Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting
Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalyti...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 4587 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.07.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru
1
/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru
1
/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm
−2
for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru
1
/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru
1
/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.
Rational design of single atom catalyst is critical for efficient sustainable energy conversion. Single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets achieve superior HER and OER performance in alkaline media. |
---|---|
AbstractList | Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru
1
/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru
1
/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm
−2
for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru
1
/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru
1
/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.
Rational design of single atom catalyst is critical for efficient sustainable energy conversion. Single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets achieve superior HER and OER performance in alkaline media. Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru 1 /D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru 1 /D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm −2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru 1 /D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru 1 /D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts. Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.Rational design of single atom catalyst is critical for efficient sustainable energy conversion. Single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets achieve superior HER and OER performance in alkaline media. Rational design of single atom catalyst is critical for efficient sustainable energy conversion. Single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets achieve superior HER and OER performance in alkaline media. Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru-1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru-1/D-NiFe LDH delivers an ultralow overpotential of 18mV at 10mAcm(-2) for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru-1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O-O coupling at a Ru-O active site for oxygen evolution reaction. The Ru-1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts. Rational design of single atom catalyst is critical for efficient sustainable energy conversion. Single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets achieve superior HER and OER performance in alkaline media. Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm-2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O-O coupling at a Ru-O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm-2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O-O coupling at a Ru-O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts. |
ArticleNumber | 4587 |
Author | Cao, Shuyan Fan, Zhaozhong Sun, Licheng Zhang, Xiaomeng Zhang, Yanting Zhang, Guanghui Zhai, Panlong Gao, Junfeng Miller, Jeffrey T. Xia, Mingyue Zhang, Bo Li, Zhuwei Wang, Chen Wu, Yunzhen Hou, Jungang |
Author_xml | – sequence: 1 givenname: Panlong surname: Zhai fullname: Zhai, Panlong organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology – sequence: 2 givenname: Mingyue surname: Xia fullname: Xia, Mingyue organization: Laboratory of Materials Modification by Laser Ion and Electron Beams (Dalian University of Technology), Ministry of Education – sequence: 3 givenname: Yunzhen surname: Wu fullname: Wu, Yunzhen organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology – sequence: 4 givenname: Guanghui orcidid: 0000-0002-5854-6909 surname: Zhang fullname: Zhang, Guanghui organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology – sequence: 5 givenname: Junfeng surname: Gao fullname: Gao, Junfeng organization: Laboratory of Materials Modification by Laser Ion and Electron Beams (Dalian University of Technology), Ministry of Education – sequence: 6 givenname: Bo surname: Zhang fullname: Zhang, Bo organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology – sequence: 7 givenname: Shuyan surname: Cao fullname: Cao, Shuyan organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology – sequence: 8 givenname: Yanting surname: Zhang fullname: Zhang, Yanting organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology – sequence: 9 givenname: Zhuwei surname: Li fullname: Li, Zhuwei organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology – sequence: 10 givenname: Zhaozhong surname: Fan fullname: Fan, Zhaozhong organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology – sequence: 11 givenname: Chen surname: Wang fullname: Wang, Chen organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology – sequence: 12 givenname: Xiaomeng surname: Zhang fullname: Zhang, Xiaomeng organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology – sequence: 13 givenname: Jeffrey T. surname: Miller fullname: Miller, Jeffrey T. organization: Davidson School of Chemical Engineering, Purdue University – sequence: 14 givenname: Licheng orcidid: 0000-0002-4521-2870 surname: Sun fullname: Sun, Licheng organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology – sequence: 15 givenname: Jungang orcidid: 0000-0003-1896-2999 surname: Hou fullname: Hou, Jungang email: jhou@dlut.edu.cn organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300032$$DView record from Swedish Publication Index |
BookMark | eNp9Uk1vEzEQXaEiWkL_ACdLXLgsrD_W670gVaVApUpcgKvl2LOJU8cOtjclR_453iQC0kN9sEfj996Mx-9ldeaDh6p6jZt3uKHifWKY8a5uCK4JE0TU_bPqgjQM17gj9Oy_-Ly6TGnVlEV7LBh7UZ1TRslEv6h-3_iF9QDR-gVKZXNQqxzWVqM45iV4O66RVlm5XS65ZDMkFDwyMIDOdgvIW30PrraxZJ3aQQSDTBjnDtByZ2L4ZQ2gIUQUthCVc-hBZYgobZzNuRR8VT0flEtweTxn1fdPN9-uv9R3Xz_fXl_d1ZoTnOue0JbxVrMed5gK0ioiuGkVLiGfY9IKYRih0BDKjSLtQHFf0oywpjNi3tBZdXvQNUGt5CbatYo7GZSV-0SIC6lieaMDqVozdAPmHChhHRt60c2J7jTvGz1vuS5a9UErPcBmnJ-ofbQ_rvZq93kp6TR1UvAfDvgCXoPR4HMZxQnt9MbbpVyErRTlFYyKIvD2KBDDzxFSlmubNDinPIQxSdK2nArBuqnWm0fQVRijL6OdUG3XCV6-f1aRA0rHkFKE4W8zuJGTweTBYLIYTO4NJvtCEo9I2maVbZiatu5pKj1ObDNZDeK_rp5g_QHzF-aS |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_144970 crossref_primary_10_1016_j_cej_2023_142555 crossref_primary_10_1021_acssuschemeng_2c03887 crossref_primary_10_1002_ange_202217296 crossref_primary_10_1016_j_cej_2023_145826 crossref_primary_10_1016_j_ccr_2022_214973 crossref_primary_10_1039_D5CC00344J crossref_primary_10_1080_14686996_2023_2277681 crossref_primary_10_1039_D3RA03643J crossref_primary_10_1002_slct_202400490 crossref_primary_10_1002_sstr_202200094 crossref_primary_10_1002_smll_202207999 crossref_primary_10_1039_D3SC05891C crossref_primary_10_1016_j_joule_2023_08_008 crossref_primary_10_1016_j_jece_2024_113773 crossref_primary_10_1021_acsami_3c03161 crossref_primary_10_1002_adma_202412925 crossref_primary_10_1016_j_cej_2022_136962 crossref_primary_10_1016_j_mtnano_2022_100272 crossref_primary_10_1016_j_jcis_2023_07_048 crossref_primary_10_1016_j_electacta_2024_144607 crossref_primary_10_1039_D3CY01085F crossref_primary_10_1021_acs_energyfuels_4c02080 crossref_primary_10_1016_j_nanoen_2023_108296 crossref_primary_10_1002_chem_202302251 crossref_primary_10_1039_D2EE02836K crossref_primary_10_1016_j_ijhydene_2022_08_147 crossref_primary_10_1002_adfm_202405919 crossref_primary_10_1002_adfm_202425606 crossref_primary_10_1002_ange_202309293 crossref_primary_10_1016_j_cej_2023_142538 crossref_primary_10_1016_j_ijhydene_2022_09_077 crossref_primary_10_1016_j_cej_2022_135884 crossref_primary_10_1002_adfm_202308533 crossref_primary_10_1016_j_cej_2024_152860 crossref_primary_10_1002_adma_202419644 crossref_primary_10_1002_adfm_202413533 crossref_primary_10_1016_j_jallcom_2023_173029 crossref_primary_10_1016_j_apcatb_2024_124506 crossref_primary_10_1002_smo_20230026 crossref_primary_10_1016_j_apcatb_2023_123332 crossref_primary_10_1073_pnas_2319136121 crossref_primary_10_1039_D4QI01046A crossref_primary_10_1021_acscatal_2c03476 crossref_primary_10_1021_acsomega_2c05156 crossref_primary_10_3390_molecules29184304 crossref_primary_10_1039_D2CC02732A crossref_primary_10_1002_ange_202308091 crossref_primary_10_1016_j_jallcom_2022_167784 crossref_primary_10_1016_j_matlet_2024_135868 crossref_primary_10_1016_j_cej_2025_159303 crossref_primary_10_1002_adfm_202213058 crossref_primary_10_1021_acscatal_2c03230 crossref_primary_10_1016_j_ijhydene_2024_12_485 crossref_primary_10_1002_cssc_202401186 crossref_primary_10_3390_ma16083280 crossref_primary_10_1016_j_apcatb_2023_123227 crossref_primary_10_1021_acsnano_2c07255 crossref_primary_10_1002_adfm_202208718 crossref_primary_10_3390_ma16083044 crossref_primary_10_1002_ange_202200946 crossref_primary_10_1002_ange_202404418 crossref_primary_10_1016_j_ijhydene_2023_01_212 crossref_primary_10_1002_ange_202312644 crossref_primary_10_1016_j_jcis_2023_05_123 crossref_primary_10_1039_D3CC03260D crossref_primary_10_1039_D4SC05547K crossref_primary_10_1002_adma_202203420 crossref_primary_10_1007_s12598_022_02168_x crossref_primary_10_1016_j_jelechem_2024_118284 crossref_primary_10_1039_D1EE03610F crossref_primary_10_1016_j_apcatb_2024_123717 crossref_primary_10_3390_molecules26216501 crossref_primary_10_1016_j_fuel_2024_131128 crossref_primary_10_1002_adfm_202210837 crossref_primary_10_1039_D3EE03896C crossref_primary_10_1360_SSC_2022_0242 crossref_primary_10_1016_j_apcatb_2024_123830 crossref_primary_10_1016_j_ccr_2021_214261 crossref_primary_10_1016_j_electacta_2023_142242 crossref_primary_10_1016_j_ijhydene_2023_03_236 crossref_primary_10_1002_aesr_202100189 crossref_primary_10_1016_j_nanoen_2024_110545 crossref_primary_10_1002_celc_202101387 crossref_primary_10_1016_j_jallcom_2023_168952 crossref_primary_10_1021_acsami_3c07326 crossref_primary_10_1002_adfm_202402933 crossref_primary_10_1016_j_electacta_2023_143335 crossref_primary_10_1016_j_apcatb_2023_123327 crossref_primary_10_1002_adfm_202408364 crossref_primary_10_1016_j_apcatb_2022_122295 crossref_primary_10_1016_j_apcatb_2024_123706 crossref_primary_10_1002_aenm_202202595 crossref_primary_10_1002_sstr_202200041 crossref_primary_10_1016_j_matt_2024_05_034 crossref_primary_10_1002_chem_202302055 crossref_primary_10_1002_adma_202107488 crossref_primary_10_1016_j_matre_2022_100146 crossref_primary_10_1002_advs_202406008 crossref_primary_10_1002_smll_202206531 crossref_primary_10_1016_j_matre_2022_100144 crossref_primary_10_1039_D1TA09441F crossref_primary_10_1002_advs_202412805 crossref_primary_10_1039_D4TA08245A crossref_primary_10_1002_aenm_202202317 crossref_primary_10_1039_D4CE00945B crossref_primary_10_2139_ssrn_4007241 crossref_primary_10_1021_acs_nanolett_3c04419 crossref_primary_10_1039_D2QI02325C crossref_primary_10_1016_j_apcatb_2023_122683 crossref_primary_10_1016_j_apcatb_2023_122684 crossref_primary_10_1038_s41467_023_37530_9 crossref_primary_10_1016_j_cej_2024_152808 crossref_primary_10_1016_j_mattod_2025_02_024 crossref_primary_10_1002_aenm_202300254 crossref_primary_10_1002_smll_202409097 crossref_primary_10_1021_acsnano_4c06220 crossref_primary_10_1038_s41467_022_33778_9 crossref_primary_10_1002_cctc_202400622 crossref_primary_10_1021_acscatal_2c01090 crossref_primary_10_1039_D3QI01609A crossref_primary_10_1002_adfm_202214069 crossref_primary_10_1002_cctc_202401950 crossref_primary_10_1016_j_cinorg_2024_100043 crossref_primary_10_1016_j_cej_2022_135456 crossref_primary_10_1039_D3EY00165B crossref_primary_10_1039_D2CE00924B crossref_primary_10_1016_j_fuel_2022_126209 crossref_primary_10_1016_j_apsusc_2023_156616 crossref_primary_10_1016_j_nanoen_2023_109236 crossref_primary_10_1021_acscatal_4c04454 crossref_primary_10_1039_D2EE01094A crossref_primary_10_1002_cctc_202401584 crossref_primary_10_1016_j_cej_2023_142035 crossref_primary_10_1016_j_gee_2022_12_003 crossref_primary_10_1002_adfm_202309250 crossref_primary_10_1002_adma_202414138 crossref_primary_10_1039_D2TA04120K crossref_primary_10_1002_smll_202404545 crossref_primary_10_1039_D3TA08079J crossref_primary_10_1039_D3DT01562A crossref_primary_10_1039_D2DT01394K crossref_primary_10_1016_j_cej_2024_150054 crossref_primary_10_1002_anie_202217815 crossref_primary_10_1016_j_apsusc_2022_153717 crossref_primary_10_1016_j_jcat_2024_115352 crossref_primary_10_1039_D4CY00550C crossref_primary_10_1016_j_chempr_2023_08_014 crossref_primary_10_1016_j_jcat_2024_115354 crossref_primary_10_1016_j_jallcom_2025_179306 crossref_primary_10_1002_adfm_202311683 crossref_primary_10_1002_adfm_202301526 crossref_primary_10_1039_D4CS00333K crossref_primary_10_1002_metm_11 crossref_primary_10_1007_s12274_022_5118_4 crossref_primary_10_1039_D3QI01131C crossref_primary_10_1002_aenm_202301224 crossref_primary_10_1002_aenm_202200409 crossref_primary_10_1002_aenm_202302436 crossref_primary_10_1016_j_jechem_2024_08_030 crossref_primary_10_1039_D5CC00884K crossref_primary_10_1080_10408347_2024_2358492 crossref_primary_10_1002_smll_202207235 crossref_primary_10_1002_adma_202418504 crossref_primary_10_1007_s12598_024_03201_x crossref_primary_10_1002_aenm_202203913 crossref_primary_10_1021_acsmaterialslett_4c00066 crossref_primary_10_1016_j_enchem_2024_100119 crossref_primary_10_1016_j_susmat_2022_e00461 crossref_primary_10_1016_j_nanoen_2022_107615 crossref_primary_10_1039_D3TA05863H crossref_primary_10_1016_j_apcatb_2022_122139 crossref_primary_10_1016_j_ijhydene_2023_03_426 crossref_primary_10_1364_AO_462113 crossref_primary_10_1021_jacs_1c07391 crossref_primary_10_1002_smll_202311217 crossref_primary_10_1002_adma_202206960 crossref_primary_10_1016_j_jcis_2024_04_180 crossref_primary_10_1021_acsanm_4c02906 crossref_primary_10_1021_acs_energyfuels_3c05075 crossref_primary_10_1007_s12274_022_4618_6 crossref_primary_10_1007_s12274_023_5558_5 crossref_primary_10_1002_anie_202404418 crossref_primary_10_1007_s40242_021_1336_7 crossref_primary_10_1016_S1872_2067_21_63987_6 crossref_primary_10_1002_adfm_202310690 crossref_primary_10_1016_j_jallcom_2025_178477 crossref_primary_10_1016_j_jcis_2023_05_074 crossref_primary_10_1016_j_mtsust_2022_100295 crossref_primary_10_1002_slct_202404910 crossref_primary_10_1016_j_checat_2023_100751 crossref_primary_10_1016_j_jcis_2024_12_046 crossref_primary_10_1039_D2DT00749E crossref_primary_10_1016_j_fuel_2022_124349 crossref_primary_10_1039_D3QI02220J crossref_primary_10_1016_j_apcatb_2021_121008 crossref_primary_10_1002_smll_202207253 crossref_primary_10_1038_s41467_022_32937_2 crossref_primary_10_1002_smll_202309249 crossref_primary_10_1016_j_jcis_2023_01_108 crossref_primary_10_1039_D3TA03473A crossref_primary_10_1016_j_chempr_2022_07_010 crossref_primary_10_1039_D2EE01337A crossref_primary_10_1007_s12274_023_6104_1 crossref_primary_10_1016_j_cej_2024_150374 crossref_primary_10_1002_chem_202301589 crossref_primary_10_3390_ma16072709 crossref_primary_10_1016_j_est_2023_109102 crossref_primary_10_1016_j_watres_2024_123077 crossref_primary_10_1016_j_fuel_2024_131762 crossref_primary_10_1039_D2QI01494G crossref_primary_10_1007_s41918_024_00219_8 crossref_primary_10_1021_acs_inorgchem_2c04181 crossref_primary_10_1002_sstr_202100153 crossref_primary_10_1016_j_checat_2022_08_010 crossref_primary_10_1021_acsami_2c23284 crossref_primary_10_1021_acs_nanolett_2c04380 crossref_primary_10_1016_j_apcatb_2024_124072 crossref_primary_10_1016_j_jcis_2023_04_172 crossref_primary_10_1002_aenm_202203955 crossref_primary_10_1021_acsami_3c04573 crossref_primary_10_1007_s40843_023_2515_0 crossref_primary_10_1016_j_jelechem_2023_117640 crossref_primary_10_1021_acssuschemeng_2c06708 crossref_primary_10_1039_D2TA03143D crossref_primary_10_1007_s12274_023_5769_9 crossref_primary_10_1002_advs_202207321 crossref_primary_10_1016_j_cej_2023_144872 crossref_primary_10_1007_s12274_022_5075_y crossref_primary_10_1038_s41467_022_33847_z crossref_primary_10_1002_adma_202207850 crossref_primary_10_1039_D2QI02582E crossref_primary_10_1016_j_jallcom_2023_170078 crossref_primary_10_1002_aenm_202401716 crossref_primary_10_1039_D2CE00723A crossref_primary_10_1021_acs_chemmater_1c03015 crossref_primary_10_1016_j_catcom_2022_106425 crossref_primary_10_1016_j_ccr_2022_214869 crossref_primary_10_1021_acs_analchem_2c02334 crossref_primary_10_1016_j_carbon_2023_118141 crossref_primary_10_1021_acsmaterialsau_4c00062 crossref_primary_10_1002_adfm_202202141 crossref_primary_10_1002_advs_202300342 crossref_primary_10_1007_s41918_023_00186_6 crossref_primary_10_1016_j_apcatb_2022_121354 crossref_primary_10_1016_j_ijhydene_2022_11_295 crossref_primary_10_1016_j_jpowsour_2023_233163 crossref_primary_10_1021_acs_inorgchem_3c04266 crossref_primary_10_1016_j_jallcom_2022_167743 crossref_primary_10_1016_j_ijhydene_2025_01_170 crossref_primary_10_1016_j_cej_2024_151330 crossref_primary_10_1016_j_gee_2024_02_006 crossref_primary_10_1002_ange_202302220 crossref_primary_10_1016_j_cej_2024_149498 crossref_primary_10_1016_j_apcatb_2022_122316 crossref_primary_10_1002_adfm_202203342 crossref_primary_10_1039_D3QM01179H crossref_primary_10_1039_D2QI00847E crossref_primary_10_1002_smll_202311076 crossref_primary_10_1002_cphc_202200776 crossref_primary_10_1016_j_jcis_2023_10_106 crossref_primary_10_1002_cssc_202201030 crossref_primary_10_1002_idm2_12011 crossref_primary_10_1021_acscatal_4c01829 crossref_primary_10_1021_acsaem_3c00537 crossref_primary_10_1016_j_seppur_2023_123771 crossref_primary_10_1002_cssc_202400640 crossref_primary_10_1002_adfm_202406670 crossref_primary_10_1002_smll_202305877 crossref_primary_10_1002_ange_202306553 crossref_primary_10_1016_j_colsurfa_2022_129320 crossref_primary_10_1016_j_ijhydene_2024_01_026 crossref_primary_10_1016_j_flatc_2024_100775 crossref_primary_10_1016_j_seppur_2023_124638 crossref_primary_10_3390_nano12172970 crossref_primary_10_1016_j_jallcom_2022_165705 crossref_primary_10_3390_catal13040712 crossref_primary_10_1016_j_mseb_2023_116884 crossref_primary_10_1002_smll_202203838 crossref_primary_10_1002_smll_202201896 crossref_primary_10_3390_nano13010074 crossref_primary_10_1007_s12274_023_5469_5 crossref_primary_10_1016_j_cej_2024_156430 crossref_primary_10_1002_smll_202306836 crossref_primary_10_1016_j_jmst_2024_07_025 crossref_primary_10_1039_D4QI01851F crossref_primary_10_1002_smll_202208045 crossref_primary_10_1016_j_nanoen_2022_107212 crossref_primary_10_1021_acs_inorgchem_3c01587 crossref_primary_10_1039_D2TA07292K crossref_primary_10_1016_j_ijhydene_2024_10_084 crossref_primary_10_1002_aenm_202302727 crossref_primary_10_1016_j_jcis_2023_03_133 crossref_primary_10_1039_D1NJ05434A crossref_primary_10_1016_j_susmat_2024_e01160 crossref_primary_10_1021_acssuschemeng_2c04034 crossref_primary_10_1016_j_fuel_2024_133804 crossref_primary_10_1039_D4TA01763C crossref_primary_10_1002_smll_202406105 crossref_primary_10_1002_inf2_12357 crossref_primary_10_1016_j_ijhydene_2024_01_363 crossref_primary_10_1002_adfm_202408872 crossref_primary_10_1016_j_ces_2023_119089 crossref_primary_10_1002_adma_202210703 crossref_primary_10_1016_j_apcatb_2022_121799 crossref_primary_10_1039_D4CY00314D crossref_primary_10_1002_ange_202306333 crossref_primary_10_1039_D2TA07196G crossref_primary_10_1016_j_ccr_2024_215832 crossref_primary_10_1039_D3DT03249C crossref_primary_10_1002_adma_202401694 crossref_primary_10_1002_adma_202411134 crossref_primary_10_1007_s40820_024_01424_2 crossref_primary_10_1021_jacs_5c00033 crossref_primary_10_1039_D2CE00886F crossref_primary_10_1002_ange_202406043 crossref_primary_10_1002_smll_202304636 crossref_primary_10_1016_j_cej_2024_154235 crossref_primary_10_1002_smll_202410603 crossref_primary_10_1002_advs_202104706 crossref_primary_10_1039_D1CC05683B crossref_primary_10_1002_ange_202217815 crossref_primary_10_1002_anie_202214259 crossref_primary_10_1002_advs_202304179 crossref_primary_10_1016_j_apcatb_2022_121541 crossref_primary_10_1002_anie_202306333 crossref_primary_10_1002_advs_202300639 crossref_primary_10_1039_D1TA06216F crossref_primary_10_1002_smll_202201740 crossref_primary_10_1016_j_ijhydene_2025_02_023 crossref_primary_10_20517_microstructures_2024_76 crossref_primary_10_1002_adfm_202414493 crossref_primary_10_1016_j_cej_2022_138497 crossref_primary_10_1002_aenm_202102573 crossref_primary_10_1016_j_cej_2022_137161 crossref_primary_10_1039_D2QI02285K crossref_primary_10_1016_j_jallcom_2023_169496 crossref_primary_10_1016_j_cej_2024_158701 crossref_primary_10_1016_j_jechem_2023_05_013 crossref_primary_10_1016_j_jelechem_2023_117591 crossref_primary_10_1021_acs_inorgchem_2c03929 crossref_primary_10_1016_j_jpowsour_2022_231068 crossref_primary_10_1002_cey2_554 crossref_primary_10_1016_j_trechm_2023_01_002 crossref_primary_10_3390_catal13010090 crossref_primary_10_1016_j_cej_2021_133648 crossref_primary_10_1039_D3TA02332J crossref_primary_10_1039_D3TA07803E crossref_primary_10_1038_s44221_023_00169_3 crossref_primary_10_1002_tcr_202200237 crossref_primary_10_20517_microstructures_2024_62 crossref_primary_10_1039_D2SE01032A crossref_primary_10_1016_j_jallcom_2023_172200 crossref_primary_10_1021_acs_chemmater_2c00932 crossref_primary_10_1039_D4TA04340E crossref_primary_10_1016_j_mtchem_2023_101747 crossref_primary_10_1002_smll_202306631 crossref_primary_10_1002_aenm_202303730 crossref_primary_10_1021_acs_energyfuels_2c00565 crossref_primary_10_1002_adfm_202313770 crossref_primary_10_1002_anie_202306553 crossref_primary_10_1016_j_cej_2023_142177 crossref_primary_10_1039_D2TA03368B crossref_primary_10_3390_nano14141168 crossref_primary_10_1002_aenm_202303614 crossref_primary_10_1016_j_jcis_2023_08_112 crossref_primary_10_1021_acsnano_1c06017 crossref_primary_10_1016_j_apsusc_2023_158474 crossref_primary_10_1002_smll_202304560 crossref_primary_10_1063_5_0136851 crossref_primary_10_3390_en15134645 crossref_primary_10_1039_D2CC06879F crossref_primary_10_1002_cey2_695 crossref_primary_10_1016_j_ijhydene_2022_06_265 crossref_primary_10_1002_cey2_575 crossref_primary_10_1002_advs_202415525 crossref_primary_10_1002_tcr_202200212 crossref_primary_10_1002_anie_202306420 crossref_primary_10_1002_anie_202312644 crossref_primary_10_1016_j_checat_2022_05_003 crossref_primary_10_1021_acs_iecr_2c02958 crossref_primary_10_3390_su151914556 crossref_primary_10_1016_j_apsusc_2022_155904 crossref_primary_10_3390_ma17010199 crossref_primary_10_1021_acs_jpcc_3c06622 crossref_primary_10_1039_D3TA00156C crossref_primary_10_1002_adfm_202205920 crossref_primary_10_1002_ange_202306420 crossref_primary_10_1021_jacs_4c15847 crossref_primary_10_1002_smll_202208261 crossref_primary_10_1016_j_mtener_2022_100966 crossref_primary_10_1021_acsanm_4c05845 crossref_primary_10_1016_j_cej_2024_150976 crossref_primary_10_1039_D2NR05245H crossref_primary_10_1002_anie_202200946 crossref_primary_10_1016_j_apcatb_2022_121605 crossref_primary_10_1002_adfm_202422634 crossref_primary_10_1021_acsanm_3c02247 crossref_primary_10_1002_advs_202204751 crossref_primary_10_1038_s41467_024_54318_7 crossref_primary_10_1016_j_ccr_2023_215143 crossref_primary_10_1039_D3TA04947G crossref_primary_10_1007_s12274_021_4024_5 crossref_primary_10_1002_adma_202311148 crossref_primary_10_1021_acsmaterialslett_4c00633 crossref_primary_10_1016_j_mtnano_2023_100387 crossref_primary_10_1073_pnas_2315362121 crossref_primary_10_1002_adfm_202413916 crossref_primary_10_1039_D3CS00708A crossref_primary_10_1039_D3SE00233K crossref_primary_10_1016_j_ccr_2024_215899 crossref_primary_10_3390_molecules28010315 crossref_primary_10_1007_s40242_024_4121_6 crossref_primary_10_1002_adma_202303649 crossref_primary_10_1039_D2TA04789F crossref_primary_10_1016_j_jallcom_2023_168994 crossref_primary_10_1016_j_ijhydene_2024_09_338 crossref_primary_10_1007_s13391_024_00538_4 crossref_primary_10_1016_j_cej_2022_139957 crossref_primary_10_1016_j_csbj_2022_11_015 crossref_primary_10_1016_j_pmatsci_2024_101410 crossref_primary_10_1016_j_jechem_2023_03_037 crossref_primary_10_1016_j_cej_2023_146062 crossref_primary_10_1016_j_ijhydene_2023_01_277 crossref_primary_10_1038_s41467_024_53824_y crossref_primary_10_1016_j_ijhydene_2023_08_107 crossref_primary_10_1038_s41467_022_28918_0 crossref_primary_10_1002_adfm_202209543 crossref_primary_10_1021_acsanm_4c05501 crossref_primary_10_1002_admi_202400916 crossref_primary_10_1016_j_apsusc_2024_160112 crossref_primary_10_1016_j_electacta_2024_145529 crossref_primary_10_1021_acsaem_3c02348 crossref_primary_10_1021_acssuschemeng_4c02912 crossref_primary_10_1016_j_apsusc_2023_159089 crossref_primary_10_1038_s41578_023_00633_2 crossref_primary_10_1002_anie_202406043 crossref_primary_10_1016_j_jece_2024_112996 crossref_primary_10_1021_acsami_4c10721 crossref_primary_10_1038_s41929_024_01209_1 crossref_primary_10_1002_adma_202500595 crossref_primary_10_1039_D3MH00644A crossref_primary_10_1016_j_est_2024_112174 crossref_primary_10_1002_adfm_202308813 crossref_primary_10_1002_smtd_202201472 crossref_primary_10_1016_j_apcatb_2022_121832 crossref_primary_10_1002_adma_202419360 crossref_primary_10_1002_smll_202206844 crossref_primary_10_1016_j_ijhydene_2022_07_013 crossref_primary_10_1016_j_apsusc_2024_161335 crossref_primary_10_1016_j_electacta_2022_140665 crossref_primary_10_1016_j_cclet_2023_109268 crossref_primary_10_1038_s41467_023_37676_6 crossref_primary_10_1002_cctc_202400827 crossref_primary_10_1002_solr_202200587 crossref_primary_10_1016_j_coelec_2024_101552 crossref_primary_10_1016_j_apcatb_2023_123187 crossref_primary_10_1039_D4TA05839A crossref_primary_10_1016_j_apcatb_2024_124214 crossref_primary_10_1016_j_apcatb_2024_124213 crossref_primary_10_1016_j_nanoen_2023_108225 crossref_primary_10_1021_acsami_4c00974 crossref_primary_10_1038_s41467_022_30766_x crossref_primary_10_1039_D2TA01333A crossref_primary_10_1002_adfm_202421740 crossref_primary_10_1002_smll_202402846 crossref_primary_10_1002_aenm_202400059 crossref_primary_10_1039_D4DT01285B crossref_primary_10_1007_s12598_023_02389_8 crossref_primary_10_1039_D4TA07453J crossref_primary_10_1002_adma_202501387 crossref_primary_10_1002_anie_202309293 crossref_primary_10_1016_j_jechem_2024_05_019 crossref_primary_10_1021_acs_inorgchem_1c03602 crossref_primary_10_1002_tcr_202300013 crossref_primary_10_1002_smtd_202201371 crossref_primary_10_1002_ange_202214259 crossref_primary_10_1016_j_nanoen_2022_107266 crossref_primary_10_1021_acsaem_4c02585 crossref_primary_10_1002_cssc_202201985 crossref_primary_10_1002_smll_202308530 crossref_primary_10_1016_j_apsusc_2024_159576 crossref_primary_10_1016_j_ijhydene_2023_03_077 crossref_primary_10_1039_D1CC06612A crossref_primary_10_1021_acsanm_3c01222 crossref_primary_10_1002_cnma_202300125 crossref_primary_10_1002_anie_202308091 crossref_primary_10_1016_j_cej_2024_157208 crossref_primary_10_1016_j_ijhydene_2023_10_096 crossref_primary_10_1039_D2SE01355J crossref_primary_10_1063_5_0160301 crossref_primary_10_1002_adfm_202315674 crossref_primary_10_1016_j_ijhydene_2023_01_237 crossref_primary_10_1002_cssc_202400737 crossref_primary_10_1021_acsami_4c16063 crossref_primary_10_1021_acscatal_2c03684 crossref_primary_10_1016_j_apcatb_2022_121906 crossref_primary_10_1021_acsomega_3c05477 crossref_primary_10_1021_acscatal_2c05624 crossref_primary_10_1016_j_apsusc_2024_160310 crossref_primary_10_1039_D3SE00204G crossref_primary_10_1002_smll_202400201 crossref_primary_10_3390_molecules29133127 crossref_primary_10_1016_j_ijhydene_2022_09_154 crossref_primary_10_1016_j_cej_2022_137226 crossref_primary_10_1016_j_cej_2024_155258 crossref_primary_10_1021_acsanm_2c01243 crossref_primary_10_1038_s41467_024_45320_0 crossref_primary_10_1039_D3DT04263D crossref_primary_10_1039_D4EE00221K crossref_primary_10_1039_D2CC00331G crossref_primary_10_1002_anie_202302220 crossref_primary_10_1039_D2EE03351H crossref_primary_10_1039_D4EY00205A crossref_primary_10_1021_acscatal_3c03303 crossref_primary_10_1002_adfm_202410618 crossref_primary_10_1007_s12274_022_4874_7 crossref_primary_10_1039_D4TA04284K crossref_primary_10_1002_smll_202306694 crossref_primary_10_1016_j_apsusc_2022_155751 crossref_primary_10_1016_j_jechem_2024_12_053 crossref_primary_10_1002_anie_202217296 crossref_primary_10_1016_j_jcis_2024_08_005 crossref_primary_10_1021_acsanm_4c05830 crossref_primary_10_1021_acsanm_3c00398 crossref_primary_10_1038_s41467_025_55837_7 crossref_primary_10_1002_celc_202400159 crossref_primary_10_1002_adma_202406380 crossref_primary_10_1039_D1NR05901G crossref_primary_10_1016_j_apcatb_2023_123269 crossref_primary_10_1016_j_jpowsour_2022_232563 crossref_primary_10_1021_acsanm_2c04519 crossref_primary_10_1039_D3TA07230D crossref_primary_10_1016_j_cej_2022_140403 crossref_primary_10_1016_j_cogsc_2022_100682 crossref_primary_10_1002_adfm_202304403 crossref_primary_10_1007_s12598_022_02249_x crossref_primary_10_1149_1945_7111_ac6e91 crossref_primary_10_3390_ma18030604 crossref_primary_10_1016_j_gee_2023_11_003 crossref_primary_10_1039_D1SE01399H crossref_primary_10_1016_j_carbon_2025_120128 crossref_primary_10_1039_D3TA05922G crossref_primary_10_1039_D4TA00885E crossref_primary_10_1039_D2TA03860A |
Cites_doi | 10.1002/adma.201601019 10.1038/s41467-020-17934-7 10.1038/s41467-018-05019-5 10.1021/jacs.8b00752 10.1002/aenm.201703341 10.1103/PhysRevLett.77.3865 10.1021/acs.nanolett.9b03460 10.1002/adma.201701546 10.1021/ja5096733 10.1021/ja4027715 10.1038/s41560-019-0402-6 10.1002/cssc.201800407 10.1021/jp3007415 10.1002/adma.201705106 10.1038/s41467-018-03138-7 10.1002/anie.201910716 10.1002/adma.201706279 10.1002/smll.201800136 10.1038/s41560-019-0355-9 10.1038/s41467-019-14274-z 10.1038/s41929-018-0146-x 10.1038/s41467-020-16558-1 10.1016/j.apcatb.2020.118627 10.1002/aenm.201600621 10.1103/PhysRevB.54.11169 10.1038/s41467-018-03380-z 10.1002/aenm.201900881 10.1002/anie.201805520 10.1002/adma.201705369 10.1002/adma.201700017 10.1002/adma.201606459 10.1038/nchem.1095 10.1002/anie.201402822 10.1038/s41467-019-14272-1 10.1002/anie.201701477 10.1002/adma.201906972 10.1149/1.1856988 10.1002/advs.201900117 10.1038/s41467-019-09845-z 10.1002/aenm.201602148 10.1021/acsenergylett.8b00696 10.1038/s41467-019-09765-y 10.1038/s41467-018-05341-y 10.1063/1.4865107 10.1038/s41467-019-11765-x 10.1038/s41467-019-09666-0 10.1002/adfm.201808367 10.1002/anie.201605096 10.1002/anie.201915803 10.1038/s41560-020-0576-y 10.1021/jacs.5b06814 10.1038/s41467-020-15069-3 10.1126/science.aaf1525 10.1038/ncomms11981 10.1002/adma.201803144 10.1002/anie.201804881 10.1039/C7EE01917C 10.1038/s41467-018-04788-3 10.1038/ncomms7616 10.1002/adma.201804769 10.1002/aenm.201803060 10.1002/anie.201905281 10.1038/nature11475 10.1021/jacs.6b03714 10.1038/s41467-019-13092-7 10.1038/s41467-020-16237-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021. The Author(s). |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM ADTPV AOWAS D8V DOA |
DOI | 10.1038/s41467-021-24828-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Chemistry |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_a5df7f166e32474f987b2c7c690cb56c oai_DiVA_org_kth_300032 PMC8319438 10_1038_s41467_021_24828_9 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM 4.4 ABAWZ ADTPV AOWAS BAPOH CAG COF D8V EJD LGEZI LOTEE NADUK NXXTH PUEGO |
ID | FETCH-LOGICAL-c621t-9235465c491713825a286d5a18256b12588d423e0236da25f319b1242407d8b03 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:02:14 EDT 2025 Thu Aug 21 06:30:03 EDT 2025 Thu Aug 21 14:02:17 EDT 2025 Fri Jul 11 16:26:58 EDT 2025 Wed Aug 13 04:53:36 EDT 2025 Tue Jul 01 04:17:32 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Fri Feb 21 02:39:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c621t-9235465c491713825a286d5a18256b12588d423e0236da25f319b1242407d8b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4521-2870 0000-0002-5854-6909 0000-0003-1896-2999 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-24828-9 |
PMID | 34321467 |
PQID | 2555778634 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a5df7f166e32474f987b2c7c690cb56c swepub_primary_oai_DiVA_org_kth_300032 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319438 proquest_miscellaneous_2556388472 proquest_journals_2555778634 crossref_primary_10_1038_s41467_021_24828_9 crossref_citationtrail_10_1038_s41467_021_24828_9 springer_journals_10_1038_s41467_021_24828_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-28 |
PublicationDateYYYYMMDD | 2021-07-28 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Xiao (CR24) 2017; 10 Zhang (CR2) 2016; 352 Lim (CR31) 2020; 11 Jiang (CR3) 2019; 10 Zhang (CR52) 2019; 9 Genovese (CR41) 2018; 9 Qiao (CR33) 2011; 3 Jiang (CR12) 2018; 9 Lee, Bai, Hu (CR10) 2020; 59 Wang (CR28) 2017; 56 Trzesniewski (CR63) 2015; 137 Hou (CR20) 2019; 29 Kweon (CR6) 2020; 11 Long (CR53) 2014; 53 Wang, Tan, Zhu, Ho (CR14) 2016; 55 Chu, Majumdar (CR1) 2012; 488 Wu (CR17) 2018; 11 Han (CR43) 2017; 7 Zhang (CR61) 2020; 11 Jiang (CR5) 2020; 11 Asnavandi (CR39) 2018; 7 Jia (CR50) 2017; 29 Yu (CR55) 2019; 10 Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (CR68) 2014; 140 Yu (CR4) 2020; 11 Liu, Wang, Liu, Zou, Wang (CR49) 2017; 29 Cai (CR57) 2018; 57 Zhang (CR30) 2018; 140 Fan (CR18) 2016; 7 Yan (CR8) 2018; 9 Liu (CR32) 2019; 4 Bliem (CR36) 2014; 346 Huang (CR64) 2019; 58 He (CR48) 2019; 58 Wang (CR44) 2019; 10 Gao (CR23) 2019; 31 Huang (CR16) 2019; 4 Yin (CR51) 2018; 30 Qu (CR34) 2018; 1 Li (CR29) 2019; 10 Tang (CR21) 2020; 266 Qin (CR47) 2019; 9 Zhang (CR56) 2020; 20 Song, Hu (CR15) 2014; 136 Chen (CR27) 2018; 57 Perdew, Burke, Ernzerhof (CR67) 1996; 77 Lu, Zhao (CR9) 2015; 6 Ping (CR46) 2016; 28 Yan (CR22) 2017; 29 Liu (CR26) 2018; 30 Wang, Qiao, Li, Wang (CR42) 2018; 14 Li (CR59) 2018; 8 Du (CR19) 2019; 6 Wan (CR38) 2018; 30 Chen (CR45) 2018; 30 Gong (CR54) 2013; 135 Dionigi, Strasser (CR58) 2016; 6 Kress (CR66) 1996; 54 Yin (CR25) 2016; 138 Zhang (CR37) 2018; 9 Yeo, Bell (CR62) 2012; 116 Chung (CR60) 2020; 5 Yan (CR13) 2019; 10 Dionigi (CR11) 2020; 11 Nørskov (CR65) 2005; 152 Song (CR40) 2020; 32 Liu (CR35) 2019; 4 Liu (CR7) 2018; 9 K Jiang (24828_CR5) 2020; 11 T Lim (24828_CR31) 2020; 11 P Li (24828_CR59) 2018; 8 F Dionigi (24828_CR11) 2020; 11 Y Liu (24828_CR7) 2018; 9 X Long (24828_CR53) 2014; 53 S Yin (24828_CR51) 2018; 30 X Lu (24828_CR9) 2015; 6 B Qiao (24828_CR33) 2011; 3 R Liu (24828_CR49) 2017; 29 Y Tang (24828_CR21) 2020; 266 L Yu (24828_CR55) 2019; 10 P Li (24828_CR29) 2019; 10 C Genovese (24828_CR41) 2018; 9 Z Xiao (24828_CR24) 2017; 10 BJ Trzesniewski (24828_CR63) 2015; 137 Y Yin (24828_CR25) 2016; 138 G Chen (24828_CR45) 2018; 30 J Ping (24828_CR46) 2016; 28 S Chu (24828_CR1) 2012; 488 Y Wang (24828_CR42) 2018; 14 K Mathew (24828_CR68) 2014; 140 L Song (24828_CR40) 2020; 32 D Liu (24828_CR32) 2019; 4 J Wang (24828_CR14) 2016; 55 R Bliem (24828_CR36) 2014; 346 DH Kweon (24828_CR6) 2020; 11 DY Chung (24828_CR60) 2020; 5 K Fan (24828_CR18) 2016; 7 FY Yu (24828_CR4) 2020; 11 X Zhang (24828_CR52) 2019; 9 Z Cai (24828_CR57) 2018; 57 D Yan (24828_CR22) 2017; 29 X Wu (24828_CR17) 2018; 11 S Lee (24828_CR10) 2020; 59 J Yan (24828_CR13) 2019; 10 K He (24828_CR48) 2019; 58 J Huang (24828_CR64) 2019; 58 Y Wang (24828_CR28) 2017; 56 M Asnavandi (24828_CR39) 2018; 7 JK Nørskov (24828_CR65) 2005; 152 G Kress (24828_CR66) 1996; 54 ZW Gao (24828_CR23) 2019; 31 J Hou (24828_CR20) 2019; 29 ZF Huang (24828_CR16) 2019; 4 Z Yan (24828_CR8) 2018; 9 J Wan (24828_CR38) 2018; 30 B Zhang (24828_CR2) 2016; 352 M Gong (24828_CR54) 2013; 135 J Jiang (24828_CR12) 2018; 9 J Du (24828_CR19) 2019; 6 M Qin (24828_CR47) 2019; 9 J Zhang (24828_CR30) 2018; 140 F Song (24828_CR15) 2014; 136 BS Yeo (24828_CR62) 2012; 116 F Dionigi (24828_CR58) 2016; 6 B Liu (24828_CR26) 2018; 30 D Wang (24828_CR44) 2019; 10 D Liu (24828_CR35) 2019; 4 JP Perdew (24828_CR67) 1996; 77 Y Qu (24828_CR34) 2018; 1 X Han (24828_CR43) 2017; 7 Y Jia (24828_CR50) 2017; 29 K Jiang (24828_CR3) 2019; 10 J Zhang (24828_CR37) 2018; 9 N Zhang (24828_CR61) 2020; 11 B Zhang (24828_CR56) 2020; 20 D Chen (24828_CR27) 2018; 57 |
References_xml | – volume: 28 start-page: 7640 year: 2016 end-page: 7645 ident: CR46 article-title: Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201601019 – volume: 11 year: 2020 ident: CR61 article-title: Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-020-17934-7 – volume: 9 year: 2018 ident: CR7 article-title: Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 h publication-title: Nat. Commun. doi: 10.1038/s41467-018-05019-5 – volume: 140 start-page: 3876 year: 2018 end-page: 3879 ident: CR30 article-title: Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00752 – volume: 8 start-page: 1703341 year: 2018 ident: CR59 article-title: Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703341 – volume: 77 start-page: 3865 year: 1996 ident: CR67 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 20 start-page: 136 year: 2020 end-page: 144 ident: CR56 article-title: Integrating Rh species with NiFe-layered double hydroxide for overall water splitting publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03460 – volume: 29 start-page: 1701546 year: 2017 ident: CR49 article-title: Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation publication-title: Adv. Mater. doi: 10.1002/adma.201701546 – volume: 136 start-page: 16481 year: 2014 end-page: 16484 ident: CR15 article-title: Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5096733 – volume: 135 start-page: 8452 year: 2013 end-page: 8455 ident: CR54 article-title: An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4027715 – volume: 4 start-page: 512 year: 2019 end-page: 518 ident: CR35 article-title: Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution publication-title: Nat. Energy doi: 10.1038/s41560-019-0402-6 – volume: 11 start-page: 1761 year: 2018 end-page: 1767 ident: CR17 article-title: Hierarchically structured FeNiO H electrocatalyst formed by in situ transformation of metal phosphate for efficient oxygen evolution reaction publication-title: ChemSusChem. doi: 10.1002/cssc.201800407 – volume: 116 start-page: 8394 year: 2012 end-page: 8400 ident: CR62 article-title: In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen publication-title: J. Phys. Chem. C doi: 10.1021/jp3007415 – volume: 30 start-page: 1705106 year: 2018 ident: CR51 article-title: A highly efficient oxygen evolution catalyst consisting of interconnected nickel-iron-layered double hydroxide and carbon nanodomains publication-title: Adv. Mater. doi: 10.1002/adma.201705106 – volume: 9 start-page: 935 year: 2018 ident: CR41 article-title: Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon publication-title: Nat. Comm. doi: 10.1038/s41467-018-03138-7 – volume: 58 start-page: 17458 year: 2019 end-page: 17464 ident: CR64 article-title: Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201910716 – volume: 30 start-page: 1706279 year: 2018 ident: CR45 article-title: Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites publication-title: Adv. Mater. doi: 10.1002/adma.201706279 – volume: 14 start-page: 1800136 year: 2018 ident: CR42 article-title: Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction publication-title: Small doi: 10.1002/smll.201800136 – volume: 4 start-page: 329 year: 2019 end-page: 338 ident: CR16 article-title: Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts publication-title: Nat. Energy doi: 10.1038/s41560-019-0355-9 – volume: 11 year: 2020 ident: CR4 article-title: Pt-O bond as an active site superior to Pt(0) in hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-14274-z – volume: 1 start-page: 781 year: 2018 end-page: 786 ident: CR34 article-title: Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms publication-title: Nat. Catal. doi: 10.1038/s41929-018-0146-x – volume: 11 year: 2020 ident: CR5 article-title: Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-020-16558-1 – volume: 266 start-page: 118627 year: 2020 ident: CR21 article-title: Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118627 – volume: 6 start-page: 1600621 year: 2016 ident: CR58 article-title: NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600621 – volume: 54 start-page: 11169 year: 1996 ident: CR66 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 9 year: 2018 ident: CR37 article-title: Cation vacancy stabilization of single-atomic-site Pt /Ni(OH) catalyst for diboration of alkynes and alkenes publication-title: Nat. Commun. doi: 10.1038/s41467-018-03380-z – volume: 9 start-page: 1900881 year: 2019 ident: CR52 article-title: A simple synthetic strategy toward defect-rich rorous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900881 – volume: 57 start-page: 8691 year: 2018 end-page: 8696 ident: CR27 article-title: Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201805520 – volume: 4 start-page: 512 year: 2019 end-page: 518 ident: CR32 article-title: Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution publication-title: Nat. Energy doi: 10.1038/s41560-019-0402-6 – volume: 30 start-page: 1705369 year: 2018 ident: CR38 article-title: Defect effects on TiO nanosheets: stabilizing single atomic site Au and promoting catalytic properties publication-title: Adv. Mater. doi: 10.1002/adma.201705369 – volume: 29 start-page: 1700017 year: 2017 ident: CR50 article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201700017 – volume: 29 start-page: 1606459 year: 2017 ident: CR22 article-title: Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions publication-title: Adv. Mater. doi: 10.1002/adma.201606459 – volume: 3 start-page: 634 year: 2011 end-page: 641 ident: CR33 article-title: Single-atom catalysis of CO oxidation using Pt /FeO publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 53 start-page: 7584 year: 2014 end-page: 7588 ident: CR53 article-title: A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402822 – volume: 11 year: 2020 ident: CR31 article-title: Atomically dispersed Pt-N sites as efficient and selective electrocatalysts for the chlorine evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-14272-1 – volume: 56 start-page: 5867 year: 2017 end-page: 5871 ident: CR28 article-title: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701477 – volume: 32 start-page: 1906972 year: 2020 ident: CR40 article-title: Achieving efficient alkaline hydrogen evolution reaction over a Ni P catalyst incorporating single-atomic Ru sites publication-title: Adv. Mater. doi: 10.1002/adma.201906972 – volume: 152 start-page: 23 year: 2005 end-page: 26 ident: CR65 article-title: Trends in the exchange current for hydrogen evolution publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 6 start-page: 1900117 year: 2019 ident: CR19 article-title: Iron-salen complex and Co ion-derived cobalt–iron hydroxide/carbon nanohybrid as an efficient oxygen evolution electrocatalyst publication-title: Adv. Sci. doi: 10.1002/advs.201900117 – volume: 10 year: 2019 ident: CR13 article-title: Single atom tungsten doped ultrathin α-Ni(OH) for enhanced electrocatalytic water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-019-09845-z – volume: 346 start-page: 1215 year: 2014 end-page: 1218 ident: CR36 article-title: Subsurface cation vacancy stabilization of the magnetite (001) publication-title: Surf. Sci. – volume: 7 start-page: 1602148 year: 2017 ident: CR43 article-title: Ultrasensitive iron-triggered nanosized Fe–CoOOH integrated with graphene for highly efficient oxygen evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602148 – volume: 7 start-page: 1515 year: 2018 end-page: 1520 ident: CR39 article-title: Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe–OOH catalysts publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00696 – volume: 10 year: 2019 ident: CR3 article-title: Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-09765-y – volume: 9 year: 2018 ident: CR12 article-title: Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide publication-title: Nat. Commun. doi: 10.1038/s41467-018-05341-y – volume: 140 start-page: 084106 year: 2014 ident: CR68 article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 10 year: 2019 ident: CR44 article-title: Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics publication-title: Nat. Commun. doi: 10.1038/s41467-019-11765-x – volume: 10 year: 2019 ident: CR29 article-title: Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt–iron layered double hydroxides publication-title: Nat. Commun. doi: 10.1038/s41467-019-09666-0 – volume: 29 start-page: 1808367 year: 2019 ident: CR20 article-title: Rational design of nanoarray architectures for electrocatalytic water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808367 – volume: 55 start-page: 10326 year: 2016 end-page: 10330 ident: CR14 article-title: Topotactic consolidation of monocrystalline CoZn hydroxides for advanced oxygen evolution electrodes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605096 – volume: 59 start-page: 8072 year: 2020 end-page: 8077 ident: CR10 article-title: Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915803 – volume: 5 start-page: 222 year: 2020 end-page: 230 ident: CR60 article-title: Dynamic stability of active sites in hydr(oxy) oxides for the oxygen evolution reaction publication-title: Nat. Energy doi: 10.1038/s41560-020-0576-y – volume: 137 start-page: 15112 year: 2015 end-page: 15121 ident: CR63 article-title: In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06814 – volume: 11 year: 2020 ident: CR6 article-title: Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency publication-title: Nat. Commun. doi: 10.1038/s41467-020-15069-3 – volume: 352 start-page: 333 year: 2016 end-page: 337 ident: CR2 article-title: Homogeneously dispersed multimetal oxygen-evolving scatalysts publication-title: Science doi: 10.1126/science.aaf1525 – volume: 7 year: 2016 ident: CR18 article-title: Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation publication-title: Nat. Commun. doi: 10.1038/ncomms11981 – volume: 30 start-page: 1803144 year: 2018 ident: CR26 article-title: Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201803144 – volume: 57 start-page: 9392 year: 2018 end-page: 9396 ident: CR57 article-title: Introducing Fe into nickel–iron layered double hydroxide: local structure modulated water oxidation activity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201804881 – volume: 10 start-page: 2563 year: 2017 end-page: 2569 ident: CR24 article-title: Filling the oxygen vacancies in Co O with phosphorus: an ultra-efficient electrocatalyst for overall water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01917C – volume: 9 year: 2018 ident: CR8 article-title: Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-018-04788-3 – volume: 6 year: 2015 ident: CR9 article-title: Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities publication-title: Nat. Commun. doi: 10.1038/ncomms7616 – volume: 31 start-page: 1804769 year: 2019 ident: CR23 article-title: Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates publication-title: Adv. Mater. doi: 10.1002/adma.201804769 – volume: 9 start-page: 1803060 year: 2019 ident: CR47 article-title: Unprecedented synthesis of holey 2D layered double hydroxide nanomesh for enhanced oxygen evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803060 – volume: 58 start-page: 11903 year: 2019 end-page: 11909 ident: CR48 article-title: Utilizing the space-charge region of the FeNi-LDH/CoP p–n junction to promote performance in oxygen evolution electrocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201905281 – volume: 488 start-page: 294 year: 2012 end-page: 303 ident: CR1 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature doi: 10.1038/nature11475 – volume: 138 start-page: 7965 year: 2016 end-page: 7972 ident: CR25 article-title: Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03714 – volume: 10 year: 2019 ident: CR55 article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-13092-7 – volume: 11 year: 2020 ident: CR11 article-title: In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-020-16237-1 – volume: 29 start-page: 1701546 year: 2017 ident: 24828_CR49 publication-title: Adv. Mater. doi: 10.1002/adma.201701546 – volume: 4 start-page: 329 year: 2019 ident: 24828_CR16 publication-title: Nat. Energy doi: 10.1038/s41560-019-0355-9 – volume: 152 start-page: 23 year: 2005 ident: 24828_CR65 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 55 start-page: 10326 year: 2016 ident: 24828_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605096 – volume: 54 start-page: 11169 year: 1996 ident: 24828_CR66 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 29 start-page: 1606459 year: 2017 ident: 24828_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.201606459 – volume: 14 start-page: 1800136 year: 2018 ident: 24828_CR42 publication-title: Small doi: 10.1002/smll.201800136 – volume: 3 start-page: 634 year: 2011 ident: 24828_CR33 publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 140 start-page: 084106 year: 2014 ident: 24828_CR68 publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 9 start-page: 935 year: 2018 ident: 24828_CR41 publication-title: Nat. Comm. doi: 10.1038/s41467-018-03138-7 – volume: 28 start-page: 7640 year: 2016 ident: 24828_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.201601019 – volume: 116 start-page: 8394 year: 2012 ident: 24828_CR62 publication-title: J. Phys. Chem. C doi: 10.1021/jp3007415 – volume: 30 start-page: 1706279 year: 2018 ident: 24828_CR45 publication-title: Adv. Mater. doi: 10.1002/adma.201706279 – volume: 57 start-page: 8691 year: 2018 ident: 24828_CR27 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201805520 – volume: 488 start-page: 294 year: 2012 ident: 24828_CR1 publication-title: Nature doi: 10.1038/nature11475 – volume: 11 year: 2020 ident: 24828_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14272-1 – volume: 266 start-page: 118627 year: 2020 ident: 24828_CR21 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118627 – volume: 77 start-page: 3865 year: 1996 ident: 24828_CR67 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 7 start-page: 1515 year: 2018 ident: 24828_CR39 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00696 – volume: 20 start-page: 136 year: 2020 ident: 24828_CR56 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03460 – volume: 9 year: 2018 ident: 24828_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04788-3 – volume: 10 year: 2019 ident: 24828_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09845-z – volume: 8 start-page: 1703341 year: 2018 ident: 24828_CR59 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703341 – volume: 10 year: 2019 ident: 24828_CR55 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13092-7 – volume: 57 start-page: 9392 year: 2018 ident: 24828_CR57 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201804881 – volume: 10 year: 2019 ident: 24828_CR3 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09765-y – volume: 7 start-page: 1602148 year: 2017 ident: 24828_CR43 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602148 – volume: 29 start-page: 1808367 year: 2019 ident: 24828_CR20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808367 – volume: 30 start-page: 1705369 year: 2018 ident: 24828_CR38 publication-title: Adv. Mater. doi: 10.1002/adma.201705369 – volume: 11 year: 2020 ident: 24828_CR61 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17934-7 – volume: 6 year: 2015 ident: 24828_CR9 publication-title: Nat. Commun. doi: 10.1038/ncomms7616 – volume: 137 start-page: 15112 year: 2015 ident: 24828_CR63 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06814 – volume: 11 year: 2020 ident: 24828_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15069-3 – volume: 59 start-page: 8072 year: 2020 ident: 24828_CR10 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915803 – volume: 11 year: 2020 ident: 24828_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16237-1 – volume: 58 start-page: 17458 year: 2019 ident: 24828_CR64 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201910716 – volume: 9 year: 2018 ident: 24828_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05019-5 – volume: 11 year: 2020 ident: 24828_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16558-1 – volume: 136 start-page: 16481 year: 2014 ident: 24828_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5096733 – volume: 352 start-page: 333 year: 2016 ident: 24828_CR2 publication-title: Science doi: 10.1126/science.aaf1525 – volume: 31 start-page: 1804769 year: 2019 ident: 24828_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.201804769 – volume: 11 year: 2020 ident: 24828_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14274-z – volume: 9 start-page: 1803060 year: 2019 ident: 24828_CR47 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803060 – volume: 9 start-page: 1900881 year: 2019 ident: 24828_CR52 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900881 – volume: 53 start-page: 7584 year: 2014 ident: 24828_CR53 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402822 – volume: 56 start-page: 5867 year: 2017 ident: 24828_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701477 – volume: 30 start-page: 1705106 year: 2018 ident: 24828_CR51 publication-title: Adv. Mater. doi: 10.1002/adma.201705106 – volume: 7 year: 2016 ident: 24828_CR18 publication-title: Nat. Commun. doi: 10.1038/ncomms11981 – volume: 58 start-page: 11903 year: 2019 ident: 24828_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201905281 – volume: 138 start-page: 7965 year: 2016 ident: 24828_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03714 – volume: 30 start-page: 1803144 year: 2018 ident: 24828_CR26 publication-title: Adv. Mater. doi: 10.1002/adma.201803144 – volume: 6 start-page: 1600621 year: 2016 ident: 24828_CR58 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600621 – volume: 11 start-page: 1761 year: 2018 ident: 24828_CR17 publication-title: ChemSusChem. doi: 10.1002/cssc.201800407 – volume: 346 start-page: 1215 year: 2014 ident: 24828_CR36 publication-title: Surf. Sci. – volume: 135 start-page: 8452 year: 2013 ident: 24828_CR54 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4027715 – volume: 10 start-page: 2563 year: 2017 ident: 24828_CR24 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01917C – volume: 4 start-page: 512 year: 2019 ident: 24828_CR35 publication-title: Nat. Energy doi: 10.1038/s41560-019-0402-6 – volume: 29 start-page: 1700017 year: 2017 ident: 24828_CR50 publication-title: Adv. Mater. doi: 10.1002/adma.201700017 – volume: 6 start-page: 1900117 year: 2019 ident: 24828_CR19 publication-title: Adv. Sci. doi: 10.1002/advs.201900117 – volume: 10 year: 2019 ident: 24828_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09666-0 – volume: 1 start-page: 781 year: 2018 ident: 24828_CR34 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0146-x – volume: 32 start-page: 1906972 year: 2020 ident: 24828_CR40 publication-title: Adv. Mater. doi: 10.1002/adma.201906972 – volume: 9 year: 2018 ident: 24828_CR37 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03380-z – volume: 4 start-page: 512 year: 2019 ident: 24828_CR32 publication-title: Nat. Energy doi: 10.1038/s41560-019-0402-6 – volume: 5 start-page: 222 year: 2020 ident: 24828_CR60 publication-title: Nat. Energy doi: 10.1038/s41560-020-0576-y – volume: 10 year: 2019 ident: 24828_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11765-x – volume: 140 start-page: 3876 year: 2018 ident: 24828_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00752 – volume: 9 year: 2018 ident: 24828_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05341-y |
SSID | ssj0000391844 |
Score | 2.7244353 |
Snippet | Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential... Rational design of single atom catalyst is critical for efficient sustainable energy conversion. Single-atomic-site ruthenium stabilized on defective... |
SourceID | doaj swepub pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4587 |
SubjectTerms | 140/133 140/146 147/137 147/143 639/301/299/886 639/638/161/886 639/925/357 Active control Active sites Catalysts Chemical engineering Chemistry Defects Density functional theory Design defects Electrocatalysts Electrolytes Energy conversion Etching Evolution Humanities and Social Sciences Hydrogen Hydrogen evolution reactions Hydroxides Intermediates Intermetallic compounds Iron Iron compounds Laboratories Morphology multidisciplinary Nanostructure Nickel Nickel compounds Nickel iron Oxygen evolution reactions Renewable energy Ruthenium Scanning electron microscopy Science Science (multidisciplinary) Single atom catalysts Sustainable energy Transmission electron microscopy Water splitting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpUq9IChFBEplJNQLWN11bMc-tkBVIdETRb1Zju1oI9IE7Ydgj_xzZpzssumhXLgmzpc943nPnrwh5K3hXqoqgqdJyZkwE8l09A7cPQYeUgTBBf0v1-rqRny-lbc7pb4wJ6yXB-477szJUBXVVKkIob8QFXDkkvvCA6vzpVQeZ1-IeTtkKs3BuQHqIoa_ZCa5PluINCdgRgIXQDOYGUWiJNg_Qpn3cyS3G6X3REVTILp8Qh4PCJKe92_-lDyK7SHZ72tKrp-R3zsKgxQXAprIgFjf1Z7OMZu9rVd3NC3arOEGFDePF7RraYhVP_fRtgbPbhj-_0Ybt8ZinjR0q7KJdLYO8-5XHSIFrEsx-9M1Df0JeHVOFwBnUxL1Ebm5_PT1wxUb6iwwr_h0yQDjYUl0L4C6oSShdFyrIB1QD6lKQEBaB0BdEcXmg-OyAreFwwLJYNDlJH9O9tqujS8IFaXhJVLGANSrKgBvOGF4lEYFFY2vMjLd9Ln1gwg51sJobNoMz7Xtx8nCONk0TtZk5N32mh-9BMeDrS9wKLctUT47HQCjsoNR2X8ZVUaON4ZgB59eWCBfEtX2cpGRN9vT4I24xeLa2K1SG5jQIOLzjBQjAxq90PhMW8-SrreGfhW5zsj7jan9ffhDH3zam-PoCR_rb-fpk78vZzZHh-Av_0fPvCIHHH1oUjCuj8necr6KrwGWLcuT5IF_ACuNM-E priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEFQQERKMhIiAtEzTq245xQKSwVEpwo6s1KbIeNSJOS7KrdI_-cGedR0sNeE-fhzMPfjCffEPImZUbIwoGlCcFCnkYiVM5kYO7OMutXEEzof_suT0751zNxNiTcuqGscvSJ3lHbxmCO_BCgr0Cus5h_uPgTYtco3F0dWmjcJncWsNJgSZdafplyLMh-rjgf_pWJYnXYce8ZsC6BcQg2wnS2Hnna_hnWvFkpOW2X3qAW9cvR8iF5MOBIetQL_hG55ep9crfvLLndJ_eOx0Zuj8nf_zgHKaYGKhdCqH1eGtpifXtdbs6pT-Ns4WYUJ9zRpqbWFb03pHUJtl6F-EccrbIttvekttnklaOrrW2bq9I6CuiXYj1oVlX0EhBsSzsAuL6s-gk5XX7-cXwSDp0XQiPZYh0C6sMm6YZDMIckhSJjSlqRQTAiZA6YSCkLOMwh_bzNmCjAkOEwx_DQqjyKn5K9uqndM0J5nrIcg0gLwViRAALJeMqcSKWVLjVFQBbj99dmoCXH7hiV9tvjsdK9zDTITHuZ6TQg76ZrLnpSjp2jP6JYp5FIqO0PNO0vPdinzoQtkmIhpQOEmfAiVUnOTGJkGplcSBOQg1Ep9GDlnb7WyYC8nk6DdHHTJatds_FjwMUBBmABSWbKNHuh-Zm6XHmmbwXflccqIO9Htbt--K4Jv-1Vc_aET-XPIz_l3-uVjtE42PPdk3pB7jO0lCgJmToge-t2414CBFvnr7yd_QPw8C8N priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiKcIFGQkxAUiso7t2MflUVUrwQWKerMS22GjpgnK7gr2yD9nxnlAKlSJa2I7D89nf2OPvyHkhWZWyNID0oRgMdeJiJW3OcDdO-bCDIIL-h8_ydMzvjoX5weEjWdhQtB-kLQMw_QYHfZmwwOkMaCAcfASYn2DHKFUO9j20XK5-ryaVlZQ81xxPpyQSVL1j8qzWSiI9c8Y5tX4yGmT9IqgaJiETu6Q2wN7pMv-fe-SA9_cIzf7fJL7--TXX-qCFBcBah-DU31ZWdphJHtT7S5pWLDZQwMUN443tG2o82U_7tGmAlTXMZ59o3W-x0Se1LW7ovZ0vXdd-7NyngLPpRj5mdc1_QFctaMboLIhgPoBOTv58OXdaTzkWIitZIttDPwO06FbDm4byhGKnCnpRA5uh5AFsB-lHDAuj0LzLmeiBMjCZY6OoFNFkj4kh03b-EeE8kKzAt1FB25XmQHXyLlmXmjppNe2jMhi_OfGDgLkmAejNmEjPFWm7ycD_WRCPxkdkVdTne-9_Ma1pd9iV04lUTo7XGi7b2YwJZMLV2blQkoPXDLjpVZZwWxmpU5sIaSNyPFoCGbA88aA4yVQaS_lEXk-3QYk4vZK3vh2F8rAYAazPYtINjOg2QvN7zTVOmh6K_ivPFUReT2a2p-HX_fBL3tznD3hffV1GT75Yrs2KQKCPf6_dp-QWwzRkmQxU8fkcNvt_FMgX9vi2YC2379lKlg priority: 102 providerName: Springer Nature |
Title | Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting |
URI | https://link.springer.com/article/10.1038/s41467-021-24828-9 https://www.proquest.com/docview/2555778634 https://www.proquest.com/docview/2556388472 https://pubmed.ncbi.nlm.nih.gov/PMC8319438 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300032 https://doaj.org/article/a5df7f166e32474f987b2c7c690cb56c |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZ2ERIviKsIjMpIiBcItI7t2A8IdWVlqrQJAUV9sxLbWSOyZEtbsT7yzzl20kKmaRIvieQ4N_t89vf5cg5CryTRjGcWkMYYCanss1BYnQDcrSHG9yBuQP_klB9P6WTGZjtoE-6oLcDFjdLOxZOa1sW7q8v1RwD8h2bLuHi_oB7ubrEBoaAgQrmL9qFnil1Eg5OW7vuWOZIgaGi7d-bmWzv9k3fj3-Ge11dObqdPr7ka9d3T-D661_JKPGwM4QHaseVDdKeJNLl-hH7_43cQu-GBwoYgt89zjWu3xr3MV-fYD-Ws4QHYTSkvcFViY7OmRcRlDngvQrcrDhfJ2oX4xKZapYXF87Wpq6vcWAwMGLs1oUlR4F_AYmu8AJLrl1Y_RtPx0ffRcdhGXwg1J4NlCMzPBUrXFASdc1TIEiK4YQkIEsZT4EVCGOBi1rmgNwlhGYAZkqmTiEak_egJ2iur0j5FmKaSpE5IGhBkWQwsJKGSWCa54VbqLECDTZkr3bomdxEyCuWnyCOhmnpSUE_K15OSAXqzveeiccxxa-5DV5XbnM6ptk-o6jPVYlQlzGRxNuDcAsuMaSZFnBIday77OmVcB-hgYwhqY6gKJBlzPvgiGqCX28uAUTfxkpS2Wvk80MwBDyABijsG1Pmg7pUyn3tv3wLKlUYiQG83pvb35bf98OvGHDtv-JT_GPpf_rmcq8gBgjz7v-c-R3eJQ0s_Dok4QHvLemVfAC1bpj20G89iOIrx5x7aHw4n3yZwPjw6_fIVUkd81PMDHj2PyT_N8Dlg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESoXBAVEoICRgAtEzTp24hwQKi3Llj5OLerNJLbDRqRJ2YfKHvlD_EZmnGRLethbr4nzsOf1zXg8Q8jrhGkR5RYkTQjm8yQQvrQ6BXG3hhlnQTCgf3QcjU751zNxtkb-dmdhMK2y04lOUZtaY4x8G6CvwFpnIf948cvHrlG4u9q10GjY4sAuLsFlm37Y3wP6vmFs-Plkd-S3XQV8HbHBzAdEgw3ANQdHBQvwiZTJyIgUgLaIMrD3UhrAGBZLq5uUiRyYFC5zdH2MzIIQ3nuL3OYhWHI8mT78sozpYLV1yXl7NicI5faUO02EeRCMg3PjJz3759oE9LDt9czM5fbstVKmzvwN75N7LW6lOw2jPSBrttokd5pOlotNsrHbNY57SP78V-OQYiiitD649ueFphPMp6-K-Tl1YaMFvIziAk9pXVFj80b70qoA3VL6eAKPlukC24lSU8-z0tLxwkzq34WxFNA2xfzTtCzpJSDmCZ0CoHZp3I_I6Y3Q5DFZr-rKPiGUZwnL0Gk14PzlMSCelCfMiiQykU107pFBt_5Kt2XQsRtHqdx2fChVQzMFNFOOZirxyLvlMxdNEZCVoz8hWZcjsYC3u1BPfqhWH6hUmDzOB1FkAdHGPE9knDEd6ygJdCYi7ZGtjilUq1Wm6koGPPJqeRuoi5s8aWXruRsDKhUwB_NI3GOm3g_171TF2FUWl7CuPJQeed-x3dXHV034bcOavS_sFd923JR_zsYqROFgT1dP6iXZGJ0cHarD_eODZ-QuQ6kJYp_JLbI-m8ztc4B_s-yFkzlKvt-0kP8DrfFneQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVjwuCAqIQAEjAReIdtdrJ84BobbbVUthVSGKejOJ7bARaVL2obJH_ha_jhkn2ZIe9tZr4jzsefgbe_wNIa8ipkWQWrA0IZjPo57wpdUxmLs1zLgZBBf0P4-DgxP-8VScbpC_zVkYTKtsfKJz1KbUuEbeBegrkOtswLtpnRZxPBx9OP_lYwUp3GltymlUKnJklxcQvs3eHw5B1q8ZG-1_3Tvw6woDvg5Yf-4DusFi4JpD0IJkfCJmMjAiBtAtggTmfikN4A2LNOsmZiIFhYXLHMMgI5PeAN57g2yGGBV1yObu_vj4y2qFB7nXJef1SZ3eQHZn3PklzIpgHEIdP2rNhq5oQAvpXs3TXG3WXiE2dZPh6B65W6NYulOp3X2yYYstcrOqa7ncIrf3mjJyD8if_xgPKS5M5NaHQP8s03SK2fVFtjijbhFpCS-jOMQzWhbU2LTyxbTIwNPkPp7Ho3m8xOKi1JSLJLd0sjTT8ndmLAXsTTEbNc5zegH4eUpnAK9dUvdDcnItUnlEOkVZ2MeE8iRiCYawBkLBNAT8E_OIWREFJrCRTj3Sb8Zf6ZoUHWtz5Mptzg-kqmSmQGbKyUxFHnm7eua8ogRZ23oXxbpqiXTe7kI5_aFq76BiYdIw7QeBBXwb8jSSYcJ0qIOopxMRaI9sN0qhah8zU5cW4ZGXq9sgXdzyiQtbLlwbcLCAQJhHwpYytX6ofafIJo5nXMK48oH0yLtG7S4_vq7DbyrVbH1hmH3bcV3-OZ-oARoHe7K-Uy_ILTBw9elwfPSU3GFoNL3QZ3KbdObThX0GWHCePK-NjpLv123n_wC8-W0L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+single-atomic+ruthenium+catalytic+sites+on+defective+nickel-iron+layered+double+hydroxide+for+overall+water+splitting&rft.jtitle=Nature+communications&rft.au=Zhai%2C+Panlong&rft.au=Xia%2C+Mingyue&rft.au=Wu%2C+Yunzhen&rft.au=Zhang%2C+Guanghui&rft.date=2021-07-28&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-24828-9&rft.externalDocID=10_1038_s41467_021_24828_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |