Mapping local and global variability in plant trait distributions
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 51; pp. E10937 - E10946 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
19.12.2017
National Academy of Sciences, Washington, DC (United States) |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (N
m
) and phosphorus (P
m
), we characterize how traits vary within and among over 50,000 ∼50 × 50-km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means. |
---|---|
AbstractList | Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration -- specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ~50x50-km cells across the entire vegetated land surface. We do this in several ways -- without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means. Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (N-m) and phosphorus (P-m), we characterize how traits vary within and among over 50,000 similar to 50 x 50-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means. Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means. Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration - specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ∼50×50-km cells across the entire vegetated land surface. We do this in several ways - without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means. Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ~50×50-km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps further reveal that the most diverse grid cells possess trait variability close to the range of global PFT means. Currently, Earth system models (ESMs) represent variation in plant life through the presence of a small set of plant functional types (PFTs), each of which accounts for hundreds or thousands of species across thousands of vegetated grid cells on land. By expanding plant traits from a single mean value per PFT to a full distribution per PFT that varies among grid cells, the trait variation present in nature is restored and may be propagated to estimates of ecosystem processes. Indeed, critical ecosystem processes tend to depend on the full trait distribution, which therefore needs to be represented accurately. These maps reintroduce substantial local variation and will allow for a more accurate representation of the land surface in ESMs. Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ( N m ) and phosphorus ( P m ), we characterize how traits vary within and among over 50,000 ∼ 50 × 50 -km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means. Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (N m ) and phosphorus (P m ), we characterize how traits vary within and among over 50,000 ∼50 × 50-km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means. Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means. |
Author | Spasojevic, Marko J. González-Melo, Andrés Laughlin, Daniel C. Schamp, Brandon Hickler, Thomas Chen, Ming Forey, Estelle Han, Wenxuan Craine, Joseph M. de Vries, Franciska T. Williams, Mathew Minden, Vanessa Brown, Kerry A. Domingues, Tomas F. Boenisch, Gerhard Thornton, Peter E. Kramer, Koen Atkin, Owen K. Read, Quentin Onoda, Yusuke Datta, Abhirup Hattingh, Wesley N. Kurokawa, Hiroko Campetella, Giandiego Sosinski, Enio Valladares, Fernando Flores-Moreno, Habacuc Butler, Ethan E. Cornelissen, Johannes H. C. Peñuelas, Josep Wirth, Christian Kattge, Jens Craven, Dylan Bond-Lamberty, Ben Meir, Patrick Reich, Peter B. Sack, Lawren Niinemets, Ülo Fazayeli, Farideh Kraft, Nathan J. B. Byun, Chaeho Gross, Nicolas Blonder, Benjamin Díaz, Sandra Wythers, Kirk R. Banerjee, Arindam Jansen, Steven Amiaud, Bernard Cerabolini, Bruno E. L. van Bodegom, Peter M. Soudzilovskaia, Nadejda A. |
Author_xml | – sequence: 1 givenname: Ethan E. surname: Butler fullname: Butler, Ethan E. organization: Department of Forest Resources, University of Minnesota, St. Paul, MN 55108 – sequence: 2 givenname: Abhirup surname: Datta fullname: Datta, Abhirup organization: Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205 – sequence: 3 givenname: Habacuc surname: Flores-Moreno fullname: Flores-Moreno, Habacuc organization: Department of Forest Resources, University of Minnesota, St. Paul, MN 55108 – sequence: 4 givenname: Ming surname: Chen fullname: Chen, Ming organization: Department of Forest Resources, University of Minnesota, St. Paul, MN 55108 – sequence: 5 givenname: Kirk R. surname: Wythers fullname: Wythers, Kirk R. organization: Department of Forest Resources, University of Minnesota, St. Paul, MN 55108 – sequence: 6 givenname: Farideh surname: Fazayeli fullname: Fazayeli, Farideh organization: Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 – sequence: 7 givenname: Arindam surname: Banerjee fullname: Banerjee, Arindam organization: Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 – sequence: 8 givenname: Owen K. surname: Atkin fullname: Atkin, Owen K. organization: Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia – sequence: 9 givenname: Jens surname: Kattge fullname: Kattge, Jens organization: Max Planck Institute for Biogeochemistry, 07745 Jena, Germany – sequence: 10 givenname: Bernard surname: Amiaud fullname: Amiaud, Bernard organization: UMR 1137 Ecologie et Ecophysiologie Forestières, Université de Lorraine–Institut National de la Recherche Agronomique, 54506 Vandoeuvre-lès-Nancy, France – sequence: 11 givenname: Benjamin surname: Blonder fullname: Blonder, Benjamin organization: Environmental Change Institute, University of Oxford, Oxford OX1 3BJ, United Kingdom – sequence: 12 givenname: Gerhard surname: Boenisch fullname: Boenisch, Gerhard organization: Max Planck Institute for Biogeochemistry, 07745 Jena, Germany – sequence: 13 givenname: Ben surname: Bond-Lamberty fullname: Bond-Lamberty, Ben organization: Joint Global Change Research Institute, Department of Energy Pacific Northwest National Laboratory, College Park, MD 20740 – sequence: 14 givenname: Kerry A. surname: Brown fullname: Brown, Kerry A. organization: Department of Geography and Geology, Kingston University London, Surrey KT1 2EE, United Kingdom – sequence: 15 givenname: Chaeho surname: Byun fullname: Byun, Chaeho organization: School of Biological Sciences, Seoul National University, Seoul 08826, South Korea – sequence: 16 givenname: Giandiego surname: Campetella fullname: Campetella, Giandiego organization: Plant Diversity and Ecosystems Management Unit, School of Biosciences & Veterinary Medicine, University of Camerino, 62032 Camerino, Italy – sequence: 17 givenname: Bruno E. L. surname: Cerabolini fullname: Cerabolini, Bruno E. L. organization: Department of Theoretical and Applied Sciences, University of Insubria, I-21100 Varese, Italy – sequence: 18 givenname: Johannes H. C. surname: Cornelissen fullname: Cornelissen, Johannes H. C. organization: Systems Ecology, Department of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands – sequence: 19 givenname: Joseph M. surname: Craine fullname: Craine, Joseph M. organization: Jonah Ventures, Manhattan, KS 66502 – sequence: 20 givenname: Dylan surname: Craven fullname: Craven, Dylan organization: German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany – sequence: 21 givenname: Franciska T. surname: de Vries fullname: de Vries, Franciska T. organization: School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom – sequence: 22 givenname: Sandra surname: Díaz fullname: Díaz, Sandra organization: Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Invetigaciones Cientificas y Técnicas), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, CC 495 Córdoba, Argentina – sequence: 23 givenname: Tomas F. surname: Domingues fullname: Domingues, Tomas F. organization: Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, CEP 14040-901 Bairro Monte Alegre, Ribeirao Preto, Sao Paulo, Brazil – sequence: 24 givenname: Estelle surname: Forey fullname: Forey, Estelle organization: Laboratory of Ecology Ecodiv, Institut National de Recherche en Sciences et Technologies pour l’Environnement et l’Agriculture, Normandie Université, 76821 Mont-Saint-Aignan, France – sequence: 25 givenname: Andrés surname: González-Melo fullname: González-Melo, Andrés organization: Facultad de Ciencias Naturales y Matematicas, Universidad del Rosario, Bogota 110111, Colombia – sequence: 26 givenname: Nicolas surname: Gross fullname: Gross, Nicolas organization: Institut National de la Recherche Agronomique, Unité Sous Contrat 1339, Centre d’Etude Biologique de Chizé, F 79360 Villiers en Bois, France – sequence: 27 givenname: Wenxuan surname: Han fullname: Han, Wenxuan organization: Key Laboratory of Biogeography and Bio-Resource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China – sequence: 28 givenname: Wesley N. surname: Hattingh fullname: Hattingh, Wesley N. organization: School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa – sequence: 29 givenname: Thomas surname: Hickler fullname: Hickler, Thomas organization: Senckenberg Biodiversity and Climate Research Centre (BiK-F), 60325 Frankfurt/Main, Germany – sequence: 30 givenname: Steven surname: Jansen fullname: Jansen, Steven organization: Institute of Systematic Botany and Ecology, Ulm University, 89081 Ulm, Germany – sequence: 31 givenname: Koen surname: Kramer fullname: Kramer, Koen organization: Team Vegetation, Forest and Landscape Ecology, Wageningen Environmental Research, 6708 PB Wageningen, The Netherlands – sequence: 32 givenname: Nathan J. B. surname: Kraft fullname: Kraft, Nathan J. B. organization: Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095 – sequence: 33 givenname: Hiroko surname: Kurokawa fullname: Kurokawa, Hiroko organization: Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan – sequence: 34 givenname: Daniel C. surname: Laughlin fullname: Laughlin, Daniel C. organization: Department of Botany, University of Wyoming, Laramie, WY 82071 – sequence: 35 givenname: Patrick surname: Meir fullname: Meir, Patrick organization: School of Geosciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom – sequence: 36 givenname: Vanessa surname: Minden fullname: Minden, Vanessa organization: Institute of Biology and Environmental Science, University of Oldenburg, 26111 Oldenburg, Germany – sequence: 37 givenname: Ülo surname: Niinemets fullname: Niinemets, Ülo organization: Department of Plant Physiology, Estonian University of Life Sciences, 51014 Tartu, Estonia – sequence: 38 givenname: Yusuke surname: Onoda fullname: Onoda, Yusuke organization: Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan – sequence: 39 givenname: Josep surname: Peñuelas fullname: Peñuelas, Josep organization: CSIC, Unitat d’Ecologia Global CREAF-CSIC-UAB, Bellaterra 08193, Barcelona, Catalonia, Spain – sequence: 40 givenname: Quentin surname: Read fullname: Read, Quentin organization: Department of Forestry, Michigan State University, East Lansing, MI 48824 – sequence: 41 givenname: Lawren surname: Sack fullname: Sack, Lawren organization: Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095 – sequence: 42 givenname: Brandon surname: Schamp fullname: Schamp, Brandon organization: Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada – sequence: 43 givenname: Nadejda A. surname: Soudzilovskaia fullname: Soudzilovskaia, Nadejda A. organization: Institute of Environmental Sciences, Leiden University, 2333 CC Leiden, The Netherlands – sequence: 44 givenname: Marko J. surname: Spasojevic fullname: Spasojevic, Marko J. organization: Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521 – sequence: 45 givenname: Enio surname: Sosinski fullname: Sosinski, Enio organization: Laboratório de Planejamento Ambiental, Embrapa Clima Temperado, Pelotas, RS, Brazil 96010-971 – sequence: 46 givenname: Peter E. surname: Thornton fullname: Thornton, Peter E. organization: Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831 – sequence: 47 givenname: Fernando surname: Valladares fullname: Valladares, Fernando organization: Museo Nacional de Ciencias Naturales, CSIC, E-28006 Madrid Spain – sequence: 48 givenname: Peter M. surname: van Bodegom fullname: van Bodegom, Peter M. organization: Institute of Environmental Sciences, Leiden University, 2333 CC Leiden, The Netherlands – sequence: 49 givenname: Mathew surname: Williams fullname: Williams, Mathew organization: School of Geosciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom – sequence: 50 givenname: Christian surname: Wirth fullname: Wirth, Christian organization: Max Planck Institute for Biogeochemistry, 07745 Jena, Germany – sequence: 51 givenname: Peter B. surname: Reich fullname: Reich, Peter B. organization: Hawkesbury Institute for the Environment, Western Sydney University, Penrith NSW 2751, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29196525$$D View this record in MEDLINE/PubMed https://hal.science/hal-01852904$$DView record in HAL https://www.osti.gov/biblio/1410892$$D View this record in Osti.gov |
BookMark | eNp9ks1vFCEYxiemxm6rZ0-aib3oYduXAQbwYLJpqjVZ40XPhAV2l80sjMBs0_9eJlNb3YMnyMvveXi_zqoTH7ytqtcILhEwfNV7lS4RAy44QYg8q2YIBJq3RMBJNQNo2JyThpxWZyntAEBQDi-q00Yg0dKGzqrFN9X3zm_qLmjV1cqbetOFVbkeVHRq5TqX72vn675TPtc5Kpdr41KObjVkF3x6WT1fqy7ZVw_nefXz882P69v58vuXr9eL5Vy3DcrzlsGaW8Q0x1YrojEXhhsAxRjVWmDcErAt50RpA8bQQihj1mDXomXMGnxefZx879TG-pKy9dKrqF2SQTnZuVVU8V7eDVH6bjz6YZUkxQgTVsSfJnEJ7q3R1pdKOtlHtx9Fo8G_L95t5SYcJGWUMAbF4N1kEFJ2MmmXrd7q4L3VWSKCygSaAn2YoO2R9-1iKccYIE4bAeSACvv-IaMYfg02Zbl3SduutNmGIUkkGGoFBswLenGE7sIQfWm2bKAhhEODxs_f_l3i4_9_Zl2AqwnQMaQU7foRQSDHbZLjNsmnbSoKeqQodatx6uMedP_RvZl0u5RDfMqkJZwiJvBvKLrZGA |
CitedBy_id | crossref_primary_10_1111_1365_2435_13402 crossref_primary_10_1002_ece3_9244 crossref_primary_10_1088_1748_9326_ab9e99 crossref_primary_10_1371_journal_pone_0236546 crossref_primary_10_1016_j_agee_2019_106621 crossref_primary_10_1186_s13717_018_0154_4 crossref_primary_10_1038_s41598_023_44384_0 crossref_primary_10_3389_fpls_2020_588098 crossref_primary_10_1029_2022GB007478 crossref_primary_10_1111_jbi_13623 crossref_primary_10_1111_nph_15609 crossref_primary_10_1016_j_scitotenv_2021_149591 crossref_primary_10_1016_j_tree_2018_11_004 crossref_primary_10_1093_aob_mcy165 crossref_primary_10_1016_j_rse_2024_114276 crossref_primary_10_1016_j_agrformet_2024_110366 crossref_primary_10_1016_j_rse_2021_112497 crossref_primary_10_5194_bg_22_1475_2025 crossref_primary_10_1111_geb_13702 crossref_primary_10_1016_j_gecco_2020_e01138 crossref_primary_10_1111_ele_13248 crossref_primary_10_1029_2018MS001453 crossref_primary_10_1111_nph_16123 crossref_primary_10_1016_j_ecocom_2019_100777 crossref_primary_10_1111_geb_13302 crossref_primary_10_1016_j_rse_2021_112406 crossref_primary_10_1073_pnas_2101388119 crossref_primary_10_1016_j_ecolind_2022_108687 crossref_primary_10_1038_s41586_025_08663_2 crossref_primary_10_1029_2022GL099550 crossref_primary_10_1038_s41586_018_0563_7 crossref_primary_10_1111_geb_13706 crossref_primary_10_1111_geb_13381 crossref_primary_10_1016_j_gecco_2019_e00527 crossref_primary_10_1111_jbi_15079 crossref_primary_10_1038_s41467_023_36240_6 crossref_primary_10_1111_gcb_17346 crossref_primary_10_1111_geb_13784 crossref_primary_10_1038_sdata_2018_132 crossref_primary_10_1002_eap_2064 crossref_primary_10_1016_j_ecolmodel_2025_111027 crossref_primary_10_1038_s41559_022_01904_x crossref_primary_10_1016_j_ecolind_2023_110694 crossref_primary_10_1111_gcb_15515 crossref_primary_10_5194_bg_18_4445_2021 crossref_primary_10_1038_s41467_021_25163_9 crossref_primary_10_5194_bg_20_3301_2023 crossref_primary_10_1016_j_agrformet_2023_109359 crossref_primary_10_1016_j_foreco_2020_118254 crossref_primary_10_1016_j_ppees_2024_125826 crossref_primary_10_1088_1748_9326_ac7b38 crossref_primary_10_1093_jpe_rtae103 crossref_primary_10_1029_2019MS001889 crossref_primary_10_1111_geb_13410 crossref_primary_10_3390_rs14246316 crossref_primary_10_1111_geb_13257 crossref_primary_10_5194_essd_16_1771_2024 crossref_primary_10_1029_2023MS004156 crossref_primary_10_1002_lol2_10294 crossref_primary_10_1029_2019GL082762 crossref_primary_10_1016_j_still_2019_104332 crossref_primary_10_3390_rs13153034 crossref_primary_10_3390_rs12010026 crossref_primary_10_5194_bg_18_2727_2021 crossref_primary_10_1016_j_rse_2021_112505 crossref_primary_10_1016_j_jhydrol_2020_125088 crossref_primary_10_1007_s11367_018_1470_8 crossref_primary_10_1073_pnas_2410467121 crossref_primary_10_3390_rs15030698 crossref_primary_10_1002_ecy_2589 crossref_primary_10_1038_s41598_021_95616_0 crossref_primary_10_1111_jvs_13229 crossref_primary_10_1111_gcb_14375 crossref_primary_10_1111_gcb_14530 crossref_primary_10_1016_j_flora_2019_03_013 crossref_primary_10_1029_2018GB005883 crossref_primary_10_1038_s41559_020_1217_3 crossref_primary_10_1111_gcb_16950 crossref_primary_10_1111_nph_15934 crossref_primary_10_1016_j_ecolind_2020_107062 crossref_primary_10_1080_14772000_2021_1887394 crossref_primary_10_1029_2021MS002964 crossref_primary_10_1111_geb_13086 crossref_primary_10_1126_science_adk9616 crossref_primary_10_1016_j_fmre_2024_01_012 crossref_primary_10_1038_s41477_022_01278_9 crossref_primary_10_1111_1365_2435_14415 crossref_primary_10_5194_bg_15_2601_2018 crossref_primary_10_5194_hess_25_2399_2021 crossref_primary_10_1002_ece3_6571 crossref_primary_10_1029_2023JG007753 crossref_primary_10_1038_s41597_022_01346_x crossref_primary_10_1111_gcb_14440 crossref_primary_10_1111_gcb_17038 crossref_primary_10_1016_j_rse_2022_113023 crossref_primary_10_1007_s10651_021_00525_0 crossref_primary_10_1111_brv_12488 crossref_primary_10_1002_ecs2_3741 crossref_primary_10_1016_j_aquabot_2021_103454 crossref_primary_10_1111_nph_15592 crossref_primary_10_1111_nph_17771 crossref_primary_10_1002_ecm_1615 crossref_primary_10_3390_rs12081248 crossref_primary_10_1126_science_adk1637 crossref_primary_10_1111_jbi_13809 crossref_primary_10_1111_1365_2745_13816 crossref_primary_10_1139_cjfr_2020_0126 crossref_primary_10_1186_s13007_021_00816_4 crossref_primary_10_5194_bg_20_2869_2023 crossref_primary_10_5194_gmd_16_2261_2023 crossref_primary_10_1029_2024JG008356 crossref_primary_10_3390_land12051090 crossref_primary_10_1111_gcb_17141 crossref_primary_10_3389_fpls_2022_996313 crossref_primary_10_1016_j_rse_2024_114082 crossref_primary_10_1111_jvs_12710 crossref_primary_10_1029_2023MS003992 crossref_primary_10_1111_brv_13107 crossref_primary_10_1111_gcb_16574 crossref_primary_10_1038_s42003_024_06777_3 crossref_primary_10_1016_j_scitotenv_2024_170439 crossref_primary_10_1029_2020GL087626 crossref_primary_10_5194_gmd_14_1987_2021 crossref_primary_10_1111_nph_17000 crossref_primary_10_1016_j_pecon_2021_07_002 crossref_primary_10_1111_brv_12782 crossref_primary_10_1002_ecy_3909 crossref_primary_10_1073_pnas_1813723116 crossref_primary_10_1111_geb_13457 crossref_primary_10_1002_ece3_5663 crossref_primary_10_1007_s10531_021_02206_7 crossref_primary_10_1029_2024MS004308 crossref_primary_10_1038_s41559_021_01616_8 crossref_primary_10_1111_gcb_14904 crossref_primary_10_1088_1748_9326_acb226 crossref_primary_10_3897_rio_7_e63850 crossref_primary_10_1038_s41559_020_1109_6 crossref_primary_10_1111_1365_2435_13582 crossref_primary_10_1111_nph_16711 crossref_primary_10_5194_essd_15_25_2023 crossref_primary_10_1016_j_scitotenv_2023_162075 crossref_primary_10_1038_s41467_022_32545_0 crossref_primary_10_1016_j_rse_2019_111368 crossref_primary_10_1016_j_scitotenv_2020_143070 crossref_primary_10_1029_2023AV000910 crossref_primary_10_1111_gcb_14973 crossref_primary_10_1038_s41559_018_0667_3 crossref_primary_10_5194_bg_21_1501_2024 crossref_primary_10_1029_2021JG006606 crossref_primary_10_5194_esd_12_1191_2021 crossref_primary_10_1038_s41467_020_16839_9 crossref_primary_10_1111_jvs_13021 crossref_primary_10_3389_fpls_2023_1131778 crossref_primary_10_1093_treephys_tpae163 crossref_primary_10_3390_agronomy12112833 crossref_primary_10_1016_j_jenvman_2022_114504 crossref_primary_10_3389_fpls_2023_1243209 crossref_primary_10_1111_1365_2745_13673 crossref_primary_10_3389_ffgc_2021_818661 crossref_primary_10_1007_s00572_025_01187_7 crossref_primary_10_1016_j_gecco_2021_e01971 crossref_primary_10_1073_pnas_1816654116 crossref_primary_10_1111_nph_19416 crossref_primary_10_1111_geb_13680 |
Cites_doi | 10.1126/science.aaj1987 10.1038/s41559-017-0132 10.1029/95JD01536 10.1111/nph.12210 10.1007/BF00386231 10.1046/j.1365-2435.2001.00534.x 10.1126/science.1243092 10.5194/hess-11-1633-2007 10.1111/jbi.12171 10.1111/j.1365-3040.2010.02119.x 10.1111/nph.13253 10.1890/06-1803.1 10.1111/j.1365-2745.2011.01932.x 10.1073/pnas.0403588101 10.1073/pnas.1304551110 10.1073/pnas.1515160113 10.1111/j.1365-2486.2011.02451.x 10.1029/2000GB001360 10.1111/ecog.00867 10.1029/2011GL049244 10.1111/geb.12559 10.1080/01621459.2015.1044091 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2 10.1002/joc.3711 10.1007/s11258-007-9320-y 10.1073/pnas.0810021105 10.1111/geb.12457 10.1111/nph.13623 10.1111/j.1365-2486.2008.01838.x 10.1111/nph.13992 10.1046/j.1365-2435.1998.00274.x 10.1111/geb.12296 10.1111/j.1466-8238.2011.00727.x 10.1073/pnas.1604863113 10.5194/gmd-4-701-2011 10.1038/nature02403 10.1073/pnas.1216054110 10.1007/s00442-009-1291-3 10.1111/j.1365-2486.2008.01744.x 10.5194/bg-10-5497-2013 10.1111/nph.14079 10.1111/gcb.12871 10.1111/j.1469-8137.2005.01562.x 10.1111/nph.14591 10.1111/j.1466-8238.2008.00441.x 10.1111/gcb.13268 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Dec 19, 2017 Copyright 2017 Wageningen University & Research |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Dec 19, 2017 – notice: Copyright – notice: 2017 – notice: Wageningen University & Research |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC VOOES OTOTI 5PM QVL |
DOI | 10.1073/pnas.1708984114 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV PubMed Central (Full Participant titles) NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Geography Environmental Sciences |
DocumentTitleAlternate | Plant trait distribution maps |
EISSN | 1091-6490 |
EndPage | E10946 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_531347 PMC5754770 1410892 oai_HAL_hal_01852904v1 29196525 10_1073_pnas_1708984114 26485179 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Catalan Government grantid: SGR 2014-274 – fundername: RCUK | Natural Environment Research Council (NERC) grantid: NE/M019160/1 – fundername: Chinese Academy of Sciences (CAS) grantid: Light of West China – fundername: U.S. Department of Energy | Office of Science, Office of Biological and Environmental Research grantid: Earth System Modeling Program – fundername: National Natural Science Foundation of China (NSFC) grantid: 41473068 – fundername: Australian Research Council (ARC) grantid: CE140100008 – fundername: European Research Council Synergy Grant grantid: ERC-SyG-2013-610028 – fundername: WUR | Wageningen University grantid: KB-29-009-003 – fundername: UM | Institute on the Environment, University of Minnesota (IonE) grantid: Discovery Grants – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0012677 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF DOOOF ECM EIF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC VOOES ADACV OTOTI 5PM - 02 08R 0R 1AW 3O- 55 692 79B AAPBV AAYJJ ABFLS ABPTK ACKIV ADACO ADBIT ADZLD AFDAS AS ASUFR DNJUQ DWIUU DZ F20 GJ HGD HQ3 HTVGU KM MVM NEJ NHB OHM P-O PQEST QVL TAF VOH X XFK XHC ZA5 ZCG |
ID | FETCH-LOGICAL-c621t-670f8e17c83eca4c389d8d00a775cc933640e6884acd0dd54c3addf0ef9677ed3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Tue Jan 05 18:09:39 EST 2021 Thu Aug 21 14:11:18 EDT 2025 Mon Nov 25 02:38:35 EST 2024 Fri Jul 04 06:52:26 EDT 2025 Fri Jul 11 08:52:37 EDT 2025 Mon Jun 30 08:30:31 EDT 2025 Wed Feb 19 02:33:33 EST 2025 Thu Apr 24 23:04:52 EDT 2025 Tue Jul 01 03:19:44 EDT 2025 Fri May 30 11:46:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | global spatial statistics climate Bayesian modeling plant traits |
Language | English |
License | Copyright: http://hal.archives-ouvertes.fr/licences/copyright Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c621t-670f8e17c83eca4c389d8d00a775cc933640e6884acd0dd54c3addf0ef9677ed3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Chinese Academy of Sciences USDOE Office of Science (SC), Biological and Environmental Research (BER) PNNL-SA-121738 Univ. of Leipzig (Germany) National Science Foundation (NSF) National Natural Science Foundation of China (NSFC) AC05-00OR22725; AC05-76RL01830; SC0012677; CE140100008; DEB-1234162; DEB-1242531; IIS-1563950; 640176; NE/M019160/1; ERC-SyG-2013-610028 IMBALANCE-P; CGL2013-48074-P; SGR 2014-274; FT110100457; NE/F002149/1; 41473068 Spanish Government Australian Research Council Univ. of Minnesota, Minneapolis, MN (United States) Natural Environment Research Council (NERC) European Research Council (ERC) Wageningen Univ. and Research (Netherlands) Max Planck Society, Jena (Germany). Max Planck Inst. for Biogeochemistry Catalan Government Author contributions: E.E.B., A.D., H.F.-M., M.C., K.R.W., F.F., A.B., O.K.A., J.K., and P.B.R. designed research; E.E.B. and A.D. performed research; E.E.B., A.D., H.F.-M., and J.K. analyzed data; and E.E.B., A.D., H.F.-M., M.C., K.R.W., A.B., O.K.A., J.K., B.A., B.B., G.B., B.B.-L., K.A.B., C.B., G.C., B.E.L.C., J.H.C.C., J.M.C., D.C., F.T.d.V., S.D., T.F.D., E.F., A.G.-M., N.G., W.H., W.N.H., T.H., S.J., K.K., N.J.B.K., H.K., D.C.L., P.M., V.M., Ü.N., Y.O., J.P., Q.R., L.S., B.S., N.A.S., M.J.S., E.S., P.E.T., F.V., P.M.v.B., M.W., C.W., and P.B.R. wrote the paper. 1E.E.B. and A.D. contributed equally to this work. Edited by William H. Schlesinger, Cary Institute of Ecosystem Studies, Millbrook, NY, and approved October 18, 2017 (received for review May 31, 2017) |
ORCID | 0000-0003-3940-833X 0000-0003-3482-1950 0000-0002-3078-2192 0000-0001-9730-3240 0000-0001-9525-4633 0000-0002-7215-0150 0000-0001-6561-3244 0000-0002-7009-7202 0000-0002-3793-0733 0000-0002-4476-5334 0000-0001-6126-522X 0000-0001-6082-3023 0000-0003-0771-4500 0000-0001-8778-8045 0000-0002-4668-7552 0000-0003-1041-5202 0000-0001-6245-2342 0000-0003-3209-3275 0000-0003-4424-662X 0000000272150150 0000000334821950 0000000195254633 0000000197303240 000000033940833X 0000000165613244 0000000230782192 |
OpenAccessLink | https://hal.science/hal-01852904 |
PMID | 29196525 |
PQID | 2024480212 |
PQPubID | 42026 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_531347 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754770 osti_scitechconnect_1410892 hal_primary_oai_HAL_hal_01852904v1 proquest_miscellaneous_1971693038 proquest_journals_2024480212 pubmed_primary_29196525 crossref_primary_10_1073_pnas_1708984114 crossref_citationtrail_10_1073_pnas_1708984114 jstor_primary_26485179 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2017-12-19 |
PublicationDateYYYYMMDD | 2017-12-19 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences National Academy of Sciences, Washington, DC (United States) |
Publisher_xml | – name: National Academy of Sciences – name: National Academy of Sciences, Washington, DC (United States) |
References | Hawkins BA (e_1_3_4_22_2) 2014; 41 Farquhar GD (e_1_3_4_28_2) 1980; 149 Bonan GB (e_1_3_4_35_2) 2002; 16 Bloom AA (e_1_3_4_38_2) 2016; 113 Van Bodegom PM (e_1_3_4_1_2) 2014; 111 Ordoñez JC (e_1_3_4_17_2) 2009; 18 Reich PB (e_1_3_4_19_2) 2007; 17 Gross N (e_1_3_4_33_2) 2017; 1 Zhang Q (e_1_3_4_41_2) 2011; 38 Peel B (e_1_3_4_44_2) 2007; 11 DeFries RS (e_1_3_4_3_2) 1995; 100 Ollinger SV (e_1_3_4_52_2) 2008; 105 Asner GP (e_1_3_4_49_2) 2017; 355 Verheijen LM (e_1_3_4_43_2) 2013; 10 Swenson NG (e_1_3_4_24_2) 2017; 26 Reich PB (e_1_3_4_9_2) 2009; 160 Reich PB (e_1_3_4_16_2) 2004; 101 Asner GP (e_1_3_4_26_2) 2016; 113 Datta A (e_1_3_4_27_2) 2016; 111 e_1_3_4_53_2 e_1_3_4_15_2 Wright IJ (e_1_3_4_8_2) 2004; 428 Medlyn B (e_1_3_4_42_2) 2016; 22 Maire V (e_1_3_4_2_2) 2015; 24 Reich PB (e_1_3_4_20_2) 2014; 111 Scheiter S (e_1_3_4_29_2) 2009; 15 Bonan GB (e_1_3_4_4_2) 2011; 116 Kattge J (e_1_3_4_14_2) 2011; 17 Gibson DJ (e_1_3_4_50_2) 2009 Verheijen LM (e_1_3_4_54_2) 2016; 209 Bahar N (e_1_3_4_11_2) 2016; 214 Atkin OK (e_1_3_4_10_2) 2015; 206 Lawrence PJ (e_1_3_4_48_2) 2007; 112 Rowland L (e_1_3_4_12_2) 2016; 214 Douma JC (e_1_3_4_25_2) 2012; 100 Scheiter S (e_1_3_4_30_2) 2013; 198 Simpson AH (e_1_3_4_18_2) 2016; 25 e_1_3_4_47_2 Crous KY (e_1_3_4_7_2) 2017; 215 Clark DB (e_1_3_4_34_2) 2011; 4 ter Steege H (e_1_3_4_51_2) 2013; 342 Harris I (e_1_3_4_46_2) 2014; 34 Meir P (e_1_3_4_39_2) 2007; 192 Reich PB (e_1_3_4_13_2) 2005; 168 Swenson NG (e_1_3_4_21_2) 2012; 21 Pappas C (e_1_3_4_32_2) 2014; 16 Kattge J (e_1_3_4_6_2) 2009; 15 Verheijen LM (e_1_3_4_37_2) 2015; 21 New M (e_1_3_4_45_2) 1999; 12 Meir P (e_1_3_4_36_2) 2001; 15 Domingues TF (e_1_3_4_40_2) 2010; 33 Pavlick R (e_1_3_4_31_2) 2012; 9 Reich PB (e_1_3_4_5_2) 1998; 12 Šímová I (e_1_3_4_23_2) 2015; 38 |
References_xml | – volume: 355 start-page: 385 year: 2017 ident: e_1_3_4_49_2 article-title: Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation publication-title: Science doi: 10.1126/science.aaj1987 – volume: 1 start-page: 0132 year: 2017 ident: e_1_3_4_33_2 article-title: Functional trait diversity maximizes ecosystem multifunctionality publication-title: Nat Ecol Evol doi: 10.1038/s41559-017-0132 – volume: 100 start-page: 20867 year: 1995 ident: e_1_3_4_3_2 article-title: Mapping the land surface for global atmosphere-biosphere models: Toward continuous distributions of vegetation’s functional properties publication-title: J Geophys Res doi: 10.1029/95JD01536 – volume: 198 start-page: 957 year: 2013 ident: e_1_3_4_30_2 article-title: Next-generation dynamic global vegetation models: Learning from community ecology publication-title: New Phytol doi: 10.1111/nph.12210 – volume: 149 start-page: 78 year: 1980 ident: e_1_3_4_28_2 article-title: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species publication-title: Planta doi: 10.1007/BF00386231 – volume: 15 start-page: 378 year: 2001 ident: e_1_3_4_36_2 article-title: Leaf respiration in two tropical rainforests: Constraints on physiology by phosphorus, nitrogen and temperature publication-title: Funct Ecol doi: 10.1046/j.1365-2435.2001.00534.x – volume: 342 start-page: 1243092 year: 2013 ident: e_1_3_4_51_2 article-title: Hyperdominance in the Amazonian tree flora publication-title: Science doi: 10.1126/science.1243092 – ident: e_1_3_4_47_2 – volume: 11 start-page: 1633 year: 2007 ident: e_1_3_4_44_2 article-title: Updated world map of the Köppen-Geiger climate classification publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-11-1633-2007 – volume: 41 start-page: 23 year: 2014 ident: e_1_3_4_22_2 article-title: Community phylogenetics at the biogeographical scale: Cold tolerance, niche conservatism and the structure of North American forests publication-title: J Biogeogr doi: 10.1111/jbi.12171 – volume: 33 start-page: 959 year: 2010 ident: e_1_3_4_40_2 article-title: Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2010.02119.x – volume: 206 start-page: 614 year: 2015 ident: e_1_3_4_10_2 article-title: Global variability in leaf respiration in relation to climate, plant functional types and leaf traits publication-title: New Phytol doi: 10.1111/nph.13253 – volume: 17 start-page: 1982 year: 2007 ident: e_1_3_4_19_2 article-title: Predicting leaf physiology from simple plant and climate attributes: A global GLOPNET analysis publication-title: Ecol Appl doi: 10.1890/06-1803.1 – volume: 100 start-page: 366 year: 2012 ident: e_1_3_4_25_2 article-title: Succession-induced trait shifts across a wide range of NW European ecosystems are driven by light and modulated by initial abiotic conditions publication-title: J Ecol doi: 10.1111/j.1365-2745.2011.01932.x – volume: 101 start-page: 11001 year: 2004 ident: e_1_3_4_16_2 article-title: Global patterns of plant leaf N and P in relation to temperature and latitude publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0403588101 – volume-title: Grasses & Grassland Ecology year: 2009 ident: e_1_3_4_50_2 – volume: 111 start-page: 13733 year: 2014 ident: e_1_3_4_1_2 article-title: A fully traits-based approach to modeling global vegetation distribution publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1304551110 – volume: 113 start-page: 1285 year: 2016 ident: e_1_3_4_38_2 article-title: The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1515160113 – volume: 17 start-page: 2905 year: 2011 ident: e_1_3_4_14_2 article-title: TRY - a global database of plant traits publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2011.02451.x – volume: 16 start-page: 5.1 year: 2002 ident: e_1_3_4_35_2 article-title: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models publication-title: Glob Biogeochem Cycles doi: 10.1029/2000GB001360 – volume: 38 start-page: 649 year: 2015 ident: e_1_3_4_23_2 article-title: Shifts in trait means and variances in North American tree assemblages: Species richness patterns are loosely related to the functional space publication-title: Ecography doi: 10.1111/ecog.00867 – ident: e_1_3_4_15_2 – volume: 38 start-page: 1 year: 2011 ident: e_1_3_4_41_2 article-title: Limitations of nitrogen and phosphorous on the terrestrial carbon uptake in the 20th century publication-title: Geophys Res Lett doi: 10.1029/2011GL049244 – volume: 116 start-page: 1 year: 2011 ident: e_1_3_4_4_2 article-title: Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data publication-title: J Geophys Res – volume: 26 start-page: 553 year: 2017 ident: e_1_3_4_24_2 article-title: Phylogeny and the prediction of tree functional diversity across novel continental settings publication-title: Glob Ecol Biogeogr doi: 10.1111/geb.12559 – volume: 111 start-page: 800 year: 2016 ident: e_1_3_4_27_2 article-title: Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets publication-title: J Am Stat Assoc doi: 10.1080/01621459.2015.1044091 – ident: e_1_3_4_53_2 – volume: 12 start-page: 829 year: 1999 ident: e_1_3_4_45_2 article-title: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology publication-title: J Clim doi: 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2 – volume: 34 start-page: 623 year: 2014 ident: e_1_3_4_46_2 article-title: Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset publication-title: Int J Climatol doi: 10.1002/joc.3711 – volume: 192 start-page: 277 year: 2007 ident: e_1_3_4_39_2 article-title: Photosynthetic parameters from two contrasting woody vegetation types in West Africa publication-title: Plant Ecol doi: 10.1007/s11258-007-9320-y – volume: 105 start-page: 19336 year: 2008 ident: e_1_3_4_52_2 article-title: Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0810021105 – volume: 9 start-page: 4627 year: 2012 ident: e_1_3_4_31_2 article-title: The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): A diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs publication-title: Biogeosciences Discussions – volume: 25 start-page: 964 year: 2016 ident: e_1_3_4_18_2 article-title: Soil-climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests publication-title: Glob Ecol Biogeogr doi: 10.1111/geb.12457 – volume: 16 start-page: 3663 year: 2014 ident: e_1_3_4_32_2 article-title: Terrestrial water and carbon fluxes across climatic gradients: Does plant diversity matter? publication-title: New Phytol – volume: 209 start-page: 563 year: 2016 ident: e_1_3_4_54_2 article-title: Variation in trait trade-offs allows differentiation among predefined plant functional types: Implications for predictive ecology publication-title: New Phytol doi: 10.1111/nph.13623 – volume: 15 start-page: 2224 year: 2009 ident: e_1_3_4_29_2 article-title: Impacts of climate change on the vegetation of Africa: An adaptive dynamic vegetation modelling approach publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2008.01838.x – volume: 214 start-page: 1064 year: 2016 ident: e_1_3_4_12_2 article-title: Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents publication-title: New Phytol doi: 10.1111/nph.13992 – volume: 12 start-page: 948 year: 1998 ident: e_1_3_4_5_2 article-title: Leaf structure (specific leaf area) modulates photosynthesis–nitrogen relations : Evidence from within and across species and functional groups publication-title: Funct Ecol doi: 10.1046/j.1365-2435.1998.00274.x – volume: 24 start-page: 706 year: 2015 ident: e_1_3_4_2_2 article-title: Global effects of soil and climate on leaf photosynthetic traits and rates publication-title: Glob Ecol Biogeogr doi: 10.1111/geb.12296 – volume: 21 start-page: 798 year: 2012 ident: e_1_3_4_21_2 article-title: The biogeography and filtering of woody plant functional diversity in North and South America publication-title: Glob Ecol Biogeogr doi: 10.1111/j.1466-8238.2011.00727.x – volume: 113 start-page: E4043 year: 2016 ident: e_1_3_4_26_2 article-title: Large-scale climatic and geophysical controls on the leaf economics spectrum publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1604863113 – volume: 4 start-page: 701 year: 2011 ident: e_1_3_4_34_2 article-title: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics publication-title: Geosci Model Dev doi: 10.5194/gmd-4-701-2011 – volume: 428 start-page: 821 year: 2004 ident: e_1_3_4_8_2 article-title: The worldwide leaf economics spectrum publication-title: Nature doi: 10.1038/nature02403 – volume: 111 start-page: 13703 year: 2014 ident: e_1_3_4_20_2 article-title: Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1216054110 – volume: 160 start-page: 207 year: 2009 ident: e_1_3_4_9_2 article-title: Leaf phosphorus influences the photosynthesis-nitrogen relation: A cross-biome analysis of 314 species publication-title: Oecologia doi: 10.1007/s00442-009-1291-3 – volume: 15 start-page: 976 year: 2009 ident: e_1_3_4_6_2 article-title: Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2008.01744.x – volume: 10 start-page: 5497 year: 2013 ident: e_1_3_4_43_2 article-title: Impacts of trait variation through observed trait-climate relationships on performance of an earth system model: A conceptual analysis publication-title: Biogeosciences doi: 10.5194/bg-10-5497-2013 – volume: 214 start-page: 1002 year: 2016 ident: e_1_3_4_11_2 article-title: Leaf-level photosynthetic capacity in lowland Amazonian and high elevation, Andean tropical moist forests of Peru publication-title: New Phytol doi: 10.1111/nph.14079 – volume: 21 start-page: 3074 year: 2015 ident: e_1_3_4_37_2 article-title: Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model publication-title: Glob Chang Biol doi: 10.1111/gcb.12871 – volume: 168 start-page: 263 year: 2005 ident: e_1_3_4_13_2 article-title: Global biogeography of plant chemistry: Filling in the blanks publication-title: New Phytol doi: 10.1111/j.1469-8137.2005.01562.x – volume: 112 start-page: G01023 year: 2007 ident: e_1_3_4_48_2 article-title: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0) publication-title: J Geophys Res – volume: 215 start-page: 992 year: 2017 ident: e_1_3_4_7_2 article-title: Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study publication-title: New Phytol doi: 10.1111/nph.14591 – volume: 18 start-page: 137 year: 2009 ident: e_1_3_4_17_2 article-title: A global study of relationships between leaf traits, climate and soil measures of nutrient fertility publication-title: Glob Ecol Biogeogr doi: 10.1111/j.1466-8238.2008.00441.x – volume: 22 start-page: 2834 year: 2016 ident: e_1_3_4_42_2 article-title: Using models to guide field experiments: A priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland publication-title: Glob Change Biol doi: 10.1111/gcb.13268 |
SSID | ssj0009580 |
Score | 2.605946 |
Snippet | Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However,... Currently, Earth system models (ESMs) represent variation in plant life through the presence of a small set of plant functional types (PFTs), each of which... |
SourceID | wageningen pubmedcentral osti hal proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E10937 |
SubjectTerms | 60 APPLIED LIFE SCIENCES Bayesian analysis Bayesian modeling Biodiversity Biological Sciences Cells Climate Ecosystem Environment Environmental changes ENVIRONMENTAL SCIENCES Geography Global global climate Leaf area Leaves Mapping Mathematical models Modelling Models, Statistical Nitrogen Phosphorus Photosynthesis Physical Sciences Plant Dispersal Plant diversity Plant traits Plants PNAS Plus Quantitative Trait, Heritable Spatial Analysis Spatial statistics Statistical models Vegetation |
Title | Mapping local and global variability in plant trait distributions |
URI | https://www.jstor.org/stable/26485179 https://www.ncbi.nlm.nih.gov/pubmed/29196525 https://www.proquest.com/docview/2024480212 https://www.proquest.com/docview/1971693038 https://hal.science/hal-01852904 https://www.osti.gov/biblio/1410892 https://pubmed.ncbi.nlm.nih.gov/PMC5754770 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F531347 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcukF0ULAbUEGcSiKHPzYeNfHqAqKEIl6aKXeVvZ6o0SKnCh2WonfwI9mZnf9CC0VcHEi2-usPV9mZscz3xDyKZtzbGUVezTPsCQnUB5PaOyFWcaiIAyzQAfcprN4ckO_3Q5vDw5-drKWdlU2kD8erSv5H6nCPpArVsn-g2Sbi8IO-A7yhS1IGLZ_JeNputHlTtog6dcAlt_jDlbAhoBbl_VtVvD8dDeICt_INE2uyq5retWYsrJOHJjVkcJRW3dilUHZ9_pXs24X48rWFI4xGN8fD9oYeGU81FG2WG5toEsjZg1LfW8KW93-uz9Js1TuZJtwoGxivzWuNjYB9i4IvY4GfGqWOoWw7hdlFOylDjN3Xe06GlIXHoBBpabkulHepgTVotRw1z6wCqDGsJVxkZaDgPk84bQetk-1jTmvPAGD_jyERUeo1XyXwpmbgiY7jZooikVffrv0no_zbIEZtibZFez-GjT3Y6uZh0m5R_dgUQpdYtdxea5fkhd2reKODPCOyYEqTkhv3JZGwsH6QZ-Q4_qre2G5zD-_IiMLUVdD1AWIugaibgei7rJwNURdDVF3D6Kvyc3X8fXlxLNdOzwZh0HlxcyfcxUwySMlUyrBI8557vspY0MpkyiKqa9izmkqcz_Ph3AG2Ni5r-ZJzJjKox45LNaFekvcPIFhccpVHEiazcFxyrMYBmEugARn3SGD-jkLaSntcaIroVMrWCRQMKIVjEMumgEbw-by51M_guCas5CFfTL6LnCfj4QDiU_vAof0tFyb0zBfFEnvHHKGghbgxiIXs8SkNVkJCzCHnNfyF1adlCIEb5ly7LjgkA_NYVD2-AYvLdR6B9NDwrcEvE7ukDcGLu1PJ0gOig-F7QFp7xb2jxTLhSaUhyUbZcx3SNRCThTYy6zUo2xAWdzvtqJY4QdcpxRgviPKTp-81TNy1CqGc3JYbXfqHbjxVfZe_7t-AV9e9Qs |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+local+and+global+variability+in+plant+trait+distributions&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Butler%2C+Ethan+E.&rft.au=Datta%2C+Abhirup&rft.au=Flores-Moreno%2C+Habacuc&rft.au=Chen%2C+Ming&rft.date=2017-12-19&rft.pub=National+Academy+of+Sciences%2C+Washington%2C+DC+%28United+States%29&rft.issn=0027-8424&rft.volume=114&rft.issue=51&rft_id=info:doi/10.1073%2Fpnas.1708984114&rft.externalDocID=1410892 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |