Genome-wide antisense transcription drives mRNA processing in bacteria
RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5' and 3' untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both th...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 50; pp. 20172 - 20177 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
13.12.2011
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5' and 3' untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels. |
---|---|
AbstractList | RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5′ and 3′ untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels. RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5′ and 3′ untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus , we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels. RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5' and 3' untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels.RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5' and 3' untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels. |
Author | Villanueva, Maite Valle, Jaione Penadés, José R Gingeras, Thomas R Solano, Cristina Lasa, Iñigo Toledo-Arana, Alejandro Dobin, Alexander de los Mozos, Igor Ruiz Vergara-Irigaray, Marta Segura, Víctor Fagegaltier, Delphine |
Author_xml | – sequence: 1 fullname: Lasa, Iñigo – sequence: 2 fullname: Toledo-Arana, Alejandro – sequence: 3 fullname: Dobin, Alexander – sequence: 4 fullname: Villanueva, Maite – sequence: 5 fullname: de los Mozos, Igor Ruiz – sequence: 6 fullname: Vergara-Irigaray, Marta – sequence: 7 fullname: Segura, Víctor – sequence: 8 fullname: Fagegaltier, Delphine – sequence: 9 fullname: Penadés, José R – sequence: 10 fullname: Valle, Jaione – sequence: 11 fullname: Solano, Cristina – sequence: 12 fullname: Gingeras, Thomas R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22123973$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1vEzEQxS1URD_gzAlYcYHLtmN7vbYvSFVFC1IFEtCz5XjHwVFiB3tTxH-PVwkN9FBOPsxvnt_MvGNyEFNEQp5TOKUg-dk62nJKKeWCUQrqETmioGnbdxoOyBEAk63qWHdIjktZAIAWCp6QQ8Yo41ryI3J5hTGtsP0ZBmxsHEPBWLAZs43F5bAeQ4rNkMMtlmb15dN5s87JYSkhzpsQm5l1I-Zgn5LH3i4LPtu9J-Tm8v23iw_t9eerjxfn163rGR1bYf2sB6nYYNENnUI-QK8U04Nizs4ARLXvJcpBMtfhTHjlB-98Dyi89p6fkHdb3fVmtsLBYaxOl2adw8rmXybZYP6txPDdzNOt4UwA1bwKvNkJ5PRjg2U0q1AcLpc2YtoUo9nkpxPi_ySluqOcs0q-fZCkgutOUC2hoq_voYu0ybGurOqBlhqEqtDLv4e8m-7P1SpwtgVcTqVk9HcIBTPlwky5MPtc1A5xr8OF0U7HrVsKywf6mp2VqbD_RRkBhgGV0_QvtsiijCnvzXLoa966Wn-1rXubjJ3nUMzN19ra1Tj2mkvNfwPkxdny |
CitedBy_id | crossref_primary_10_1016_j_ymeth_2013_06_033 crossref_primary_10_3389_fgene_2018_00350 crossref_primary_10_1371_journal_ppat_1009874 crossref_primary_10_4161_rna_20105 crossref_primary_10_1111_1574_6968_12162 crossref_primary_10_4161_rna_20103 crossref_primary_10_3389_fmicb_2017_01276 crossref_primary_10_1111_j_1365_2958_2012_08144_x crossref_primary_10_1080_15476286_2017_1356565 crossref_primary_10_1371_journal_pgen_1002782 crossref_primary_10_1080_10409238_2019_1651816 crossref_primary_10_1093_femspd_fty035 crossref_primary_10_1093_pcp_pcz087 crossref_primary_10_1128_microbiolspec_MGM2_0029_2013 crossref_primary_10_1186_1471_2164_15_521 crossref_primary_10_1016_j_meegid_2013_11_016 crossref_primary_10_1111_mmi_12767 crossref_primary_10_4161_rna_21167 crossref_primary_10_1099_mic_0_000244 crossref_primary_10_1371_journal_pone_0069282 crossref_primary_10_1093_nar_gky1257 crossref_primary_10_1128_mBio_01442_14 crossref_primary_10_1038_nsmb_3192 crossref_primary_10_1371_journal_pone_0155740 crossref_primary_10_1261_rna_049346_114 crossref_primary_10_1016_j_febslet_2014_05_037 crossref_primary_10_1128_mBio_02250_20 crossref_primary_10_1371_journal_ppat_1003767 crossref_primary_10_15252_msb_20209584 crossref_primary_10_1128_microbiolspec_GPP3_0038_2018 crossref_primary_10_1186_1471_2180_13_92 crossref_primary_10_1016_j_molcel_2016_03_024 crossref_primary_10_1093_nar_gkw073 crossref_primary_10_1038_s41598_017_04786_3 crossref_primary_10_1155_2015_395753 crossref_primary_10_1146_annurev_micro_030117_020335 crossref_primary_10_1371_journal_pcbi_1009384 crossref_primary_10_1371_journal_pone_0115839 crossref_primary_10_1093_ofid_ofv093 crossref_primary_10_3389_fmicb_2018_00931 crossref_primary_10_1074_jbc_M112_391755 crossref_primary_10_1128_microbiolspec_RWR_0003_2017 crossref_primary_10_1371_journal_pone_0184119 crossref_primary_10_1080_15476286_2018_1462655 crossref_primary_10_1371_journal_pbio_3001715 crossref_primary_10_3390_microorganisms8030384 crossref_primary_10_1016_j_mib_2014_02_009 crossref_primary_10_1128_mBio_01646_20 crossref_primary_10_1371_journal_pone_0109738 crossref_primary_10_4161_rna_29299 crossref_primary_10_1371_journal_pgen_1003181 crossref_primary_10_1038_ncomms6729 crossref_primary_10_1128_IAI_01419_13 crossref_primary_10_1073_pnas_1315974111 crossref_primary_10_1038_s41467_018_02949_y crossref_primary_10_1093_nar_gkz791 crossref_primary_10_1128_msystems_00587_19 crossref_primary_10_1134_S002689331604004X crossref_primary_10_3390_ijms23010576 crossref_primary_10_1016_j_mib_2015_12_008 crossref_primary_10_1093_nar_gkt508 crossref_primary_10_1186_s11658_016_0007_z crossref_primary_10_1016_j_mib_2013_07_011 crossref_primary_10_1016_j_ymeth_2013_09_014 crossref_primary_10_1016_j_gene_2015_12_068 crossref_primary_10_1073_pnas_1324236111 crossref_primary_10_1038_s41598_018_20661_1 crossref_primary_10_3389_fmicb_2017_02693 crossref_primary_10_4161_rna_22710 crossref_primary_10_1016_j_ttbdis_2017_06_008 crossref_primary_10_1155_2012_592196 crossref_primary_10_3390_genes10040280 crossref_primary_10_1093_nar_gkz208 crossref_primary_10_1371_journal_ppat_1009606 crossref_primary_10_1002_pmic_202200421 crossref_primary_10_1016_j_febslet_2015_07_029 crossref_primary_10_1093_nar_gku555 crossref_primary_10_1093_femsre_fuad049 crossref_primary_10_1371_journal_ppat_1003979 crossref_primary_10_1111_mmi_13301 crossref_primary_10_5808_GI_2013_11_2_76 crossref_primary_10_1073_pnas_1509251112 crossref_primary_10_1186_s12864_017_3932_y crossref_primary_10_3389_fgene_2015_00110 crossref_primary_10_1016_j_meegid_2013_05_016 crossref_primary_10_1186_1471_2164_14_558 crossref_primary_10_1371_journal_pone_0101582 crossref_primary_10_1111_mmi_14917 crossref_primary_10_1186_1471_2164_14_714 crossref_primary_10_1093_femsle_fnw175 crossref_primary_10_1186_s12864_015_1583_4 crossref_primary_10_1016_j_tim_2012_07_005 crossref_primary_10_1371_journal_pone_0070720 crossref_primary_10_3389_fmicb_2021_719977 crossref_primary_10_1002_wrna_1195 crossref_primary_10_1080_15476286_2015_1110674 crossref_primary_10_1128_mBio_00485_20 crossref_primary_10_1038_nrmicro3316 crossref_primary_10_1016_j_cimid_2016_11_007 crossref_primary_10_1093_nar_gkaa047 crossref_primary_10_1080_10409238_2018_1473330 crossref_primary_10_15252_msb_20156540 crossref_primary_10_1096_fj_202002297RRR crossref_primary_10_1371_journal_pgen_1004001 crossref_primary_10_1093_nar_gkw1316 crossref_primary_10_1093_femsre_fuv007 crossref_primary_10_1186_1471_2164_14_520 crossref_primary_10_1534_g3_117_300290 crossref_primary_10_1128_microbiolspec_RWR_0029_2018 crossref_primary_10_1002_jor_22907 crossref_primary_10_1073_pnas_1520255113 crossref_primary_10_1093_mtomcs_mfae058 crossref_primary_10_3389_fmicb_2022_838042 crossref_primary_10_1093_mtomcs_mfae057 crossref_primary_10_1128_JB_02096_14 crossref_primary_10_1016_j_bbagrm_2020_194505 crossref_primary_10_1038_srep09560 crossref_primary_10_3389_fmicb_2018_00228 crossref_primary_10_1128_AEM_02044_13 crossref_primary_10_1371_journal_pone_0076572 crossref_primary_10_1016_j_ymeth_2013_06_003 crossref_primary_10_1038_s41467_021_23362_y crossref_primary_10_1128_microbiolspec_VMBF_0028_2015 crossref_primary_10_1186_1471_2164_13_734 crossref_primary_10_1038_s41467_022_31177_8 crossref_primary_10_4161_rna_28036 crossref_primary_10_1093_nar_gkt444 crossref_primary_10_1128_JB_02410_14 crossref_primary_10_1111_mmi_14456 crossref_primary_10_1080_15476286_2019_1642725 crossref_primary_10_1128_JB_00252_18 crossref_primary_10_1080_15476286_2016_1153209 crossref_primary_10_1128_mBio_00156_12 crossref_primary_10_1371_journal_pgen_1005962 crossref_primary_10_1038_msb_2012_11 crossref_primary_10_1261_rna_033324_112 crossref_primary_10_1016_j_bbagrm_2018_04_004 crossref_primary_10_1080_20002297_2022_2161182 crossref_primary_10_1073_pnas_1201061109 crossref_primary_10_1128_AAC_00263_13 crossref_primary_10_1099_mic_0_000875 crossref_primary_10_3389_fimmu_2022_1050722 crossref_primary_10_1093_nar_gkab117 crossref_primary_10_1007_s00018_013_1472_4 crossref_primary_10_1093_nar_gks847 crossref_primary_10_1093_pnasnexus_pgad187 crossref_primary_10_1146_annurev_micro_102215_095708 crossref_primary_10_1016_j_molcel_2017_12_023 crossref_primary_10_1128_mbio_03443_21 crossref_primary_10_1186_1471_2164_14_230 crossref_primary_10_1016_j_bbagrm_2020_194489 crossref_primary_10_1186_1471_2164_14_620 crossref_primary_10_1111_mmi_14446 crossref_primary_10_1016_j_biotechadv_2021_107853 crossref_primary_10_1093_femsml_uqae007 crossref_primary_10_1093_gbe_evt138 crossref_primary_10_1093_nar_gkad1079 crossref_primary_10_1111_age_12275 crossref_primary_10_1186_s12864_016_3211_3 crossref_primary_10_1371_journal_ppat_1011965 crossref_primary_10_1039_C5MB00547G crossref_primary_10_1016_j_bbagrm_2020_194524 crossref_primary_10_1080_21541264_2017_1381794 crossref_primary_10_1186_1471_2164_15_783 crossref_primary_10_3389_fmicb_2018_00342 crossref_primary_10_1016_j_coisb_2017_01_009 crossref_primary_10_1073_pnas_1812746116 crossref_primary_10_1038_nrmicro2934 crossref_primary_10_1128_JB_00098_19 crossref_primary_10_1111_mpp_12997 crossref_primary_10_1080_15476286_2016_1146855 crossref_primary_10_1093_abbs_gmw037 crossref_primary_10_1038_nrg3594 crossref_primary_10_1093_nar_gkx1284 crossref_primary_10_1016_j_bcab_2021_101933 crossref_primary_10_1016_j_biotechadv_2024_108478 crossref_primary_10_1186_1471_2164_15_438 crossref_primary_10_3389_fmolb_2020_617633 crossref_primary_10_4161_21541272_2014_944039 crossref_primary_10_1007_s12257_012_0374_x crossref_primary_10_1128_mBio_01398_14 crossref_primary_10_1016_j_bbagrm_2013_02_013 |
Cites_doi | 10.1038/sj.emboj.7600572 10.1073/pnas.1015154108 10.1146/annurev-genet-102209-163523 10.1002/bies.201000020 10.1093/nar/gkq462 10.1038/nature07007 10.1093/nar/gkp668 10.1038/nature08756 10.1073/pnas.0503838102 10.1371/journal.pone.0007526 10.1101/gr.100396.109 10.1038/nbt.1582 10.1093/nar/gkp080 10.1128/mBio.00024-10 10.1155/2009/525491 10.1073/pnas.0909051106 10.1093/nar/gkp596 10.1186/1471-2105-11-S3-S10 10.1002/j.1460-2075.1993.tb06074.x 10.1093/bioinformatics/btp472 10.1038/nrm2738 10.3201/eid1212.060505 10.1016/S0168-9525(02)02658-6 10.1038/nrmicro2457 10.1128/JB.01445-09 10.1038/82367 10.1371/journal.pone.0010725 10.1007/s00109-010-0597-2 10.1093/nar/gkr012 10.1126/science.1176951 10.1038/nrg2695 10.1038/nature08080 10.1111/j.1365-2958.2009.06830.x 10.1101/gad.423507 10.1016/j.mib.2007.03.012 10.1038/msb.2009.63 10.1093/nar/gkp1032 |
ContentType | Journal Article |
Copyright | copyright © 1993—2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Dec 13, 2011 |
Copyright_xml | – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Dec 13, 2011 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 7QO 7T7 5PM |
DOI | 10.1073/pnas.1113521108 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE - Academic Virology and AIDS Abstracts Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 20177 |
ExternalDocumentID | PMC3250193 2537661731 22123973 10_1073_pnas_1113521108 108_50_20172 23060094 US201400069379 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 7QO 7T7 5PM |
ID | FETCH-LOGICAL-c621t-5afb60782daecd48e3d068829d82cab005109f7e7d72c4eb5f8fdfcf60e5f9ff3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:25:37 EDT 2025 Thu Jul 10 18:48:30 EDT 2025 Thu Jul 10 22:25:06 EDT 2025 Fri Jul 11 07:03:46 EDT 2025 Mon Jun 30 08:27:11 EDT 2025 Wed Feb 19 01:49:07 EST 2025 Tue Jul 01 03:39:08 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Wed Nov 11 00:29:42 EST 2020 Thu May 29 08:40:49 EDT 2025 Wed Dec 27 19:28:53 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c621t-5afb60782daecd48e3d068829d82cab005109f7e7d72c4eb5f8fdfcf60e5f9ff3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Author contributions: I.L., A.T.-A., and T.R.G. designed research; I.L., A.T.-A., M.V., I.R.d.l.M., M.V.-I., J.R.P., J.V., and C.S. performed research; A.D. and D.F. contributed new reagents/analytic tools; I.L., A.T.-A., A.D., V.S., and T.R.G. analyzed data; I.L., A.T.-A., and T.R.G. wrote the paper. 1I.L. and A.T.-A contributed equally to this work. Edited by Susan Gottesman, National Cancer Institute, Bethesda, MD, and approved November 8, 2011 (received for review August 19, 2011) |
OpenAccessLink | https://hdl.handle.net/2454/22579 |
PMID | 22123973 |
PQID | 910979058 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | fao_agris_US201400069379 proquest_miscellaneous_911941332 jstor_primary_23060094 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3250193 proquest_miscellaneous_926882455 pubmed_primary_22123973 proquest_miscellaneous_1539451970 pnas_primary_108_50_20172 crossref_primary_10_1073_pnas_1113521108 proquest_journals_910979058 crossref_citationtrail_10_1073_pnas_1113521108 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-12-13 |
PublicationDateYYYYMMDD | 2011-12-13 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Toledo-Arana A (e_1_3_4_5_2) 2009; 459 Georg J (e_1_3_4_14_2) 2009; 5 Güell M (e_1_3_4_3_2) 2009; 326 Brantl S (e_1_3_4_20_2) 2007; 10 Pichon C (e_1_3_4_28_2) 2005; 102 Parkhomchuk D (e_1_3_4_33_2) 2009; 37 Beaume M (e_1_3_4_10_2) 2010; 5 Thomason MK (e_1_3_4_18_2) 2010; 44 Sorek R (e_1_3_4_22_2) 2010; 11 Albrecht M (e_1_3_4_12_2) 2010; 38 Mendoza-Vargas A (e_1_3_4_6_2) 2009; 4 Wurtzel O (e_1_3_4_9_2) 2010; 20 Bohn C (e_1_3_4_31_2) 2010; 38 Martin J (e_1_3_4_13_2) 2010; 11 Klevens RM (e_1_3_4_25_2) 2006; 12 Nicol JW (e_1_3_4_35_2) 2009; 25 Mitschke J (e_1_3_4_15_2) 2011; 108 Abu-Qatouseh LF (e_1_3_4_30_2) 2010; 88 Anderson KL (e_1_3_4_32_2) 2009; 2009 Liu JM (e_1_3_4_4_2) 2009; 37 Rasmussen S (e_1_3_4_17_2) 2009; 73 Geissmann T (e_1_3_4_29_2) 2009; 37 Novick RP (e_1_3_4_26_2) 1993; 12 Fouquier d'Hérouel A (e_1_3_4_37_2) 2011; 39 Wagner EG (e_1_3_4_19_2) 2002; 18 Toledo-Arana A (e_1_3_4_24_2) 2010; 32 Selinger DW (e_1_3_4_1_2) 2000; 18 Czech B (e_1_3_4_34_2) 2008; 453 Filiatrault MJ (e_1_3_4_8_2) 2010; 192 Cho BK (e_1_3_4_2_2) 2009; 27 Sharma CM (e_1_3_4_7_2) 2010; 464 Gripenland J (e_1_3_4_23_2) 2010; 8 Huntzinger E (e_1_3_4_36_2) 2005; 24 Faghihi MA (e_1_3_4_21_2) 2009; 10 Jäger D (e_1_3_4_11_2) 2009; 106 Boisset S (e_1_3_4_27_2) 2007; 21 Dornenburg JE (e_1_3_4_16_2) 2010; 1 12047936 - Trends Genet. 2002 May;18(5):223-6 19881496 - Nat Biotechnol. 2009 Nov;27(11):1043-9 19786493 - Nucleic Acids Res. 2009 Nov;37(21):7239-57 19654113 - Bioinformatics. 2009 Oct 15;25(20):2730-1 19638999 - Nat Rev Mol Cell Biol. 2009 Sep;10(9):637-43 19448609 - Nature. 2009 Jun 18;459(7249):950-6 18463631 - Nature. 2008 Jun 5;453(7196):798-802 19838305 - PLoS One. 2009;4(10):e7526 20689751 - MBio. 2010 May 18;1(1):null 19996181 - Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21878-82 19620212 - Nucleic Acids Res. 2009 Oct;37(18):e123 20190049 - J Bacteriol. 2010 May;192(9):2359-72 19756044 - Mol Syst Biol. 2009;5:305 21079634 - Nat Rev Microbiol. 2010 Dec;8(12):857-66 20151104 - J Mol Med (Berl). 2010 Jun;88(6):565-75 19682248 - Mol Microbiol. 2009 Sep;73(6):1043-57 20164839 - Nature. 2010 Mar 11;464(7286):250-5 15678100 - EMBO J. 2005 Feb 23;24(4):824-35 20486131 - Bioessays. 2010 Jun;32(6):461-7 20707673 - Annu Rev Genet. 2010;44:167-88 21266481 - Nucleic Acids Res. 2011 Apr;39(7):e46 7691599 - EMBO J. 1993 Oct;12(10):3967-75 20505759 - PLoS One. 2010;5(5):e10725 17545468 - Genes Dev. 2007 Jun 1;21(11):1353-66 17326962 - Emerg Infect Dis. 2006 Dec;12(12):1991-3 21245330 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2124-9 19223322 - Nucleic Acids Res. 2009 Apr;37(6):e46 17387036 - Curr Opin Microbiol. 2007 Apr;10(2):102-9 19923228 - Nucleic Acids Res. 2010 Jan;38(3):868-77 19965477 - Science. 2009 Nov 27;326(5957):1268-71 16183745 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14249-54 20511587 - Nucleic Acids Res. 2010 Oct;38(19):6620-36 11101804 - Nat Biotechnol. 2000 Dec;18(12):1262-8 19935729 - Nat Rev Genet. 2010 Jan;11(1):9-16 19884261 - Genome Res. 2010 Jan;20(1):133-41 19936110 - Int J Microbiol. 2009;2009:525491 20438648 - BMC Bioinformatics. 2010;11 Suppl 3:S10 |
References_xml | – volume: 24 start-page: 824 year: 2005 ident: e_1_3_4_36_2 article-title: Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression publication-title: EMBO J doi: 10.1038/sj.emboj.7600572 – volume: 108 start-page: 2124 year: 2011 ident: e_1_3_4_15_2 article-title: An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1015154108 – volume: 44 start-page: 167 year: 2010 ident: e_1_3_4_18_2 article-title: Bacterial antisense RNAs: How many are there, and what are they doing? publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-102209-163523 – volume: 32 start-page: 461 year: 2010 ident: e_1_3_4_24_2 article-title: Deciphering the physiological blueprint of a bacterial cell: revelations of unanticipated complexity in transcriptome and proteome publication-title: Bioessays doi: 10.1002/bies.201000020 – volume: 38 start-page: 6620 year: 2010 ident: e_1_3_4_31_2 article-title: Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq462 – volume: 453 start-page: 798 year: 2008 ident: e_1_3_4_34_2 article-title: An endogenous small interfering RNA pathway in Drosophila publication-title: Nature doi: 10.1038/nature07007 – volume: 37 start-page: 7239 year: 2009 ident: e_1_3_4_29_2 article-title: A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp668 – volume: 464 start-page: 250 year: 2010 ident: e_1_3_4_7_2 article-title: The primary transcriptome of the major human pathogen Helicobacter pylori publication-title: Nature doi: 10.1038/nature08756 – volume: 102 start-page: 14249 year: 2005 ident: e_1_3_4_28_2 article-title: Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0503838102 – volume: 4 start-page: e7526 year: 2009 ident: e_1_3_4_6_2 article-title: Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli publication-title: PLoS ONE doi: 10.1371/journal.pone.0007526 – volume: 20 start-page: 133 year: 2010 ident: e_1_3_4_9_2 article-title: A single-base resolution map of an archaeal transcriptome publication-title: Genome Res doi: 10.1101/gr.100396.109 – volume: 27 start-page: 1043 year: 2009 ident: e_1_3_4_2_2 article-title: The transcription unit architecture of the Escherichia coli genome publication-title: Nat Biotechnol doi: 10.1038/nbt.1582 – volume: 37 start-page: e46 year: 2009 ident: e_1_3_4_4_2 article-title: Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp080 – volume: 1 start-page: e00024-10 year: 2010 ident: e_1_3_4_16_2 article-title: Widespread antisense transcription in Escherichia coli publication-title: MBio doi: 10.1128/mBio.00024-10 – volume: 2009 start-page: 525491 year: 2009 ident: e_1_3_4_32_2 article-title: Messenger RNA Turnover Processes in Escherichia coli, Bacillus subtilis, and Emerging Studies in Staphylococcus aureus publication-title: Int J Microbiol doi: 10.1155/2009/525491 – volume: 106 start-page: 21878 year: 2009 ident: e_1_3_4_11_2 article-title: Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0909051106 – volume: 37 start-page: e123 year: 2009 ident: e_1_3_4_33_2 article-title: Transcriptome analysis by strand-specific sequencing of complementary DNA publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp596 – volume: 11 start-page: S10 year: 2010 ident: e_1_3_4_13_2 article-title: Bacillus anthracis genome organization in light of whole transcriptome sequencing publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-S3-S10 – volume: 12 start-page: 3967 year: 1993 ident: e_1_3_4_26_2 article-title: Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule publication-title: EMBO J doi: 10.1002/j.1460-2075.1993.tb06074.x – volume: 25 start-page: 2730 year: 2009 ident: e_1_3_4_35_2 article-title: The Integrated Genome Browser: Free software for distribution and exploration of genome-scale datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp472 – volume: 10 start-page: 637 year: 2009 ident: e_1_3_4_21_2 article-title: Regulatory roles of natural antisense transcripts publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2738 – volume: 12 start-page: 1991 year: 2006 ident: e_1_3_4_25_2 article-title: Community-associated methicillin-resistant Staphylococcus aureus and healthcare risk factors publication-title: Emerg Infect Dis doi: 10.3201/eid1212.060505 – volume: 18 start-page: 223 year: 2002 ident: e_1_3_4_19_2 article-title: Antisense RNAs everywhere? publication-title: Trends Genet doi: 10.1016/S0168-9525(02)02658-6 – volume: 8 start-page: 857 year: 2010 ident: e_1_3_4_23_2 article-title: RNAs: Regulators of bacterial virulence publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2457 – volume: 192 start-page: 2359 year: 2010 ident: e_1_3_4_8_2 article-title: Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity publication-title: J Bacteriol doi: 10.1128/JB.01445-09 – volume: 18 start-page: 1262 year: 2000 ident: e_1_3_4_1_2 article-title: RNA expression analysis using a 30 base pair resolution Escherichia coli genome array publication-title: Nat Biotechnol doi: 10.1038/82367 – volume: 5 start-page: e10725 year: 2010 ident: e_1_3_4_10_2 article-title: Cartography of methicillin-resistant S. aureus transcripts: Detection, orientation and temporal expression during growth phase and stress conditions publication-title: PLoS ONE doi: 10.1371/journal.pone.0010725 – volume: 88 start-page: 565 year: 2010 ident: e_1_3_4_30_2 article-title: Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype publication-title: J Mol Med (Berl) doi: 10.1007/s00109-010-0597-2 – volume: 39 start-page: e46 year: 2011 ident: e_1_3_4_37_2 article-title: A simple and efficient method to search for selected primary transcripts: Non-coding and antisense RNAs in the human pathogen Enterococcus faecalis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr012 – volume: 326 start-page: 1268 year: 2009 ident: e_1_3_4_3_2 article-title: Transcriptome complexity in a genome-reduced bacterium publication-title: Science doi: 10.1126/science.1176951 – volume: 11 start-page: 9 year: 2010 ident: e_1_3_4_22_2 article-title: Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity publication-title: Nat Rev Genet doi: 10.1038/nrg2695 – volume: 459 start-page: 950 year: 2009 ident: e_1_3_4_5_2 article-title: The Listeria transcriptional landscape from saprophytism to virulence publication-title: Nature doi: 10.1038/nature08080 – volume: 73 start-page: 1043 year: 2009 ident: e_1_3_4_17_2 article-title: The transcriptionally active regions in the genome of Bacillus subtilis publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2009.06830.x – volume: 21 start-page: 1353 year: 2007 ident: e_1_3_4_27_2 article-title: Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism publication-title: Genes Dev doi: 10.1101/gad.423507 – volume: 10 start-page: 102 year: 2007 ident: e_1_3_4_20_2 article-title: Regulatory mechanisms employed by cis-encoded antisense RNAs publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2007.03.012 – volume: 5 start-page: 305 year: 2009 ident: e_1_3_4_14_2 article-title: Evidence for a major role of antisense RNAs in cyanobacterial gene regulation publication-title: Mol Syst Biol doi: 10.1038/msb.2009.63 – volume: 38 start-page: 868 year: 2010 ident: e_1_3_4_12_2 article-title: Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp1032 – reference: 17545468 - Genes Dev. 2007 Jun 1;21(11):1353-66 – reference: 19935729 - Nat Rev Genet. 2010 Jan;11(1):9-16 – reference: 17326962 - Emerg Infect Dis. 2006 Dec;12(12):1991-3 – reference: 19448609 - Nature. 2009 Jun 18;459(7249):950-6 – reference: 21079634 - Nat Rev Microbiol. 2010 Dec;8(12):857-66 – reference: 20438648 - BMC Bioinformatics. 2010;11 Suppl 3:S10 – reference: 7691599 - EMBO J. 1993 Oct;12(10):3967-75 – reference: 16183745 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14249-54 – reference: 20151104 - J Mol Med (Berl). 2010 Jun;88(6):565-75 – reference: 19838305 - PLoS One. 2009;4(10):e7526 – reference: 19223322 - Nucleic Acids Res. 2009 Apr;37(6):e46 – reference: 21245330 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2124-9 – reference: 19936110 - Int J Microbiol. 2009;2009:525491 – reference: 19638999 - Nat Rev Mol Cell Biol. 2009 Sep;10(9):637-43 – reference: 15678100 - EMBO J. 2005 Feb 23;24(4):824-35 – reference: 19996181 - Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21878-82 – reference: 19965477 - Science. 2009 Nov 27;326(5957):1268-71 – reference: 19756044 - Mol Syst Biol. 2009;5:305 – reference: 20707673 - Annu Rev Genet. 2010;44:167-88 – reference: 20511587 - Nucleic Acids Res. 2010 Oct;38(19):6620-36 – reference: 19654113 - Bioinformatics. 2009 Oct 15;25(20):2730-1 – reference: 20164839 - Nature. 2010 Mar 11;464(7286):250-5 – reference: 18463631 - Nature. 2008 Jun 5;453(7196):798-802 – reference: 19881496 - Nat Biotechnol. 2009 Nov;27(11):1043-9 – reference: 19923228 - Nucleic Acids Res. 2010 Jan;38(3):868-77 – reference: 12047936 - Trends Genet. 2002 May;18(5):223-6 – reference: 19620212 - Nucleic Acids Res. 2009 Oct;37(18):e123 – reference: 20486131 - Bioessays. 2010 Jun;32(6):461-7 – reference: 19682248 - Mol Microbiol. 2009 Sep;73(6):1043-57 – reference: 20505759 - PLoS One. 2010;5(5):e10725 – reference: 11101804 - Nat Biotechnol. 2000 Dec;18(12):1262-8 – reference: 21266481 - Nucleic Acids Res. 2011 Apr;39(7):e46 – reference: 20689751 - MBio. 2010 May 18;1(1):null – reference: 17387036 - Curr Opin Microbiol. 2007 Apr;10(2):102-9 – reference: 20190049 - J Bacteriol. 2010 May;192(9):2359-72 – reference: 19884261 - Genome Res. 2010 Jan;20(1):133-41 – reference: 19786493 - Nucleic Acids Res. 2009 Nov;37(21):7239-57 |
SSID | ssj0009580 |
Score | 2.4799562 |
Snippet | RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs,... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20172 |
SubjectTerms | 3' untranslated regions Antisense RNA Bacteria Biological Sciences digestion Gene Expression Regulation, Bacterial Genes Genome, Bacterial - genetics Genomes Gram-positive bacteria high-throughput nucleotide sequencing Humans Libraries Messenger RNA Molecules Open reading frames Open Reading Frames - genetics Operator regions Ribonuclease III - metabolism ribonucleases Ribonucleic acid RNA RNA Processing, Post-Transcriptional - genetics RNA, Antisense - genetics RNA, Antisense - metabolism RNA, Bacterial - genetics RNA, Double-Stranded - genetics RNA, Double-Stranded - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism Sequence Analysis, RNA Species Specificity Staphylococcus aureus Staphylococcus aureus - genetics Staphylococcus infections Transcription, Genetic transcriptome Transcriptomes |
Title | Genome-wide antisense transcription drives mRNA processing in bacteria |
URI | https://www.jstor.org/stable/23060094 http://www.pnas.org/content/108/50/20172.abstract https://www.ncbi.nlm.nih.gov/pubmed/22123973 https://www.proquest.com/docview/910979058 https://www.proquest.com/docview/1539451970 https://www.proquest.com/docview/911941332 https://www.proquest.com/docview/926882455 https://pubmed.ncbi.nlm.nih.gov/PMC3250193 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5cIFUaDUFJCROBRFLvba68cxVJSAaBRBg3qz1t7dNqhxojoBiV_Iz2LGu34kShH0EiV-rDeez_NYz3xDyGtGhfCTQDleyDBAifGZy2MnDARlCrw5kWBx8tkoHE6CTxfsotf73claWi2z4_zX1rqSu0gVtoFcsUr2PyTbDAob4DvIFz5BwvD5TzL-IIv5TDo_pwJfAmBb5aKU2PWhaJWBuKmIZWdfRoP-QlcFmDKWTBM1865_Om7sWVlnD4zq5cJBW3xiNELZd_rjUdvK-DMvK1_0I75-f-dNL-ftIva1FHNnAFPjpq7mO0euhMaRxjq0tYqbes837ItUrOQPrmuLpiY1STRrrx51dKVpl-l763y7OpqC3Qx0ZfWx1GoZvBqAj24s2uhtN-4AVNPX1moYI9uOTcff0VaDARoOuxwXvETjAd6oZ4btwGcxq_BD0conuvHKBkf3-OzEB18SnOEdco9CwFKlmA679M-xLoYy_60mmYr8txvXRnZqc6E1V2lH8XmdM4tEvHDWtqBoM7e34yydPyQPTJRjDzRk90hPFo_IXi0F-8iQnb95TE47GLYbDNtrGLY1hm3EsN1i2J4Wdo3hJ2Ry-v78ZOiY3h5OHlJv6TCushDdU8FlLoJY-gLbH4FuiGnOta1IVCQjEdE8kBlTsRIqV6ErmUqU8vfJbjEv5AGxM1cEYebm4KvKIIOIR3k50v7FAm4vU9wix_VtTHNDfI_9V67TKgEj8lO8mWkrAoscNScsNOfL7YcegFxSfgkWOZ18pbhegeTffpRYZL8SVjMEBvuYyGsRqxqlHTpOmZtWmLXIYS3S1CiaMk0wSyRxGVztVbMXrAC-2uOFnK9gRgwULtaguxaxbzkG3JoEXFaf_uUQijIIGLPIUw2jdvYGlBaJ1gDWHIA89et7iulVxVdvHo1ndz7zkNxv1clzsru8WckXEAsss5fVY_YHzI0GbA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+antisense+transcription+drives+mRNA+processing+in+bacteria&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lasa%2C+I%C3%B1igo&rft.au=Toledo-Arana%2C+Alejandro&rft.au=Dobin%2C+Alexander&rft.au=Villanueva%2C+Maite&rft.date=2011-12-13&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=50&rft.spage=20172&rft.epage=20177&rft_id=info:doi/10.1073%2Fpnas.1113521108&rft_id=info%3Apmid%2F22123973&rft.externalDocID=PMC3250193 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F50.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F50.cover.gif |