Genome-wide antisense transcription drives mRNA processing in bacteria

RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5' and 3' untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both th...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 50; pp. 20172 - 20177
Main Authors Lasa, Iñigo, Toledo-Arana, Alejandro, Dobin, Alexander, Villanueva, Maite, de los Mozos, Igor Ruiz, Vergara-Irigaray, Marta, Segura, Víctor, Fagegaltier, Delphine, Penadés, José R, Valle, Jaione, Solano, Cristina, Gingeras, Thomas R
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 13.12.2011
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5' and 3' untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels.
AbstractList RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5′ and 3′ untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels.
RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5′ and 3′ untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus , we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels.
RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5' and 3' untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels.RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5' and 3' untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels.
Author Villanueva, Maite
Valle, Jaione
Penadés, José R
Gingeras, Thomas R
Solano, Cristina
Lasa, Iñigo
Toledo-Arana, Alejandro
Dobin, Alexander
de los Mozos, Igor Ruiz
Vergara-Irigaray, Marta
Segura, Víctor
Fagegaltier, Delphine
Author_xml – sequence: 1
  fullname: Lasa, Iñigo
– sequence: 2
  fullname: Toledo-Arana, Alejandro
– sequence: 3
  fullname: Dobin, Alexander
– sequence: 4
  fullname: Villanueva, Maite
– sequence: 5
  fullname: de los Mozos, Igor Ruiz
– sequence: 6
  fullname: Vergara-Irigaray, Marta
– sequence: 7
  fullname: Segura, Víctor
– sequence: 8
  fullname: Fagegaltier, Delphine
– sequence: 9
  fullname: Penadés, José R
– sequence: 10
  fullname: Valle, Jaione
– sequence: 11
  fullname: Solano, Cristina
– sequence: 12
  fullname: Gingeras, Thomas R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22123973$$D View this record in MEDLINE/PubMed
BookMark eNqFks1vEzEQxS1URD_gzAlYcYHLtmN7vbYvSFVFC1IFEtCz5XjHwVFiB3tTxH-PVwkN9FBOPsxvnt_MvGNyEFNEQp5TOKUg-dk62nJKKeWCUQrqETmioGnbdxoOyBEAk63qWHdIjktZAIAWCp6QQ8Yo41ryI3J5hTGtsP0ZBmxsHEPBWLAZs43F5bAeQ4rNkMMtlmb15dN5s87JYSkhzpsQm5l1I-Zgn5LH3i4LPtu9J-Tm8v23iw_t9eerjxfn163rGR1bYf2sB6nYYNENnUI-QK8U04Nizs4ARLXvJcpBMtfhTHjlB-98Dyi89p6fkHdb3fVmtsLBYaxOl2adw8rmXybZYP6txPDdzNOt4UwA1bwKvNkJ5PRjg2U0q1AcLpc2YtoUo9nkpxPi_ySluqOcs0q-fZCkgutOUC2hoq_voYu0ybGurOqBlhqEqtDLv4e8m-7P1SpwtgVcTqVk9HcIBTPlwky5MPtc1A5xr8OF0U7HrVsKywf6mp2VqbD_RRkBhgGV0_QvtsiijCnvzXLoa966Wn-1rXubjJ3nUMzN19ra1Tj2mkvNfwPkxdny
CitedBy_id crossref_primary_10_1016_j_ymeth_2013_06_033
crossref_primary_10_3389_fgene_2018_00350
crossref_primary_10_1371_journal_ppat_1009874
crossref_primary_10_4161_rna_20105
crossref_primary_10_1111_1574_6968_12162
crossref_primary_10_4161_rna_20103
crossref_primary_10_3389_fmicb_2017_01276
crossref_primary_10_1111_j_1365_2958_2012_08144_x
crossref_primary_10_1080_15476286_2017_1356565
crossref_primary_10_1371_journal_pgen_1002782
crossref_primary_10_1080_10409238_2019_1651816
crossref_primary_10_1093_femspd_fty035
crossref_primary_10_1093_pcp_pcz087
crossref_primary_10_1128_microbiolspec_MGM2_0029_2013
crossref_primary_10_1186_1471_2164_15_521
crossref_primary_10_1016_j_meegid_2013_11_016
crossref_primary_10_1111_mmi_12767
crossref_primary_10_4161_rna_21167
crossref_primary_10_1099_mic_0_000244
crossref_primary_10_1371_journal_pone_0069282
crossref_primary_10_1093_nar_gky1257
crossref_primary_10_1128_mBio_01442_14
crossref_primary_10_1038_nsmb_3192
crossref_primary_10_1371_journal_pone_0155740
crossref_primary_10_1261_rna_049346_114
crossref_primary_10_1016_j_febslet_2014_05_037
crossref_primary_10_1128_mBio_02250_20
crossref_primary_10_1371_journal_ppat_1003767
crossref_primary_10_15252_msb_20209584
crossref_primary_10_1128_microbiolspec_GPP3_0038_2018
crossref_primary_10_1186_1471_2180_13_92
crossref_primary_10_1016_j_molcel_2016_03_024
crossref_primary_10_1093_nar_gkw073
crossref_primary_10_1038_s41598_017_04786_3
crossref_primary_10_1155_2015_395753
crossref_primary_10_1146_annurev_micro_030117_020335
crossref_primary_10_1371_journal_pcbi_1009384
crossref_primary_10_1371_journal_pone_0115839
crossref_primary_10_1093_ofid_ofv093
crossref_primary_10_3389_fmicb_2018_00931
crossref_primary_10_1074_jbc_M112_391755
crossref_primary_10_1128_microbiolspec_RWR_0003_2017
crossref_primary_10_1371_journal_pone_0184119
crossref_primary_10_1080_15476286_2018_1462655
crossref_primary_10_1371_journal_pbio_3001715
crossref_primary_10_3390_microorganisms8030384
crossref_primary_10_1016_j_mib_2014_02_009
crossref_primary_10_1128_mBio_01646_20
crossref_primary_10_1371_journal_pone_0109738
crossref_primary_10_4161_rna_29299
crossref_primary_10_1371_journal_pgen_1003181
crossref_primary_10_1038_ncomms6729
crossref_primary_10_1128_IAI_01419_13
crossref_primary_10_1073_pnas_1315974111
crossref_primary_10_1038_s41467_018_02949_y
crossref_primary_10_1093_nar_gkz791
crossref_primary_10_1128_msystems_00587_19
crossref_primary_10_1134_S002689331604004X
crossref_primary_10_3390_ijms23010576
crossref_primary_10_1016_j_mib_2015_12_008
crossref_primary_10_1093_nar_gkt508
crossref_primary_10_1186_s11658_016_0007_z
crossref_primary_10_1016_j_mib_2013_07_011
crossref_primary_10_1016_j_ymeth_2013_09_014
crossref_primary_10_1016_j_gene_2015_12_068
crossref_primary_10_1073_pnas_1324236111
crossref_primary_10_1038_s41598_018_20661_1
crossref_primary_10_3389_fmicb_2017_02693
crossref_primary_10_4161_rna_22710
crossref_primary_10_1016_j_ttbdis_2017_06_008
crossref_primary_10_1155_2012_592196
crossref_primary_10_3390_genes10040280
crossref_primary_10_1093_nar_gkz208
crossref_primary_10_1371_journal_ppat_1009606
crossref_primary_10_1002_pmic_202200421
crossref_primary_10_1016_j_febslet_2015_07_029
crossref_primary_10_1093_nar_gku555
crossref_primary_10_1093_femsre_fuad049
crossref_primary_10_1371_journal_ppat_1003979
crossref_primary_10_1111_mmi_13301
crossref_primary_10_5808_GI_2013_11_2_76
crossref_primary_10_1073_pnas_1509251112
crossref_primary_10_1186_s12864_017_3932_y
crossref_primary_10_3389_fgene_2015_00110
crossref_primary_10_1016_j_meegid_2013_05_016
crossref_primary_10_1186_1471_2164_14_558
crossref_primary_10_1371_journal_pone_0101582
crossref_primary_10_1111_mmi_14917
crossref_primary_10_1186_1471_2164_14_714
crossref_primary_10_1093_femsle_fnw175
crossref_primary_10_1186_s12864_015_1583_4
crossref_primary_10_1016_j_tim_2012_07_005
crossref_primary_10_1371_journal_pone_0070720
crossref_primary_10_3389_fmicb_2021_719977
crossref_primary_10_1002_wrna_1195
crossref_primary_10_1080_15476286_2015_1110674
crossref_primary_10_1128_mBio_00485_20
crossref_primary_10_1038_nrmicro3316
crossref_primary_10_1016_j_cimid_2016_11_007
crossref_primary_10_1093_nar_gkaa047
crossref_primary_10_1080_10409238_2018_1473330
crossref_primary_10_15252_msb_20156540
crossref_primary_10_1096_fj_202002297RRR
crossref_primary_10_1371_journal_pgen_1004001
crossref_primary_10_1093_nar_gkw1316
crossref_primary_10_1093_femsre_fuv007
crossref_primary_10_1186_1471_2164_14_520
crossref_primary_10_1534_g3_117_300290
crossref_primary_10_1128_microbiolspec_RWR_0029_2018
crossref_primary_10_1002_jor_22907
crossref_primary_10_1073_pnas_1520255113
crossref_primary_10_1093_mtomcs_mfae058
crossref_primary_10_3389_fmicb_2022_838042
crossref_primary_10_1093_mtomcs_mfae057
crossref_primary_10_1128_JB_02096_14
crossref_primary_10_1016_j_bbagrm_2020_194505
crossref_primary_10_1038_srep09560
crossref_primary_10_3389_fmicb_2018_00228
crossref_primary_10_1128_AEM_02044_13
crossref_primary_10_1371_journal_pone_0076572
crossref_primary_10_1016_j_ymeth_2013_06_003
crossref_primary_10_1038_s41467_021_23362_y
crossref_primary_10_1128_microbiolspec_VMBF_0028_2015
crossref_primary_10_1186_1471_2164_13_734
crossref_primary_10_1038_s41467_022_31177_8
crossref_primary_10_4161_rna_28036
crossref_primary_10_1093_nar_gkt444
crossref_primary_10_1128_JB_02410_14
crossref_primary_10_1111_mmi_14456
crossref_primary_10_1080_15476286_2019_1642725
crossref_primary_10_1128_JB_00252_18
crossref_primary_10_1080_15476286_2016_1153209
crossref_primary_10_1128_mBio_00156_12
crossref_primary_10_1371_journal_pgen_1005962
crossref_primary_10_1038_msb_2012_11
crossref_primary_10_1261_rna_033324_112
crossref_primary_10_1016_j_bbagrm_2018_04_004
crossref_primary_10_1080_20002297_2022_2161182
crossref_primary_10_1073_pnas_1201061109
crossref_primary_10_1128_AAC_00263_13
crossref_primary_10_1099_mic_0_000875
crossref_primary_10_3389_fimmu_2022_1050722
crossref_primary_10_1093_nar_gkab117
crossref_primary_10_1007_s00018_013_1472_4
crossref_primary_10_1093_nar_gks847
crossref_primary_10_1093_pnasnexus_pgad187
crossref_primary_10_1146_annurev_micro_102215_095708
crossref_primary_10_1016_j_molcel_2017_12_023
crossref_primary_10_1128_mbio_03443_21
crossref_primary_10_1186_1471_2164_14_230
crossref_primary_10_1016_j_bbagrm_2020_194489
crossref_primary_10_1186_1471_2164_14_620
crossref_primary_10_1111_mmi_14446
crossref_primary_10_1016_j_biotechadv_2021_107853
crossref_primary_10_1093_femsml_uqae007
crossref_primary_10_1093_gbe_evt138
crossref_primary_10_1093_nar_gkad1079
crossref_primary_10_1111_age_12275
crossref_primary_10_1186_s12864_016_3211_3
crossref_primary_10_1371_journal_ppat_1011965
crossref_primary_10_1039_C5MB00547G
crossref_primary_10_1016_j_bbagrm_2020_194524
crossref_primary_10_1080_21541264_2017_1381794
crossref_primary_10_1186_1471_2164_15_783
crossref_primary_10_3389_fmicb_2018_00342
crossref_primary_10_1016_j_coisb_2017_01_009
crossref_primary_10_1073_pnas_1812746116
crossref_primary_10_1038_nrmicro2934
crossref_primary_10_1128_JB_00098_19
crossref_primary_10_1111_mpp_12997
crossref_primary_10_1080_15476286_2016_1146855
crossref_primary_10_1093_abbs_gmw037
crossref_primary_10_1038_nrg3594
crossref_primary_10_1093_nar_gkx1284
crossref_primary_10_1016_j_bcab_2021_101933
crossref_primary_10_1016_j_biotechadv_2024_108478
crossref_primary_10_1186_1471_2164_15_438
crossref_primary_10_3389_fmolb_2020_617633
crossref_primary_10_4161_21541272_2014_944039
crossref_primary_10_1007_s12257_012_0374_x
crossref_primary_10_1128_mBio_01398_14
crossref_primary_10_1016_j_bbagrm_2013_02_013
Cites_doi 10.1038/sj.emboj.7600572
10.1073/pnas.1015154108
10.1146/annurev-genet-102209-163523
10.1002/bies.201000020
10.1093/nar/gkq462
10.1038/nature07007
10.1093/nar/gkp668
10.1038/nature08756
10.1073/pnas.0503838102
10.1371/journal.pone.0007526
10.1101/gr.100396.109
10.1038/nbt.1582
10.1093/nar/gkp080
10.1128/mBio.00024-10
10.1155/2009/525491
10.1073/pnas.0909051106
10.1093/nar/gkp596
10.1186/1471-2105-11-S3-S10
10.1002/j.1460-2075.1993.tb06074.x
10.1093/bioinformatics/btp472
10.1038/nrm2738
10.3201/eid1212.060505
10.1016/S0168-9525(02)02658-6
10.1038/nrmicro2457
10.1128/JB.01445-09
10.1038/82367
10.1371/journal.pone.0010725
10.1007/s00109-010-0597-2
10.1093/nar/gkr012
10.1126/science.1176951
10.1038/nrg2695
10.1038/nature08080
10.1111/j.1365-2958.2009.06830.x
10.1101/gad.423507
10.1016/j.mib.2007.03.012
10.1038/msb.2009.63
10.1093/nar/gkp1032
ContentType Journal Article
Copyright copyright © 1993—2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Dec 13, 2011
Copyright_xml – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Dec 13, 2011
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
7QO
7T7
5PM
DOI 10.1073/pnas.1113521108
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
DatabaseTitleList

CrossRef

AGRICOLA

MEDLINE - Academic
Virology and AIDS Abstracts
Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 20177
ExternalDocumentID PMC3250193
2537661731
22123973
10_1073_pnas_1113521108
108_50_20172
23060094
US201400069379
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
7QO
7T7
5PM
ID FETCH-LOGICAL-c621t-5afb60782daecd48e3d068829d82cab005109f7e7d72c4eb5f8fdfcf60e5f9ff3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:25:37 EDT 2025
Thu Jul 10 18:48:30 EDT 2025
Thu Jul 10 22:25:06 EDT 2025
Fri Jul 11 07:03:46 EDT 2025
Mon Jun 30 08:27:11 EDT 2025
Wed Feb 19 01:49:07 EST 2025
Tue Jul 01 03:39:08 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Wed Nov 11 00:29:42 EST 2020
Thu May 29 08:40:49 EDT 2025
Wed Dec 27 19:28:53 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c621t-5afb60782daecd48e3d068829d82cab005109f7e7d72c4eb5f8fdfcf60e5f9ff3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Author contributions: I.L., A.T.-A., and T.R.G. designed research; I.L., A.T.-A., M.V., I.R.d.l.M., M.V.-I., J.R.P., J.V., and C.S. performed research; A.D. and D.F. contributed new reagents/analytic tools; I.L., A.T.-A., A.D., V.S., and T.R.G. analyzed data; I.L., A.T.-A., and T.R.G. wrote the paper.
1I.L. and A.T.-A contributed equally to this work.
Edited by Susan Gottesman, National Cancer Institute, Bethesda, MD, and approved November 8, 2011 (received for review August 19, 2011)
OpenAccessLink https://hdl.handle.net/2454/22579
PMID 22123973
PQID 910979058
PQPubID 42026
PageCount 6
ParticipantIDs fao_agris_US201400069379
proquest_miscellaneous_911941332
jstor_primary_23060094
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3250193
proquest_miscellaneous_926882455
pubmed_primary_22123973
proquest_miscellaneous_1539451970
pnas_primary_108_50_20172
crossref_primary_10_1073_pnas_1113521108
proquest_journals_910979058
crossref_citationtrail_10_1073_pnas_1113521108
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-13
PublicationDateYYYYMMDD 2011-12-13
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Toledo-Arana A (e_1_3_4_5_2) 2009; 459
Georg J (e_1_3_4_14_2) 2009; 5
Güell M (e_1_3_4_3_2) 2009; 326
Brantl S (e_1_3_4_20_2) 2007; 10
Pichon C (e_1_3_4_28_2) 2005; 102
Parkhomchuk D (e_1_3_4_33_2) 2009; 37
Beaume M (e_1_3_4_10_2) 2010; 5
Thomason MK (e_1_3_4_18_2) 2010; 44
Sorek R (e_1_3_4_22_2) 2010; 11
Albrecht M (e_1_3_4_12_2) 2010; 38
Mendoza-Vargas A (e_1_3_4_6_2) 2009; 4
Wurtzel O (e_1_3_4_9_2) 2010; 20
Bohn C (e_1_3_4_31_2) 2010; 38
Martin J (e_1_3_4_13_2) 2010; 11
Klevens RM (e_1_3_4_25_2) 2006; 12
Nicol JW (e_1_3_4_35_2) 2009; 25
Mitschke J (e_1_3_4_15_2) 2011; 108
Abu-Qatouseh LF (e_1_3_4_30_2) 2010; 88
Anderson KL (e_1_3_4_32_2) 2009; 2009
Liu JM (e_1_3_4_4_2) 2009; 37
Rasmussen S (e_1_3_4_17_2) 2009; 73
Geissmann T (e_1_3_4_29_2) 2009; 37
Novick RP (e_1_3_4_26_2) 1993; 12
Fouquier d'Hérouel A (e_1_3_4_37_2) 2011; 39
Wagner EG (e_1_3_4_19_2) 2002; 18
Toledo-Arana A (e_1_3_4_24_2) 2010; 32
Selinger DW (e_1_3_4_1_2) 2000; 18
Czech B (e_1_3_4_34_2) 2008; 453
Filiatrault MJ (e_1_3_4_8_2) 2010; 192
Cho BK (e_1_3_4_2_2) 2009; 27
Sharma CM (e_1_3_4_7_2) 2010; 464
Gripenland J (e_1_3_4_23_2) 2010; 8
Huntzinger E (e_1_3_4_36_2) 2005; 24
Faghihi MA (e_1_3_4_21_2) 2009; 10
Jäger D (e_1_3_4_11_2) 2009; 106
Boisset S (e_1_3_4_27_2) 2007; 21
Dornenburg JE (e_1_3_4_16_2) 2010; 1
12047936 - Trends Genet. 2002 May;18(5):223-6
19881496 - Nat Biotechnol. 2009 Nov;27(11):1043-9
19786493 - Nucleic Acids Res. 2009 Nov;37(21):7239-57
19654113 - Bioinformatics. 2009 Oct 15;25(20):2730-1
19638999 - Nat Rev Mol Cell Biol. 2009 Sep;10(9):637-43
19448609 - Nature. 2009 Jun 18;459(7249):950-6
18463631 - Nature. 2008 Jun 5;453(7196):798-802
19838305 - PLoS One. 2009;4(10):e7526
20689751 - MBio. 2010 May 18;1(1):null
19996181 - Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21878-82
19620212 - Nucleic Acids Res. 2009 Oct;37(18):e123
20190049 - J Bacteriol. 2010 May;192(9):2359-72
19756044 - Mol Syst Biol. 2009;5:305
21079634 - Nat Rev Microbiol. 2010 Dec;8(12):857-66
20151104 - J Mol Med (Berl). 2010 Jun;88(6):565-75
19682248 - Mol Microbiol. 2009 Sep;73(6):1043-57
20164839 - Nature. 2010 Mar 11;464(7286):250-5
15678100 - EMBO J. 2005 Feb 23;24(4):824-35
20486131 - Bioessays. 2010 Jun;32(6):461-7
20707673 - Annu Rev Genet. 2010;44:167-88
21266481 - Nucleic Acids Res. 2011 Apr;39(7):e46
7691599 - EMBO J. 1993 Oct;12(10):3967-75
20505759 - PLoS One. 2010;5(5):e10725
17545468 - Genes Dev. 2007 Jun 1;21(11):1353-66
17326962 - Emerg Infect Dis. 2006 Dec;12(12):1991-3
21245330 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2124-9
19223322 - Nucleic Acids Res. 2009 Apr;37(6):e46
17387036 - Curr Opin Microbiol. 2007 Apr;10(2):102-9
19923228 - Nucleic Acids Res. 2010 Jan;38(3):868-77
19965477 - Science. 2009 Nov 27;326(5957):1268-71
16183745 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14249-54
20511587 - Nucleic Acids Res. 2010 Oct;38(19):6620-36
11101804 - Nat Biotechnol. 2000 Dec;18(12):1262-8
19935729 - Nat Rev Genet. 2010 Jan;11(1):9-16
19884261 - Genome Res. 2010 Jan;20(1):133-41
19936110 - Int J Microbiol. 2009;2009:525491
20438648 - BMC Bioinformatics. 2010;11 Suppl 3:S10
References_xml – volume: 24
  start-page: 824
  year: 2005
  ident: e_1_3_4_36_2
  article-title: Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600572
– volume: 108
  start-page: 2124
  year: 2011
  ident: e_1_3_4_15_2
  article-title: An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1015154108
– volume: 44
  start-page: 167
  year: 2010
  ident: e_1_3_4_18_2
  article-title: Bacterial antisense RNAs: How many are there, and what are they doing?
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-102209-163523
– volume: 32
  start-page: 461
  year: 2010
  ident: e_1_3_4_24_2
  article-title: Deciphering the physiological blueprint of a bacterial cell: revelations of unanticipated complexity in transcriptome and proteome
  publication-title: Bioessays
  doi: 10.1002/bies.201000020
– volume: 38
  start-page: 6620
  year: 2010
  ident: e_1_3_4_31_2
  article-title: Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq462
– volume: 453
  start-page: 798
  year: 2008
  ident: e_1_3_4_34_2
  article-title: An endogenous small interfering RNA pathway in Drosophila
  publication-title: Nature
  doi: 10.1038/nature07007
– volume: 37
  start-page: 7239
  year: 2009
  ident: e_1_3_4_29_2
  article-title: A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp668
– volume: 464
  start-page: 250
  year: 2010
  ident: e_1_3_4_7_2
  article-title: The primary transcriptome of the major human pathogen Helicobacter pylori
  publication-title: Nature
  doi: 10.1038/nature08756
– volume: 102
  start-page: 14249
  year: 2005
  ident: e_1_3_4_28_2
  article-title: Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0503838102
– volume: 4
  start-page: e7526
  year: 2009
  ident: e_1_3_4_6_2
  article-title: Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0007526
– volume: 20
  start-page: 133
  year: 2010
  ident: e_1_3_4_9_2
  article-title: A single-base resolution map of an archaeal transcriptome
  publication-title: Genome Res
  doi: 10.1101/gr.100396.109
– volume: 27
  start-page: 1043
  year: 2009
  ident: e_1_3_4_2_2
  article-title: The transcription unit architecture of the Escherichia coli genome
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1582
– volume: 37
  start-page: e46
  year: 2009
  ident: e_1_3_4_4_2
  article-title: Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp080
– volume: 1
  start-page: e00024-10
  year: 2010
  ident: e_1_3_4_16_2
  article-title: Widespread antisense transcription in Escherichia coli
  publication-title: MBio
  doi: 10.1128/mBio.00024-10
– volume: 2009
  start-page: 525491
  year: 2009
  ident: e_1_3_4_32_2
  article-title: Messenger RNA Turnover Processes in Escherichia coli, Bacillus subtilis, and Emerging Studies in Staphylococcus aureus
  publication-title: Int J Microbiol
  doi: 10.1155/2009/525491
– volume: 106
  start-page: 21878
  year: 2009
  ident: e_1_3_4_11_2
  article-title: Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0909051106
– volume: 37
  start-page: e123
  year: 2009
  ident: e_1_3_4_33_2
  article-title: Transcriptome analysis by strand-specific sequencing of complementary DNA
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp596
– volume: 11
  start-page: S10
  year: 2010
  ident: e_1_3_4_13_2
  article-title: Bacillus anthracis genome organization in light of whole transcriptome sequencing
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-S3-S10
– volume: 12
  start-page: 3967
  year: 1993
  ident: e_1_3_4_26_2
  article-title: Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1993.tb06074.x
– volume: 25
  start-page: 2730
  year: 2009
  ident: e_1_3_4_35_2
  article-title: The Integrated Genome Browser: Free software for distribution and exploration of genome-scale datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp472
– volume: 10
  start-page: 637
  year: 2009
  ident: e_1_3_4_21_2
  article-title: Regulatory roles of natural antisense transcripts
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2738
– volume: 12
  start-page: 1991
  year: 2006
  ident: e_1_3_4_25_2
  article-title: Community-associated methicillin-resistant Staphylococcus aureus and healthcare risk factors
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid1212.060505
– volume: 18
  start-page: 223
  year: 2002
  ident: e_1_3_4_19_2
  article-title: Antisense RNAs everywhere?
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(02)02658-6
– volume: 8
  start-page: 857
  year: 2010
  ident: e_1_3_4_23_2
  article-title: RNAs: Regulators of bacterial virulence
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2457
– volume: 192
  start-page: 2359
  year: 2010
  ident: e_1_3_4_8_2
  article-title: Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity
  publication-title: J Bacteriol
  doi: 10.1128/JB.01445-09
– volume: 18
  start-page: 1262
  year: 2000
  ident: e_1_3_4_1_2
  article-title: RNA expression analysis using a 30 base pair resolution Escherichia coli genome array
  publication-title: Nat Biotechnol
  doi: 10.1038/82367
– volume: 5
  start-page: e10725
  year: 2010
  ident: e_1_3_4_10_2
  article-title: Cartography of methicillin-resistant S. aureus transcripts: Detection, orientation and temporal expression during growth phase and stress conditions
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0010725
– volume: 88
  start-page: 565
  year: 2010
  ident: e_1_3_4_30_2
  article-title: Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype
  publication-title: J Mol Med (Berl)
  doi: 10.1007/s00109-010-0597-2
– volume: 39
  start-page: e46
  year: 2011
  ident: e_1_3_4_37_2
  article-title: A simple and efficient method to search for selected primary transcripts: Non-coding and antisense RNAs in the human pathogen Enterococcus faecalis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr012
– volume: 326
  start-page: 1268
  year: 2009
  ident: e_1_3_4_3_2
  article-title: Transcriptome complexity in a genome-reduced bacterium
  publication-title: Science
  doi: 10.1126/science.1176951
– volume: 11
  start-page: 9
  year: 2010
  ident: e_1_3_4_22_2
  article-title: Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2695
– volume: 459
  start-page: 950
  year: 2009
  ident: e_1_3_4_5_2
  article-title: The Listeria transcriptional landscape from saprophytism to virulence
  publication-title: Nature
  doi: 10.1038/nature08080
– volume: 73
  start-page: 1043
  year: 2009
  ident: e_1_3_4_17_2
  article-title: The transcriptionally active regions in the genome of Bacillus subtilis
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2009.06830.x
– volume: 21
  start-page: 1353
  year: 2007
  ident: e_1_3_4_27_2
  article-title: Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism
  publication-title: Genes Dev
  doi: 10.1101/gad.423507
– volume: 10
  start-page: 102
  year: 2007
  ident: e_1_3_4_20_2
  article-title: Regulatory mechanisms employed by cis-encoded antisense RNAs
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2007.03.012
– volume: 5
  start-page: 305
  year: 2009
  ident: e_1_3_4_14_2
  article-title: Evidence for a major role of antisense RNAs in cyanobacterial gene regulation
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2009.63
– volume: 38
  start-page: 868
  year: 2010
  ident: e_1_3_4_12_2
  article-title: Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp1032
– reference: 17545468 - Genes Dev. 2007 Jun 1;21(11):1353-66
– reference: 19935729 - Nat Rev Genet. 2010 Jan;11(1):9-16
– reference: 17326962 - Emerg Infect Dis. 2006 Dec;12(12):1991-3
– reference: 19448609 - Nature. 2009 Jun 18;459(7249):950-6
– reference: 21079634 - Nat Rev Microbiol. 2010 Dec;8(12):857-66
– reference: 20438648 - BMC Bioinformatics. 2010;11 Suppl 3:S10
– reference: 7691599 - EMBO J. 1993 Oct;12(10):3967-75
– reference: 16183745 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14249-54
– reference: 20151104 - J Mol Med (Berl). 2010 Jun;88(6):565-75
– reference: 19838305 - PLoS One. 2009;4(10):e7526
– reference: 19223322 - Nucleic Acids Res. 2009 Apr;37(6):e46
– reference: 21245330 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2124-9
– reference: 19936110 - Int J Microbiol. 2009;2009:525491
– reference: 19638999 - Nat Rev Mol Cell Biol. 2009 Sep;10(9):637-43
– reference: 15678100 - EMBO J. 2005 Feb 23;24(4):824-35
– reference: 19996181 - Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21878-82
– reference: 19965477 - Science. 2009 Nov 27;326(5957):1268-71
– reference: 19756044 - Mol Syst Biol. 2009;5:305
– reference: 20707673 - Annu Rev Genet. 2010;44:167-88
– reference: 20511587 - Nucleic Acids Res. 2010 Oct;38(19):6620-36
– reference: 19654113 - Bioinformatics. 2009 Oct 15;25(20):2730-1
– reference: 20164839 - Nature. 2010 Mar 11;464(7286):250-5
– reference: 18463631 - Nature. 2008 Jun 5;453(7196):798-802
– reference: 19881496 - Nat Biotechnol. 2009 Nov;27(11):1043-9
– reference: 19923228 - Nucleic Acids Res. 2010 Jan;38(3):868-77
– reference: 12047936 - Trends Genet. 2002 May;18(5):223-6
– reference: 19620212 - Nucleic Acids Res. 2009 Oct;37(18):e123
– reference: 20486131 - Bioessays. 2010 Jun;32(6):461-7
– reference: 19682248 - Mol Microbiol. 2009 Sep;73(6):1043-57
– reference: 20505759 - PLoS One. 2010;5(5):e10725
– reference: 11101804 - Nat Biotechnol. 2000 Dec;18(12):1262-8
– reference: 21266481 - Nucleic Acids Res. 2011 Apr;39(7):e46
– reference: 20689751 - MBio. 2010 May 18;1(1):null
– reference: 17387036 - Curr Opin Microbiol. 2007 Apr;10(2):102-9
– reference: 20190049 - J Bacteriol. 2010 May;192(9):2359-72
– reference: 19884261 - Genome Res. 2010 Jan;20(1):133-41
– reference: 19786493 - Nucleic Acids Res. 2009 Nov;37(21):7239-57
SSID ssj0009580
Score 2.4799562
Snippet RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs,...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20172
SubjectTerms 3' untranslated regions
Antisense RNA
Bacteria
Biological Sciences
digestion
Gene Expression Regulation, Bacterial
Genes
Genome, Bacterial - genetics
Genomes
Gram-positive bacteria
high-throughput nucleotide sequencing
Humans
Libraries
Messenger RNA
Molecules
Open reading frames
Open Reading Frames - genetics
Operator regions
Ribonuclease III - metabolism
ribonucleases
Ribonucleic acid
RNA
RNA Processing, Post-Transcriptional - genetics
RNA, Antisense - genetics
RNA, Antisense - metabolism
RNA, Bacterial - genetics
RNA, Double-Stranded - genetics
RNA, Double-Stranded - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Sequence Analysis, RNA
Species Specificity
Staphylococcus aureus
Staphylococcus aureus - genetics
Staphylococcus infections
Transcription, Genetic
transcriptome
Transcriptomes
Title Genome-wide antisense transcription drives mRNA processing in bacteria
URI https://www.jstor.org/stable/23060094
http://www.pnas.org/content/108/50/20172.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22123973
https://www.proquest.com/docview/910979058
https://www.proquest.com/docview/1539451970
https://www.proquest.com/docview/911941332
https://www.proquest.com/docview/926882455
https://pubmed.ncbi.nlm.nih.gov/PMC3250193
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5cIFUaDUFJCROBRFLvba68cxVJSAaBRBg3qz1t7dNqhxojoBiV_Iz2LGu34kShH0EiV-rDeez_NYz3xDyGtGhfCTQDleyDBAifGZy2MnDARlCrw5kWBx8tkoHE6CTxfsotf73claWi2z4_zX1rqSu0gVtoFcsUr2PyTbDAob4DvIFz5BwvD5TzL-IIv5TDo_pwJfAmBb5aKU2PWhaJWBuKmIZWdfRoP-QlcFmDKWTBM1865_Om7sWVlnD4zq5cJBW3xiNELZd_rjUdvK-DMvK1_0I75-f-dNL-ftIva1FHNnAFPjpq7mO0euhMaRxjq0tYqbes837ItUrOQPrmuLpiY1STRrrx51dKVpl-l763y7OpqC3Qx0ZfWx1GoZvBqAj24s2uhtN-4AVNPX1moYI9uOTcff0VaDARoOuxwXvETjAd6oZ4btwGcxq_BD0conuvHKBkf3-OzEB18SnOEdco9CwFKlmA679M-xLoYy_60mmYr8txvXRnZqc6E1V2lH8XmdM4tEvHDWtqBoM7e34yydPyQPTJRjDzRk90hPFo_IXi0F-8iQnb95TE47GLYbDNtrGLY1hm3EsN1i2J4Wdo3hJ2Ry-v78ZOiY3h5OHlJv6TCushDdU8FlLoJY-gLbH4FuiGnOta1IVCQjEdE8kBlTsRIqV6ErmUqU8vfJbjEv5AGxM1cEYebm4KvKIIOIR3k50v7FAm4vU9wix_VtTHNDfI_9V67TKgEj8lO8mWkrAoscNScsNOfL7YcegFxSfgkWOZ18pbhegeTffpRYZL8SVjMEBvuYyGsRqxqlHTpOmZtWmLXIYS3S1CiaMk0wSyRxGVztVbMXrAC-2uOFnK9gRgwULtaguxaxbzkG3JoEXFaf_uUQijIIGLPIUw2jdvYGlBaJ1gDWHIA89et7iulVxVdvHo1ndz7zkNxv1clzsru8WckXEAsss5fVY_YHzI0GbA
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+antisense+transcription+drives+mRNA+processing+in+bacteria&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lasa%2C+I%C3%B1igo&rft.au=Toledo-Arana%2C+Alejandro&rft.au=Dobin%2C+Alexander&rft.au=Villanueva%2C+Maite&rft.date=2011-12-13&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=50&rft.spage=20172&rft.epage=20177&rft_id=info:doi/10.1073%2Fpnas.1113521108&rft_id=info%3Apmid%2F22123973&rft.externalDocID=PMC3250193
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F50.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F50.cover.gif