref_primary_10_1021_acsami_4c16063
crossref_primary_10_1021_acscatal_2c03684
crossref_primary_10_1016_j_apcatb_2022_121906
crossref_primary_10_1021_acsomega_3c05477
crossref_primary_10_1021_acscatal_2c05624
crossref_primary_10_1016_j_apsusc_2024_160310
crossref_primary_10_1039_D3SE00204G
crossref_primary_10_1002_smll_202400201
crossref_primary_10_3390_molecules29133127
crossref_primary_10_1016_j_ijhydene_2022_09_154
crossref_primary_10_1016_j_cej_2022_137226
crossref_primary_10_1016_j_cej_2024_155258
crossref_primary_10_1021_acsanm_2c01243
crossref_primary_10_1038_s41467_024_45320_0
crossref_primary_10_1039_D3DT04263D
crossref_primary_10_1039_D4EE00221K
crossref_primary_10_1039_D2CC00331G
crossref_primary_10_1002_anie_202302220
crossref_primary_10_1039_D2EE03351H
crossref_primary_10_1039_D4EY00205A
crossref_primary_10_1021_acscatal_3c03303
crossref_primary_10_1002_adfm_202410618
crossref_primary_10_1007_s12274_022_4874_7
crossref_primary_10_1039_D4TA04284K
crossref_primary_10_1002_smll_202306694
crossref_primary_10_1016_j_apsusc_2022_155751
crossref_primary_10_1016_j_jechem_2024_12_053
crossref_primary_10_1002_anie_202217296
crossref_primary_10_1016_j_jcis_2024_08_005
crossref_primary_10_1021_acsanm_4c05830
crossref_primary_10_1021_acsanm_3c00398
crossref_primary_10_1038_s41467_025_55837_7
crossref_primary_10_1002_celc_202400159
crossref_primary_10_1002_adma_202406380
crossref_primary_10_1039_D1NR05901G
crossref_primary_10_1016_j_apcatb_2023_123269
crossref_primary_10_1016_j_jpowsour_2022_232563
crossref_primary_10_1021_acsanm_2c04519
crossref_primary_10_1039_D3TA07230D
crossref_primary_10_1016_j_cej_2022_140403
crossref_primary_10_1016_j_cogsc_2022_100682
crossref_primary_10_1002_adfm_202304403
crossref_primary_10_1007_s12598_022_02249_x
crossref_primary_10_1149_1945_7111_ac6e91
crossref_primary_10_3390_ma18030604
crossref_primary_10_1016_j_gee_2023_11_003
crossref_primary_10_1039_D1SE01399H
crossref_primary_10_1016_j_carbon_2025_120128
crossref_primary_10_1039_D3TA05922G
crossref_primary_10_1039_D4TA00885E
crossref_primary_10_1039_D2TA03860A
Cites_doi 10.1002/adma.201601019
10.1038/s41467-020-17934-7
10.1038/s41467-018-05019-5
10.1021/jacs.8b00752
10.1002/aenm.201703341
10.1103/PhysRevLett.77.3865
10.1021/acs.nanolett.9b03460
10.1002/adma.201701546
10.1021/ja5096733
10.1021/ja4027715
10.1038/s41560-019-0402-6
10.1002/cssc.201800407
10.1021/jp3007415
10.1002/adma.201705106
10.1038/s41467-018-03138-7
10.1002/anie.201910716
10.1002/adma.201706279
10.1002/smll.201800136
10.1038/s41560-019-0355-9
10.1038/s41467-019-14274-z
10.1038/s41929-018-0146-x
10.1038/s41467-020-16558-1
10.1016/j.apcatb.2020.118627
10.1002/aenm.201600621
10.1103/PhysRevB.54.11169
10.1038/s41467-018-03380-z
10.1002/aenm.201900881
10.1002/anie.201805520
10.1002/adma.201705369
10.1002/adma.201700017
10.1002/adma.201606459
10.1038/nchem.1095
10.1002/anie.201402822
10.1038/s41467-019-14272-1
10.1002/anie.201701477
10.1002/adma.201906972
10.1149/1.1856988
10.1002/advs.201900117
10.1038/s41467-019-09845-z
10.1002/aenm.201602148
10.1021/acsenergylett.8b00696
10.1038/s41467-019-09765-y
10.1038/s41467-018-05341-y
10.1063/1.4865107
10.1038/s41467-019-11765-x
10.1038/s41467-019-09666-0
10.1002/adfm.201808367
10.1002/anie.201605096
10.1002/anie.201915803
10.1038/s41560-020-0576-y
10.1021/jacs.5b06814
10.1038/s41467-020-15069-3
10.1126/science.aaf1525
10.1038/ncomms11981
10.1002/adma.201803144
10.1002/anie.201804881
10.1039/C7EE01917C
10.1038/s41467-018-04788-3
10.1038/ncomms7616
10.1002/adma.201804769
10.1002/aenm.201803060
10.1002/anie.201905281
10.1038/nature11475
10.1021/jacs.6b03714
10.1038/s41467-019-13092-7
10.1038/s41467-020-16237-1
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
ADTPV
AOWAS
D8V
DOA
DOI 10.1038/s41467-021-24828-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Chemistry
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_a5df7f166e32474f987b2c7c690cb56c
oai_DiVA_org_kth_300032
PMC8319438
10_1038_s41467_021_24828_9
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
4.4
ABAWZ
ADTPV
AOWAS
BAPOH
CAG
COF
D8V
EJD
LGEZI
LOTEE
NADUK
NXXTH
PUEGO
ID FETCH-LOGICAL-c621t-9235465c491713825a286d5a18256b12588d423e0236da25f319b1242407d8b03
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:02:14 EDT 2025
Thu Aug 21 06:30:03 EDT 2025
Thu Aug 21 14:02:17 EDT 2025
Fri Jul 11 16:26:58 EDT 2025
Wed Aug 13 04:53:36 EDT 2025
Tue Jul 01 04:17:32 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
Fri Feb 21 02:39:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c621t-9235465c491713825a286d5a18256b12588d423e0236da25f319b1242407d8b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4521-2870
0000-0002-5854-6909
0000-0003-1896-2999
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-24828-9
PMID 34321467
PQID 2555778634
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_a5df7f166e32474f987b2c7c690cb56c
swepub_primary_oai_DiVA_org_kth_300032
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319438
proquest_miscellaneous_2556388472
proquest_journals_2555778634
crossref_primary_10_1038_s41467_021_24828_9
crossref_citationtrail_10_1038_s41467_021_24828_9
springer_journals_10_1038_s41467_021_24828_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-28
PublicationDateYYYYMMDD 2021-07-28
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Xiao (CR24) 2017; 10
Zhang (CR2) 2016; 352
Lim (CR31) 2020; 11
Jiang (CR3) 2019; 10
Zhang (CR52) 2019; 9
Genovese (CR41) 2018; 9
Qiao (CR33) 2011; 3
Jiang (CR12) 2018; 9
Lee, Bai, Hu (CR10) 2020; 59
Wang (CR28) 2017; 56
Trzesniewski (CR63) 2015; 137
Hou (CR20) 2019; 29
Kweon (CR6) 2020; 11
Long (CR53) 2014; 53
Wang, Tan, Zhu, Ho (CR14) 2016; 55
Chu, Majumdar (CR1) 2012; 488
Wu (CR17) 2018; 11
Han (CR43) 2017; 7
Zhang (CR61) 2020; 11
Jiang (CR5) 2020; 11
Asnavandi (CR39) 2018; 7
Jia (CR50) 2017; 29
Yu (CR55) 2019; 10
Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (CR68) 2014; 140
Yu (CR4) 2020; 11
Liu, Wang, Liu, Zou, Wang (CR49) 2017; 29
Cai (CR57) 2018; 57
Zhang (CR30) 2018; 140
Fan (CR18) 2016; 7
Yan (CR8) 2018; 9
Liu (CR32) 2019; 4
Bliem (CR36) 2014; 346
Huang (CR64) 2019; 58
He (CR48) 2019; 58
Wang (CR44) 2019; 10
Gao (CR23) 2019; 31
Huang (CR16) 2019; 4
Yin (CR51) 2018; 30
Qu (CR34) 2018; 1
Li (CR29) 2019; 10
Tang (CR21) 2020; 266
Qin (CR47) 2019; 9
Zhang (CR56) 2020; 20
Song, Hu (CR15) 2014; 136
Chen (CR27) 2018; 57
Perdew, Burke, Ernzerhof (CR67) 1996; 77
Lu, Zhao (CR9) 2015; 6
Ping (CR46) 2016; 28
Yan (CR22) 2017; 29
Liu (CR26) 2018; 30
Wang, Qiao, Li, Wang (CR42) 2018; 14
Li (CR59) 2018; 8
Du (CR19) 2019; 6
Wan (CR38) 2018; 30
Chen (CR45) 2018; 30
Gong (CR54) 2013; 135
Dionigi, Strasser (CR58) 2016; 6
Kress (CR66) 1996; 54
Yin (CR25) 2016; 138
Zhang (CR37) 2018; 9
Yeo, Bell (CR62) 2012; 116
Chung (CR60) 2020; 5
Yan (CR13) 2019; 10
Dionigi (CR11) 2020; 11
Nørskov (CR65) 2005; 152
Song (CR40) 2020; 32
Liu (CR35) 2019; 4
Liu (CR7) 2018; 9
K Jiang (24828_CR5) 2020; 11
T Lim (24828_CR31) 2020; 11
P Li (24828_CR59) 2018; 8
F Dionigi (24828_CR11) 2020; 11
Y Liu (24828_CR7) 2018; 9
X Long (24828_CR53) 2014; 53
S Yin (24828_CR51) 2018; 30
X Lu (24828_CR9) 2015; 6
B Qiao (24828_CR33) 2011; 3
R Liu (24828_CR49) 2017; 29
Y Tang (24828_CR21) 2020; 266
L Yu (24828_CR55) 2019; 10
P Li (24828_CR29) 2019; 10
C Genovese (24828_CR41) 2018; 9
Z Xiao (24828_CR24) 2017; 10
BJ Trzesniewski (24828_CR63) 2015; 137
Y Yin (24828_CR25) 2016; 138
G Chen (24828_CR45) 2018; 30
J Ping (24828_CR46) 2016; 28
S Chu (24828_CR1) 2012; 488
Y Wang (24828_CR42) 2018; 14
K Mathew (24828_CR68) 2014; 140
L Song (24828_CR40) 2020; 32
D Liu (24828_CR32) 2019; 4
J Wang (24828_CR14) 2016; 55
R Bliem (24828_CR36) 2014; 346
DH Kweon (24828_CR6) 2020; 11
DY Chung (24828_CR60) 2020; 5
K Fan (24828_CR18) 2016; 7
FY Yu (24828_CR4) 2020; 11
X Zhang (24828_CR52) 2019; 9
Z Cai (24828_CR57) 2018; 57
D Yan (24828_CR22) 2017; 29
X Wu (24828_CR17) 2018; 11
S Lee (24828_CR10) 2020; 59
J Yan (24828_CR13) 2019; 10
K He (24828_CR48) 2019; 58
J Huang (24828_CR64) 2019; 58
Y Wang (24828_CR28) 2017; 56
M Asnavandi (24828_CR39) 2018; 7
JK Nørskov (24828_CR65) 2005; 152
G Kress (24828_CR66) 1996; 54
ZW Gao (24828_CR23) 2019; 31
J Hou (24828_CR20) 2019; 29
ZF Huang (24828_CR16) 2019; 4
Z Yan (24828_CR8) 2018; 9
J Wan (24828_CR38) 2018; 30
B Zhang (24828_CR2) 2016; 352
M Gong (24828_CR54) 2013; 135
J Jiang (24828_CR12) 2018; 9
J Du (24828_CR19) 2019; 6
M Qin (24828_CR47) 2019; 9
J Zhang (24828_CR30) 2018; 140
F Song (24828_CR15) 2014; 136
BS Yeo (24828_CR62) 2012; 116
F Dionigi (24828_CR58) 2016; 6
B Liu (24828_CR26) 2018; 30
D Wang (24828_CR44) 2019; 10
D Liu (24828_CR35) 2019; 4
JP Perdew (24828_CR67) 1996; 77
Y Qu (24828_CR34) 2018; 1
X Han (24828_CR43) 2017; 7
Y Jia (24828_CR50) 2017; 29
K Jiang (24828_CR3) 2019; 10
J Zhang (24828_CR37) 2018; 9
N Zhang (24828_CR61) 2020; 11
B Zhang (24828_CR56) 2020; 20
D Chen (24828_CR27) 2018; 57
References_xml – volume: 28
  start-page: 7640
  year: 2016
  end-page: 7645
  ident: CR46
  article-title: Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601019
– volume: 11
  year: 2020
  ident: CR61
  article-title: Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17934-7
– volume: 9
  year: 2018
  ident: CR7
  article-title: Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 h
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05019-5
– volume: 140
  start-page: 3876
  year: 2018
  end-page: 3879
  ident: CR30
  article-title: Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00752
– volume: 8
  start-page: 1703341
  year: 2018
  ident: CR59
  article-title: Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703341
– volume: 77
  start-page: 3865
  year: 1996
  ident: CR67
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 20
  start-page: 136
  year: 2020
  end-page: 144
  ident: CR56
  article-title: Integrating Rh species with NiFe-layered double hydroxide for overall water splitting
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03460
– volume: 29
  start-page: 1701546
  year: 2017
  ident: CR49
  article-title: Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701546
– volume: 136
  start-page: 16481
  year: 2014
  end-page: 16484
  ident: CR15
  article-title: Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5096733
– volume: 135
  start-page: 8452
  year: 2013
  end-page: 8455
  ident: CR54
  article-title: An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4027715
– volume: 4
  start-page: 512
  year: 2019
  end-page: 518
  ident: CR35
  article-title: Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0402-6
– volume: 11
  start-page: 1761
  year: 2018
  end-page: 1767
  ident: CR17
  article-title: Hierarchically structured FeNiO H electrocatalyst formed by in situ transformation of metal phosphate for efficient oxygen evolution reaction
  publication-title: ChemSusChem.
  doi: 10.1002/cssc.201800407
– volume: 116
  start-page: 8394
  year: 2012
  end-page: 8400
  ident: CR62
  article-title: In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3007415
– volume: 30
  start-page: 1705106
  year: 2018
  ident: CR51
  article-title: A highly efficient oxygen evolution catalyst consisting of interconnected nickel-iron-layered double hydroxide and carbon nanodomains
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705106
– volume: 9
  start-page: 935
  year: 2018
  ident: CR41
  article-title: Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon
  publication-title: Nat. Comm.
  doi: 10.1038/s41467-018-03138-7
– volume: 58
  start-page: 17458
  year: 2019
  end-page: 17464
  ident: CR64
  article-title: Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201910716
– volume: 30
  start-page: 1706279
  year: 2018
  ident: CR45
  article-title: Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706279
– volume: 14
  start-page: 1800136
  year: 2018
  ident: CR42
  article-title: Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction
  publication-title: Small
  doi: 10.1002/smll.201800136
– volume: 4
  start-page: 329
  year: 2019
  end-page: 338
  ident: CR16
  article-title: Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0355-9
– volume: 11
  year: 2020
  ident: CR4
  article-title: Pt-O bond as an active site superior to Pt(0) in hydrogen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14274-z
– volume: 1
  start-page: 781
  year: 2018
  end-page: 786
  ident: CR34
  article-title: Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0146-x
– volume: 11
  year: 2020
  ident: CR5
  article-title: Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16558-1
– volume: 266
  start-page: 118627
  year: 2020
  ident: CR21
  article-title: Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.118627
– volume: 6
  start-page: 1600621
  year: 2016
  ident: CR58
  article-title: NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600621
– volume: 54
  start-page: 11169
  year: 1996
  ident: CR66
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 9
  year: 2018
  ident: CR37
  article-title: Cation vacancy stabilization of single-atomic-site Pt /Ni(OH) catalyst for diboration of alkynes and alkenes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03380-z
– volume: 9
  start-page: 1900881
  year: 2019
  ident: CR52
  article-title: A simple synthetic strategy toward defect-rich rorous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900881
– volume: 57
  start-page: 8691
  year: 2018
  end-page: 8696
  ident: CR27
  article-title: Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201805520
– volume: 4
  start-page: 512
  year: 2019
  end-page: 518
  ident: CR32
  article-title: Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0402-6
– volume: 30
  start-page: 1705369
  year: 2018
  ident: CR38
  article-title: Defect effects on TiO nanosheets: stabilizing single atomic site Au and promoting catalytic properties
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705369
– volume: 29
  start-page: 1700017
  year: 2017
  ident: CR50
  article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700017
– volume: 29
  start-page: 1606459
  year: 2017
  ident: CR22
  article-title: Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606459
– volume: 3
  start-page: 634
  year: 2011
  end-page: 641
  ident: CR33
  article-title: Single-atom catalysis of CO oxidation using Pt /FeO
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 53
  start-page: 7584
  year: 2014
  end-page: 7588
  ident: CR53
  article-title: A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402822
– volume: 11
  year: 2020
  ident: CR31
  article-title: Atomically dispersed Pt-N sites as efficient and selective electrocatalysts for the chlorine evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14272-1
– volume: 56
  start-page: 5867
  year: 2017
  end-page: 5871
  ident: CR28
  article-title: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701477
– volume: 32
  start-page: 1906972
  year: 2020
  ident: CR40
  article-title: Achieving efficient alkaline hydrogen evolution reaction over a Ni P catalyst incorporating single-atomic Ru sites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906972
– volume: 152
  start-page: 23
  year: 2005
  end-page: 26
  ident: CR65
  article-title: Trends in the exchange current for hydrogen evolution
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 6
  start-page: 1900117
  year: 2019
  ident: CR19
  article-title: Iron-salen complex and Co ion-derived cobalt–iron hydroxide/carbon nanohybrid as an efficient oxygen evolution electrocatalyst
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900117
– volume: 10
  year: 2019
  ident: CR13
  article-title: Single atom tungsten doped ultrathin α-Ni(OH) for enhanced electrocatalytic water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09845-z
– volume: 346
  start-page: 1215
  year: 2014
  end-page: 1218
  ident: CR36
  article-title: Subsurface cation vacancy stabilization of the magnetite (001)
  publication-title: Surf. Sci.
– volume: 7
  start-page: 1602148
  year: 2017
  ident: CR43
  article-title: Ultrasensitive iron-triggered nanosized Fe–CoOOH integrated with graphene for highly efficient oxygen evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602148
– volume: 7
  start-page: 1515
  year: 2018
  end-page: 1520
  ident: CR39
  article-title: Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe–OOH catalysts
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00696
– volume: 10
  year: 2019
  ident: CR3
  article-title: Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09765-y
– volume: 9
  year: 2018
  ident: CR12
  article-title: Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05341-y
– volume: 140
  start-page: 084106
  year: 2014
  ident: CR68
  article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 10
  year: 2019
  ident: CR44
  article-title: Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11765-x
– volume: 10
  year: 2019
  ident: CR29
  article-title: Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt–iron layered double hydroxides
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09666-0
– volume: 29
  start-page: 1808367
  year: 2019
  ident: CR20
  article-title: Rational design of nanoarray architectures for electrocatalytic water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808367
– volume: 55
  start-page: 10326
  year: 2016
  end-page: 10330
  ident: CR14
  article-title: Topotactic consolidation of monocrystalline CoZn hydroxides for advanced oxygen evolution electrodes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605096
– volume: 59
  start-page: 8072
  year: 2020
  end-page: 8077
  ident: CR10
  article-title: Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915803
– volume: 5
  start-page: 222
  year: 2020
  end-page: 230
  ident: CR60
  article-title: Dynamic stability of active sites in hydr(oxy) oxides for the oxygen evolution reaction
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0576-y
– volume: 137
  start-page: 15112
  year: 2015
  end-page: 15121
  ident: CR63
  article-title: In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06814
– volume: 11
  year: 2020
  ident: CR6
  article-title: Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15069-3
– volume: 352
  start-page: 333
  year: 2016
  end-page: 337
  ident: CR2
  article-title: Homogeneously dispersed multimetal oxygen-evolving scatalysts
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 7
  year: 2016
  ident: CR18
  article-title: Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11981
– volume: 30
  start-page: 1803144
  year: 2018
  ident: CR26
  article-title: Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803144
– volume: 57
  start-page: 9392
  year: 2018
  end-page: 9396
  ident: CR57
  article-title: Introducing Fe into nickel–iron layered double hydroxide: local structure modulated water oxidation activity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201804881
– volume: 10
  start-page: 2563
  year: 2017
  end-page: 2569
  ident: CR24
  article-title: Filling the oxygen vacancies in Co O with phosphorus: an ultra-efficient electrocatalyst for overall water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01917C
– volume: 9
  year: 2018
  ident: CR8
  article-title: Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04788-3
– volume: 6
  year: 2015
  ident: CR9
  article-title: Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7616
– volume: 31
  start-page: 1804769
  year: 2019
  ident: CR23
  article-title: Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804769
– volume: 9
  start-page: 1803060
  year: 2019
  ident: CR47
  article-title: Unprecedented synthesis of holey 2D layered double hydroxide nanomesh for enhanced oxygen evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803060
– volume: 58
  start-page: 11903
  year: 2019
  end-page: 11909
  ident: CR48
  article-title: Utilizing the space-charge region of the FeNi-LDH/CoP p–n junction to promote performance in oxygen evolution electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201905281
– volume: 488
  start-page: 294
  year: 2012
  end-page: 303
  ident: CR1
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 138
  start-page: 7965
  year: 2016
  end-page: 7972
  ident: CR25
  article-title: Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03714
– volume: 10
  year: 2019
  ident: CR55
  article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13092-7
– volume: 11
  year: 2020
  ident: CR11
  article-title: In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16237-1
– volume: 29
  start-page: 1701546
  year: 2017
  ident: 24828_CR49
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701546
– volume: 4
  start-page: 329
  year: 2019
  ident: 24828_CR16
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0355-9
– volume: 152
  start-page: 23
  year: 2005
  ident: 24828_CR65
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 55
  start-page: 10326
  year: 2016
  ident: 24828_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605096
– volume: 54
  start-page: 11169
  year: 1996
  ident: 24828_CR66
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 29
  start-page: 1606459
  year: 2017
  ident: 24828_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606459
– volume: 14
  start-page: 1800136
  year: 2018
  ident: 24828_CR42
  publication-title: Small
  doi: 10.1002/smll.201800136
– volume: 3
  start-page: 634
  year: 2011
  ident: 24828_CR33
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 140
  start-page: 084106
  year: 2014
  ident: 24828_CR68
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 9
  start-page: 935
  year: 2018
  ident: 24828_CR41
  publication-title: Nat. Comm.
  doi: 10.1038/s41467-018-03138-7
– volume: 28
  start-page: 7640
  year: 2016
  ident: 24828_CR46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601019
– volume: 116
  start-page: 8394
  year: 2012
  ident: 24828_CR62
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3007415
– volume: 30
  start-page: 1706279
  year: 2018
  ident: 24828_CR45
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706279
– volume: 57
  start-page: 8691
  year: 2018
  ident: 24828_CR27
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201805520
– volume: 488
  start-page: 294
  year: 2012
  ident: 24828_CR1
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 11
  year: 2020
  ident: 24828_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14272-1
– volume: 266
  start-page: 118627
  year: 2020
  ident: 24828_CR21
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.118627
– volume: 77
  start-page: 3865
  year: 1996
  ident: 24828_CR67
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 7
  start-page: 1515
  year: 2018
  ident: 24828_CR39
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00696
– volume: 20
  start-page: 136
  year: 2020
  ident: 24828_CR56
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03460
– volume: 9
  year: 2018
  ident: 24828_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04788-3
– volume: 10
  year: 2019
  ident: 24828_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09845-z
– volume: 8
  start-page: 1703341
  year: 2018
  ident: 24828_CR59
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703341
– volume: 10
  year: 2019
  ident: 24828_CR55
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13092-7
– volume: 57
  start-page: 9392
  year: 2018
  ident: 24828_CR57
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201804881
– volume: 10
  year: 2019
  ident: 24828_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09765-y
– volume: 7
  start-page: 1602148
  year: 2017
  ident: 24828_CR43
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602148
– volume: 29
  start-page: 1808367
  year: 2019
  ident: 24828_CR20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808367
– volume: 30
  start-page: 1705369
  year: 2018
  ident: 24828_CR38
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705369
– volume: 11
  year: 2020
  ident: 24828_CR61
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17934-7
– volume: 6
  year: 2015
  ident: 24828_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7616
– volume: 137
  start-page: 15112
  year: 2015
  ident: 24828_CR63
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06814
– volume: 11
  year: 2020
  ident: 24828_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15069-3
– volume: 59
  start-page: 8072
  year: 2020
  ident: 24828_CR10
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915803
– volume: 11
  year: 2020
  ident: 24828_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16237-1
– volume: 58
  start-page: 17458
  year: 2019
  ident: 24828_CR64
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201910716
– volume: 9
  year: 2018
  ident: 24828_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05019-5
– volume: 11
  year: 2020
  ident: 24828_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16558-1
– volume: 136
  start-page: 16481
  year: 2014
  ident: 24828_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5096733
– volume: 352
  start-page: 333
  year: 2016
  ident: 24828_CR2
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 31
  start-page: 1804769
  year: 2019
  ident: 24828_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804769
– volume: 11
  year: 2020
  ident: 24828_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14274-z
– volume: 9
  start-page: 1803060
  year: 2019
  ident: 24828_CR47
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803060
– volume: 9
  start-page: 1900881
  year: 2019
  ident: 24828_CR52
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900881
– volume: 53
  start-page: 7584
  year: 2014
  ident: 24828_CR53
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402822
– volume: 56
  start-page: 5867
  year: 2017
  ident: 24828_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701477
– volume: 30
  start-page: 1705106
  year: 2018
  ident: 24828_CR51
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705106
– volume: 7
  year: 2016
  ident: 24828_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11981
– volume: 58
  start-page: 11903
  year: 2019
  ident: 24828_CR48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201905281
– volume: 138
  start-page: 7965
  year: 2016
  ident: 24828_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03714
– volume: 30
  start-page: 1803144
  year: 2018
  ident: 24828_CR26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803144
– volume: 6
  start-page: 1600621
  year: 2016
  ident: 24828_CR58
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600621
– volume: 11
  start-page: 1761
  year: 2018
  ident: 24828_CR17
  publication-title: ChemSusChem.
  doi: 10.1002/cssc.201800407
– volume: 346
  start-page: 1215
  year: 2014
  ident: 24828_CR36
  publication-title: Surf. Sci.
– volume: 135
  start-page: 8452
  year: 2013
  ident: 24828_CR54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4027715
– volume: 10
  start-page: 2563
  year: 2017
  ident: 24828_CR24
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01917C
– volume: 4
  start-page: 512
  year: 2019
  ident: 24828_CR35
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0402-6
– volume: 29
  start-page: 1700017
  year: 2017
  ident: 24828_CR50
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700017
– volume: 6
  start-page: 1900117
  year: 2019
  ident: 24828_CR19
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900117
– volume: 10
  year: 2019
  ident: 24828_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09666-0
– volume: 1
  start-page: 781
  year: 2018
  ident: 24828_CR34
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0146-x
– volume: 32
  start-page: 1906972
  year: 2020
  ident: 24828_CR40
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906972
– volume: 9
  year: 2018
  ident: 24828_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03380-z
– volume: 4
  start-page: 512
  year: 2019
  ident: 24828_CR32
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0402-6
– volume: 5
  start-page: 222
  year: 2020
  ident: 24828_CR60
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0576-y
– volume: 10
  year: 2019
  ident: 24828_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11765-x
– volume: 140
  start-page: 3876
  year: 2018
  ident: 24828_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00752
– volume: 9
  year: 2018
  ident: 24828_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05341-y
SSID ssj0000391844
Score 2.7244353
Snippet Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential...
Rational design of single atom catalyst is critical for efficient sustainable energy conversion. Single-atomic-site ruthenium stabilized on defective...
SourceID doaj
swepub
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4587
SubjectTerms 140/133
140/146
147/137
147/143
639/301/299/886
639/638/161/886
639/925/357
Active control
Active sites
Catalysts
Chemical engineering
Chemistry
Defects
Density functional theory
Design defects
Electrocatalysts
Electrolytes
Energy conversion
Etching
Evolution
Humanities and Social Sciences
Hydrogen
Hydrogen evolution reactions
Hydroxides
Intermediates
Intermetallic compounds
Iron
Iron compounds
Laboratories
Morphology
multidisciplinary
Nanostructure
Nickel
Nickel compounds
Nickel iron
Oxygen evolution reactions
Renewable energy
Ruthenium
Scanning electron microscopy
Science
Science (multidisciplinary)
Single atom catalysts
Sustainable energy
Transmission electron microscopy
Water splitting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpUq9IChFBEplJNQLWN11bMc-tkBVIdETRb1Zju1oI9IE7Ydgj_xzZpzssumhXLgmzpc943nPnrwh5K3hXqoqgqdJyZkwE8l09A7cPQYeUgTBBf0v1-rqRny-lbc7pb4wJ6yXB-477szJUBXVVKkIob8QFXDkkvvCA6vzpVQeZ1-IeTtkKs3BuQHqIoa_ZCa5PluINCdgRgIXQDOYGUWiJNg_Qpn3cyS3G6X3REVTILp8Qh4PCJKe92_-lDyK7SHZ72tKrp-R3zsKgxQXAprIgFjf1Z7OMZu9rVd3NC3arOEGFDePF7RraYhVP_fRtgbPbhj-_0Ybt8ZinjR0q7KJdLYO8-5XHSIFrEsx-9M1Df0JeHVOFwBnUxL1Ebm5_PT1wxUb6iwwr_h0yQDjYUl0L4C6oSShdFyrIB1QD6lKQEBaB0BdEcXmg-OyAreFwwLJYNDlJH9O9tqujS8IFaXhJVLGANSrKgBvOGF4lEYFFY2vMjLd9Ln1gwg51sJobNoMz7Xtx8nCONk0TtZk5N32mh-9BMeDrS9wKLctUT47HQCjsoNR2X8ZVUaON4ZgB59eWCBfEtX2cpGRN9vT4I24xeLa2K1SG5jQIOLzjBQjAxq90PhMW8-SrreGfhW5zsj7jan9ffhDH3zam-PoCR_rb-fpk78vZzZHh-Av_0fPvCIHHH1oUjCuj8necr6KrwGWLcuT5IF_ACuNM-E
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEFQQERKMhIiAtEzTq245xQKSwVEpwo6s1KbIeNSJOS7KrdI_-cGedR0sNeE-fhzMPfjCffEPImZUbIwoGlCcFCnkYiVM5kYO7OMutXEEzof_suT0751zNxNiTcuqGscvSJ3lHbxmCO_BCgr0Cus5h_uPgTYtco3F0dWmjcJncWsNJgSZdafplyLMh-rjgf_pWJYnXYce8ZsC6BcQg2wnS2Hnna_hnWvFkpOW2X3qAW9cvR8iF5MOBIetQL_hG55ep9crfvLLndJ_eOx0Zuj8nf_zgHKaYGKhdCqH1eGtpifXtdbs6pT-Ns4WYUJ9zRpqbWFb03pHUJtl6F-EccrbIttvekttnklaOrrW2bq9I6CuiXYj1oVlX0EhBsSzsAuL6s-gk5XX7-cXwSDp0XQiPZYh0C6sMm6YZDMIckhSJjSlqRQTAiZA6YSCkLOMwh_bzNmCjAkOEwx_DQqjyKn5K9uqndM0J5nrIcg0gLwViRAALJeMqcSKWVLjVFQBbj99dmoCXH7hiV9tvjsdK9zDTITHuZ6TQg76ZrLnpSjp2jP6JYp5FIqO0PNO0vPdinzoQtkmIhpQOEmfAiVUnOTGJkGplcSBOQg1Ep9GDlnb7WyYC8nk6DdHHTJatds_FjwMUBBmABSWbKNHuh-Zm6XHmmbwXflccqIO9Htbt--K4Jv-1Vc_aET-XPIz_l3-uVjtE42PPdk3pB7jO0lCgJmToge-t2414CBFvnr7yd_QPw8C8N
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiKcIFGQkxAUiso7t2MflUVUrwQWKerMS22GjpgnK7gr2yD9nxnlAKlSJa2I7D89nf2OPvyHkhWZWyNID0oRgMdeJiJW3OcDdO-bCDIIL-h8_ydMzvjoX5weEjWdhQtB-kLQMw_QYHfZmwwOkMaCAcfASYn2DHKFUO9j20XK5-ryaVlZQ81xxPpyQSVL1j8qzWSiI9c8Y5tX4yGmT9IqgaJiETu6Q2wN7pMv-fe-SA9_cIzf7fJL7--TXX-qCFBcBah-DU31ZWdphJHtT7S5pWLDZQwMUN443tG2o82U_7tGmAlTXMZ59o3W-x0Se1LW7ovZ0vXdd-7NyngLPpRj5mdc1_QFctaMboLIhgPoBOTv58OXdaTzkWIitZIttDPwO06FbDm4byhGKnCnpRA5uh5AFsB-lHDAuj0LzLmeiBMjCZY6OoFNFkj4kh03b-EeE8kKzAt1FB25XmQHXyLlmXmjppNe2jMhi_OfGDgLkmAejNmEjPFWm7ycD_WRCPxkdkVdTne-9_Ma1pd9iV04lUTo7XGi7b2YwJZMLV2blQkoPXDLjpVZZwWxmpU5sIaSNyPFoCGbA88aA4yVQaS_lEXk-3QYk4vZK3vh2F8rAYAazPYtINjOg2QvN7zTVOmh6K_ivPFUReT2a2p-HX_fBL3tznD3hffV1GT75Yrs2KQKCPf6_dp-QWwzRkmQxU8fkcNvt_FMgX9vi2YC2379lKlg
  priority: 102
  providerName: Springer Nature
Title Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting
URI https://link.springer.com/article/10.1038/s41467-021-24828-9
https://www.proquest.com/docview/2555778634
https://www.proquest.com/docview/2556388472
https://pubmed.ncbi.nlm.nih.gov/PMC8319438
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300032
https://doaj.org/article/a5df7f166e32474f987b2c7c690cb56c
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZ2ERIviKsIjMpIiBcItI7t2A8IdWVlqrQJAUV9sxLbWSOyZEtbsT7yzzl20kKmaRIvieQ4N_t89vf5cg5CryTRjGcWkMYYCanss1BYnQDcrSHG9yBuQP_klB9P6WTGZjtoE-6oLcDFjdLOxZOa1sW7q8v1RwD8h2bLuHi_oB7ubrEBoaAgQrmL9qFnil1Eg5OW7vuWOZIgaGi7d-bmWzv9k3fj3-Ge11dObqdPr7ka9d3T-D661_JKPGwM4QHaseVDdKeJNLl-hH7_43cQu-GBwoYgt89zjWu3xr3MV-fYD-Ws4QHYTSkvcFViY7OmRcRlDngvQrcrDhfJ2oX4xKZapYXF87Wpq6vcWAwMGLs1oUlR4F_AYmu8AJLrl1Y_RtPx0ffRcdhGXwg1J4NlCMzPBUrXFASdc1TIEiK4YQkIEsZT4EVCGOBi1rmgNwlhGYAZkqmTiEak_egJ2iur0j5FmKaSpE5IGhBkWQwsJKGSWCa54VbqLECDTZkr3bomdxEyCuWnyCOhmnpSUE_K15OSAXqzveeiccxxa-5DV5XbnM6ptk-o6jPVYlQlzGRxNuDcAsuMaSZFnBIday77OmVcB-hgYwhqY6gKJBlzPvgiGqCX28uAUTfxkpS2Wvk80MwBDyABijsG1Pmg7pUyn3tv3wLKlUYiQG83pvb35bf98OvGHDtv-JT_GPpf_rmcq8gBgjz7v-c-R3eJQ0s_Dok4QHvLemVfAC1bpj20G89iOIrx5x7aHw4n3yZwPjw6_fIVUkd81PMDHj2PyT_N8Dlg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESoXBAVEoICRgAtEzTp24hwQKi3Llj5OLerNJLbDRqRJ2YfKHvlD_EZmnGRLethbr4nzsOf1zXg8Q8jrhGkR5RYkTQjm8yQQvrQ6BXG3hhlnQTCgf3QcjU751zNxtkb-dmdhMK2y04lOUZtaY4x8G6CvwFpnIf948cvHrlG4u9q10GjY4sAuLsFlm37Y3wP6vmFs-Plkd-S3XQV8HbHBzAdEgw3ANQdHBQvwiZTJyIgUgLaIMrD3UhrAGBZLq5uUiRyYFC5zdH2MzIIQ3nuL3OYhWHI8mT78sozpYLV1yXl7NicI5faUO02EeRCMg3PjJz3759oE9LDt9czM5fbstVKmzvwN75N7LW6lOw2jPSBrttokd5pOlotNsrHbNY57SP78V-OQYiiitD649ueFphPMp6-K-Tl1YaMFvIziAk9pXVFj80b70qoA3VL6eAKPlukC24lSU8-z0tLxwkzq34WxFNA2xfzTtCzpJSDmCZ0CoHZp3I_I6Y3Q5DFZr-rKPiGUZwnL0Gk14PzlMSCelCfMiiQykU107pFBt_5Kt2XQsRtHqdx2fChVQzMFNFOOZirxyLvlMxdNEZCVoz8hWZcjsYC3u1BPfqhWH6hUmDzOB1FkAdHGPE9knDEd6ygJdCYi7ZGtjilUq1Wm6koGPPJqeRuoi5s8aWXruRsDKhUwB_NI3GOm3g_171TF2FUWl7CuPJQeed-x3dXHV034bcOavS_sFd923JR_zsYqROFgT1dP6iXZGJ0cHarD_eODZ-QuQ6kJYp_JLbI-m8ztc4B_s-yFkzlKvt-0kP8DrfFneQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVjwuCAqIQAEjAReIdtdrJ84BobbbVUthVSGKejOJ7bARaVL2obJH_ha_jhkn2ZIe9tZr4jzsefgbe_wNIa8ipkWQWrA0IZjPo57wpdUxmLs1zLgZBBf0P4-DgxP-8VScbpC_zVkYTKtsfKJz1KbUuEbeBegrkOtswLtpnRZxPBx9OP_lYwUp3GltymlUKnJklxcQvs3eHw5B1q8ZG-1_3Tvw6woDvg5Yf-4DusFi4JpD0IJkfCJmMjAiBtAtggTmfikN4A2LNOsmZiIFhYXLHMMgI5PeAN57g2yGGBV1yObu_vj4y2qFB7nXJef1SZ3eQHZn3PklzIpgHEIdP2rNhq5oQAvpXs3TXG3WXiE2dZPh6B65W6NYulOp3X2yYYstcrOqa7ncIrf3mjJyD8if_xgPKS5M5NaHQP8s03SK2fVFtjijbhFpCS-jOMQzWhbU2LTyxbTIwNPkPp7Ho3m8xOKi1JSLJLd0sjTT8ndmLAXsTTEbNc5zegH4eUpnAK9dUvdDcnItUnlEOkVZ2MeE8iRiCYawBkLBNAT8E_OIWREFJrCRTj3Sb8Zf6ZoUHWtz5Mptzg-kqmSmQGbKyUxFHnm7eua8ogRZ23oXxbpqiXTe7kI5_aFq76BiYdIw7QeBBXwb8jSSYcJ0qIOopxMRaI9sN0qhah8zU5cW4ZGXq9sgXdzyiQtbLlwbcLCAQJhHwpYytX6ofafIJo5nXMK48oH0yLtG7S4_vq7DbyrVbH1hmH3bcV3-OZ-oARoHe7K-Uy_ILTBw9elwfPSU3GFoNL3QZ3KbdObThX0GWHCePK-NjpLv123n_wC8-W0L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+single-atomic+ruthenium+catalytic+sites+on+defective+nickel-iron+layered+double+hydroxide+for+overall+water+splitting&rft.jtitle=Nature+communications&rft.au=Zhai%2C+Panlong&rft.au=Xia%2C+Mingyue&rft.au=Wu%2C+Yunzhen&rft.au=Zhang%2C+Guanghui&rft.date=2021-07-28&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-24828-9&rft.externalDocID=10_1038_s41467_021_24828_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon