Mapping local and global variability in plant trait distributions

Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 51; pp. E10937 - E10946
Main Authors Butler, Ethan E., Datta, Abhirup, Flores-Moreno, Habacuc, Chen, Ming, Wythers, Kirk R., Fazayeli, Farideh, Banerjee, Arindam, Atkin, Owen K., Kattge, Jens, Amiaud, Bernard, Blonder, Benjamin, Boenisch, Gerhard, Bond-Lamberty, Ben, Brown, Kerry A., Byun, Chaeho, Campetella, Giandiego, Cerabolini, Bruno E. L., Cornelissen, Johannes H. C., Craine, Joseph M., Craven, Dylan, de Vries, Franciska T., Díaz, Sandra, Domingues, Tomas F., Forey, Estelle, González-Melo, Andrés, Gross, Nicolas, Han, Wenxuan, Hattingh, Wesley N., Hickler, Thomas, Jansen, Steven, Kramer, Koen, Kraft, Nathan J. B., Kurokawa, Hiroko, Laughlin, Daniel C., Meir, Patrick, Minden, Vanessa, Niinemets, Ülo, Onoda, Yusuke, Peñuelas, Josep, Read, Quentin, Sack, Lawren, Schamp, Brandon, Soudzilovskaia, Nadejda A., Spasojevic, Marko J., Sosinski, Enio, Thornton, Peter E., Valladares, Fernando, van Bodegom, Peter M., Williams, Mathew, Wirth, Christian, Reich, Peter B.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 19.12.2017
National Academy of Sciences, Washington, DC (United States)
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (N m ) and phosphorus (P m ), we characterize how traits vary within and among over 50,000 ∼50 × 50-km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
AbstractList Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration -- specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ~50x50-km cells across the entire vegetated land surface. We do this in several ways -- without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (N-m) and phosphorus (P-m), we characterize how traits vary within and among over 50,000 similar to 50 x 50-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration - specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ∼50×50-km cells across the entire vegetated land surface. We do this in several ways - without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ~50×50-km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps further reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Currently, Earth system models (ESMs) represent variation in plant life through the presence of a small set of plant functional types (PFTs), each of which accounts for hundreds or thousands of species across thousands of vegetated grid cells on land. By expanding plant traits from a single mean value per PFT to a full distribution per PFT that varies among grid cells, the trait variation present in nature is restored and may be propagated to estimates of ecosystem processes. Indeed, critical ecosystem processes tend to depend on the full trait distribution, which therefore needs to be represented accurately. These maps reintroduce substantial local variation and will allow for a more accurate representation of the land surface in ESMs. Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ( N m ) and phosphorus ( P m ), we characterize how traits vary within and among over 50,000 ∼ 50 × 50 -km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (N m ) and phosphorus (P m ), we characterize how traits vary within and among over 50,000 ∼50 × 50-km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Author Spasojevic, Marko J.
González-Melo, Andrés
Laughlin, Daniel C.
Schamp, Brandon
Hickler, Thomas
Chen, Ming
Forey, Estelle
Han, Wenxuan
Craine, Joseph M.
de Vries, Franciska T.
Williams, Mathew
Minden, Vanessa
Brown, Kerry A.
Domingues, Tomas F.
Boenisch, Gerhard
Thornton, Peter E.
Kramer, Koen
Atkin, Owen K.
Read, Quentin
Onoda, Yusuke
Datta, Abhirup
Hattingh, Wesley N.
Kurokawa, Hiroko
Campetella, Giandiego
Sosinski, Enio
Valladares, Fernando
Flores-Moreno, Habacuc
Butler, Ethan E.
Cornelissen, Johannes H. C.
Peñuelas, Josep
Wirth, Christian
Kattge, Jens
Craven, Dylan
Bond-Lamberty, Ben
Meir, Patrick
Reich, Peter B.
Sack, Lawren
Niinemets, Ülo
Fazayeli, Farideh
Kraft, Nathan J. B.
Byun, Chaeho
Gross, Nicolas
Blonder, Benjamin
Díaz, Sandra
Wythers, Kirk R.
Banerjee, Arindam
Jansen, Steven
Amiaud, Bernard
Cerabolini, Bruno E. L.
van Bodegom, Peter M.
Soudzilovskaia, Nadejda A.
Author_xml – sequence: 1
  givenname: Ethan E.
  surname: Butler
  fullname: Butler, Ethan E.
  organization: Department of Forest Resources, University of Minnesota, St. Paul, MN 55108
– sequence: 2
  givenname: Abhirup
  surname: Datta
  fullname: Datta, Abhirup
  organization: Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205
– sequence: 3
  givenname: Habacuc
  surname: Flores-Moreno
  fullname: Flores-Moreno, Habacuc
  organization: Department of Forest Resources, University of Minnesota, St. Paul, MN 55108
– sequence: 4
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
  organization: Department of Forest Resources, University of Minnesota, St. Paul, MN 55108
– sequence: 5
  givenname: Kirk R.
  surname: Wythers
  fullname: Wythers, Kirk R.
  organization: Department of Forest Resources, University of Minnesota, St. Paul, MN 55108
– sequence: 6
  givenname: Farideh
  surname: Fazayeli
  fullname: Fazayeli, Farideh
  organization: Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455
– sequence: 7
  givenname: Arindam
  surname: Banerjee
  fullname: Banerjee, Arindam
  organization: Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455
– sequence: 8
  givenname: Owen K.
  surname: Atkin
  fullname: Atkin, Owen K.
  organization: Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
– sequence: 9
  givenname: Jens
  surname: Kattge
  fullname: Kattge, Jens
  organization: Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
– sequence: 10
  givenname: Bernard
  surname: Amiaud
  fullname: Amiaud, Bernard
  organization: UMR 1137 Ecologie et Ecophysiologie Forestières, Université de Lorraine–Institut National de la Recherche Agronomique, 54506 Vandoeuvre-lès-Nancy, France
– sequence: 11
  givenname: Benjamin
  surname: Blonder
  fullname: Blonder, Benjamin
  organization: Environmental Change Institute, University of Oxford, Oxford OX1 3BJ, United Kingdom
– sequence: 12
  givenname: Gerhard
  surname: Boenisch
  fullname: Boenisch, Gerhard
  organization: Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
– sequence: 13
  givenname: Ben
  surname: Bond-Lamberty
  fullname: Bond-Lamberty, Ben
  organization: Joint Global Change Research Institute, Department of Energy Pacific Northwest National Laboratory, College Park, MD 20740
– sequence: 14
  givenname: Kerry A.
  surname: Brown
  fullname: Brown, Kerry A.
  organization: Department of Geography and Geology, Kingston University London, Surrey KT1 2EE, United Kingdom
– sequence: 15
  givenname: Chaeho
  surname: Byun
  fullname: Byun, Chaeho
  organization: School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
– sequence: 16
  givenname: Giandiego
  surname: Campetella
  fullname: Campetella, Giandiego
  organization: Plant Diversity and Ecosystems Management Unit, School of Biosciences & Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
– sequence: 17
  givenname: Bruno E. L.
  surname: Cerabolini
  fullname: Cerabolini, Bruno E. L.
  organization: Department of Theoretical and Applied Sciences, University of Insubria, I-21100 Varese, Italy
– sequence: 18
  givenname: Johannes H. C.
  surname: Cornelissen
  fullname: Cornelissen, Johannes H. C.
  organization: Systems Ecology, Department of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
– sequence: 19
  givenname: Joseph M.
  surname: Craine
  fullname: Craine, Joseph M.
  organization: Jonah Ventures, Manhattan, KS 66502
– sequence: 20
  givenname: Dylan
  surname: Craven
  fullname: Craven, Dylan
  organization: German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany
– sequence: 21
  givenname: Franciska T.
  surname: de Vries
  fullname: de Vries, Franciska T.
  organization: School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
– sequence: 22
  givenname: Sandra
  surname: Díaz
  fullname: Díaz, Sandra
  organization: Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Invetigaciones Cientificas y Técnicas), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, CC 495 Córdoba, Argentina
– sequence: 23
  givenname: Tomas F.
  surname: Domingues
  fullname: Domingues, Tomas F.
  organization: Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, CEP 14040-901 Bairro Monte Alegre, Ribeirao Preto, Sao Paulo, Brazil
– sequence: 24
  givenname: Estelle
  surname: Forey
  fullname: Forey, Estelle
  organization: Laboratory of Ecology Ecodiv, Institut National de Recherche en Sciences et Technologies pour l’Environnement et l’Agriculture, Normandie Université, 76821 Mont-Saint-Aignan, France
– sequence: 25
  givenname: Andrés
  surname: González-Melo
  fullname: González-Melo, Andrés
  organization: Facultad de Ciencias Naturales y Matematicas, Universidad del Rosario, Bogota 110111, Colombia
– sequence: 26
  givenname: Nicolas
  surname: Gross
  fullname: Gross, Nicolas
  organization: Institut National de la Recherche Agronomique, Unité Sous Contrat 1339, Centre d’Etude Biologique de Chizé, F 79360 Villiers en Bois, France
– sequence: 27
  givenname: Wenxuan
  surname: Han
  fullname: Han, Wenxuan
  organization: Key Laboratory of Biogeography and Bio-Resource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
– sequence: 28
  givenname: Wesley N.
  surname: Hattingh
  fullname: Hattingh, Wesley N.
  organization: School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa
– sequence: 29
  givenname: Thomas
  surname: Hickler
  fullname: Hickler, Thomas
  organization: Senckenberg Biodiversity and Climate Research Centre (BiK-F), 60325 Frankfurt/Main, Germany
– sequence: 30
  givenname: Steven
  surname: Jansen
  fullname: Jansen, Steven
  organization: Institute of Systematic Botany and Ecology, Ulm University, 89081 Ulm, Germany
– sequence: 31
  givenname: Koen
  surname: Kramer
  fullname: Kramer, Koen
  organization: Team Vegetation, Forest and Landscape Ecology, Wageningen Environmental Research, 6708 PB Wageningen, The Netherlands
– sequence: 32
  givenname: Nathan J. B.
  surname: Kraft
  fullname: Kraft, Nathan J. B.
  organization: Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
– sequence: 33
  givenname: Hiroko
  surname: Kurokawa
  fullname: Kurokawa, Hiroko
  organization: Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
– sequence: 34
  givenname: Daniel C.
  surname: Laughlin
  fullname: Laughlin, Daniel C.
  organization: Department of Botany, University of Wyoming, Laramie, WY 82071
– sequence: 35
  givenname: Patrick
  surname: Meir
  fullname: Meir, Patrick
  organization: School of Geosciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
– sequence: 36
  givenname: Vanessa
  surname: Minden
  fullname: Minden, Vanessa
  organization: Institute of Biology and Environmental Science, University of Oldenburg, 26111 Oldenburg, Germany
– sequence: 37
  givenname: Ülo
  surname: Niinemets
  fullname: Niinemets, Ülo
  organization: Department of Plant Physiology, Estonian University of Life Sciences, 51014 Tartu, Estonia
– sequence: 38
  givenname: Yusuke
  surname: Onoda
  fullname: Onoda, Yusuke
  organization: Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
– sequence: 39
  givenname: Josep
  surname: Peñuelas
  fullname: Peñuelas, Josep
  organization: CSIC, Unitat d’Ecologia Global CREAF-CSIC-UAB, Bellaterra 08193, Barcelona, Catalonia, Spain
– sequence: 40
  givenname: Quentin
  surname: Read
  fullname: Read, Quentin
  organization: Department of Forestry, Michigan State University, East Lansing, MI 48824
– sequence: 41
  givenname: Lawren
  surname: Sack
  fullname: Sack, Lawren
  organization: Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
– sequence: 42
  givenname: Brandon
  surname: Schamp
  fullname: Schamp, Brandon
  organization: Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
– sequence: 43
  givenname: Nadejda A.
  surname: Soudzilovskaia
  fullname: Soudzilovskaia, Nadejda A.
  organization: Institute of Environmental Sciences, Leiden University, 2333 CC Leiden, The Netherlands
– sequence: 44
  givenname: Marko J.
  surname: Spasojevic
  fullname: Spasojevic, Marko J.
  organization: Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521
– sequence: 45
  givenname: Enio
  surname: Sosinski
  fullname: Sosinski, Enio
  organization: Laboratório de Planejamento Ambiental, Embrapa Clima Temperado, Pelotas, RS, Brazil 96010-971
– sequence: 46
  givenname: Peter E.
  surname: Thornton
  fullname: Thornton, Peter E.
  organization: Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831
– sequence: 47
  givenname: Fernando
  surname: Valladares
  fullname: Valladares, Fernando
  organization: Museo Nacional de Ciencias Naturales, CSIC, E-28006 Madrid Spain
– sequence: 48
  givenname: Peter M.
  surname: van Bodegom
  fullname: van Bodegom, Peter M.
  organization: Institute of Environmental Sciences, Leiden University, 2333 CC Leiden, The Netherlands
– sequence: 49
  givenname: Mathew
  surname: Williams
  fullname: Williams, Mathew
  organization: School of Geosciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
– sequence: 50
  givenname: Christian
  surname: Wirth
  fullname: Wirth, Christian
  organization: Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
– sequence: 51
  givenname: Peter B.
  surname: Reich
  fullname: Reich, Peter B.
  organization: Hawkesbury Institute for the Environment, Western Sydney University, Penrith NSW 2751, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29196525$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01852904$$DView record in HAL
https://www.osti.gov/biblio/1410892$$D View this record in Osti.gov
BookMark eNp9ks1vFCEYxiemxm6rZ0-aib3oYduXAQbwYLJpqjVZ40XPhAV2l80sjMBs0_9eJlNb3YMnyMvveXi_zqoTH7ytqtcILhEwfNV7lS4RAy44QYg8q2YIBJq3RMBJNQNo2JyThpxWZyntAEBQDi-q00Yg0dKGzqrFN9X3zm_qLmjV1cqbetOFVbkeVHRq5TqX72vn675TPtc5Kpdr41KObjVkF3x6WT1fqy7ZVw_nefXz882P69v58vuXr9eL5Vy3DcrzlsGaW8Q0x1YrojEXhhsAxRjVWmDcErAt50RpA8bQQihj1mDXomXMGnxefZx879TG-pKy9dKrqF2SQTnZuVVU8V7eDVH6bjz6YZUkxQgTVsSfJnEJ7q3R1pdKOtlHtx9Fo8G_L95t5SYcJGWUMAbF4N1kEFJ2MmmXrd7q4L3VWSKCygSaAn2YoO2R9-1iKccYIE4bAeSACvv-IaMYfg02Zbl3SduutNmGIUkkGGoFBswLenGE7sIQfWm2bKAhhEODxs_f_l3i4_9_Zl2AqwnQMaQU7foRQSDHbZLjNsmnbSoKeqQodatx6uMedP_RvZl0u5RDfMqkJZwiJvBvKLrZGA
CitedBy_id crossref_primary_10_1111_1365_2435_13402
crossref_primary_10_1002_ece3_9244
crossref_primary_10_1088_1748_9326_ab9e99
crossref_primary_10_1371_journal_pone_0236546
crossref_primary_10_1016_j_agee_2019_106621
crossref_primary_10_1186_s13717_018_0154_4
crossref_primary_10_1038_s41598_023_44384_0
crossref_primary_10_3389_fpls_2020_588098
crossref_primary_10_1029_2022GB007478
crossref_primary_10_1111_jbi_13623
crossref_primary_10_1111_nph_15609
crossref_primary_10_1016_j_scitotenv_2021_149591
crossref_primary_10_1016_j_tree_2018_11_004
crossref_primary_10_1093_aob_mcy165
crossref_primary_10_1016_j_rse_2024_114276
crossref_primary_10_1016_j_agrformet_2024_110366
crossref_primary_10_1016_j_rse_2021_112497
crossref_primary_10_5194_bg_22_1475_2025
crossref_primary_10_1111_geb_13702
crossref_primary_10_1016_j_gecco_2020_e01138
crossref_primary_10_1111_ele_13248
crossref_primary_10_1029_2018MS001453
crossref_primary_10_1111_nph_16123
crossref_primary_10_1016_j_ecocom_2019_100777
crossref_primary_10_1111_geb_13302
crossref_primary_10_1016_j_rse_2021_112406
crossref_primary_10_1073_pnas_2101388119
crossref_primary_10_1016_j_ecolind_2022_108687
crossref_primary_10_1038_s41586_025_08663_2
crossref_primary_10_1029_2022GL099550
crossref_primary_10_1038_s41586_018_0563_7
crossref_primary_10_1111_geb_13706
crossref_primary_10_1111_geb_13381
crossref_primary_10_1016_j_gecco_2019_e00527
crossref_primary_10_1111_jbi_15079
crossref_primary_10_1038_s41467_023_36240_6
crossref_primary_10_1111_gcb_17346
crossref_primary_10_1111_geb_13784
crossref_primary_10_1038_sdata_2018_132
crossref_primary_10_1002_eap_2064
crossref_primary_10_1016_j_ecolmodel_2025_111027
crossref_primary_10_1038_s41559_022_01904_x
crossref_primary_10_1016_j_ecolind_2023_110694
crossref_primary_10_1111_gcb_15515
crossref_primary_10_5194_bg_18_4445_2021
crossref_primary_10_1038_s41467_021_25163_9
crossref_primary_10_5194_bg_20_3301_2023
crossref_primary_10_1016_j_agrformet_2023_109359
crossref_primary_10_1016_j_foreco_2020_118254
crossref_primary_10_1016_j_ppees_2024_125826
crossref_primary_10_1088_1748_9326_ac7b38
crossref_primary_10_1093_jpe_rtae103
crossref_primary_10_1029_2019MS001889
crossref_primary_10_1111_geb_13410
crossref_primary_10_3390_rs14246316
crossref_primary_10_1111_geb_13257
crossref_primary_10_5194_essd_16_1771_2024
crossref_primary_10_1029_2023MS004156
crossref_primary_10_1002_lol2_10294
crossref_primary_10_1029_2019GL082762
crossref_primary_10_1016_j_still_2019_104332
crossref_primary_10_3390_rs13153034
crossref_primary_10_3390_rs12010026
crossref_primary_10_5194_bg_18_2727_2021
crossref_primary_10_1016_j_rse_2021_112505
crossref_primary_10_1016_j_jhydrol_2020_125088
crossref_primary_10_1007_s11367_018_1470_8
crossref_primary_10_1073_pnas_2410467121
crossref_primary_10_3390_rs15030698
crossref_primary_10_1002_ecy_2589
crossref_primary_10_1038_s41598_021_95616_0
crossref_primary_10_1111_jvs_13229
crossref_primary_10_1111_gcb_14375
crossref_primary_10_1111_gcb_14530
crossref_primary_10_1016_j_flora_2019_03_013
crossref_primary_10_1029_2018GB005883
crossref_primary_10_1038_s41559_020_1217_3
crossref_primary_10_1111_gcb_16950
crossref_primary_10_1111_nph_15934
crossref_primary_10_1016_j_ecolind_2020_107062
crossref_primary_10_1080_14772000_2021_1887394
crossref_primary_10_1029_2021MS002964
crossref_primary_10_1111_geb_13086
crossref_primary_10_1126_science_adk9616
crossref_primary_10_1016_j_fmre_2024_01_012
crossref_primary_10_1038_s41477_022_01278_9
crossref_primary_10_1111_1365_2435_14415
crossref_primary_10_5194_bg_15_2601_2018
crossref_primary_10_5194_hess_25_2399_2021
crossref_primary_10_1002_ece3_6571
crossref_primary_10_1029_2023JG007753
crossref_primary_10_1038_s41597_022_01346_x
crossref_primary_10_1111_gcb_14440
crossref_primary_10_1111_gcb_17038
crossref_primary_10_1016_j_rse_2022_113023
crossref_primary_10_1007_s10651_021_00525_0
crossref_primary_10_1111_brv_12488
crossref_primary_10_1002_ecs2_3741
crossref_primary_10_1016_j_aquabot_2021_103454
crossref_primary_10_1111_nph_15592
crossref_primary_10_1111_nph_17771
crossref_primary_10_1002_ecm_1615
crossref_primary_10_3390_rs12081248
crossref_primary_10_1126_science_adk1637
crossref_primary_10_1111_jbi_13809
crossref_primary_10_1111_1365_2745_13816
crossref_primary_10_1139_cjfr_2020_0126
crossref_primary_10_1186_s13007_021_00816_4
crossref_primary_10_5194_bg_20_2869_2023
crossref_primary_10_5194_gmd_16_2261_2023
crossref_primary_10_1029_2024JG008356
crossref_primary_10_3390_land12051090
crossref_primary_10_1111_gcb_17141
crossref_primary_10_3389_fpls_2022_996313
crossref_primary_10_1016_j_rse_2024_114082
crossref_primary_10_1111_jvs_12710
crossref_primary_10_1029_2023MS003992
crossref_primary_10_1111_brv_13107
crossref_primary_10_1111_gcb_16574
crossref_primary_10_1038_s42003_024_06777_3
crossref_primary_10_1016_j_scitotenv_2024_170439
crossref_primary_10_1029_2020GL087626
crossref_primary_10_5194_gmd_14_1987_2021
crossref_primary_10_1111_nph_17000
crossref_primary_10_1016_j_pecon_2021_07_002
crossref_primary_10_1111_brv_12782
crossref_primary_10_1002_ecy_3909
crossref_primary_10_1073_pnas_1813723116
crossref_primary_10_1111_geb_13457
crossref_primary_10_1002_ece3_5663
crossref_primary_10_1007_s10531_021_02206_7
crossref_primary_10_1029_2024MS004308
crossref_primary_10_1038_s41559_021_01616_8
crossref_primary_10_1111_gcb_14904
crossref_primary_10_1088_1748_9326_acb226
crossref_primary_10_3897_rio_7_e63850
crossref_primary_10_1038_s41559_020_1109_6
crossref_primary_10_1111_1365_2435_13582
crossref_primary_10_1111_nph_16711
crossref_primary_10_5194_essd_15_25_2023
crossref_primary_10_1016_j_scitotenv_2023_162075
crossref_primary_10_1038_s41467_022_32545_0
crossref_primary_10_1016_j_rse_2019_111368
crossref_primary_10_1016_j_scitotenv_2020_143070
crossref_primary_10_1029_2023AV000910
crossref_primary_10_1111_gcb_14973
crossref_primary_10_1038_s41559_018_0667_3
crossref_primary_10_5194_bg_21_1501_2024
crossref_primary_10_1029_2021JG006606
crossref_primary_10_5194_esd_12_1191_2021
crossref_primary_10_1038_s41467_020_16839_9
crossref_primary_10_1111_jvs_13021
crossref_primary_10_3389_fpls_2023_1131778
crossref_primary_10_1093_treephys_tpae163
crossref_primary_10_3390_agronomy12112833
crossref_primary_10_1016_j_jenvman_2022_114504
crossref_primary_10_3389_fpls_2023_1243209
crossref_primary_10_1111_1365_2745_13673
crossref_primary_10_3389_ffgc_2021_818661
crossref_primary_10_1007_s00572_025_01187_7
crossref_primary_10_1016_j_gecco_2021_e01971
crossref_primary_10_1073_pnas_1816654116
crossref_primary_10_1111_nph_19416
crossref_primary_10_1111_geb_13680
Cites_doi 10.1126/science.aaj1987
10.1038/s41559-017-0132
10.1029/95JD01536
10.1111/nph.12210
10.1007/BF00386231
10.1046/j.1365-2435.2001.00534.x
10.1126/science.1243092
10.5194/hess-11-1633-2007
10.1111/jbi.12171
10.1111/j.1365-3040.2010.02119.x
10.1111/nph.13253
10.1890/06-1803.1
10.1111/j.1365-2745.2011.01932.x
10.1073/pnas.0403588101
10.1073/pnas.1304551110
10.1073/pnas.1515160113
10.1111/j.1365-2486.2011.02451.x
10.1029/2000GB001360
10.1111/ecog.00867
10.1029/2011GL049244
10.1111/geb.12559
10.1080/01621459.2015.1044091
10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2
10.1002/joc.3711
10.1007/s11258-007-9320-y
10.1073/pnas.0810021105
10.1111/geb.12457
10.1111/nph.13623
10.1111/j.1365-2486.2008.01838.x
10.1111/nph.13992
10.1046/j.1365-2435.1998.00274.x
10.1111/geb.12296
10.1111/j.1466-8238.2011.00727.x
10.1073/pnas.1604863113
10.5194/gmd-4-701-2011
10.1038/nature02403
10.1073/pnas.1216054110
10.1007/s00442-009-1291-3
10.1111/j.1365-2486.2008.01744.x
10.5194/bg-10-5497-2013
10.1111/nph.14079
10.1111/gcb.12871
10.1111/j.1469-8137.2005.01562.x
10.1111/nph.14591
10.1111/j.1466-8238.2008.00441.x
10.1111/gcb.13268
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Dec 19, 2017
Copyright
2017
Wageningen University & Research
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Dec 19, 2017
– notice: Copyright
– notice: 2017
– notice: Wageningen University & Research
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
– name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
OTOTI
5PM
QVL
DOI 10.1073/pnas.1708984114
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV
PubMed Central (Full Participant titles)
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE - Academic


CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Geography
Environmental Sciences
DocumentTitleAlternate Plant trait distribution maps
EISSN 1091-6490
EndPage E10946
ExternalDocumentID oai_library_wur_nl_wurpubs_531347
PMC5754770
1410892
oai_HAL_hal_01852904v1
29196525
10_1073_pnas_1708984114
26485179
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Catalan Government
  grantid: SGR 2014-274
– fundername: RCUK | Natural Environment Research Council (NERC)
  grantid: NE/M019160/1
– fundername: Chinese Academy of Sciences (CAS)
  grantid: Light of West China
– fundername: U.S. Department of Energy | Office of Science, Office of Biological and Environmental Research
  grantid: Earth System Modeling Program
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 41473068
– fundername: Australian Research Council (ARC)
  grantid: CE140100008
– fundername: European Research Council Synergy Grant
  grantid: ERC-SyG-2013-610028
– fundername: WUR | Wageningen University
  grantid: KB-29-009-003
– fundername: UM | Institute on the Environment, University of Minnesota (IonE)
  grantid: Discovery Grants
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0012677
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
ADACV
OTOTI
5PM
-
02
08R
0R
1AW
3O-
55
692
79B
AAPBV
AAYJJ
ABFLS
ABPTK
ACKIV
ADACO
ADBIT
ADZLD
AFDAS
AS
ASUFR
DNJUQ
DWIUU
DZ
F20
GJ
HGD
HQ3
HTVGU
KM
MVM
NEJ
NHB
OHM
P-O
PQEST
QVL
TAF
VOH
X
XFK
XHC
ZA5
ZCG
ID FETCH-LOGICAL-c621t-670f8e17c83eca4c389d8d00a775cc933640e6884acd0dd54c3addf0ef9677ed3
ISSN 0027-8424
1091-6490
IngestDate Tue Jan 05 18:09:39 EST 2021
Thu Aug 21 14:11:18 EDT 2025
Mon Nov 25 02:38:35 EST 2024
Fri Jul 04 06:52:26 EDT 2025
Fri Jul 11 08:52:37 EDT 2025
Mon Jun 30 08:30:31 EDT 2025
Wed Feb 19 02:33:33 EST 2025
Thu Apr 24 23:04:52 EDT 2025
Tue Jul 01 03:19:44 EDT 2025
Fri May 30 11:46:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords global
spatial statistics
climate
Bayesian modeling
plant traits
Language English
License Copyright: http://hal.archives-ouvertes.fr/licences/copyright
Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c621t-670f8e17c83eca4c389d8d00a775cc933640e6884acd0dd54c3addf0ef9677ed3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Chinese Academy of Sciences
USDOE Office of Science (SC), Biological and Environmental Research (BER)
PNNL-SA-121738
Univ. of Leipzig (Germany)
National Science Foundation (NSF)
National Natural Science Foundation of China (NSFC)
AC05-00OR22725; AC05-76RL01830; SC0012677; CE140100008; DEB-1234162; DEB-1242531; IIS-1563950; 640176; NE/M019160/1; ERC-SyG-2013-610028 IMBALANCE-P; CGL2013-48074-P; SGR 2014-274; FT110100457; NE/F002149/1; 41473068
Spanish Government
Australian Research Council
Univ. of Minnesota, Minneapolis, MN (United States)
Natural Environment Research Council (NERC)
European Research Council (ERC)
Wageningen Univ. and Research (Netherlands)
Max Planck Society, Jena (Germany). Max Planck Inst. for Biogeochemistry
Catalan Government
Author contributions: E.E.B., A.D., H.F.-M., M.C., K.R.W., F.F., A.B., O.K.A., J.K., and P.B.R. designed research; E.E.B. and A.D. performed research; E.E.B., A.D., H.F.-M., and J.K. analyzed data; and E.E.B., A.D., H.F.-M., M.C., K.R.W., A.B., O.K.A., J.K., B.A., B.B., G.B., B.B.-L., K.A.B., C.B., G.C., B.E.L.C., J.H.C.C., J.M.C., D.C., F.T.d.V., S.D., T.F.D., E.F., A.G.-M., N.G., W.H., W.N.H., T.H., S.J., K.K., N.J.B.K., H.K., D.C.L., P.M., V.M., Ü.N., Y.O., J.P., Q.R., L.S., B.S., N.A.S., M.J.S., E.S., P.E.T., F.V., P.M.v.B., M.W., C.W., and P.B.R. wrote the paper.
1E.E.B. and A.D. contributed equally to this work.
Edited by William H. Schlesinger, Cary Institute of Ecosystem Studies, Millbrook, NY, and approved October 18, 2017 (received for review May 31, 2017)
ORCID 0000-0003-3940-833X
0000-0003-3482-1950
0000-0002-3078-2192
0000-0001-9730-3240
0000-0001-9525-4633
0000-0002-7215-0150
0000-0001-6561-3244
0000-0002-7009-7202
0000-0002-3793-0733
0000-0002-4476-5334
0000-0001-6126-522X
0000-0001-6082-3023
0000-0003-0771-4500
0000-0001-8778-8045
0000-0002-4668-7552
0000-0003-1041-5202
0000-0001-6245-2342
0000-0003-3209-3275
0000-0003-4424-662X
0000000272150150
0000000334821950
0000000195254633
0000000197303240
000000033940833X
0000000165613244
0000000230782192
OpenAccessLink https://hal.science/hal-01852904
PMID 29196525
PQID 2024480212
PQPubID 42026
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_531347
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754770
osti_scitechconnect_1410892
hal_primary_oai_HAL_hal_01852904v1
proquest_miscellaneous_1971693038
proquest_journals_2024480212
pubmed_primary_29196525
crossref_primary_10_1073_pnas_1708984114
crossref_citationtrail_10_1073_pnas_1708984114
jstor_primary_26485179
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2017-12-19
PublicationDateYYYYMMDD 2017-12-19
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
National Academy of Sciences, Washington, DC (United States)
Publisher_xml – name: National Academy of Sciences
– name: National Academy of Sciences, Washington, DC (United States)
References Hawkins BA (e_1_3_4_22_2) 2014; 41
Farquhar GD (e_1_3_4_28_2) 1980; 149
Bonan GB (e_1_3_4_35_2) 2002; 16
Bloom AA (e_1_3_4_38_2) 2016; 113
Van Bodegom PM (e_1_3_4_1_2) 2014; 111
Ordoñez JC (e_1_3_4_17_2) 2009; 18
Reich PB (e_1_3_4_19_2) 2007; 17
Gross N (e_1_3_4_33_2) 2017; 1
Zhang Q (e_1_3_4_41_2) 2011; 38
Peel B (e_1_3_4_44_2) 2007; 11
DeFries RS (e_1_3_4_3_2) 1995; 100
Ollinger SV (e_1_3_4_52_2) 2008; 105
Asner GP (e_1_3_4_49_2) 2017; 355
Verheijen LM (e_1_3_4_43_2) 2013; 10
Swenson NG (e_1_3_4_24_2) 2017; 26
Reich PB (e_1_3_4_9_2) 2009; 160
Reich PB (e_1_3_4_16_2) 2004; 101
Asner GP (e_1_3_4_26_2) 2016; 113
Datta A (e_1_3_4_27_2) 2016; 111
e_1_3_4_53_2
e_1_3_4_15_2
Wright IJ (e_1_3_4_8_2) 2004; 428
Medlyn B (e_1_3_4_42_2) 2016; 22
Maire V (e_1_3_4_2_2) 2015; 24
Reich PB (e_1_3_4_20_2) 2014; 111
Scheiter S (e_1_3_4_29_2) 2009; 15
Bonan GB (e_1_3_4_4_2) 2011; 116
Kattge J (e_1_3_4_14_2) 2011; 17
Gibson DJ (e_1_3_4_50_2) 2009
Verheijen LM (e_1_3_4_54_2) 2016; 209
Bahar N (e_1_3_4_11_2) 2016; 214
Atkin OK (e_1_3_4_10_2) 2015; 206
Lawrence PJ (e_1_3_4_48_2) 2007; 112
Rowland L (e_1_3_4_12_2) 2016; 214
Douma JC (e_1_3_4_25_2) 2012; 100
Scheiter S (e_1_3_4_30_2) 2013; 198
Simpson AH (e_1_3_4_18_2) 2016; 25
e_1_3_4_47_2
Crous KY (e_1_3_4_7_2) 2017; 215
Clark DB (e_1_3_4_34_2) 2011; 4
ter Steege H (e_1_3_4_51_2) 2013; 342
Harris I (e_1_3_4_46_2) 2014; 34
Meir P (e_1_3_4_39_2) 2007; 192
Reich PB (e_1_3_4_13_2) 2005; 168
Swenson NG (e_1_3_4_21_2) 2012; 21
Pappas C (e_1_3_4_32_2) 2014; 16
Kattge J (e_1_3_4_6_2) 2009; 15
Verheijen LM (e_1_3_4_37_2) 2015; 21
New M (e_1_3_4_45_2) 1999; 12
Meir P (e_1_3_4_36_2) 2001; 15
Domingues TF (e_1_3_4_40_2) 2010; 33
Pavlick R (e_1_3_4_31_2) 2012; 9
Reich PB (e_1_3_4_5_2) 1998; 12
Šímová I (e_1_3_4_23_2) 2015; 38
References_xml – volume: 355
  start-page: 385
  year: 2017
  ident: e_1_3_4_49_2
  article-title: Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation
  publication-title: Science
  doi: 10.1126/science.aaj1987
– volume: 1
  start-page: 0132
  year: 2017
  ident: e_1_3_4_33_2
  article-title: Functional trait diversity maximizes ecosystem multifunctionality
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-017-0132
– volume: 100
  start-page: 20867
  year: 1995
  ident: e_1_3_4_3_2
  article-title: Mapping the land surface for global atmosphere-biosphere models: Toward continuous distributions of vegetation’s functional properties
  publication-title: J Geophys Res
  doi: 10.1029/95JD01536
– volume: 198
  start-page: 957
  year: 2013
  ident: e_1_3_4_30_2
  article-title: Next-generation dynamic global vegetation models: Learning from community ecology
  publication-title: New Phytol
  doi: 10.1111/nph.12210
– volume: 149
  start-page: 78
  year: 1980
  ident: e_1_3_4_28_2
  article-title: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species
  publication-title: Planta
  doi: 10.1007/BF00386231
– volume: 15
  start-page: 378
  year: 2001
  ident: e_1_3_4_36_2
  article-title: Leaf respiration in two tropical rainforests: Constraints on physiology by phosphorus, nitrogen and temperature
  publication-title: Funct Ecol
  doi: 10.1046/j.1365-2435.2001.00534.x
– volume: 342
  start-page: 1243092
  year: 2013
  ident: e_1_3_4_51_2
  article-title: Hyperdominance in the Amazonian tree flora
  publication-title: Science
  doi: 10.1126/science.1243092
– ident: e_1_3_4_47_2
– volume: 11
  start-page: 1633
  year: 2007
  ident: e_1_3_4_44_2
  article-title: Updated world map of the Köppen-Geiger climate classification
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-11-1633-2007
– volume: 41
  start-page: 23
  year: 2014
  ident: e_1_3_4_22_2
  article-title: Community phylogenetics at the biogeographical scale: Cold tolerance, niche conservatism and the structure of North American forests
  publication-title: J Biogeogr
  doi: 10.1111/jbi.12171
– volume: 33
  start-page: 959
  year: 2010
  ident: e_1_3_4_40_2
  article-title: Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2010.02119.x
– volume: 206
  start-page: 614
  year: 2015
  ident: e_1_3_4_10_2
  article-title: Global variability in leaf respiration in relation to climate, plant functional types and leaf traits
  publication-title: New Phytol
  doi: 10.1111/nph.13253
– volume: 17
  start-page: 1982
  year: 2007
  ident: e_1_3_4_19_2
  article-title: Predicting leaf physiology from simple plant and climate attributes: A global GLOPNET analysis
  publication-title: Ecol Appl
  doi: 10.1890/06-1803.1
– volume: 100
  start-page: 366
  year: 2012
  ident: e_1_3_4_25_2
  article-title: Succession-induced trait shifts across a wide range of NW European ecosystems are driven by light and modulated by initial abiotic conditions
  publication-title: J Ecol
  doi: 10.1111/j.1365-2745.2011.01932.x
– volume: 101
  start-page: 11001
  year: 2004
  ident: e_1_3_4_16_2
  article-title: Global patterns of plant leaf N and P in relation to temperature and latitude
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0403588101
– volume-title: Grasses & Grassland Ecology
  year: 2009
  ident: e_1_3_4_50_2
– volume: 111
  start-page: 13733
  year: 2014
  ident: e_1_3_4_1_2
  article-title: A fully traits-based approach to modeling global vegetation distribution
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1304551110
– volume: 113
  start-page: 1285
  year: 2016
  ident: e_1_3_4_38_2
  article-title: The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1515160113
– volume: 17
  start-page: 2905
  year: 2011
  ident: e_1_3_4_14_2
  article-title: TRY - a global database of plant traits
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2011.02451.x
– volume: 16
  start-page: 5.1
  year: 2002
  ident: e_1_3_4_35_2
  article-title: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models
  publication-title: Glob Biogeochem Cycles
  doi: 10.1029/2000GB001360
– volume: 38
  start-page: 649
  year: 2015
  ident: e_1_3_4_23_2
  article-title: Shifts in trait means and variances in North American tree assemblages: Species richness patterns are loosely related to the functional space
  publication-title: Ecography
  doi: 10.1111/ecog.00867
– ident: e_1_3_4_15_2
– volume: 38
  start-page: 1
  year: 2011
  ident: e_1_3_4_41_2
  article-title: Limitations of nitrogen and phosphorous on the terrestrial carbon uptake in the 20th century
  publication-title: Geophys Res Lett
  doi: 10.1029/2011GL049244
– volume: 116
  start-page: 1
  year: 2011
  ident: e_1_3_4_4_2
  article-title: Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data
  publication-title: J Geophys Res
– volume: 26
  start-page: 553
  year: 2017
  ident: e_1_3_4_24_2
  article-title: Phylogeny and the prediction of tree functional diversity across novel continental settings
  publication-title: Glob Ecol Biogeogr
  doi: 10.1111/geb.12559
– volume: 111
  start-page: 800
  year: 2016
  ident: e_1_3_4_27_2
  article-title: Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2015.1044091
– ident: e_1_3_4_53_2
– volume: 12
  start-page: 829
  year: 1999
  ident: e_1_3_4_45_2
  article-title: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology
  publication-title: J Clim
  doi: 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2
– volume: 34
  start-page: 623
  year: 2014
  ident: e_1_3_4_46_2
  article-title: Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset
  publication-title: Int J Climatol
  doi: 10.1002/joc.3711
– volume: 192
  start-page: 277
  year: 2007
  ident: e_1_3_4_39_2
  article-title: Photosynthetic parameters from two contrasting woody vegetation types in West Africa
  publication-title: Plant Ecol
  doi: 10.1007/s11258-007-9320-y
– volume: 105
  start-page: 19336
  year: 2008
  ident: e_1_3_4_52_2
  article-title: Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0810021105
– volume: 9
  start-page: 4627
  year: 2012
  ident: e_1_3_4_31_2
  article-title: The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): A diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs
  publication-title: Biogeosciences Discussions
– volume: 25
  start-page: 964
  year: 2016
  ident: e_1_3_4_18_2
  article-title: Soil-climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests
  publication-title: Glob Ecol Biogeogr
  doi: 10.1111/geb.12457
– volume: 16
  start-page: 3663
  year: 2014
  ident: e_1_3_4_32_2
  article-title: Terrestrial water and carbon fluxes across climatic gradients: Does plant diversity matter?
  publication-title: New Phytol
– volume: 209
  start-page: 563
  year: 2016
  ident: e_1_3_4_54_2
  article-title: Variation in trait trade-offs allows differentiation among predefined plant functional types: Implications for predictive ecology
  publication-title: New Phytol
  doi: 10.1111/nph.13623
– volume: 15
  start-page: 2224
  year: 2009
  ident: e_1_3_4_29_2
  article-title: Impacts of climate change on the vegetation of Africa: An adaptive dynamic vegetation modelling approach
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2008.01838.x
– volume: 214
  start-page: 1064
  year: 2016
  ident: e_1_3_4_12_2
  article-title: Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents
  publication-title: New Phytol
  doi: 10.1111/nph.13992
– volume: 12
  start-page: 948
  year: 1998
  ident: e_1_3_4_5_2
  article-title: Leaf structure (specific leaf area) modulates photosynthesis–nitrogen relations : Evidence from within and across species and functional groups
  publication-title: Funct Ecol
  doi: 10.1046/j.1365-2435.1998.00274.x
– volume: 24
  start-page: 706
  year: 2015
  ident: e_1_3_4_2_2
  article-title: Global effects of soil and climate on leaf photosynthetic traits and rates
  publication-title: Glob Ecol Biogeogr
  doi: 10.1111/geb.12296
– volume: 21
  start-page: 798
  year: 2012
  ident: e_1_3_4_21_2
  article-title: The biogeography and filtering of woody plant functional diversity in North and South America
  publication-title: Glob Ecol Biogeogr
  doi: 10.1111/j.1466-8238.2011.00727.x
– volume: 113
  start-page: E4043
  year: 2016
  ident: e_1_3_4_26_2
  article-title: Large-scale climatic and geophysical controls on the leaf economics spectrum
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1604863113
– volume: 4
  start-page: 701
  year: 2011
  ident: e_1_3_4_34_2
  article-title: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-4-701-2011
– volume: 428
  start-page: 821
  year: 2004
  ident: e_1_3_4_8_2
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
  doi: 10.1038/nature02403
– volume: 111
  start-page: 13703
  year: 2014
  ident: e_1_3_4_20_2
  article-title: Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1216054110
– volume: 160
  start-page: 207
  year: 2009
  ident: e_1_3_4_9_2
  article-title: Leaf phosphorus influences the photosynthesis-nitrogen relation: A cross-biome analysis of 314 species
  publication-title: Oecologia
  doi: 10.1007/s00442-009-1291-3
– volume: 15
  start-page: 976
  year: 2009
  ident: e_1_3_4_6_2
  article-title: Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2008.01744.x
– volume: 10
  start-page: 5497
  year: 2013
  ident: e_1_3_4_43_2
  article-title: Impacts of trait variation through observed trait-climate relationships on performance of an earth system model: A conceptual analysis
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-5497-2013
– volume: 214
  start-page: 1002
  year: 2016
  ident: e_1_3_4_11_2
  article-title: Leaf-level photosynthetic capacity in lowland Amazonian and high elevation, Andean tropical moist forests of Peru
  publication-title: New Phytol
  doi: 10.1111/nph.14079
– volume: 21
  start-page: 3074
  year: 2015
  ident: e_1_3_4_37_2
  article-title: Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12871
– volume: 168
  start-page: 263
  year: 2005
  ident: e_1_3_4_13_2
  article-title: Global biogeography of plant chemistry: Filling in the blanks
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2005.01562.x
– volume: 112
  start-page: G01023
  year: 2007
  ident: e_1_3_4_48_2
  article-title: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0)
  publication-title: J Geophys Res
– volume: 215
  start-page: 992
  year: 2017
  ident: e_1_3_4_7_2
  article-title: Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study
  publication-title: New Phytol
  doi: 10.1111/nph.14591
– volume: 18
  start-page: 137
  year: 2009
  ident: e_1_3_4_17_2
  article-title: A global study of relationships between leaf traits, climate and soil measures of nutrient fertility
  publication-title: Glob Ecol Biogeogr
  doi: 10.1111/j.1466-8238.2008.00441.x
– volume: 22
  start-page: 2834
  year: 2016
  ident: e_1_3_4_42_2
  article-title: Using models to guide field experiments: A priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.13268
SSID ssj0009580
Score 2.605946
Snippet Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However,...
Currently, Earth system models (ESMs) represent variation in plant life through the presence of a small set of plant functional types (PFTs), each of which...
SourceID wageningen
pubmedcentral
osti
hal
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E10937
SubjectTerms 60 APPLIED LIFE SCIENCES
Bayesian analysis
Bayesian modeling
Biodiversity
Biological Sciences
Cells
Climate
Ecosystem
Environment
Environmental changes
ENVIRONMENTAL SCIENCES
Geography
Global
global climate
Leaf area
Leaves
Mapping
Mathematical models
Modelling
Models, Statistical
Nitrogen
Phosphorus
Photosynthesis
Physical Sciences
Plant Dispersal
Plant diversity
Plant traits
Plants
PNAS Plus
Quantitative Trait, Heritable
Spatial Analysis
Spatial statistics
Statistical models
Vegetation
Title Mapping local and global variability in plant trait distributions
URI https://www.jstor.org/stable/26485179
https://www.ncbi.nlm.nih.gov/pubmed/29196525
https://www.proquest.com/docview/2024480212
https://www.proquest.com/docview/1971693038
https://hal.science/hal-01852904
https://www.osti.gov/biblio/1410892
https://pubmed.ncbi.nlm.nih.gov/PMC5754770
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F531347
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcukF0ULAbUEGcSiKHPzYeNfHqAqKEIl6aKXeVvZ6o0SKnCh2WonfwI9mZnf9CC0VcHEi2-usPV9mZscz3xDyKZtzbGUVezTPsCQnUB5PaOyFWcaiIAyzQAfcprN4ckO_3Q5vDw5-drKWdlU2kD8erSv5H6nCPpArVsn-g2Sbi8IO-A7yhS1IGLZ_JeNputHlTtog6dcAlt_jDlbAhoBbl_VtVvD8dDeICt_INE2uyq5retWYsrJOHJjVkcJRW3dilUHZ9_pXs24X48rWFI4xGN8fD9oYeGU81FG2WG5toEsjZg1LfW8KW93-uz9Js1TuZJtwoGxivzWuNjYB9i4IvY4GfGqWOoWw7hdlFOylDjN3Xe06GlIXHoBBpabkulHepgTVotRw1z6wCqDGsJVxkZaDgPk84bQetk-1jTmvPAGD_jyERUeo1XyXwpmbgiY7jZooikVffrv0no_zbIEZtibZFez-GjT3Y6uZh0m5R_dgUQpdYtdxea5fkhd2reKODPCOyYEqTkhv3JZGwsH6QZ-Q4_qre2G5zD-_IiMLUVdD1AWIugaibgei7rJwNURdDVF3D6Kvyc3X8fXlxLNdOzwZh0HlxcyfcxUwySMlUyrBI8557vspY0MpkyiKqa9izmkqcz_Ph3AG2Ni5r-ZJzJjKox45LNaFekvcPIFhccpVHEiazcFxyrMYBmEugARn3SGD-jkLaSntcaIroVMrWCRQMKIVjEMumgEbw-by51M_guCas5CFfTL6LnCfj4QDiU_vAof0tFyb0zBfFEnvHHKGghbgxiIXs8SkNVkJCzCHnNfyF1adlCIEb5ly7LjgkA_NYVD2-AYvLdR6B9NDwrcEvE7ukDcGLu1PJ0gOig-F7QFp7xb2jxTLhSaUhyUbZcx3SNRCThTYy6zUo2xAWdzvtqJY4QdcpxRgviPKTp-81TNy1CqGc3JYbXfqHbjxVfZe_7t-AV9e9Qs
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+local+and+global+variability+in+plant+trait+distributions&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Butler%2C+Ethan+E.&rft.au=Datta%2C+Abhirup&rft.au=Flores-Moreno%2C+Habacuc&rft.au=Chen%2C+Ming&rft.date=2017-12-19&rft.pub=National+Academy+of+Sciences%2C+Washington%2C+DC+%28United+States%29&rft.issn=0027-8424&rft.volume=114&rft.issue=51&rft_id=info:doi/10.1073%2Fpnas.1708984114&rft.externalDocID=1410892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon